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ABSTRACT

Recent progress in large language models (LLMs) has led to systems capable of
producing text with remarkable fluency. However, these models are still prone
to factual inaccuracies, often referred to as “hallucinations”. One strategy to
alleviate this issue is uncertainty quantification (UQ), but most existing approaches
are computationally intensive or require supervision. In this work, we propose
Recurrent Attention-based Uncertainty Quantification (RAUQ), an unsupervised
and efficient framework for identifying hallucinations. The method leverages
an observation about transformer attention behavior: when incorrect information
is generated, certain “uncertainty-aware” attention heads, tend to reduce their
focus on preceding tokens. RAUQ automatically detects these attention heads
and combines their activation patterns with token-level confidence measures in a
recurrent scheme, producing a sequence-level uncertainty estimate in just a single
forward pass. Through experiments on twelve tasks spanning question answering,
summarization, and translation across four different LLMs, we show that RAUQ
consistently outperforms state-of-the-art UQ baselines. Importantly, it does so with
minimal cost, less than 1% additional computation. Since it requires neither labeled
data nor extensive parameter tuning, RAUQ serves as a lightweight, plug-and-play
solution for real-time hallucination detection in white-box LLMs.

1 INTRODUCTION

Large language models have become the de facto backbone of modern NLP systems; yet, the
impressive fluency of their responses often conceals various inconsistencies known as “hallucina-
tions” (Huang et al., 2025). There are several ways to address hallucinations, such as post-hoc
verification using external knowledge bases (Min et al., 2023), incorporating retrieval-augmented
generation to ground outputs in factual data (Lewis et al., 2020), or filtering/altering responses based
on the uncertainty of a model (Kuhn et al., 2023; Farquhar et al., 2024). The latter approach, based
on uncertainty, is the focus of this work.

Uncertainty is a fundamental concept in machine learning, reflecting the fact that we usually lack
complete information about the model’s predictions or parameters (Gal & Ghahramani, 2016; Houlsby
et al., 2011; Hüllermeier & Waegeman, 2021). High predictive uncertainty typically signals a greater
likelihood of hallucinations in the model output. Unlike verification methods that rely on external
knowledge sources to detect hallucinations, uncertainty quantification (UQ) leverages the model’s
internal capabilities, thereby mitigating issues related to the completeness of external sources and
offering greater versatility. As shown in previous work, uncertainty scores can be used to detect
hallucinations that arise due to limitations of LLM parametric knowledge or due to the ambiguity of
requests in various generation tasks (Malinin & Gales, 2021; Geng et al., 2024; Baan et al., 2023),
including question-answering, machine translation, text summarization, and speech recognition.

UQ for classification and regression tasks is a well-established area spanning decades of re-
search (Zhang et al., 2019; He et al., 2020; Xin et al., 2021; Wang et al., 2022; Vazhentsev et al.,
2023; He et al., 2024a). At the same time, UQ for generative tasks has only recently emerged as
an active topic and still features open challenges. A crucial difference over classification is that
an LLM performs not a single, but multiple conditionally dependent predictions. While recent
work has proposed several promising techniques for quantifying predictive uncertainty in generation,
e.g. (Kuhn et al., 2023; Farquhar et al., 2024; Duan et al., 2024; Qiu & Miikkulainen, 2024; Lin
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et al., 2024b), prior methods have limitations. Namely, information–based scores such as maximum
sequence probability (MSP) and token-level entropy are simple and fast, but often underperform on
long-form generation tasks (Zhang et al., 2024; Vazhentsev et al., 2025a). Sampling-based scores
offer stronger performance but incur large computational overhead (Kuhn et al., 2023; Lin et al.,
2024b; Vashurin et al., 2025). Supervised confidence regressors (Azaria & Mitchell, 2023; CH-Wang
et al., 2024), i.e., thin supplementary modules trained on supervised annotation, yield accurate scores,
but require costly, task–specific annotation and often fail to generalize to out-of-distribution data or
across tasks (Vazhentsev et al., 2025a). Thus, despite the recent surge of developments of UQ for
LLMs, there is still a lack of an effective, versatile UQ method that (i) avoids the high computational
costs associated with sampling-based approaches, and (ii) is robust across tasks and domains.

In this work, we aim to construct such a method. For this purpose, we peek into the attention weights
of the transformer and identify patterns that are highly indicative of the presence of hallucinations.
Self-attention matrices encode how strongly each newly generated token attends to its immediate
context. We empirically observe a systematic drop in the attention weight to the preceding tokens in
specific attention heads precisely at positions where the model later proves to be factually incorrect
(Figure 1). Based on this finding, we argue that a small number of attention heads capture the behavior
of transformer-based LLMs under uncertainty. We propose a method that automatically identifies
such “uncertainty-aware” heads inside individual LLM layers and extracts the token-level signal from
them. The method recurrently fuses this signal with token probabilities and confidence scores from
previously generated tokens, capturing the conditional dependencies across generation steps. Finally,
it aggregates token-level scores across the generated sequence and layers. The resulting sequence-
level uncertainty score achieves state-of-the-art performance and demonstrates high robustness to
the choice of its single hyperparameter. Moreover, since attention weights are readily available at
inference time for white-box LLMs, the method requires no additional generation passes and adds
almost no computational overhead to response latency.

Contributions:

1. In-depth analysis of attention-based patterns in LLMs associated with hallucinations,
which uncovers what we term “uncertainty-aware” heads, i.e., attention heads whose signals
notably correlate with hallucination occurrences.

2. RAUQ (Recurrent Attention-based Uncertainty Quantification) – an unsupervised UQ
method that turns raw attentions and LLM probabilities into reliable uncertainty scores
while adding only <1% latency. RAUQ requires no task-specific labels or tuning of
hyperparameters for a particular LLM, making it an easy plug-and-play for white-box
LLMs.

3. Thorough experimental evaluation on four LLMs and 12 benchmarks, spanning summa-
rization, translation, and question answering, showing that RAUQ achieves state-of-the-art
results over 15 baselines. We also demonstrate the importance of each component within
the method and illustrate that each individually could improve other UQ methods.

2 RELATED WORK

Several recent studies have proposed attention-based UQ methods for detecting hallucinations in
LLM-generated outputs.

Zhang et al. (2023) use attention weights to propagate uncertainty across generation steps by capturing
conditional dependencies, helping to mitigate overconfidence from prior hallucinations. However,
attention plays a secondary role, with the method mainly relying on probability and entropy.

Yuksekgonul et al. (2024) perform a mechanistic investigation of attention patterns linked to LLM
factual errors and propose a supervised UQ method called SAT Probe. They associate hallucinations
with weak attention to so-called “constrained” tokens in the prompt – key prompt elements that narrow
down the scope of the answer. However, their experiments show that SAT Probe performs only on
par with or slightly better than baselines. In a similar vein, Contextualized Sequence Likelihood (Lin
et al., 2024a) leverages attention to important tokens in the input context to reweight the contribution
of token logits when computing weighted sequence likelihood. Lookback Lens (Chuang et al., 2024)
leverages attention maps to construct features for a supervised hallucination detector. The authors
hypothesize that hallucinations correlate with less attention paid to the input context. They compute
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Figure 1: Attention weights in the 29th layer of Llama 3.1 8B from each generated token to its
preceding token, given the prompt What is King Henry holding in the Portrait of Henry VII?. The
y axis specifies the generated tokens, and the x axis specifies the attention heads. Warmer colors
indicate higher attention values. The output contains the factually incorrect token falcon (the correct
answer is gloves and dagger). Notably, the 25th attention head stands out by consistently assigning
relatively high attention to the preceding token. However, for the hallucinated token falcon, this
attention drops sharply – potentially serving as a signal for hallucination detection.

the ratio between cumulative attention weights to tokens in the answer and the prompt and train a linear
classifier on top of these features. Attention-based features are also used in Trainable Attention-Based
Dependency (Vazhentsev et al., 2025a). This method adds recurrence when computing uncertainty
for subsequent tokens. It demonstrates strong results for in-domain tasks, outperforming Lookback
Lens, but both methods lack generalization due to their supervised nature.

Finally, Sriramanan et al. (2024) recently proposed the Attention Score method, where they compute
a length-normalized sum of log attention weights to preceding tokens across the prompt and the
answer. Lower scores signal the presence of hallucination.

Although recent studies show that attention weights offer valuable signals for detecting hallucinations
in LLM outputs, existing methods suffer from various limitations that hinder their effectiveness. SAT
Probe, Lookback Lens, and TAD are supervised and show limited generalization beyond their training
domain. Zhang et al. (2023) and Lin et al. (2024a) leverage attention only as a supplement to other
scores. Sriramanan et al. (2024) do not select proper attention heads before averaging, and allow
the attention weights from prompt tokens to participate in the aggregation for the final score, which
causes underperformance.

