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ABSTRACT

Multi-lingual text classification is a challenging task in natural language process-
ing, which not only faces language differences between multiple languages but
also faces the challenge of scarce annotated data. This paper proposes a prototype-
enhanced meta-learning (PEML) method to address the challenges in the multi-
lingual text classification task. The PEML method consists of two steps: firstly,
to enhance the model’s ability to understand multi-lingual samples, we design a
multi-lingual label-fusion technique to better map labels from different languages
into a unified semantical space; secondly, in response to the problem that class
prototypes for support sets are difficult to apply to query sets in meta-learning, we
use a query-enhanced technique to associates the prototype vectors of the support
set with samples in the query set. After training with our method, the classifica-
tion model can quickly update the class prototypes to the data distribution of the
query set, thereby expanding the model’s multi-lingual classification ability from
the support set to the unseen query set. Extensive experiments demonstrate that
the proposed method significantly outperforms state-of-the-art methods in multi-
lingual text classification tasks. The code and data will be released on GitHub.

1 INTRODUCTION

Multi-lingual text classification (MLTC) tasks have wide applications in practical scenarios such as
public opinion monitoring and industry intelligence analysis (Brauwers & Frasincar, 2023} |Minaee
et al.| 2022). Due to language and culture differences, it is not easy to annotate text data in different
languages using the same classification criteria since annotators need to understand both language
differences and annotation standards (Snell et al., [2017; Bao et al.| [2020). Therefore, Current re-
searches mainly focus on improving classification performance with only a few annotated samples
(few-shot scenario) (Shliazhko et al., 2024 [Liu et al., [2023).

Prototypical Networks (PN) are frequently used for solving few-shot text classification tasks (Snell
et al.,|2017;[Bao et al.|[2020; |Luo et al.L|2021). A prototype vector is considered to be representative
of a class, which is constructed with samples in the support set (Le1 et al., [2023). Query samples
are judged to belong to a class based on the distance to the prototype vector (Liu et al., [2024).
However, in MLTC tasks, intra-class language differences increase the computational difficulty of
class prototypes, which can easily lead to insufficient representativeness of class prototypes and
incorrect classification of query samples (Han et al., 2023} |L1 et al., 2024a).

Recently, several methods were proposed to address intra-class sample differences in PN research.
For instance, MLADA (Han et al., 2021) introduced adversarial domain adaptive networks to reduce
intra-class differences; ContrastNet (Chen et al., | 2023) amplified inter-class differences through
contrastive learning; Meta-SN (Han et al., 2023)) improved the discriminative ability of the model
by introducing external knowledge of class labels and a task construction strategy driven by hard
samples. However, these methods usually focus on monolingual tasks (Li et al.}|2024a; [Zhang et al.,
2022) and address intra-class sample differences by updating the class prototype from a category
perspective (L1 et al., 2024bj [Lv, |2024)), they lack a design for updating the prototype vectors in a
multi-lingual scenario, i.e., updating category information and language information simultaneously.

To better address the challenges in MLTC tasks, this paper proposes a Prototype Enhanced Meta
Learning (PEML) method, which introduces a multi-lingual and multi-class fusion and matching
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strategy to efficiently learn the class prototype vectors for multi-lingual samples and unseen cate-
gories in meta-learning. Specifically, PEML first uses a multi-lingual label-fusion module to better
map labels from different languages into a unified semantic space, which enhances the model’s abil-
ity to understand multi-lingual samples. Then, PEML uses a query-enhanced technique to better
associate the prototype vectors of the support set with samples in the query set. In this way, the
classification model can quickly update the class prototypes to the data distribution of the query set,
thereby expanding the model’s multi-lingual classification ability to the unseen query set. The ad-
vantages of the PEML method are: 1) it does not require a manually constructed prompt, making it
suitable for multi-lingual scenarios; 2) it needs only a few annotated data and does not need external
knowledge, making it easily be applied to low-resources languages; 3) extensive experiments show
that PEML achieves a new state-of-the-art performance under a multi-lingual few-shot scenario. The
main contributions of this paper are as follows:

* We propose a prototype-enhanced meta-learning (PEML) method for MLTC tasks.

* We design a label-fusion module and a query-enhancement module in PEML. The label-fusion
module maps samples from different languages of the same category to a unified semantic
space, enhancing the model’s ability to understand samples in multiple languages. The query-
enhancement module associates the class prototype vector with samples in the query set, alleviat-
ing the problem of insufficient representativeness of prototype vectors.

* Extensive experiments show that PEML achieves new state-of-the-art performance. We give a
detailed analysis of the results. The code and data of this paper will be released on GitHub.

2 RELATED WORK

Due to the high cost of manual annotation and the difficulty in unifying multi-lingual labels, few-
shot learning has become the mainstream research paradigm in MLTC, which can be categorized
into transfer learning and meta learning.

2.1 TRANSFER LEARNING

Transfer learning usually transfers knowledge from the source domain to the target domain with
multi-lingual pre-trained language models (PLMs). In recent years, the prompt-based method has
gradually become the mainstream transfer learning paradigm. This method constructs prompt words
to guide the model to stimulate existing knowledge with only a few examples (Liu et al., 2023).

