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Abstract
Recent advances in remote sensing and machine learning
show potential for improving irrigation efficiency. In this
study, two independent methods to determine the irrigation
dose in processing tomatoes were tested in an irrigation ex-
periment. The first method used multispectral imagery ac-
quired from an unmanned aerial aircraft (UAV) to estimate
the FAO-56 crop coefficient (Kc). The second method used
an Artificial Neural Network (ANN) to predict latent heat
fluxes using meteorological variables from a nearby mete-
orological station. An irrigation experiment was conducted,
where the farmer was instructed through a mobile applica-
tion with updated irrigation recommendations. Both methods
were compared against an expert guided control treatment.
Yields, water use efficiency, and Brix levels were measured,
and showed to be on par with the control. Additionally, both
methods estimated ET at a near-perfect agreement with best-
practice irrigation. These results demonstrate the potential
of machine learning techniques and aerial remote sensing to
quantify crop water consumption and support irrigation man-
agement.

Introduction & Related Work
Water demand is expected to increase by 55% globally be-
tween 2000 and 2050, mainly for manufacturing, electricity,
and domestic use (Kitamori et al. 2012). This will leave a
small margin to increase water use in agriculture, and there-
fore, it is imperative to optimize the irrigation process. A
precise estimation of crop water consumption, or evapo-
transpiration (ETc), can improve irrigation management and
lead to similar yields while reducing water usage through-
out the growing season. Tomato (Lycopersicon esculentum
Mill) is one of the most important vegetable crops globally,
with production estimated by 180 million tons in 2017 (FAO
2019). It is also one of the most demanding in water (Peet
2008). Accordingly, improvement in tomato irrigation could
result in significant water savings. Therefore, tomato is a
suitable model crop for the evaluation of irrigation strate-
gies.

The FAO-56 crop coefficient approach is one of the most
commonly applied irrigation management methods (Allen
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et al. 1998). Using this approach, ETc is estimated based
on the reference evapotranspiration from a hypothetical crop
(ET0) and is given by ETc = Kc ×ET0, where ET0 is com-
monly derived using the Penman-Monteith method, while
Kc for specific crops in specific environments is empiri-
cally determined in water consumption experiments to iso-
late the atmospheric evaporative demand from the plant re-
action. Standard Kc tables based on such experiments may
not be sufficiently accurate when the regular crop develop-
ment is inhibited by stress factors or irregular weather con-
ditions. Therefore, remote sensing estimations of Kc based
on vegetation indices that reflect the ground cover and crop
development level in near-real-time, can serve as surrogates
of Kc that overcome this limitation (Rozenstein et al. 2018,
2019).

In a previous study (Kaplan et al. 2021), Kc estimation
models were developed for processing tomatoes based on
Sentinel-2 imagery that is available at a frequency of 5 days
at 10–20m spatial resolution, and Venµs imagery that are
available at a frequency of 2 days at 5–10m spatial reso-
lution (Manivasagam, Kaplan, and Rozenstein 2019). This
development facilitates estimating Kc at a high enough tem-
poral resolution for irrigation decisions that well capture
within-field variability. However, in cloudy environments,
even such a high revisit time may not be enough to sup-
port near-real-time estimations of Kc from optical satel-
lite imagery. In addition, satellite pixels are too coarse to
properly estimate Kc in narrow experimental plots. How-
ever, low flying Unmanned Aerial Vehicles (UAV) can over-
come such limitations. An UAV can capture imagery on
days not covered by satellite overpass, and even under
clouds (Tmušić et al. 2020). Moreover, the spatial resolu-
tion of imagery from low altitude remote sensing is better
suited for small plots (Aasen et al. 2018). Kc estimations
from UAVs equipped with multispectral cameras have been
previously used.