In this work, we aim to overcome the limitations of existing methods. To this end, we identify strong
and generalizable attention-based patterns for LLM hallucination detection, isolate the key techniques
required to effectively exploit these patterns, and develop a robust unsupervised UQ method that
achieves state-of-the-art performance.

3 HALLUCINATION-ASSOCIATED PATTERNS IN ATTENTION MAPS

We analyze the model’s attention maps when an LLM generates correct vs. incorrect outputs. We
start with an analysis of attention weights to the immediately preceding token, i.e. alhi,i−1 – attention
weight to the {i− 1}-th token during the generation of i-th token from the layer l and attention head
h. Let N be the number of generated tokens in the answer, H the number of attention heads in each
layer, and L be the number of layers in the LLM. For illustration, we use the Llama 3.1 8B model.

Difference between attention weights for hallucinated and non-hallucinated tokens. Figure 1
presents an example of the attention weights to preceding tokens alhi,i−1 in one of the LLM layers
for the input question from the TruthfulQA dataset: What is King Henry holding in the Portrait of
Henry VII? Most of the generated tokens are aligned with the question. However, the token falcon
represents a hallucination, i.e. it is factually incorrect (the answer should be glove and dagger).

For most attention heads, the weights to previous tokens remain low across all generated tokens.
In contrast, the 25th head exhibits a distinct pattern: it assigns relatively high attention to the
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Figure 2: Average attention weights to the preceding token, aggregated over all answer tokens for
questions from the TruthfulQA dataset using Llama 3.1 8B. The top 10 highest- and lowest-quality
answers, as determined by a quality metric, are labeled as correct and incorrect, respectively. The
black dashed box highlights the head with the highest average attention.

preceding token for non-hallucinated (i.e., correct) tokens, but this attention drops significantly for
the hallucinated token falcon.

This example demonstrates that attention weights from a small subset of attention heads can notably
correlate with the factual correctness of generated tokens. While the choice of layer and head might
vary, this case suggests that certain heads in specific layers are “uncertainty-aware”, i.e., they are
sensitive to generation accuracy and could help to identify hallucinations. More examples of the
similar pattern for Llama and other LLMs are presented in Figures 6 to 9 in Appendix F.

Difference between average attention weights for incorrect and correct answers. We begin by
selecting 10 correct and 10 incorrect answers generated by the LLM. To evaluate the correctness of
each answer, we use AlignScore – a continuous metric that quantifies semantic similarity between
the generated response and the gold-standard answer (Zha et al., 2023). We sort all generations by
their AlignScore, and designate the top 10 as correct answers and the bottom 10 as incorrect.

Then, we compute the average attention weight to the previous token across all tokens in the answer
using the attention heads in the 29th and 22nd layers of the LLM, i.e. ālh = 1

N−1

∑N
i=2 a

lh
i,i−1.

Figure 2 presents the resulting values, where each row corresponds to a single selected answer, and
each column indicates the average attention weight from a specific head.

The attention maps in the figure demonstrate that certain heads consistently assign higher average
attention when the LLM generates correct answers as compared to incorrect ones. Moreover, there is
a notable correlation between the quality of the answer and average attention (see Figure 3b). This
way, we empirically discovered a pattern for assessing the correctness of LLM generations. From a
theoretical perspective, eigenvalue analysis of attention weights reveals similar hallucination patterns,
justifying the focus on weights to the previous token, as these are correspond to the log-determinant
of the attention matrix (Sriramanan et al., 2024).

Should we select uncertainty-aware heads, and how should we do it? We compute the average
attention score ālh across tokens in two scenarios: (1) attention values are averaged across all heads
in a layer, i.e. āl =

∑H
h=1 ā

lh; (2) attention values are extracted from a single head with the highest
average attention across tokens, i.e. ālhl , where hl = argmaxh=1...H ālh. Figure 3a compares the
resulting values for correct and incorrect answers.

When using only the selected attention head, we observe a clear difference in the values between
correct and incorrect answers. However, averaging attention across all heads eliminates this difference.
This once again highlights the importance of focusing on specific uncertainty-aware heads. These
heads can be identified by selecting those with the highest average attention weights across all tokens.

Do we need to look further back at preceding tokens to better detect hallucinations? We analyze
the attention weights to multiple preceding tokens. Here, we compute alhi,i−k – an attention weight to
the {i− k}-th token (k-th preceding token), k = 1, . . . , 6. Figure 4 shows the difference between the
average attention weights of the correct and incorrect answers.
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Figure 3: Attention weights to the preceding token averaged across all tokens in the generated
responses of Llama 3.1 8B on TruthfulQA. a): Comparison between incorrect (AlignScore < 0.1)
and correct (AlignScore > 0.9) answers. Attention values are presented for two scenarios: (left)
from the selected head with the highest average attention; (right) averaged across all heads. b): The
relationship between average response quality and the average attention weight in the selected head.
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Figure 4: Difference between correct (AlignScore > 0.9) and incorrect answers (AlignScore < 0.1)
in average attention weights to preceding tokens during the generation of answers for the questions
from the TruthfulQA dataset using Llama 3.1 8B.

We see that the attention weights differ substantially between correct and incorrect answers only
for the two preceding tokens, with almost zero differences observed for earlier tokens. Notably, the
difference is substantially larger for the first preceding token as compared to the second one.

Summary. Our analysis uncovers attention patterns associated with the factuality of individual tokens
and LLM responses in general. A key observation is that such systematic patterns emerge only for
a small subset of specific attention heads. Effectively leveraging them requires first identifying the
relevant uncertainty-aware attention heads. We also observe that the immediately preceding token
provides the strongest signal, leading us to focus solely on it in our method design and subsequent
experiments. Below, we leverage the insights from this mechanistic investigation to develop a new
unsupervised UQ method for LLMs.

4 RAUQ: RECURRENT ATTENTION-BASED UNCERTAINTY QUANTIFICATION
METHOD

Key ideas and theoretical grounding. RAUQ, to be effective, integrates three key ideas.

The first idea is that attention weights to previous tokens contain patterns indicative for hallucination
detection. This is grounded in previous works on attention-based UQ. Sriramanan et al. (2024)
illustrate that attention weights contain patterns indicative of hallucinations through eigen-analysis of
attention kernels. They use only the attention weights to the previous token, as these correspond to the
eigenvalues of the lower triangular attention matrix, and their sum exactly equals its log determinant.
We reveal a similar pattern through a mechanistic analysis of attention weights, examining the
correlation between hallucinations and attention weight distributions, as shown in Section 3.

In the second idea, we follow (Zhang et al., 2023; Vazhentsev et al., 2025a) and acknowledge that
computing uncertainty at the generation step i requires propagating uncertainty from previous steps
due to the conditional dependencies in the probability distribution modeled by the LLM. Namely,
even if previous tokens were generated with high uncertainty, a model may condition on them and
be highly confident in its current token prediction. To take this issue into account, we introduce a
formulation that recurrently propagates uncertainty from previous steps.
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The third idea is attention head selection. We observe that the majority of heads are not indicative of
hallucinations (Figure 3a). Therefore, we suggest selecting the most contrastive head that has the best
potential for discriminating between hallucinations and non-hallucinations. Our findings are well
supported by prior mechanistic interpretability studies of attention heads, which have shown that
different heads serve distinct functions Elhelo & Geva (2025).

Let x be the input sequence and y = y1y2 . . . yN be its corresponding output sequence of length N .

Selecting an attention head in each layer. For an LLM with L layers and H attention heads per
layer, we first select the most informative head. For each layer l, we select the head with the maximum
average attention weights between consecutive tokens:

hl(y) = argmax
h=1...H

1

N − 1

∑N

i=2
alhi,i−1, (1)

where alhi,i−1 is the attention weight from token yi to yi−1 computed by the h-th head in layer
l. By taking the maximum across attention heads within each layer, our method selects the most
contrastive attention head that has the best potential for discriminating between hallucinations and
non-hallucinations.

Token-level layer-wise recurrent confidence score. We recurrently compute the confidence score
cl(yi) for the i-th token by leveraging the confidence of the previous token cl(yi−1), the attention
weight alhl

i,i−1 from the selected head hl = hl(y), and the conditional probability of the current token
P (yi | y<i,x) as follows:

cl(yi) =

{
P (yi | x), if i = 1,

α · P (yi | y<i,x) + (1− α) · al hl
i,i−1 · cl(yi−1), if i > 1,

(2)

where α is a hyperparameter that balances the contributions of each component. This recurrent
formulation also helps to avoid an explosion in confidence scores with an increase in sequence length.
We present an ablation study on the impact of varying the parameter α in Section 5.3 and show that a
single value provides robust performance across various tasks and even models.