Schick & Schiitze| (2021) introduced a prompt learning paradigm that requires manual template
design. The KPT series method (Hu et al.| [2022) guides PLMs to predict the category of query
samples by constructing an external knowledge graph. Dong et al.| (2023) transformed few-shot text
classification into a correlation estimation problem and constructed a universal prompt template. [Ji
(2024) enhanced text representation and improved text classification performance by introducing
entity relationship information from knowledge graphs. |[Liu & Yang (2024) proposed a knowledge-
enhanced prompt learning method (SKPT) that optimizes prompt templates by introducing external
knowledge (such as open triplets). Meng et al.|(2025)) proposed a multi-granularity feature extraction
method that integrates semantic relevance information of labels, which improves the performance
of the model on label confusion problems. [Dementieva et al.| (2025)) proposed an unsupervised
cross-linguistic knowledge transfer method that avoids manual data annotation and utilizes large-
scale multi-lingual encoders and translation systems for text classification. Although these methods
have achieved improvements, they often require the introduction of external knowledge or manual
construction of prompt templates, which increases labor costs and has limited generalization ability
when dealing with different types of problems (Gao et al.l [2025} |[Hatefi et al., [2025). In addition,
although large language models (LLMs) are currently a research hotspot in natural language pro-
cessing, there are few works on multi-lingual text classification based on LLMs and prompt learning.
Compared with existing transfer learning methods, the few-shot learning method we proposed
does not require the introduction of external knowledge or manually constructed prompt tem-
plates and only utilizes the characteristics of the data itself, which has better generalization
ability.
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2.2 META LEARNING

Meta learning, also known as “learning how to learn”, trains a model across many few-shot tasks,
each consisting of a support set (for learning task-specific information) and a query set (for evaluat-
ing generalization). It can help learning algorithms achieve better generalization for unknown tasks,
even in situations where training data is extremely limited or insufficient. The current meta learning
methods can be mainly divided into three categories:

1) Optimization-based methods focus on “how to optimize”. For example, MAML (Finn et al.
2017) and Reptile (Nichol et al.l 2018)) focus on optimizing the gradient descent process.

2) Model-based methods learn an implicit feature space and predict the labels of query samples in
an end-to-end manner, but often lack interpretability. Compared with optimization-based methods,
model-based methods are usually easier to train, but have weaker generalization ability for out-of-
distribution tasks (Hospedales et al.,[2020). For example, MANN (Santoro et al.,|2016) and SNAIL
(Mishra et al., 2018)), which aim to build adaptive internal states in fixed modules to achieve fast and
efficient parameter updates.

3) Metric-based methods learn an appropriate distance or similarity function to distinguish sam-
ples from different tasks. When faced with new tasks, this method calculates the distance between
input samples and known samples, and then classifies them into the most similar or nearest cate-
gory, such as Matching Network (Vinyals et al., 2016)), Prototypical Network (Snell et al.l |2017),
and the Relation Network (Sung et al.| 2018]). Among them, the Prototype Network aggregates all
annotated samples in each category into a category prototype, and then classifies them by measuring
the distance between the query sample and each category prototype. [Lei et al.| (2023) proposed the
TART method, which converts class prototypes into fixed reference points in a task-adaptive metric
space to enhance the model’s generalization ability. The LAQDA proposed by |Liu et al.| (2024) uti-
lizes label information and query samples to optimize class prototypes, to alleviate the problem of
large intra-class differences and small inter-class differences between support set samples. [Li et al.
(20244) proposed a prototype network optimization method that combines label propagation and at-
tention mechanisms, aiming to improve the quality of prototype representation and metric flexibility.
The PEML method proposed in this paper belongs to the metric-based meta-learning method.
Unlike existing methods, the PEML method utilizes a label-fusion and a query-enhancement
technique to obtain and update the multi-lingual class prototype vectors, thereby better trans-
ferring the classification ability of the model to unseen multi-lingual categories.

3 THE PROPOSED PEML METHOD

3.1 PROBLEM FORMULATION

Meta-learning provides an effective paradigm for few-shot text classification, typically adopting the
N-way K-shot task setting. For each task, there are IV classes, and each class has only K labeled
samples for training. The data in meta-learning is divided into two parts: the source classes Yi,qin
and the target classes Y;cst, Where Yirqin NYiese = 0. In general, meta-learning contains two phases:
meta-training and meta-testing.

Meta-training: During the meta-training phase, the model is trained on a set of meta-tasks con-
structed from the training set Dy,.q;,,, Whose class labels are sampled from Y}, 4. Each meta-task
consists of a support set and a query set. Specifically, for each task, N classes are randomly sampled

from Yi,.qin, K labeled examples are sampled as the support set St,.qi, and another M examples as

NxK NxM
the query set Qrqin per class, denoted as Syyain = {(:,v:)}is - and Qrain = {(z5,y;) jle .

The model makes predictions about the query set Q444 based on the given support set S,qir,- Then
the model updates the parameters by minimizing the loss with Q¢yqin.