In parallel with the increased use of UAV, in recent years
there is an upsurge in the use of machine learning for system
modeling, not only for remote sensing data but also for irri-
gation management (e.g., Ohana-Levi et al. (2019); Romero
et al. (2018)). Recently, (Reichstein et al. 2019) highlighted
the potential of using deep learning techniques in geoscience



for modeling dynamic time series. Wide research was done
on prediction of reference evapotranspiration using machine
learning ( Kumar, Raghuwanshi, and Singh (2011) and ref-
erences therein), but few on actual evapotranspiration mea-
surements over agricultural crops. Some of the work fo-
cused on using Multi-Layer-Perceptrons (MLPs) to gap in
ETc time series (Papale and Valentini 2003; Coutinho et al.
2018; Richard et al. 2020). However, here we want to make
running predictions of the ETc values. This is significantly
harder as we do not have access to the past or future ETc val-
ues. A key issue when trying to estimate running crop’s ETc
values is that as the crop grows, its evapotranspiration in-
creases as well. This means that we need to learn two things:
The impact of the meteorological variable on the crop evap-
otranspiration, and how to model the plant growth.

This paper outlines the performance of two novel ap-
proaches to determine the irrigation dose in processing
tomatoes. Specifically, the estimation of Kc from UAV mul-
tispectral imagery, and the application of an ANN trained
to predict latent heat fluxes based on meteorological data.
These methods were tested against the current best practice
in processing tomato irrigation and were shown to perform
as well while being cheaper and simpler to use.

Proposed Methods
In this work, we evaluated different methods aimed at max-
imizing tomato yield by irrigation management. To do so,
we developed two original methods and built a mobile ap-
plication to instructs farmers with irrigation recommenda-
tions based on our models. The different methods used are
detailed in the following sub-sections.

Irrigation estimation from UAV
The first method we present here consists of flying a UAV
equipped with a multispectral camera to acquire images and
estimate Kc to compute the required irrigation dose. The
Kc estimation model developed for Sentinel-2 (Kaplan et al.
2021) was applied to multispectral imagery acquired with
a Micasense1 RedEdge-MX Sensor. This work by Kaplan
et al. (2021) used eddy covariance measurements of the ac-
tual crop water consumption during three growing seasons to
calculate the actual Kc and model it using spectral vegeta-
tion indices derived from spaceborne multispectral imagery.
To apply this model to imagery acquired by the RedEdge-
MX Sensor, a relative calibration between Sentinel-2 Level-
2A products and RedEdge-MX imagery was carried out.
we used co-acquired imagery of agricultural fields from
four different dates and crops. UAV imagery was processed
into orthomosaics using Pix4Dmapper (Pix4D S.A., Prilly,
Switzerland). Satellite and UAV images were then resam-
pled to 10 m resolution, and the area of the field was masked.
Subsequently, linear regression models were fitted for over-
lapping pixels of Sentinel-2 and RedEdge-MX bands with
similar central wavelengths. The result was transformation
equations from Sentinel-2 to RedEdge-MX reflectance val-
ues for which the Kc estimation models could be applied
to.

1Seattle, Washington, USA

UAV flights took place at the irrigation experiment site in
Gadash Farm in the Hula Valley (33◦10’55”N 35◦34’57”E)
every 5-10 days during the 2020 growing season from an
altitude of 50 m above the ground, with front and side over-
lap was 85% to facilitate the generation of a good equality
orthomosaic. The average Kc value in UAV-treatment repli-
cates together with ET0 data from a nearby meteorological
station (Kavul station; 33◦06’03”N35◦36’34”E) was used to
calculate the actual ETc in this experimental treatment and
to instruct the grower with an irrigation recommendation via
the mobile application.

Irrigation estimation from ANN
The second method consists in using an ANN to predict
the ETc. To do so, the ANN used meteorological variables
collected from local weather stations, and the average Leaf
Area Index (LAI) of the control treatment. The LAI is mea-
sured on a fortnightly basis while the weather variables can
be acquired at a ten-minute sampling rate or higher. Since
the irrigation was applied every day, we first needed to build
an algorithm capable of forecasting the LAI while taking
into account past measurements.

Given that we only had LAI recordings from four past ex-
periments, we chose to use a K-Nearest-Neighbour (KNN)
algorithm to predict future LAI values with a two days sam-
pling rate. This meant that at the beginning, the LAI was
modeled as the mean of all the past measurements, and
then as we started collecting measurements, the extrapolated
points followed the growth curve of the most similar exam-
ples in the database. To interpolate between the predicted
points we fitted a spline on top of them, relaxing the shape of
the predicted curve, and making the sampling process more
convenient.