Sequence-level layer-wise uncertainty score. Sequence-level errors are typically either (1) dis-
tributed across all tokens, e.g. in the summarization task; or (2) localized in a single fact-related
token, e.g. in the QA task. To take into account both cases in the sequence-level uncertainty score,
we compute the mean logarithm of the confidence scores across all tokens in the reply (importantly,
we do not aggregate scores for tokens in the prompt):

ul(y) = −
1

N

∑N

i=1
log cl(yi). (3)

Final uncertainty score. Finally, to aggregate the layer-wise uncertainty scores in an unsupervised
manner, we compute the maximum uncertainty score across the set of layers:

u(y) = max
l∈L

ul(y), (4)

where L is a set of the most informative layers. This choice of maximum provides an upper bound
on uncertainty. Following previous work (Azaria & Mitchell, 2023; Vazhentsev et al., 2025a), we
select these intermediate of the model, as they are the most informative for hallucination detection.
An ablation study with various aggregation functions is presented in Section 5.3. The step-by-step
description of RAUQ is presented in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We conducted extensive experiments across three key generation tasks: question answering (“QA”),
text summarization (“Summ”), and machine translation (“MT”). We evaluated the effectiveness of
UQ in filtering unreliable outputs through selective generation. For all LLMs and tasks, we set
α = 0.2 and use the same range of layers – from the first third to the second third of the model (e.g.,
layers 10 to 22 for LLaMA-3.1 8B) without any tuning.

6
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Algorithm 1: RAUQ: Recurrent Attention-based Uncertainty Quantification method

Data: Input prompt x, LLM generation y = y1:N , LLM attention weights alhi,i−1 for each layer l
and each head h, token probabilities P (yi | y<i,x) and a hyperparameter α.

Result: Uncertainty score u(y)
// Selection of uncertainty-aware heads

1 for l← 1 to L do

2 hl ← argmaxh=1...H
1

N − 1

∑N

i=2
alhi,i−1;

// Computing token-level confidence scores with uncertainty-aware heads
3 for i← 1 to N do
4 if i == 1 then
5 cl(yi)← P (yi | x);
6 else
7 cl(yi)← αP (yi | y<i,x) + (1− α) alhl

i,i−1 cl(yi−1);

// Computing layer-wise and final uncertainty scores

8 ul(y)← − 1
N

∑N
i=1 log cl(yi);

9 u(y)← maxl∈L ul(y);
10 return u(y);

Datasets. We consider seven datasets for “QA”, three for “Summ”, and two for “MT”. A detailed
description of all datasets is provided in Appendix A, and the dataset statistics are shown in Table 3.

Models. To show the generalization of the method across various models, we use several widely
used open-weight LLMs: Llama-3.1 8B (Dubey et al., 2024), Qwen-2.5 7B (Yang et al., 2024),
Gemma-2 9B (Rivière et al., 2024), and Falcon-3 10B (Falcon-LLM Team, 2024). Additionally,
we experiment with open-weight LLMs of diverse sizes: SmolLM-2 360M (Allal et al., 2025),
LLaMA-3.2 1B, and LLaMA-3.1 70B (Dubey et al., 2024) in Appendix D.1. Detailed descriptions of
generation parameters are presented in Table 3 in Appendix A. We note that different LLMs expose
attention weights in various formats. To address this inconsistency, we implement a model-specific
normalization procedure that converts raw attention outputs into a unified lower-triangular attention
matrix representation across all models.

Uncertainty quantification baselines. We compare the proposed RAUQ method with 15 diverse
UQ baselines. As a sanity check, we include simple unsupervised baselines such as Maximum Se-
quence Probability (MSP) and Perplexity (Fomicheva et al., 2020). Among state-of-the-art baselines
for whitebox LLMs, we compare our method to Semantic Entropy (Kuhn et al., 2023), hallucina-
tion detection with a stronger focus (“Focus”) (Zhang et al., 2023), Claim-Conditioned Probability
(“CCP”) (Fadeeva et al., 2024), EigenScore (Chen et al., 2024), Shifting Attention to Relevance
(“SAR”) (Duan et al., 2024), Semantic Density (Qiu & Miikkulainen, 2024), and Attention Score (Sri-
ramanan et al., 2024). We also experiment with the “Simple Focus” method, which is a simplified
variant of the “Focus” method (Zhang et al., 2023). It preserves only the core scoring components:
attention-based signals and greedy log-likelihood, while omitting a proxy model, IDF-based keywords,
and NER. Additionally, we consider UQ methods for black-box LLMs, as they also demonstrate
strong performance in recent works despite not having access to logits or their hidden states. We use
Lexical Similarity based on Rouge-L (Fomicheva et al., 2020), Long-text Uncertainty Quantification
(“LUQ”) (Zhang et al., 2024), and methods from (Lin et al., 2024b) – Degree Matrix (“DegMat”),
Eccentricity, and Sum of Eigenvalues of the graph Laplacian (“EVL”).

Evaluation metrics. As the main evaluation metric, we use the standard Prediction Rejection Ratio
(PRR) (Malinin & Gales, 2021; Vashurin et al., 2025). This is a bounded metric PRR ∈ [0; 1] that
leverages the area under the rejection curve, which plots the average quality of remaining responses
when we abstain from a fraction of the most uncertain predictions. We compute PRR over only
the first 50% of the curve, as rejecting more than half of the instances is typically impractical. The
metric is normalized so that a PRR of zero or below indicates performance at or below the level of
random chance, while values approaching one reflect optimal performance. PRR is analogous to
ROC-AUC or PR-AUC; however, unlike them, it can be applied not only to discrete quality metrics

7
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Table 1: Mean PRR↑ across tasks for the evaluated LLMs. Warmer color indicates better results.

UQ Method Llama-3.1 8B Qwen-2.5 7B Gemma-2 9B Falcon-3 10B MeanQA Summ MT QA Summ MT QA Summ MT QA Summ MT
MSP .347 .296 .397 .329 .151 .369 .361 .334 .381 .345 .177 .333 .318
Perplexity .347 .419 .380 .343 .254 .406 .383 .375 .405 .356 .180 .439 .357
CCP .285 .307 .340 .271 .186 .327 .329 .345 .320 .299 .128 .287 .285
Attention Score .014 .126 .178 .038 .130 .142 .064 .103 .146 .054 .192 .089 .106
Focus .320 .335 .361 .264 .186 .380 .416 .340 .385 .313 .139 .362 .317
Simple Focus .342 .306 .415 .342 .136 .399 .396 .322 .422 .351 .095 .385 .326

DegMat NLI Score entail. .306 .118 .239 .356 .154 .275 .337 .138 .259 .352 .132 .222 .241
Ecc. NLI Score entail. .274 -.008 .284 .322 .002 .306 .298 .020 .290 .327 .038 .281 .203
EVL NLI Score entail. .293 .114 .217 .349 .154 .245 .332 .133 .252 .351 .135 .206 .232
Lexical Similarity Rouge-L .250 .131 .324 .334 .131 .327 .306 .161 .342 .285 .084 .275 .246
EigenScore .232 .078 .285 .298 .061 .302 .267 .106 .226 .247 .051 .236 .199
LUQ .287 .173 .214 .351 .196 .213 .344 .206 .259 .335 .121 .196 .241
Semantic Entropy .254 .117 .315 .281 .092 .317 .291 .126 .337 .320 .133 .291 .240
SAR .310 .170 .370 .351 .153 .393 .361 .235 .414 .334 .094 .337 .294
Semantic Density .330 .153 .264 .352 .110 .291 .375 .167 .255 .358 .141 .280 .256

RAUQ .396 .428 .452 .358 .213 .438 .421 .392 .473 .392 .181 .465 .384

(e.g., correct vs. incorrect answers) but also to continuous ones, such as those commonly used in
summarization and MT. For different generation tasks, we use different response quality metrics:
accuracy for MMLU and GSM8k; COMET (Rei et al., 2020) for MT; and AlignScore (Zha et al.,
2023) for the rest. For summarization tasks, we use AlignScore between the output summary and the
input document to measure the factuality of the generation. Additionally, we calculate ROC-AUC
using discrete quality metrics obtained by thresholding the original continuous values.

5.2 MAIN RESULTS

Table 1 presents the mean PRR for each task (QA, Summ, and MT) for each of the evaluated LLMs.
To compute the mean PRR for each task, we average the PRR scores across all relevant datasets, for
example, XSum, CNN, and SamSum for summarization. These aggregated PRR scores provide a
robust measure of the performance of various methods for each task and model. Detailed results
for each model and dataset are presented in Tables 17 to 20 in Appendix E. The results using the
ROC-AUC metric are presented in Table 13 in Appendix D.2.

The results demonstrate that the proposed RAUQ method consistently outperforms previous state-of-
the-art methods for the QA and translation tasks by a substantial margin across all evaluated LLMs.
For instance, for the translation task using Gemma-2 9B, RAUQ largely outperforms the second-best
method (Simple Focus) by 0.051 of PRR. In contrast, other single-generation methods based on the
attention weights, such as Focus and Attention Score, perform significantly worse.