Meta-testing: During the meta-testing phase, the model is used to predict the labels of query sam-
ples in D;. . For each task, IV novel classes will be sampled from Y;.s:, which is disjoint from
Yirain- Then the support set Sies; and the query set Q¢.s¢ Will be sampled from the N classes, like
in meta-training. The query set Qes; is denoted as Qresr = {25 §V=X1M , where the label of each
example is unknown to the model. The performance of the model will be evaluated through the

average classification accuracy on the query set (;.s: across all the testing tasks.
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Figure 1: PEML on a 3-way 1-shot classification task. The dashed arrow is the query process.

3.2 FRAMEWORK

Figure I] gives an overview of PEML. First, a multi-lingual Encoder gets the representations of the
input sentences and label names. In the label-fusion module, a Language Adapter is applied to
enhance language-specific features. Then, contrastive learning is employed to align the semantic
spaces of the multiple languages under each label. Meanwhile, a Weighting Network computes
language weights for each query sample across multiple languages and adaptively fuses the multi-
lingual representations of candidate labels. In the query-enhancement module, a multi-lingual
Label Adapter is used to map the fused representations (label and examples) to a class prototype
space. During meta-training, the prototype of the support set is used to calculate losses. During
meta-testing, the prototype is used to query samples from the query set Qs.s; as data augmentation
to update itself, mitigating the problem of intra-class differences. Finally, query samples are inferred
by a Classifier which calculates the distance between query samples and the updated prototype
vector. Next, we will introduce the PEML method in detail.

3.3 LABEL FUSION MODULE

3.3.1 INPUT TEXT ENCODING

Firstly, an input text is tokenized and encoded with a multi-lingual encoder (e.g., mBERT) to obtain
its representation, i.e., the final-layer hidden state sequence {h1, ha,...,hr} € RLx4 where L is
the sequence length and d is the hidden size. After initial encoding, we design a Language Adapter
(LA) module to further optimize the representations of different languages. Different languages
will be automatically recognized and input into the corresponding sub-adapter. Each sub-adapter
consists of a down-projection of the hidden vector h; to a lower dimension r (where r = d/4),
followed by a non-linear transformation, and an up-projection back to the original dimension d.
The adapted vector is then added to the original vector via a residual connection, followed by layer
normalization (LayerNorm). This process is: h; = LAg (h;), ¢ = {1,2,..., L}. Here, ® denotes
the trainable parameters of the adapter, and we maintain a separate parameter set for each language,
ie., ®ep, P.p, and ®,,; for English, Chinese, and Vietnamese (we use these three languages for a
multi-lingual demonstration in this paper), respectively. This process transforms the original en-
coding results into a more language-specific representation, enabling the model to capture subtle
semantic differences and language-specific features in the multi-lingual embedding space. After ap-
plying the adapter transformation to each hidden vector in the sequence we perform Mean Poolmg
over the sequence length to obtain a sentence-level vector viexy = 1 Zz 1 h;, h; € R where h;
denotes the adapter-transformed hidden state at position 7. This sentence vector preserves the con-
textual information learned by the multi-lingual encoder through multi-lingual pre-training, while
also integrating language-specific features extracted by the adapter.

3.3.2 INPUT LABEL ENCODING AND FUSION

In terms of multi-lingual label modeling, assume the current task involves N candidate category
labels. For the j-th label, its multi-lingual representation includes Chinese, English, and Vietnamese



Under review as a conference paper at ICLR 2026

versions, denoted as Z§Zh), l§-en), and l§-w), respectively. Each version is a sequence of words or

subword tokens, represented as l;lang) = [l1,12,...], where lang € {zh,en,vi}. We first encode
the label names in each language independently using a multi-lingual encoder. The resulting hid-
den states for each language are mean-pooled and then passed through a language-specific adapter,

yielding three language-specific label embeddings: fj(-lang) = LAgang) (% S Enc(l§-1ang)) k),
where Enc(-) denotes the multi-lingual encoder, and l;lang) € R? is the representation of the j-th

label in language lang € {zh, en, vi} after processing with the corresponding Language Adapter.

To enable dynamic semantic fusion of multi-lingual label representations, we introduce a language-
weighted Network, which takes the pooled text representation viey as input and predicts an attention
distribution over the three language-specific label embeddings. The Query Network is implemented
as a two-layer multilayer perceptron (MLP), whose output is a 3-dimensional vector normalized
by a Softmax function to produce the attention weights (wn, Wen, wvyi). These weights are used
to compute a weighted combination of the multi-lingual label embeddings. The final fused multi-

lingual label representation for the j-th label is given by: l}- = Wy * i](-Z}l) + Wen * i;en) + Wy + f§Vi).
To further enhance the semantic consistency among multi-lingual label representations, we incorpo-

rate a cross-lingual contrastive loss based on InfoNCE (Information Noise Contrastive Estimation)
(Gao et al.|, 2021)). For each category label j, we obtain its embeddings under three different lan-

guages: {fj(-Zh), f§en), Z§Vi) }. These embeddings are first £2-normalized and treated as positive pairs.
In contrast, embeddings of different category labels across languages are considered as negative
samples. Assume a mini-batch contains B labels in total. The contrastive 10ss L¢ontra is defined as:

g ()
3B 7=1 (a,b)eQ Zszl €xXp <51m (Z§a)a Z](qb)) /T>

)

where 0 = {(zh, en), (zh, vi), (en, vi)}, sim(-) refers to cosine similarity, and 7 is a temperature
hyperparameter. This loss encourages the embeddings of the same label across different languages to
be semantically aligned, while pushing apart embeddings of different labels. As a result, it improves
the cross-lingual alignment of label representations in the shared semantic space.