To estimate the daily irrigation dose, we trained a neural-
network to predict the latent-heat-flux, a common proxy for
ETc. To do so, we used the LAI, acquired with the method
outlined above, in combination of the following variables:
the net-radiation, the temperature, the humidity, the wind
speed, the time-of-the-day, and the days since germination.
These variables are acquired by scrapping data from local
weather stations, while the latent-heat-flux was measered us-
ing the eddy-covariance method during in previous collec-
tion campaigns in the region. We sampled all these variables
at a 30 minutes rate and used them to train an MLP. This
MLP was composed of two dense layers with 48 neurons
each, and a last dense layer with a single neuron. To mini-
mize overfitting, we added dropout layers in-between each
dense layer. All layers used leaky-relus activations (Maas
et al. 2013), except for the last layer which had no activa-
tion. The network weights were regressed using the adam
optimizer, with a learning rate of 1e-5, and the drop rate
was set to 0.3. Regarding the optimization function, we
used a huber-loss as it made the training less rigid, and al-
lowed to account for the inaccuracies in the variables fed to
the network. To make our training more efficient we also
relied on a Prioritized Experience Replay (PER) training
scheme (Schaul et al. 2015). In the end this models allowed
us to predict the ETc at a half-hourly rate. To get the daily
treatment recommendation we integrated the predicted val-



Figure 1: An overhead imagery of our experimental field and the different plots corresponding to each treatment.

ues over a whole day.

Baseline, Experiment & Evaluation
Baseline
To compare our methods we used the current best-practice
irrigation in Israel. This control treatment consisted of an ex-
pert relying on a set of soil tensiometers to determine the ir-
rigation dose. The water tension in three depths was used as
feedback to confirm the correct irrigation; if a desired water
tension threshold was not reached, the next irrigation could
be supplemented to reach the target value. Three more treat-
ments were derived from the control treatment as ratios of
50%, 75%, and 125% of the control irrigation dose.

Experiment
To evaluate the different methods we conducted an irrigation
trial in an experimental crop-farm close to some of our pre-
vious data-collection campaigns (33◦10’55”N35◦34’57”E).
We selected the processing tomato cultivar H-4107 and
transplanted them with a plant density of 2500 plant/dunam.
After transplanting, the entire field was irrigated with 30mm
water in order to fill the soil profile. Then it was irrigated
according to the irrigation expert guidance for two months
after which the irrigation trial began. In total we tested
six different irrigation treatments: 1) “Control” – the ’best-
practice’ irrigation, our baseline. 2) 50% of the control. 3)
75% of the control. 4) 125% of the control. 5) “ANN” –
irrigation based on the trained machine learning model. 6)
“UAV” - the irrigation based on the Kc estimated from the
UAV. The main assumption in this experiment was that the
natural variability, which originates in environmental condi-
tions, genetic material, equipment and management, is con-
siderably smaller than the differences from the different irri-
gation treatments. Each treatment had six repetitions as can
be seen in Fig. 1 where each repetition was comprised of
three 10 m by 2 m rows (60 m2). The effects of the environ-
mental conditions were also be mitigated by the scattering
of the different repetitions across the field.

Evaluation
To evaluate the performance of the different methods we
used three evaluation metrics: the yield, water use efficiency,

and brix. The yield is the most important metric, it is a mea-
sure of the fresh biomass of harvested tomato fruit per unit
of area (e.g., ton / dunam).

This metric is supplemented by the water use efficiency,
calculated by dividing the total yield (kg) with the total ap-
plied irrigation (m3) in each treatment. The overall goal of
the irrigation experiment was to maximize the yield while
maximizing the water use efficiency at the same time. How-
ever, the optimization of the water use efficiency should not
be done to the detriment of the yield. Hence, for now, having
a higher yield is more desirable than having a higher water
use efficiency.

Finally, Degrees Brix is a measure of the sugar content
in an aqueous solution. One brix degree corresponds to one
gram of sugar for 100 grams of liquid. In the case of the
Tomatoes, the brix level is a common way to quantify their
quality; higher is better, but there is usually a trade-off be-
tween quality and quantity. In general, less irrigation typi-
cally results in higher Brix but lower yield.