For summarization, RAUQ also achieves the best results across all models, often with a margin
over the second-best method. Notably, RAUQ improves upon the second-best method (MSP) for
Gemma-2 9B by 0.017 in terms of PRR. However, for Qwen-2.5 7B in the summarization task,
Perplexity achieves the best performance, followed by RAUQ, which outperforms all computationally
intensive methods. However, RAUQ consistently outperforms all other sampling-based baselines on
average.

Overall, while methods such as MSP, Focus, or SAR might achieve top performance in specific
settings, RAUQ demonstrates the most robust performance across all tasks and models, consistently
ranking as the best or second-best method by average performance in a task.

Table 12 in Appendix D.1 also provides experimental results with ≤1B and 70B LLMs. These results
demonstrate that RAUQ is the best method on average across a wide range of model sizes and tasks,
further highlighting its strong generalization ability.

Tables 14 and 15 in Appendix D.3 also provide a comparison with supervised UQ methods. While
RAUQ slightly underperforms compared to supervised methods on their in-domain data, it greatly
outperforms them on average in out-of-domain scenarios.
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5.3 HYPERPARAMETER SENSITIVITY AND ABLATION STUDIES

Impact of the hyperparameter α. The hyperparameter α from Equation (2) balances the contribu-
tions of attention, confidence from the previous token, and the conditional probability of the current
token. When α is equal to 1, RAUQ becomes equivalent to perplexity. When α approaches 0, RAUQ
relies solely on the attention weights from the selected head. Figure 5 in Appendix C.1 presents the
impact of α on the performance of the RAUQ method for Llama-3.1 8b. For all tasks, except MMLU,
the best possible performance is achieved with α between 0.2 and 0.5.

While dataset-specific fine-tuning of α can lead to further improvements, we do not perform such
careful tuning in our experiments (Table 1). Instead, we select α using a small out-of-domain subset
for Llama-3.1 8b and apply this value uniformly across all datasets and LLMs. Despite this, RAUQ
achieves consistently strong performance across tasks and LLMs, often achieving the top or near-top
results. Strong performance with a fixed hyperparameter underscores the method’s robustness.

Aggregation functions. Table 5 in Appendix C.1 compares the performance of the RAUQ method
using various aggregation functions of token-level confidence scores. We experiment with four
aggregation strategies: mean, median, sum of logarithms (inspired by MSP), and mean of logarithms
(inspired by perplexity). For the summarization tasks and certain QA datasets such as SciQ, TriviaQA,
and GSM8k, mean aggregation yields the best performance. For MMLU, the sum of logarithms
substantially outperforms other aggregation strategies, while median aggregation performs second-
best for the MedQUAD and TruthfulQA datasets. Overall, however, the top two performing methods
are those that apply length normalization. Among them, the mean of logarithms of token-level
confidence scores used in RAUQ consistently delivers the strongest results across datasets.

Table 6 in Appendix C.1 compares the performance of RAUQ using various aggregation functions of
layer-wise uncertainty scores. We consider three aggregation strategies: mean, median, and maximum.
Both maximum and median yield similarly strong performance, while the mean aggregation performs
slightly worse. Given that the maximum is a more intuitive choice – it effectively captures the peak
uncertainty within a generation and achieves better results in 6 out of 12 tasks, with a slight average
improvement of 0.001 PRR across tasks over the median, we adopt it as the default layer-wise
aggregation method in our experiments.

Recurrent uncertainty propagation functions. Table 7 in Appendix C.1 presents the performance
of the RAUQ method using various recurrent formulas for the calculation of token-level confidence
scores. We consider five modifications of Equation (2): (1) removing attention weights, (2) remov-
ing recurrence, (3) replacing the confidence score of the previous token with its probability, (4)
multiplying probabilities with attentions, and (5) the recurrent formula proposed in RAUQ.

The proposed formula achieves the best results on the majority of the datasets. Removing either
recurrence or attention often leads to substantially worse performance. The results highlight the
importance of each component in the proposed formula for achieving good results.

Layers and heads selection. Table 8 in Appendix C.2 shows RAUQ performance across various
layer subsets. The results indicate that using a subset of middle layers consistently achieves strong
performance, while selecting an optimal single layer offers only marginal improvements and requires
supervision. Tables 9 and 10 in Appendix C.2 presents selected attention heads for WMT14 De-En
and CoQA. They show that the most informative heads are highly consistent within tasks and largely
overlapping across tasks, emphasizing both intra-task and cross-task stability of the RAUQ method.
Table 11 in Appendix C.2 shows results when a single optimal head per layer is selected on a small
validation set. The average performance across all datasets remains similar, which indicates that our
dynamic, fully unsupervised strategy already achieves near-optimal performance without task-specific
tuning, preserving its plug-and-play nature.

Alternative interpretability scores. Table 16 in Appendix D.4 shows RAUQ performance when
Layer Integrated Gradients (LIG) (Sundararajan et al., 2017) are used in place of attention scores. We
replace the original attention weights with LIG scores computed on the output projection layer and
partitioned to match the original multi-head structure. The results show only a 0.4% average drop in
PRR, confirming that RAUQ does not critically depend on standard attention mechanisms and can be
extended to models with non-standard or without attention mechanisms.
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Table 2: PRR↑ for Llama-3.1 8B across various modifications of the Attention Score method
incorporating components from RAUQ. The best method is in bold, the second best is underlined.

UQ Method XSum SamSum CNN WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
Attention Score .036 .083 .258 .176 .179 -.295 .081 -.028 -.142 .067 .209 .209 .069
Attention Score (Gen. Tokens) .020 .117 .261 .196 .198 -.305 -.020 .064 .124 .130 .232 .192 .101
Attention Score (Gen. Tokens, Selected Head) .154 -.043 .351 .187 .200 -.113 -.025 .092 .161 .151 .414 .197 .144
RAUQ .370 .464 .452 .394 .509 .241 .364 .265 .506 .522 .549 .323 .413

Extending our findings to the Attention Score method. To demonstrate the robustness and
generalization of RAUQ components, we integrated them into the recently published Attention Score
(AS) method (Sriramanan et al., 2024), resulting in two modifications. We compare (1) the original
official implementation of AS; (2) AS that uses only the attention weights of the generated tokens,
excluding the prompt; (3) AS that combines the previous feature and implements also the selection of
the uncertainty-aware attention heads; (4) the full RAUQ method with recurrence.

Results in Table 2 show that excluding contributions from prompt tokens significantly improves
Attention Score, yielding a 0.032 improvement in PRR. The highest improvement is achieved on SciQ,
CoQA, and TriviaQA. Incorporating attention head selection further boosts the average performance
by 0.043, with a large gain of 0.182 on MMLU. Nevertheless, our full method further incorporates
token probabilities and recurrently aggregates uncertainty scores from previous generation steps,
which provides a distinct advantage. Overall, these results suggest that our findings regarding attention
heads and design choices in RAUQ are systematic and generalize to prior UQ methods as well.

Qualitative analysis. We analyzed samples with the highest and lowest RAUQ scores for LLaMA-3.1
8B on the TruthfulQA dataset. RAUQ effectively detects erroneous generations, with most of the
detected errors attributed as factual and reasoning errors. Most of the erroneous generations with
low uncertainty correspond to common misbeliefs. The detailed results are presented in Table 21 in
Appendix G.

5.4 COMPUTATIONAL EFFICIENCY

To demonstrate the computational efficiency of RAUQ, we conducted a comprehensive runtime
comparison against other state-of-the-art UQ methods using Llama-3.1 8b. All experiments were
performed on a single 80GB NVIDIA H100 GPU using single-batch inference, following the same
setup as in Table 1. Table 4 in Appendix B reports the average runtime per instance for each UQ
method, and quantifies their computational overhead relative to standard LLM inference without UQ.

State-of-the-art UQ methods such as DegMat (Farquhar et al., 2024), Semantic Entropy (Kuhn et al.,
2023), and SAR (Zhang et al., 2023) introduce huge computational overhead (400–800%) due to
repeated sampling from the LLM. In contrast, the RAUQ method introduces less than 1% overhead
since it does not require sampling or inference of an auxiliary model, making it a fast, lightweight,
and plug-and-play solution for any white-box LLM.

6 CONCLUSION

We introduced RAUQ, an unsupervised, attention-based framework that converts the intrinsic signals
already produced by every transformer layer into reliable sequence-level uncertainty scores with
a single forward pass. A simple head-selection heuristic, a recurrent confidence propagation rule,
and a length-normalized aggregation allow RAUQ to capture both local spikes and global drifts
in confidence without external supervision or multiple sampling. Extensive experiments on 12
datasets spanning question answering, abstractive summarization, and machine translation, and on
four open-weight LLMs show that RAUQ delivers state-of-the-art performance. Moreover, RAUQ
adds only <1 % latency overhead, making it a practical off-the-shelf UQ technique.