We concatenate the word vector sequence of the input sentence [l~117 Bg, e h ], and the multi-
lingual label representations of all N candidate categories in the current task [l1,lo, ..., [x] to form
the overall input sequence to the multi-lingual label adapter: [hy, ho, ..., hp, 11,12, ..., IN].

3.4 QUERY ENHANCEMENT MODULE
3.4.1 MULTI-LINGUAL LABEL ADAPTER

To construct a task-adaptive metric space in which intra-class samples are more tightly clustered and
inter-class samples are better separated, we introduce a multi-lingual Label Adapter (MLA), which
enhances the conventional self-attention framework by explicitly incorporating multi-lingual label
semantics into sentence representation learning. The goal of this module is to enhance the model’s
discriminative capacity across languages by embedding task-specific label information directly into
the sentence encoding process.

To enable deep integration between the input sentence and multi-lingual label information, we in-
troduce a set of multi-head attention blocks. This module is parameterized by a set of trainable
meta-parameters 6, and is defined as: MLAy(Q, K,V) = o(QK?) - V, where the pairwise dot-
product QKT measures the similarity amongst features and is used for feature weighting com-
puted through an activation function o. Intuitively, each feature of V' will get more weight if the
dot-product between @) and K is larger. In MLA4(Q, K, V'), following the self-attention mecha-
nism, we have Q@ = K = V. We input [hy, ha,...,hp,l1,0o, ..., ly] to the MLA. The output

of <CLS> position (denoted as FLS) serves as the final representation vector v of the sentence:
v = ha = MLA9 (|:}~11,}~12,...,}~LL,Z~1,Z~2,...,I~N]).
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By explicitly incorporating multi-lingual label embeddings into the sentence representation con-
struction process, the model not only preserves the original linguistic context of the text but also
captures the cross-lingual semantic features of all candidate categories. This mechanism enables the
sentence representation to align more closely in the embedding space with the multi-lingual centroid
representations of its corresponding labels, thereby significantly enhancing the model’s accuracy
and robustness in category discrimination. This mechanism demonstrates superior generalization
and discriminative capabilities, especially in typical few-shot scenarios where multi-lingual samples
are imbalanced or label semantics are ambiguous.

3.4.2 PROTOTYPE UPDATE

In multi-lingual few-shot text classification, due to the limited number of samples in the support set
S and the semantic variance within classes, the class prototypes constructed solely from the support
set often suffer from bias and fail to accurately represent the true class centers. In contrast, the
query set @ typically contains more unlabeled samples with a broader distribution. Therefore, we
incorporate information from the query set to update and enhance the representational capacity of
the class prototypes. For each support sample, we select the top R most similar samples from the
query set to assist in constructing more accurate class prototypes. This is based on the intuition
that richer sample information can generally lead to better prototype estimation. Meanwhile, to
mitigate semantic bias caused by language imbalance, we apply language-balanced sampling to the
top R candidate samples. Specifically, we allocate | R/3| samples to each language. Any remaining
slots are filled by randomly selecting from the remaining candidate pool, ensuring that the selected
samples are as balanced across the three languages as possible.

For an N-way K-shot classification task, let the K support samples of novel class ¢ be denoted as
{x3, ..., x5} , with their corresponding representations {v5}, ..., v }. The query set contains M

unlabeled samples {2%, ..., x%[}, whose representations are {0, ..., vf\%} We treat each sample as
a random variable following a Gaussian distribution and use an Optimal Transport (OT) technique
that can help align data distributions between query samples and class prototypes from the support
set. Specifically, for each sample in the c-th class support set S., we first retrieve its R most similar
samples in the query set () based on the OT distance:

M = argminV(Q, S.) = argmin =~ min < C, T >= {ay,as, ...,ar}, )
ceN ceEN TeX(Q,z5)
where C denotes the cost matrix and each element is computed by the Euclidean distance between a
query sample and a support sample: c(w?, xf ) =|| viQ — UJS |2. T € Rf *™ represents the optimal
transport plan matrix that satisfies the marginal constraints {T - 1,, = Q, T - 1, = S.}, indicating
the optimal pairing between support and query samples. The optimal transport matrix T, can be
efficiently solved using the Sinkhorn Algorithm (Cuturi, [2013).

