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Motivation 
In this contribution, we would like to analyze the university-level mathematics that the research 

community currently believes to be crucial for the mathematical understanding of when, how and why 
supervised deep learning works (Kutyniok, 2024), with respect how much of it (“how much” certainly 
needs to be specified) can in principle be taught in high school. The analysis assumes that opening the 
black box of AI and thereby demystifying it empowers students as individual human beings (German 
Mündigkeit).  We focus on the non-statistical aspects, not because the statistical aspects are not 
important, but because they are covered better in other talks at the workshop.  

 
Key mathematical aspects of understanding deep learning 
 We restrict ourselves to supervised deep learning. Deep learning (DL) here means that we 
consider deep neural networks. We look at the supervised setting, meaning that we assume that a data 
set of input-output pairs is given, which is approximated by the deep neural network (NN). It would be 
worthwhile to analyze other subfields like reinforcement learning (which is closely related to optimal 
control theory) adversarial training (related to game theory), diffusion models (related to inverse 
problems), embeddings (which are at the core of transformers) but this is out of our scope. So is the role 
of different NN architectures, and of other hyperparameters. 
 Expressivity studies neural networks as a class of functions from the perspective of 
approximation theory. It is important to understand that on an abstract level NNs are simply a class of 
parameterized functions, more precisely a concatenation of parameterized elementary functions. A basic 
question is whether any sufficiently regular function on a compact set can be approximated by an NN 
(it can). A more relevant question is why NNs in many cases seem to be able to approximate high-
dimensional functions so well compared to other classes of functions. High-dimensional problems are 
notoriously hard for conventional methods. Studying how many parameters are needed for a certain 
accuracy is called expressivity.  
 To study training, one needs first to understand that in the first place this consists of solving an 
optimization problem. This optimization problem is high-dimensional and highly non-convex. It is 
typically solved by (versions of) stochastic gradient descent (SGD). SGD is in its core a very simple 
algorithm. For the computation of the gradients of the loss function with respect to the network 
parameters it relies on a method called backpropagation (which has in fact been known as the adjoint 
method). Historically, SGD was used out of necessity to be able to make the solution feasible, but now 
it appears to be crucial for generalization.  

Generalization is arguably the most stunning property of NNs is the double descent curve. 
Against conventional wisdom, in many cases increasing the number of parameters in the NN beyond 
the number of data points (therefore using the NN in an overparameterized regime) ultimately leads to 
smaller testing errors. An interesting, related question is whether these trained NNs “have memorized” 
their training data. 

From a mathematical perspective, explainabilty of why a deep neural network yields a certain 
output is often related to sensitivity analysis.  
 
What can be taught in high school? 
 At first glimpse, it appears to be impossible to make concepts from ongoing mathematical 
research accessible to high school students. Our purpose is to demonstrate, though, that the key concepts 
can in fact be made at least plausible, and that they have multiple connections to standard elements of 
the German curriculum (but certainly many other international curricula as well). Some examples of 
practical proofs-of-concept are shown at this workshop. 
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 Understanding NNs as parameterized classes of functions requires the knowledge of the 
activation functions (e.g., ReLU, sigmoid, hyperbolic tangent); these are all not standard functions, but 
not out of scope. A second (standard) concept is concatenation, and then an index notation of a 
matrix/vector formulation for performing the activations and the affine-linear transformations many 
times (cf. the talk by Stephan Kindler).  
 The approximation properties of NNs can be understood in an even easier way than for 
polynomials, for example by considering ReLU networks of one variable, and realizing that they 
represent all piecewise affine-linear functions. One can show graphically (and even computationally) 
that any continuous function on a bounded interval can be approximated arbitrarily well. 
 Training consists of solving an unconstrained optimization problem; such problems are in 
principle formulated in calculus (usually in one dimension). We would argue that it is possible to 
introduce elements multi-dimensional calculus in high schools (it has been in the past), and/or to come 
up with a version of gradient descent directly when trying to approach the optimization problem 
algorithmically. We also believe that supervised learning can be effectively approached using linear 
least squares (Biehler et al., 2024). Teaching backpropagation (which we believe to be hard to teach) is 
the topic of a contribution by Orit Hazzan. 
 The problems that appear in high dimensions can also be addressed in the context of 
optimization problems. Students might want to solve an optimization problem by grid search; this way, 
they realize that one simply cannot build a nontrivial search grid in high dimensions, because the number 
of grid points scales exponentially with the dimension.  
 We currently have no idea how to make the double descent curve accessible, beyond conveying 
wonder at it. It can certainly be taught that when one increases the number of parameters one eventually 
enters the interpolation regime, which – according to conventional wisdom – is related to overfitting. 
But conveying wonder and mentioning an open question might be something interesting in its own right.  
 
Outlook 
 Summarizing, we believe that many aspects of AI can and should be demystified in high-school 
mathematics education. This has a lot to do with language, showing that mystically sounding AI terms 
often have a down-to-earth classical Math equivalent.  
 Another interesting topic that we have not touched upon is the connection to mathematical 
modeling, which is the use of mathematics with a specific purpose to solve a real-world problem 
(Schönbrodt & Frank, 2024). Key to this is the active use of mathematics, rather than the mechanical 
reproduction of mathematical techniques, which is so often at the core of high-school mathematics.  
 Finally, we would like to stress that we believe that demystifying AI/fostering AI literacy is an 
interdisciplinary challenge that from the methods side requires statistics, mathematics, and computer 
science, but cannot be understood without its impact in the sciences and the humanities. 
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