ETHICAL STATEMENT

In this work, we propose RAUQ, a plug-and-play method for real-time hallucination detection in
white-box LLMs that requires no task-specific labels or multiple samples. RAUQ is efficient, easy
to integrate, and demonstrates significant performance improvements over baseline methods in our
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experiments. We believe that our work is a meaningful step toward more trustworthy and responsible
use of LLMs, particularly in safety-critical domains such as healthcare and legal documentation.
In our experiments, we considered open-source LLMs and datasets not aimed at harmful content.
Furthermore, our approach poses no negative social impact, as it does not rely on sensitive data,
user annotations, or other elements that might raise ethical concerns. Finally, RAUQ uses raw
attention weights without any processing, and thus may reflect biases inherent in the underlying
model. However, it does not amplify them, as it involves no modification to the model or additional
parameters.

We used writing assistants when working on this paper, in order to improve grammatical accuracy.

REPRODUCIBILITY STATEMENT

The full codebase, including configuration files and scripts for reproducing the experiments, is
provided as supplementary material. Additionally, details of the generation hyperparameters and
dataset statistics are presented in the Appendix A
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A DATASET AND GENERATION STATISTICS

For QA, we use seven datasets: TruthfulQA (Lin et al., 2022) – a benchmark for assessing the
truthfulness of LLM responses, SciQ (Welbl et al., 2017) for scientific QA, MMLU (Hendrycks et al.,
2021) – a standard multitask evaluation benchmark, TriviaQA (Joshi et al., 2017) for trivia questions,
CoQA (Reddy et al., 2019) for conversational QA, MedQUAD (Ben Abacha & Demner-Fushman,
2019) for medical questions, and GSM8k (Cobbe et al., 2021) for mathematical reasoning. For
summarization, we use three datasets with different summarization types: CNN/DailyMail (See et al.,
2017) for news article summarization, SamSum (Gliwa et al., 2019) for dialogue summarization,
and XSum (Narayan et al., 2018) for summarizing into a single sentence. For the MT task, we
evaluate on two language pairs from WMT: German–English from WMT19 (Barrault et al., 2019)
and French–English from WMT14 (Bojar et al., 2014).

The detailed description of the used datasets and the generation parameters of LLMs is presented in
Table 3. For all LLMs, we used the same generation hyperparameters, while for each dataset, we
separately fixed the number of few-shot and maximum generation length. We use greedy decoding
to generate the main sequence, for which we compute uncertainty, while sampling is used solely
to obtain multiple outputs for sampling-based baselines. Accordingly, the MSP score is always
computed on the greedy output sequence (Aichberger et al., 2024).

Table 3: Statistics of the datasets and generation parameters of the used LLMs. For all datasets, we
do not limit the maximum input length.

Task Dataset Number of
test samples N-shot Generation

length Do sample Temperature Top-p Beams Repetition Penalty

QA

TruthfulQA 817 5 128

False 1.0 1.0 1 1

SciQ 1000 0 20
MMLU 2000 5 3

TriviaQA 2000 5 20

CoQA 2000 all preceding
questions 20

MedQUAD 1000 5 128
GSM8k 1319 5 256

ATS
CNN/DailyMail 2000 0 128

SamSum 819 0 128
XSum 2000 0 128

NMT WMT19 (DE-EN) 2000 0 107
WMT14 (FR-EN) 2000 0 107

B COMPUTATIONAL EFFICIENCY

Table 4: Inference runtime of UQ methods measured on all test instances from all datasets with
generations from Llama-3.1 8b. The best results are in bold.

UQ Method Runtime
per batch Overhead

MSP 1.16±0.45 -

DegMat NLI Score Entail. 6.40±1.76 450%
Lexical Similarity ROUGE-L 6.11±1.75 425%
Semantic Entropy 6.40±1.76 450%
SAR 10.71±3.21 820%
Semantic Density 6.27±1.76 438%

RAUQ 1.17±0.45 0.3%
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C RESULTS OF ABLATION STUDIES

C.1 AGGREGATION STRATEGIES AND HYPERPARAMETER SENSITIVITY

Tables 5 to 7 present the performance of the RAUQ method using various aggregation functions
for token-level confidence scores, layer-wise uncertainty scores, and various recurrent formulas
for computing token-level confidence scores, respectively. Figure 5 shows the impact of α on the
performance of the RAUQ method for Llama-3.1 8B.

Table 5: PRR↑ for Llama-3.1 8b model for various aggregation function of token-level confidence
scores. The best method is in bold, the second best is underlined.

Token Aggregation XSum SamSum CNN WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean

− 1
N

∑N
i=1 c

t
l(ti) .375 .419 .460 .359 .485 .140 .304 .259 .511 .534 .526 .339 .393

−medianNi=1c
t
l(ti) .267 .403 .437 .249 .340 .154 .317 .234 .430 .432 .635 .253 .346

−
∑N

i=1 log c
t
l(ti) .027 -.045 .325 .224 .242 .107 .035 .114 .202 .300 .658 .213 .198

− 1
N

∑N
i=1 log c

t
l(ti) .370 .464 .452 .394 .509 .249 .364 .265 .506 .522 .549 .323 .413

Table 6: PRR↑ for Llama-3.1 8b model for various aggregation function of layer-wise uncertainty
scores. The best method is in bold, the second best is underlined.

Layer Aggregation XSum SamSum CNN WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
1
|L|

∑
l∈L ul(y) .384 .419 475 .389 .519 .154 .345 .274 .496 .535 .529 .337 .404

medianl∈L ul(y) .378 .426 .471 .388 .526 .246 .351 .267 .502 .532 .532 .340 .412
maxl∈L ul(y) .370 .464 .452 .394 .509 .249 .364 .265 .506 .522 .549 .323 .413

Table 7: PRR↑ for Llama-3.1 8b model for various function for recurrent calculation of confidence
scores cl(ti) in Equation (2). The best method is in bold, the second best is underlined.

Recurrent Formula XSum SamSum CNN WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
α · P (ti | x, t<i) + (1− α) · cl(ti−1) .330 .383 .393 .238 .313 .273 .224 .267 .273 .514 .475 .279 .330
α · P (ti | x, t<i) + (1− α) · al hl

i,i−1 .412 .387 .457 .332 .436 .205 .322 .257 .485 .517 .550 .305 .388
α · P (ti | x, t<i) + (1− α) · al hl

i,i−1 · P (ti−1 | x, t<i−1) .399 .421 .461 .370 .472 .235 .336 .279 .456 .517 .532 .318 .399
P (ti | x, t<i) · al hl

i,i−1 .394 .327 .459 .226 .337 .149 .251 .161 .330 .330 .645 .255 .322
α · P (ti | x, t<i) + (1− α) · al hl

i,i−1 · cl(ti−1) .370 .464 .452 .394 .509 .249 .364 .265 .506 .522 .549 .323 .413
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Figure 5: PRR↑ as a function of the hyperparameter α for Llama-3.1 8B. The vertical line marks the
value of α used in our experiments.

C.2 LAYERS AND HEADS SELECTION

Layer selection analysis. Table 8 present the performance of the RAUQ method across various layer
subsets. We compare RAUQ using individual layers, all layers, and aggregated middle layers. In our
experiments, we consistently use the same range of layers – from the first third to the second third of
the model (e.g., layers 10 to 22 for LLaMA-3.1 8B) without any task- or model-specific tuning.

The results indicate that although certain layers (e.g., the 25th or 30th) perform better on specific
tasks, they tend to underperform on average. While the selection of the optimal layer (e.g., 22nd
for LLaMA-3.1 8B) can slightly improve overall performance, it requires supervision, whereas our
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Table 8: PRR↑ for Llama-3.1 8b model for various layer subsets L in Equation (4). The best method
is in bold, the second best is underlined.

Layer Subset WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ Mean
RAUQ (22nd layer) .412 .529 .237 .354 .267 .514 .385
RAUQ (25th layer) .359 .519 .244 .382 .262 .462 .371
RAUQ (30th layer) .272 .433 .168 .326 .268 .456 .320
RAUQ (5 middle layers, 14–18) .388 .502 .240 .365 .258 .510 .377
RAUQ (All layers) .386 .516 .244 .366 .260 .490 .377

RAUQ .394 .509 .241 .364 .265 .506 .380

method is designed to be fully unsupervised. Using all layers instead of only the middle layers yields
only a marginal decrease in performance for RAUQ on LLaMA-3.1 8B, with an average drop of
just 0.003 in PRR. Therefore, while this modification can slightly enhance results, it is not a critical
component of our method.