We next adapt the augmented information M from the query set (), mapping to the task as follows:

K

a; = argminZTC(i,j) -c (ai,vfj) , 1={1,...,R}, 3)
aieM? j=1

where @, denotes the projected representation of the i-th sample representation in ], CQ ,and T.(i,7)
is the element at position (¢, j) of the transport matrix T.. This projection maps the query samples to
the distribution space of the support set through the optimal transport matrix Tc to reduce language
bias. Previous studies (Liu et al., [2024) have shown that when the cost function is the squared Eu-
clidean norm, this projection process is equivalent to a weighted average of S, (Courty et al.| [2017)
as follows: Sc = diag (Tclnu)_1 T.S., where 5} denotes the enhanced support sample representa-
tions for class ¢, and diag is a diagonal matrix. Following previous work (Liu et al.,2024), we obtain
the adapted augment information S., which is then combined with the original support sample rep-

resentations to compute the final prototype of the c-th class: P. = mean (um’on Se, S.)). By

integrating auxiliary sample information from the query set, this enhanced prototype becomes more
robust and better aligned with the true class center, thereby improving classification performance in
multi-lingual few-shot scenarios.
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Table 1: Experimental results under different few-shot settings.

2-shot 4-shot 8-shot
Methods — — —
Precision Recall F1 Precision Recall F1 Precision Recall F1

mBERT 49.31 39.15 41.10 72.83 70.46  70.60 77.21 75.31  75.37
PET 28.03 23.01 2527 31.84 26.63  27.65 41.46 4048 39.57
MetricPrompt 67.49 64.55 64.45 75.09 7329 73.13 80.90 79.79  79.80
KPT 75.48 74.16  72.18 80.22 78.84 78.67 82.50 80.78 80.81
PBML 86.77 86.41 85.87 87.57 87.39 86.95 88.89 88.65 88.76
DML 11.84 1440 10.17 29.62 23.14 2258 52.70 43.69 44.27
LAQDA 88.35 86.12 87.75 89.62 89.35 89.29 91.51 90.39 90.21
EMPT 88.49 88.50 88.44 89.34 89.16 89.21 90.10 89.91 90.09
Sailor2-8B 76.88 7534  76.10 78.73 7695 77.83 79.35 77.86  78.60
PEML(ours) 91.26 90.65 90.57 92.61 92.15 92.11 93.54 93.29 93.27

3.5 TRAINING AND TESTING PHASES

Training Phase: For each query sample a:ZQ with representation vl-Q, the model calculates the Eu-

clidean distance between viQ and each class prototype. The resulting distances are passed through a
softmax function to estimate the probability that the sample belongs to c-th class, as follows:

Q 2
exp (—|lvf — P.II3)
P (yela?, P) = : 4)
y 7 N Q
S exp (<l - Bl3)

where P, denotes the prototype of class ¢, and N is the number of classes in the task. To optimize
the model parameters, we use the cross-entropy loss function to compute the prediction error across

all query samples and all classes: L.. = 22:1 Zivzl YqclogP (yc|:r?, P), where y,. = 1 if the

query sample :v? belongs to the c-th class; otherwise, y,. = 0. n denotes the number of samples in
the query set. We define the optimization objective of PEML as: £ = L.. + ALcontrqa, Where X is
a hyperparameter that balances the classification loss and contrastive loss. By minimizing £, all the
trainable model parameters can be learned.

Testing Phase: For a given [V-way K -shot task, we first generate the adapted representations for the
query samples and combine them with the original support set representations to construct the final
support set. The Prototypical network is then used to predict the class label for each query sample

Q

x7, as given by: § = argmax, P (yc | xiQ, 7?).

4 EXPERIMENTAL RESULTS AND ANALYSIS

The experimental settings are introduced in Appendix |Al We aim to answer the following questions
with the experiments: 1) whether PEML achieves state-of-the-art performance in few-shot MLTC
tasks (section [.I)); 2) how does each component contribute to the overall performance (Section
[4.2); 3) whether prototype enhancement leads to more compact intra-class distributions and better-
separated inter-class representations (Section [4.3)); 4) what is the difference when select different
number of query samples (Section[4.4); 5) what is the difference with different A (Appendix [B).

4.1 MAIN RESULTS

We conducted experiments on multi-lingual text classification tasks under different few-shot condi-
tions. Table[I]shows the experimental results compared with the baseline models.

We can see that the proposed method PEML (Ours) outperforms the baseline models in different
few-shot settings and evaluation metrics, demonstrating strong performance advantages. Specifi-
cally, under the 2-shot setting, PEML achieved an F1 score of 90.57%, an improvement of 2.82%
and 2.13% compared to the strong baselines LAQDA (87.75%) and EMPT (88.44%), respectively.
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Table 2: The ablation study results. “PEML w/o LF” removes the Label Fusion module, “PEML w/o
LA” removes the Language Adapter, “PEML w/o CL” removes the Contrastive Learning process,
“PEML w/o QE” removes the query enhancement module, “PEML w/o MLA” removes the multi-
lingual Label Adapter, “PEML w/o PU” removes the Prototype Update process.