Results & Discussion
Results
In this section we compare the different treatments using the
metrics defined earlier. Fig. 2, shows the metrics for each
method throughout the season. The histograms show both
the average performance of the treatments across the six rep-
etitions and their standard deviation.

As can be seen on fig. 2b, the control, the ANN, and the
UAV, all achieve a similar yield, around 12 tons/dunam. The
125% treatment achieves the highest yield, while the 50%
treatment achieves the lowest yield, 8.5 ton/dunam. On the
same graph, we can also see that the 125% treatment con-
sumed a lot more water than the control, while its yield was
not significantly higher than the other methods. This shows,
that our methods and the control are performing near the op-
timal yield/irrigation ratio. At the same time, the 50% treat-
ment and 75% treatment consumed much less water but their
yield is drastically reduced.

The same pattern can be seen in fig. 2a, the 50% and
75% treatment both have a high water use efficiency but this
comes at the cost of the yield, which is not desirable as we
are first and foremost interested in the yield. On the other
side of the spectrum, we can see that the 125% treatment
has the lowest water use efficiency while it does not have



(a) Water use efficiency, higher is better. (b) Yield against irrigation. Red, higher is bet-
ter; blue, lower is better.

(c) Brix, higher is better.

Figure 2: Results of the different treatments over the whole season.

a significantly better yield than the other treatments. In the
end, we can see that from the irrigation and yield perspective
our methods performed as well as the best-practice irrigation
(control).

The brix measurement shown in fig. 2c, displayed very
large variance across the different repetitions of each treat-
ment. The 50% treatment was slightly higher then the rest
but this difference was not statistically significant.

Overall, this experiment, in which we delivered live rec-
ommendation to the farmer, was successful. The whole of
the pipeline, from data-scrapping, to predicting, and sending
the prediction worked reliably for the full summer season.
This allowed us to show that the irrigation recommendation
from the ANN and the UAV almost perfectly agreed with the
best practice, both in the total amount and rate of irrigation
throughout the season. Moreover, they resulted in a similar
yield and brix levels.

Discussion
In this experiment, we showed that methods based on ANN
could be used to achieve expert level irrigation. The main ad-
vantage of this method compared to the baseline resides in
its low running cost, and ease of use. However, this method
is timely to set-up as it requires careful calibration of the
system. This calibration is unique to the area and crop-type,
which means it has to done again for every new locations.
Yet, once set up, this method requires neither in-field sen-
sor nor experts. Furthermore, it requires no supervision and
is transparent to use. This makes it particularly interesting in
developing countries, where the cost of advanced equipment
and the availability of domain experts remain a key limita-
tion to a wider adoption of efficient irrigation methods.

The other method, the UAV, is more expensive to run but
does not require region-specific calibration and allows for
highly accurate irrigation recommendation. It can be used
anywhere on earth, deployed quickly, and does not need ex-
pert supervision.

Conclusion
Both novel approaches to determine the irrigation dose in
processing tomatoes were found to perform equally to the

control treatment of best common practice for processing
tomato irrigation. While the control treatment relied on an
experienced agronomist specialized in vegetable crops cul-
tivation that had the benefit of feedback from soil tensiome-
ters, the experimental approaches, the estimation of Kc from
an UAV, and the ANN, did not. This makes these methods
particularly interesting as they alleviate the need of crop ex-
perts and hence make efficient irrigation more affordable,
which is crucial to broader the usage of high precision ir-
rigation techniques. In our experiments, the multispectral
imagery-based Kc estimation model, originally calibrated
for Sentinel-2, was successfully transferred to work from
a UAV with a multispectral camera payload. The trained
ANN model demonstrated its validity by estimating ET ac-
curately. There were no significant differences in the yield
quality and quantity between the approaches in the irriga-
tion experiment. Although the study included only one ir-
rigation experiment, the results illustrate the capacity and
ease-of-implementation of novel techniques based on UAVs
and ANNs for irrigation management.

Future work will focus on replicating this experiment at a
larger scale to further establish the experimental approach
for irrigation management. Furthermore, we will explore
bayesian and evidential deep-learning to estimate the uncer-
tainty on the neural-network predictions. This would enable
the detection out-of-distribution samples, and allow the end-
user to discard or adapt these predictions.
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Tmušić, G.; Manfreda, S.; Aasen, H.; James, M. R.;
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