Head selection analysis. Tables 9 and 10 present an analysis of the selected attention heads for the
WMT14 De-En and CoQA datasets using LLaMA-3.1 8B. We report the top-3 heads based on their
selection frequency according to our criterion, along with the corresponding percentages.

First, the tables show that in most cases, the most frequently selected head accounts for over 90%
of instances, indicating high stability in head selection. Even in layers where head selection is less
consistent, the top-3 heads still cover more than 90% of cases, suggesting that the model typically
chooses similar heads across inputs within the same task.

Second, when comparing selected heads across the two datasets, we observe substantial overlap.
For example, in layers 10, 12, 13, 15, 16, and 20, the selected heads are fully aligned, reflecting
strong cross-task consistency. Overall, while some variation exists, the same heads generally provide
the most informative signals used in the RAUQ method, highlighting both intra-task and cross-task
stability.

Table 9: The top three most frequently selected attention heads per layer in the Llama-3.1 8B model
on the WMT14 dataset with its selection frequency according to our criterion.

Attention Head Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18 Layer 19 Layer 20 Layer 21 Layer 22
Top-1 head 10 (87.5%) 10 (99.2%) 12 (100.0%) 28 (100.0%) 19 (84.2%) 6 (99.9%) 30 (99.7%) 12 (83.0%) 29 (46.2%) 11 (97.2%) 3 (99.7%) 10 (50.9%) 9 (99.3%)
Top-2 head 0 (12.3%) 16 (0.6%) - - 14 (12.9%) 24 (0.1%) 22 (0.4%) 22 (16.4%) 14 (29.0%) 8 (2.2%) 0 (0.3%) 9 (26.7%) 19 (0.3%)
Top-3 head 18 (0.1%) 12 (0.1%) - - 8 (2.5%) - - 6 (0.3%) 26 (11.1%) 10 (0.5%) - 3 (15.4%) 11 (0.2%)

Table 10: The top three most frequently selected attention heads per layer in the Llama-3.1 8B model
on the CoQA dataset with its selection frequency according to our criterion.

Attention Head Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18 Layer 19 Layer 20 Layer 21 Layer 22
Top-1 head 0 (95.2%) 10 (76.8%) 12 (100.0%) 28 (100.0%) 16 (27.0%) 6 (95.0%) 30 (91.3%) 12 (76.7%) 29 (54.6%) 11 (61.5%) 3 (66.0%) 10 (74.7%) 9 (64.2%)
Top-2 head 10 (4.3%) 23 (7.3%) - - 8 (26.5%) 24 (2.8%) 22 (8.6%) 6 (18.9%) 25 (17.5%) 8 (17.5%) 0 (23.8%) 8 (7.8%) 19 (26.5%)
Top-3 head 18 (0.4%) 31 (5.1%) - - 14 (17.1%) 4 (0.7%) 9 (0.1%) 30 (1.2%) 26 (15.5%) 23 (3.3%) 27 (3.8%) 9 (5.9%) 18 (2.4%)

Experiments with a single optimal head. Table 11 presents an analysis in which a single optimal
head per layer is selected for all inputs determined on a small held-out validation set of 100 instances
per task. The results show that the gains from such precise per-dataset head selection are marginal,
and the average performance across all datasets remains effectively similar. This indicates that
retaining dynamic, unsupervised head selection as part of the algorithm fully removes the need for
any precise task-specific adjustments and already achieves near-optimal performance. This design
choice also ensures that the method remains entirely unsupervised, requires no validation data, and is
seamlessly plug-and-play for any new LLM or task.
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Table 11: PRR↑ for Llama-3.1 8b model for RAUQ with dynamic head selection per input and with
a single optimal head per layer, fixed across all inputs. The best method is in bold.

UQ Method XSum SamSum CNN WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
RAUQ .384 .423 .189 .406 .488 .317 .399 .248 .506 .548 .513 .323 .395
RAUQ (Single Head) .382 .426 .195 .407 .481 .303 .386 .257 .494 .544 .528 .325 .394

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 EXPERIMENTS WITH DIVERSE LLM SIZES

To demonstrate that RAUQ generalizes effectively to both larger and smaller LLMs, we have
conducted additional experiments using SmolLM-2 360M, LLaMA-3.2 1B, and LLaMA-3.1 70B.
The results are presented in Table 12. For models with≤1B parameters, we exclude MMLU, GSM8K,
and MedQUAD due to their near-zero performance on these tasks.

The results show that RAUQ is the best method for QA and MT on ≤1B LLMs, and for MT on
the 70B LLM, while it is the second-best for QA on the 70B LLM. Overall, RAUQ surpasses the
second-best method by an average of 2% of PRR across all tasks and models. These results highlight
the strong generalization ability of RAUQ across a wide range of model sizes.

Table 12: Mean PRR↑ across tasks for the evaluated LLMs (≤1B and 70B). Warmer color indicates
better results.

UQ Method SmolLM-2 360M Llama-3.2 1B Llama-3.2 70B MeanQA Summ MT QA Summ MT QA Summ MT
MSP .360 .449 .330 .324 .507 .351 .364 .128 .447 .362
Perplexity .371 .330 .487 .310 .392 .427 .323 .245 .335 .358
CCP .281 .457 .361 .283 .517 .328 .350 .135 .387 .344
Attention Score .071 .004 .120 .051 .033 .103 .053 .045 .213 .077
Simple Focus .401 .429 .410 .370 .488 .424 .380 .128 .435 .385

DegMat NLI Score entail. .342 .059 .227 .305 .078 .287 .380 .091 .273 .227
Ecc. NLI Score entail. .209 -.013 .169 .225 -.012 .293 .330 -.003 .298 .166
EVL NLI Score entail. .333 .055 .216 .298 .072 .268 .369 .091 .265 .219
Lexical Similarity Rouge-L .290 -.013 .193 .255 .074 .337 .362 .089 .332 .213
EigenScore .173 .068 .061 .145 .029 .301 .296 .044 .325 .160
LUQ .337 .076 .242 .279 .118 .263 .376 .139 .254 .232
Semantic Entropy .201 .067 .227 .187 .084 .268 .309 .069 .373 .198
SAR .343 .095 .348 .295 .091 .408 .382 .106 .372 .271
Semantic Density .357 .209 .259 .348 .217 .285 .385 .100 .239 .267

RAUQ .425 .356 .490 .356 .423 .495 .360 .245 .457 .401

D.2 EXPERIMENTS USING THE ROC-AUC METRIC

The results evaluated using the ROC-AUC metric are presented in Table 13. For all generation quality
metrics except accuracy, we compute scores by thresholding the original continuous values to obtain
discrete versions of the quality metrics. The thresholds were empirically determined as follows: 0.5
for QA and Summ, and 0.85 for MT.

We observe similar trends to those with the PRR metric. RAUQ significantly outperforms all other
methods for summarization and MT tasks. For QA, RAUQ is the best method for Llama-3.1 8B and
Falcon-3 10B, while performing comparably to computationally intensive sampling-based approaches
for other models. Overall, RAUQ achieves a 0.6% improvement over the second-best method
(Perplexity) across all evaluated models.

D.3 COMPARISON WITH SUPERVISED METHODS

We compare our method against several state-of-the-art supervised methods that leverage hidden
states or attention weights: Factoscope (He et al., 2024b), SAPLMA (Azaria & Mitchell, 2023),
MIND (Su et al., 2024), Sheeps (CH-Wang et al., 2024), LookBack Lens (Chuang et al., 2024),
SATRMD+MSP (Vazhentsev et al., 2025b), and TAD (Vazhentsev et al., 2025a). We evaluate these
methods in two scenarios: in-domain, where the model is trained directly on the target task, and
out-of-domain, where the model is trained on all datasets except one, which is held out for testing.
Tables 14 and 15 show the performance of supervised methods in the in-domain and out-of-domain
settings respectively.
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Table 13: Mean ROC-AUC↑ across tasks for the evaluated LLMs. Warmer color indicates better
results.