2-shot 4-shot 8-shot
Methods — — —
Precision Recall F1 Precision Recall F1 Precision Recall F1
PEML 91.26 90.65 90.57 92.61 92.15 92.11 93.54 93.29 93.27

PEML w/o LF 82.75 81.43 82.08 84.42 83.21 83.59 86.96 8591 86.61
PEML w/o LA 86.67 85.26 85.87 88.03 87.74 87.62 90.85 89.43  90.23
PEML w/o CL 84.22 83.43 83.73 85.98 84.85 85.41 88.08 87.84 87.96
PEML w/o QE 85.54 83.24 84.36 87.26 87.16 87.21 90.06 89.82  89.96
PEML w/o MLA 91.24 90.59 90.48 91.03 90.74 90.62 92.08 91.73 91.85
PEML w/o PU 86.44 85.58 85.65 87.86 87.07 87.12 88.23 88.01 88.02

It also far surpasses traditional fine-tuning and prompt-based methods such as mBERT, PET, KPT,
etc. PEML also outperforms the state-of-the-art multi-lingual LLM, such as Sailor2. The perfor-
mance of Sailor2 is lower than methods based on smaller PLMs (e.g., PBML, LAQDA EMPT). This
result indicates that even the state-of-the-art multi-lingual LLM faces a challenge in multi-lingual
few-shot text classification tasks. In summary, the 2-shot results verify PEML’s ability to construct
more accurate category prototypes under multi-lingual and extremely few-shot conditions.

In the 4-shot and 8-shot settings, most baseline models showed steady performance improvements.
The DML method has the most significant improvement when given more labeled samples. Taking
the F1 metric for instance, DML’s 4-shot has increased by more than 2 times compared to 2-shot,
and 8-shot has increased by nearly 2 times compared to 4-shot. This indicates that the DML method
can learn multi-lingual classification patterns from an increasing number of examples. However,
there is still a significant gap between it and the best-performing models. Among all models, PEML
still performed the best. The results again verify PEML’s good capability for few-shot MLTC tasks.

4.2 ABLATION STUDY

To evaluate the impact of the two modules proposed in this paper on model performance, we con-
ducted ablation experiments under different few-shot settings, and the results are shown in Table
We can see that when removing the Label Fusion (LF) modules, the performance of PEML
drops significantly (the F1 metric drops 8.49/8.52/6.66 on the 2/4/8-shot setting, respectively). The
results show that the LF module plays an important role in helping the model understand multi-
lingual text. When the Language Adapter (LA) was removed, the F1 score decreased by 4.70,
4.49, and 3.04 percentage points under the three settings, respectively. The results indicate that LA
helps capture language-specific features and enhances cross-lingual representation. The Contrastive
Learning (CL) process also helps to map different languages into a unified semantic space, remov-
ing CL causes performance declines. When removing the Query Enhancement (QE) modules,
the F1 values dropped to 84.36/87.21/89.96 on the 2/4/8-shot setting, respectively. Among them,
the performance degradation was most significant under the 2-shot setting, reaching 6.21 percentage
points. This indicates that in extremely few-shot scenarios, the PE module can alleviate the problem
of sparse or insufficiently representative support set samples, improve the robustness and discrimi-
nation of class prototypes. When the multi-lingual Label Adapter (MLA) module was removed, the
F1 value decreased by 0.09/1.49/1.42 under the 2/4/8-shot setting, respectively. This shows that the
MLA module introduces semantic information of multi-lingual labels, which helps to build a more
task-consistent and semantically distinguishable representation space. When the Prototype-Update
(PU) module was removed, the F1 value decreased by 4.92/4.99/5.25 under the 2/4/8-shot setting,
respectively. This shows that the PU module helps to build more robust prototype vectors, which
increases the classification performance.

4.3  VISUALIZATION

To evaluate the ability of different models in building better class prototypes, we used t-SNE (Van der
Maaten & Hinton, 2008)) to visualize the sample representations and class prototypes generated by
PBML, LAQDA, and our method. We randomly selected 3 categories with 150 query samples per
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Figure 2: Visualization of sample text representations extracted from three new categories on the
multi-lingual industry dataset. The triangle represents the calculated category prototype.

Table 3: Experimental results under different R.

2-shot 4-shot 8-shot
Number of R — — —
Precision  Recall F1 Precision  Recall F1 Precision  Recall F1
R=3 89.99 89.13  88.99 92.19 91.59 91.52 92.86 91.79 91.73
R=6 91.12 9043 90.34 92.36 92.01 9193 93.22 92.57 92.53
R=12 91.26 90.65 90.57 92.61 92.15 92.11 93.54 93.29 93.27
R=24 91.26 90.61 90.54 92.59 92.12 92.11 93.19 9246 9240

category from the collected data. The results are shown in Figure E] (a), (b), and (c). We can see that
our PEML method makes samples have stronger compactness within the class, so as to alleviate the
problem of insufficient representativeness of support sets in a multi-lingual scenario.

4.4 EXPERIMENTS WITH DIFFERENT QUERY SAMPLES

To verify the impact of the number of query samples R in the prototype update module on the
model performance, we conducted parameter sensitivity experiments in different few-shot settings
(2/4/8-shot), setting R={3,6,12,24}, respectively. It means that we introduce 1, 2, 4, and 8 auxiliary
samples in each language. The experimental results as shown in Table[3] We can see that in 2/4/8-
shot settings, the overall F1 value increases when R increases, indicating that introducing more
auxiliary samples appropriately can help improve the representation quality of the prototype. Among
them, under the 2-shot setting, the F1 value increased by about 1.55 percentage points (from 88.99%
to 90.54%) from R=3 to R=24; Under the conditions of 4-shot, F1 increased by 0.59% from R=3
to R=24. This indicates that under few-shot conditions, the gain brought by auxiliary samples is
more significant, and additional language-balanced samples can alleviate the problem of class center
shift, thereby improving classification performance. However, under the conditions of 8-shot, the
performance gain tends to drop when R is larger than 12, indicating that too many auxiliary samples
may bring redundant information or noise, affecting the query-enhancement effect. Hence, during
the experiments, we select R=12.

For more experiments, Appendix [B] shows the experiments for deciding A in the final loss L,
Appendix [C| shows the confusion matrix results of the test set. Appendix [D]shows experiments on
other public MLTC datasets with 6 languages.

5 CONCLUSION

We propose a prototype-enhanced meta-learning (PEML) framework for few-shot MLTC tasks. The
method introduces two key components: a label-fusion module that jointly encodes label names and
text features to construct a task-adaptive metric space, and a query-enhancement module that re-
fines class prototypes via optimal transport using query samples, addressing support set randomness
and intra-class variation. Extensive experiments show that PEML achieves state-of-the-art perfor-
mance. Further experiments are now conducting and will be released in the next version of the paper
(including experiments on more languages and different kinds of encoders).
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Table 4: Statistics of the collected dataset.
Category A B C D E F G H 1

Chinese 20,243 3,880 8,252 18,854 7,425 9,958 9,995 15,590 19,584
English 14,076 1,574 2773 8,061 3,381 4,716 5,163 9,160 7,751
Vietnamese | 3,320 253 210 579 2,915 737 2,930 2,966 2,848
Total 37,639 5,707 11,235 27,494 13,721 15411 18,088 27,716 30,183

A  EXPERIMENTAL SETTINGS

A.1 DATASET

Due to the lack of multi-lingual text classification datasets under a unified classification standard
in real-world scenarios, we collected a total of 187,194 news articles from publicly available news
websites, including 113,781 in Chinese, 56,655 in English, and 16,758 in Vietnamese. The data
statistics are shown in Table |4} The average word length of Chinese/English/Vietnamese news is
around 245/326/513, respectively. The collected data covers multiple categories. We use the clas-
sification tags provided by the website and classify the data into 9 categories based on the same
classification criteria. The Category index A is “Agriculture, forestry, animal husbandry and fish-
ery”, B is “Mining”, C is “Manufacturing”, D is “Transportation, storage and postal services”, E is
“Finance”, F is “Real estate”, G is “Education”, H is “Health and social work™, I is “Culture, sports
and entertainment”. To verify the ability of few sample learning, data from 9 categories were divided
into training category, validation category, and testing category in a 4:2:3 ratio in the experiment.
We also tested with a 3:3:3 division, and the results are similar to those with a 4:2:3 division.

A.2 EVALUATION METRICS

Following previous work (Liu et al.,|2024; Lv} 2024), we use Precision, Recall, and F1 score to mea-
sure the performance of text classification. The above indicators are calculated based on weighted
averages in subsequent sections to ensure that the results accurately reflect the model’s overall per-
formance in each category.

A.3 TRAINING DETAILS

The experimental implementation is based on the PyTorch (Paszke et al., |2019) and Huggingface
(Wolf et al., 2020) frameworks. To ensure fairness in comparison, all methods used BERT-base-
multi-lingual-uncased (Devlin et al.| 2019)) as the backbone model, and all experiments were run on
an NVIDIA RTX 4090 GPU. The model parameters were optimized using the AdamW optimizer
(Loshchilov & Hutter, 2019), with a learning rate set to le-6. Early stopping strategy is executed
when the performance of the validation set does not improve for 20 consecutive epochs. We con-
ducted few-shot classification experiments under the 2-way 2-shot, 2-way 4-shot, and 2-way 8-shot
settings. Following previous work, 100, 100, and 1000 tasks are randomly sampled for training,
validation, and testing in each round for each method, respectively. For each category, 30 query
samples in each task are randomly selected. We also test with different numbers of query samples,
and the results still verify the effectiveness of PEML. Due to the page limit, we only show the 30
query sample experiments.

A.4 BASELINE MODELS

This paper chooses the following method as the baseline model (including both transfer learning
methods and meta learning methods):

mBERT (Devlin et al 2019) uses the output of the <CLS> position as text representations, and
maps them to specific categories for classification through linear layers.

PET (Schick & Schiitze, 2021)) uses manual templates to construct prompts by adding prefixes or
suffixes to the input text and masking certain markers, converting the given tasks into fill-in-the-
blank phrases.
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Please classify the given sentence into one of the 9 categories (A. "Agriculture, forestry, animal husbandry and fishery",
B. "Mining", C. "Manufacturing”, D. "Transportation, storage and postal services", E. "Finance", F. "Real estate", G.
"Education", H. "Health and social work", I. "Culture, sports and entertainment".).

Examples: Sentence: " [ R # & S — 29 K. ", Category: G. Sentence: "Tin ore production increased by
10%.", Category: B. Question: Sentence: "Sé lwong du hoc sinh hai nudc qua bién giéi ting hang nim", Category: ?

Figure 3: The 2-shot prompt example for Sailor2 (Including three languages).

Table 5: Experimental results with different A. Best results are highlighted in bold.