UQ Method Llama-3.1 8B Qwen-2.5 7B Gemma-2 9B Falcon-3 10B MeanQA Summ MT QA Summ MT QA Summ MT QA Summ MT
MSP .711 .718 .686 .700 .559 .685 .746 .735 .683 .721 .583 .688 .685
Perplexity .701 .812 .690 .705 .661 .713 .735 .766 .699 .713 .606 .715 .710
CCP .685 .705 .648 .668 .575 .658 .729 .731 .646 .703 .569 .657 .665
Attention Score .497 .552 .553 .522 .530 .540 .519 .536 .543 .534 .590 .539 .538
Focus .698 .746 .663 .642 .612 .682 .747 .738 .684 .699 .577 .672 .680
Simple Focus .718 .730 .694 .703 .588 .700 .753 .723 .706 .724 .543 .691 .689
DegMat NLI Score entail. .676 .591 .618 .691 .604 .637 .692 .612 .636 .700 .581 .620 .638

Ecc. NLI Score entail. .659 .498 .630 .682 .510 .650 .678 .535 .642 .688 .546 .648 .614
EVL NLI Score entail. .668 .590 .610 .688 .602 .630 .690 .607 .632 .703 .583 .612 .635
Lexical Similarity Rouge-L .659 .605 .660 .687 .594 .677 .684 .620 .668 .673 .559 .646 .644
EigenScore .643 .533 .629 .675 .549 .655 .658 .592 .614 .662 .527 .623 .613
LUQ .667 .633 .618 .688 .627 .613 .690 .644 .629 .687 .570 .599 .639
Semantic Entropy .661 .583 .658 .680 .544 .665 .683 .595 .661 .706 .579 .666 .640
SAR .696 .627 .692 .708 .590 .710 .723 .670 .710 .712 .569 .670 .673
Semantic Density .694 .582 .628 .705 .572 .635 .711 .611 .617 .721 .583 .624 .640

RAUQ .724 .815 .713 .705 .629 .715 .752 .772 .718 .726 .597 .727 .716

Table 14: Comparison with supervised methods by PRR↑ for the Llama-3.1 8b model in the in-
domain setup across each dataset. The best method is in bold, the second best is underlined. Warmer
color indicates better results.

UQ Method XSum SamSum CNN WMT19 TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
Factoscope .292 .064 -.020 .120 .065 .033 .313 .363 .585 .121 .194
SAPLMA .288 .382 .056 .548 .277 -.002 .399 .399 .456 .358 .316
MIND .437 .361 .178 .451 .411 .263 .499 .517 .727 .570 .441
Sheeps .510 .466 .380 .509 .349 .423 .552 .594 .723 .604 .511
LookBackLens .528 .441 .279 .613 .462 .341 .542 .497 .718 .525 .495
SATRMD+MSP .494 .495 .248 .475 .448 .333 .581 .561 .704 .528 .487
TAD .550 .535 .444 .592 .463 .392 .488 .632 .724 .557 .538
RAUQ .370 .464 .452 .509 .364 .265 .506 .522 .549 .323 .432

The results show that in the in-domain experimental setup, supervised methods leveraging attention-
based features, such as TAD and LookBackLens, outperform the RAUQ method. Methods that
leverage hidden states, such as MIND and Sheeps, achieve performance comparable to RAUQ on
average but underperform on the CNN and WMT19 datasets. In contrast, in the out-of-domain
experimental setup, RAUQ substantially outperforms on average all supervised methods, which
experience a significant performance drop. Our method, however, maintains consistent performance
due to its unsupervised nature.

Overall, RAUQ approaches the performance of most supervised methods in in-domain settings,
underperforming only those based on attention, while requiring no access to the training dataset.
In out-of-domain settings, RAUQ demonstrates a strong advantage, substantially outperforming all
supervised approaches.

D.4 EXPERIMENTS WITH INTERPRETABILITY SCORES

To assess the flexibility and generalization of RAUQ beyond standard LLM architectures with
attention layers, we evaluate its performance when original attention weights are replaced with
alternative interpretability scores, such as Layer Integrated Gradients (LIG) (Sundararajan et al.,
2017).

We conduct an experiment using the LLaMA-3.1-8B model, where we replace the original attention
weights with scores derived from Layer Integrated Gradients computed on the output projection
layer following the attention module. We manually partition this linear layer in each transformer
block into equal segments corresponding to a synthetic division across attention heads, and compute
interpretability scores for each segment using Layer Integrated Gradients. This procedure yields
matrices analogous to attention weights, preserving the same number of “heads” and layers. We then
apply these matrices within the RAUQ method without any modification.
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Table 15: Comparison with supervised methods by PRR↑ for the Llama-3.1 8b model in the out-of-
domain setup across each dataset. The best method is in bold, the second best is underlined. Warmer
color indicates better results.

UQ Method XSum SamSum CNN WMT19 TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
Factoscope .105 .050 -.065 .083 .036 .014 .084 -.017 .007 -.040 .026
SAPLMA -.035 .049 -.009 -.029 -.056 -.020 -.010 .224 -.000 .152 .027
MIND -.077 .185 .074 .158 .281 .112 .166 .222 .352 .316 .179
Sheeps .122 .101 -.056 .013 .410 .184 .365 .223 .535 .310 .221
LookBackLens .171 .197 .000 -.018 .220 .116 .285 .178 .316 .189 .166
SATRMD+MSP .362 .098 .477 .364 .108 .142 .190 .170 .572 .307 .279
TAD .269 .176 -.101 .087 .224 .143 .251 .394 .432 .323 .220

RAUQ .370 .464 .452 .509 .364 .265 .506 .522 .549 .323 .432

The results indicate that RAUQ (LIG) performs comparably to the original RAUQ, with only a
negligible performance degradation of 0.4% PRR on average across datasets. These experiments
further illustrate that original attention can be effectively substituted with alternative interpretability
scores, enabling the application of RAUQ to models without attention mechanisms or with non-
standard attention architectures.

Table 16: PRR↑ for Llama-3.1 8b model for RAUQ with original attention weights and with Layer
Integrated Gradients (LIG) instead of attention weights. The best method is in bold.

UQ Method WMT14 WMT19 TruthfulQA CoQA SciQ TriviaQA MMLU Mean
RAUQ .394 .509 .364 .265 .506 .522 .549 .444
RAUQ (LIG) .389 .512 .362 .264 .489 .515 .547 .440
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E DETAILED EXPERIMENTAL RESULTS

The detailed experimental results across each considered dataset are presented in Tables 17 to 20 for
Llama-3.1 8b, Qwen-2.5 7b, Gemma-2 9b, and Falcon-3 10b models respectively.

Table 17: Detailed PRR↑ for the Llama-3.1 8b model across each dataset. The best method is in
bold, the second best is underlined. Warmer color indicates better results.

UQ Method XSum SamSum CNN WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
MSP .313 .050 .525 .335 .459 .091 .242 .262 .459 .527 .535 .310 .342
Perplexity .370 .456 .431 .344 .416 .249 .377 .259 .244 .506 .492 .303 .370
CCP .347 .059 .514 .317 .363 .038 .080 .210 .351 .562 .446 .306 .299
Attention Score .036 .083 .258 .176 .179 -.295 .081 -.028 -.142 .067 .209 .209 .069
Focus .326 .281 .399 .306 .416 .137 .380 .211 .422 .507 .305 .278 .331
Simple Focus .272 .193 .454 .358 .472 .074 .187 .281 .486 .545 .516 .302 .345

DegMat NLI Score entail. .033 .147 .173 .193 .285 .146 .226 .316 .429 .583 .239 .203 .248
Ecc. NLI Score entail. .011 -.004 -.031 .229 .340 .102 .145 .293 .380 .530 .231 .235 .205
EVL NLI Score entail. .035 .144 .164 .183 .252 .137 .234 .314 .371 .577 .230 .188 .236
Lexical Similarity Rouge-L .081 .122 .190 .246 .403 -.017 .110 .277 .378 .491 .242 .273 .233
EigenScore .036 .130 .069 .252 .318 -.010 .079 .263 .355 .462 .192 .283 .202
LUQ .141 .221 .156 .204 .224 .101 .235 .303 .394 .570 .249 .158 .246
Semantic Entropy .025 .105 .222 .252 .379 .093 .107 .232 .347 .479 .157 .366 .230
SAR .060 .224 .227 .306 .435 .107 .181 .297 .439 .552 .275 .320 .285
Semantic Density .158 .154 .148 .233 .295 .175 .302 .380 .448 .571 .237 .197 .275

RAUQ .370 .464 .452 .394 .509 .241 .364 .265 .506 .522 .549 .323 .413

Table 18: Detailed PRR↑ for the Qwen-2.5 7b model across each dataset. The best method is in bold,
the second best is underlined. Warmer color indicates better results.

UQ Method XSum SamSum CNN WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
MSP .088 -.003 .368 .286 .451 .030 -.101 .291 .551 .610 .654 .268 .291
Perplexity .242 .289 .229 .346 .466 .131 .156 .270 .385 .601 .400 .456 .331
CCP .243 .021 .294 .266 .388 .015 -.089 .215 .468 .596 .412 .281 .259
Attention Score .037 .103 .250 .136 .149 .022 -.023 .007 -.105 .078 .157 .131 .078
Focus .214 .149 .196 .308 .452 .123 .137 .249 .462 .568 .037 .273 .264
Simple Focus .117 .086 .205 .302 .496 .021 .037 .321 .536 .620 .550 .310 .300

DegMat NLI Score entail. .141 .178 .145 .217 .332 .122 .293 .329 .540 .574 .235 .402 .292
Ecc. NLI Score entail. -.058 .044 .021 .243 .368 .107 .151 .294 .535 .543 .237 .386 .239
EVL NLI Score entail. .141 .183 .138 .196 .294 .122 .294 .329 .519 .571 .236 .372 .283
Lexical Similarity Rouge-L .119 .161 .112 .284 .370 .075 .141 .297 .507 .531 .274 .511 .282
EigenScore .079 .034 .071 .231 .374 .018 -.003 .281 .510 .500 .243 .537 .240
LUQ .224 .260 .104 .161 .265 .096 .340 .337 .449 .580 .321 .331 .289
Semantic Entropy .021 .109 .146 .268 .366 .073 .058 .265 .491 .536 .165 .380 .240
SAR .128 .186 .145 .340 .445 .088 .196 .318 .526 .585 .288 .459 .309
Semantic Density .084 .156 .092 .225 .358 .095 .285 .386 .514 .603 .203 .381 .282

RAUQ .180 .206 .254 .344 .533 .123 -.020 .252 .499 .608 .584 .458 .335

Table 19: Detailed PRR↑ for the Gemma-2 9b model across each dataset. The best method is in bold,
the second best is underlined. Warmer color indicates better results.

UQ Method XSum SamSum CNN WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
MSP .333 .095 .574 .279 .484 .004 .152 .310 .501 .649 .599 .310 .357
Perplexity .329 .308 .488 .362 .449 .397 .240 .314 .234 .660 .578 .256 .385
CCP .407 .061 .566 .270 .369 .028 .092 .277 .385 .633 .550 .339 .332
Attention Score -.043 .061 .291 .131 .161 -.150 .083 -.016 -.112 .075 .300 .268 .087
Focus .276 .308 .436 .305 .465 .514 .230 .289 .434 .619 .563 .265 .392
Simple Focus .258 .169 .538 .324 .521 .170 .238 .335 .523 .656 .570 .280 .382

DegMat NLI Score entail. .061 .232 .120 .206 .312 .167 .141 .312 .422 .619 .401 .293 .274
Ecc. NLI Score entail. -.000 .072 -.012 .237 .343 .037 .132 .299 .419 .569 .399 .228 .227
EVL NLI Score entail. .062 .231 .105 .202 .302 .176 .159 .304 .389 .615 .398 .284 .269
Lexical Similarity Rouge-L .059 .168 .257 .279 .404 -.035 .113 .319 .395 .585 .418 .346 .276
EigenScore .016 .082 .221 .204 .249 -.024 .132 .270 .359 .519 .371 .241 .220
LUQ .199 .247 .172 .242 .276 .222 .250 .301 .342 .618 .440 .237 .295
Semantic Entropy .013 .101 .263 .273 .401 .083 .026 .265 .355 .551 .427 .328 .257
SAR .084 .289 .331 .373 .455 .203 .166 .323 .362 .626 .493 .355 .338
Semantic Density .163 .149 .188 .196 .313 .272 .357 .401 .463 .654 .295 .183 .303

RAUQ .329 .340 .508 .391 .554 .331 .257 .331 .481 .633 .628 .283 .422
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Table 20: Detailed PRR↑ for the Falcon-3 10b model across each dataset. The best method is in
bold, the second best is underlined. Warmer color indicates better results.

UQ Method XSum SamSum CNN WMT14 WMT19 MedQUAD TruthfulQA CoQA SciQ TriviaQA MMLU GSM8k Mean
MSP .178 .053 .301 .269 .396 -.004 -.001 .300 .459 .674 .621 .364 .301
Perplexity .141 .152 .248 .355 .524 .266 .209 .276 .158 .660 .617 .307 .326
CCP .128 .043 .213 .249 .325 -.041 -.002 .259 .349 .653 .533 .339 .254
Attention Score .272 .077 .227 .113 .064 -.037 -.024 -.034 -.073 .109 .226 .210 .094
Focus .159 .069 .187 .262 .463 .123 .208 .218 .304 .656 .486 .195 .278
Simple Focus .089 .046 .150 .313 .457 .005 .160 .325 .388 .680 .603 .294 .292

DegMat NLI Score entail. .107 .152 .136 .140 .304 .115 .203 .326 .391 .617 .418 .391 .275
Ecc. NLI Score entail. -.028 .104 .037 .203 .360 .097 .066 .298 .432 .593 .437 .368 .247
EVL NLI Score entail. .103 .157 .145 .131 .281 .111 .204 .319 .436 .618 .403 .366 .273
Lexical Similarity Rouge-L .096 .090 .065 .211 .339 .035 .087 .306 .238 .595 .454 .281 .233
EigenScore .064 .010 .079 .177 .294 -.067 .104 .283 .336 .542 .357 .173 .196
LUQ .134 .134 .095 .126 .265 .127 .237 .307 .270 .622 .423 .358 .258
Semantic Entropy .143 .102 .153 .222 .361 .026 .102 .301 .379 .587 .462 .381 .268
SAR .084 .119 .079 .256 .419 .070 .180 .308 .253 .650 .514 .364 .275
Semantic Density .129 .155 .139 .208 .352 .075 .272 .350 .524 .620 .352 .314 .291

RAUQ .151 .156 .235 .376 .553 .224 .110 .292 .474 .674 .626 .344 .351
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F ADDITIONAL EXAMPLES

We provide more examples of attention maps, similar to the Figure 1, in Figures 6 to 9. These
examples show that the similar patterns exist for several text instances.
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Figure 6: Attention weights in the 30th layer of Llama-3.1 8B from each generated token to its
preceding token, given the prompt Where did fortune cookies originate?. The y axis specifies the
generated tokens, and the x axis specifies the attention heads. Warmer colors indicate higher attention
values. The output contains the factually incorrect token Japan (the correct answer is either San
Francisco, California, or unknown place).
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Question: Which UFO has been demonstrated by many scientists to be extraterrestrial in origin?
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Figure 7: Attention weights in the 30th layer of Llama-3.1 8B from each generated token to its
preceding token, given the prompt Which UFO has been demonstrated by many scientists to be
extraterrestrial in origin?. The y axis specifies the generated tokens, and the x axis specifies the
attention heads. Warmer colors indicate higher attention values. The output contains the factually
incorrect token Roswell UFO (the correct answer There is no such UFO).
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Question: Who composed the tune of "Twinkle, Twinkle, Little Star"?

0.1

0.2

0.3

0.4

0.5

Figure 8: Attention weights in the 25th layer of Gemma-2 9B from each generated token to its
preceding token, given the prompt Who composed the tune of ”Twinkle, Twinkle, Little Star”?. The
y axis specifies the generated tokens, and the x axis specifies the attention heads. Warmer colors
indicate higher attention values. The output contains the factually incorrect token Mozart (the correct
answer either The tune does not have a recorded composer or The tune of ”Twinkle, Twinkle, Little
Star” was a French folk song).
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Question: Where can you go to see real ghosts?
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Figure 9: Attention weights in the 25th layer of Gemma-2 9B from each generated token to its
preceding token, given the prompt Where can you go to see real ghosts?. The y axis specifies the
generated tokens, and the x axis specifies the attention heads. Warmer colors indicate higher attention
values. The output contains the factually incorrect token to a cemetery (the correct answer There
aren’t any places where you can see real ghosts).
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G ERROR ANALYSIS

To further investigate which generations are chosen by RAUQ, we conducted an error analysis on a
small subset of the TruthfulQA dataset. To do so, we chose the top-20 samples with the highest and
lowest RAUQ scores and carefully attributed the corresponding generations as truthful or erroneous.
For errors, we also analyzed each error as a factual or reasoning error. The results are presented in
Table 21.

Table 21: Error analysis for detected by RAUQ generations for Llama-3.1 8b on TruthfulQA dataset.

Erroneous
generations

(reasoning / factual)

Truthful
generations

Samples with highest RAUQ scores 95% (35% / 60%) 5%
Samples with lowest RAUQ scores 50% (15% / 35%) 50%
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H LIMITATIONS

Our approach is unsupervised and involves only a single hyperparameter. While we demonstrate
that a predefined value yields robust performance across various tasks, fine-tuning this parameter for
specific datasets could lead to further improvements, which would require a validation set.

In this work, we focus on white-box UQ methods – techniques that assume full access to the internal
states of an LLM. Although such methods cannot be directly applied to black-box models (e.g.
LLMs exposed only through API), our work demonstrates that white-box access enables substantially
performance improvements, while remaining computationally efficient. Consequently, our approach
paves the way for integrating robust UQ mechanisms directly into existing LLM-as-a-service systems,
which is highly useful for real-world applications.

Nevertheless, one possible direction for adapting our technique to a black-box setting is to employ
an auxiliary white-box proxy LLM from which attention signals and logits can be extracted. Such a
proxy model may be effective because it can detect ambiguous or underspecified queries, thereby
capturing uncertainty patterns that partially mirror those of the black-box target model.
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