2-shot 4-shot 8-shot
Value of A — — —
Precision  Recall F1 Precision  Recall F1 Precision  Recall F1
A=0.05 91.05 90.58 90.42 92.32 91.87 91.83 92.88 9296 92.92
A=0.10 91.26 90.65 90.57 92.61 92.15 92.11 93.54 93.29 93.27
A=0.15 91.19 90.52 90.51 92.42 92.02  92.05 92.98 92.76  92.81
A=0.20 91.16 90.51  90.50 92.21 91.93 92.01 92.44 92.33 92.32
A=0.25 91.11 90.43 9045 92.12 91.89 91.97 92.41 92.30 92.29

MetricPrompt (Dong et al., [2023) transforms few-shot text classification into a correlation esti-
mation task, using a prompt model as a correlation measure and supervised training of the model
through cross-entropy loss.

KPT (Hu et al.| |2022) expands the search space of label words by introducing external knowledge
and uses a PLM to refine the expanded label word space before prediction, aiming to improve and
stabilize the performance of prompt tuning.

PBML (Zhang et al.,|2022) combines a prompt mechanism and meta learning framework for few-
shot text classification. with few samples by assigning label words and template learning.

DML (Li et al.,|2024b)) introduces a dual meta learning mechanism to optimize the teacher and stu-
dent models through pseudo-label correction and feedback supervision, improving the performance
of semi-supervised text classification.

LAQDA (Liu et al., 2024) uses label information and query samples to optimize class prototypes,
to alleviate the problem of large intra-class differences and small inter-class differences between
support set samples.

EMPT (Lv}, 2024) introduces an efficient prompt optimization method in the meta learning frame-
work, which normalizes label and sample information and uses regression to solve closed-form
solutions, improving inference speed and classification accuracy, and enhancing stability under a
small amount of meta-training data.

Sailor2-8B (https://huggingface.co/sailor2) is a state-of-the-art large language model (LLM) that is
specially trained for multiple languages, including the collected English, Chinese, and Vietnamese.
LLM is well-known as a few-shot learner, making Sailor2 suitable for comparing our method on a
few-shot text classification task. The 2-shot prompt for Sailor2 is shown in Figure 3]

B EXPERIMENTS WITH DIFFERENT )\

We set A={0.05, 0.1, 0.15, 0.2} in final loss £ to conduct parameter sensitivity experiments with
2/4/8-shot settings. The results are shown in Table 5] We can see that the F1 value is best when
A=0.1 in all settings. When A\ became larger or smaller, the model’s performance all dropped.
Hence, during the experiments, we select A=0.1. However, the overall trend of change is relatively
small, indicating that contrastive learning can steadily improve the performance of the model.
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Figure 5: Confusion matrix results on the test test of the AMR data.

C CONFUSION MATRIX RESULTS OF TEST SET

From the confusion matrix shown in Figure[] it can be observed that as the number of shots increases
from 2 to 4 and 8, the overall accuracy gradually improves, multilingual cross-class misclassifica-
tion continuously decreases, class boundaries become clearer, and intra-class consistency increases.
This trend validates the effectiveness of the proposed PEML method: by leveraging multilingual
label fusion, labels from different languages are aligned into a unified semantic space, significantly
alleviating cross-lingual semantic bias and inter-class confusion. Furthermore, through query en-
hancement, the model can rapidly adapt class prototypes to the query distribution during inference,
thereby overcoming the representation bottleneck of multilingual models in low-resource scenarios.

Table 6: Experimental results with public multilingual datasets.

2-shot 4-shot 8-shot
Precision  Recall F1 Precision  Recall F1 Precision  Recall F1
LAQDA 74.59 73.45  73.07 78.02 7717  76.95 81.21 80.40 80.22
PEML 76.53 7534 75.03 79.18 78.29 77.24 83.62 82.28 82.06

Methods

D EXPERIMENTAL RESULTS ON PUBLIC MULTILINGUAL DATASETS

To further validate the effectiveness of our proposed method, we conducted experimen-
tal evaluations on a public multilingual dataset. — Specifically, we used the multilingual-
amazon-reviews-6-languages dataset (AMR: Amazon Multilingual Reviews Dataset, avail-
able at: https://huggingface.co/datasets/srvmishra832/multilingual-amazon-reviews-6-languages),
which covers 6 languages and over 30 categories. We split this dataset into 15 categories for train-
ing, 5 for validation, and 9 for testing. Meanwhile, we compared our method with state-of-the-art

baseline model LAQDA, and the experimental results along with confusion matrices are presented
below.

It can be seen from Table [6] that compared with the baseline model LAQDA, PEML has significant
advantages in terms of precision, recall rate and F1 value under 2-shot, 4-shot and 8-shot Settings.
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Among them, the F1 value at 2/8-shot outcome LAQDA around 2%. This result demonstrates that
PEML shows stronger generalization ability in multilingual classification tasks. From the confu-
sion matrix in Figure 5] it can be seen that the category boundaries of PEML are clear, indicating
that it can still maintain good category discriminability in more languages and few-shot scenarios,
fully verifying the core design effectiveness of the method in addressing the challenges of language
differences and few-shot in MLTC.
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