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Abstract. Head and Neck (H&N) cancer is among the most common
cancers worldwide, and its related clinical decision-making constitutes a
systematic process that requires the integration of multimodal clinical
data and the coordination of diverse tasks in the clinical workflow. How-
ever, how to effectively coordinate the interrelated clinical tasks to maxi-
mize their synergistic potential is still an open question. In this study, we
propose a Multi-stage Multimodal Progressive Learning (named MMPL)
framework for coordinated modeling of segmentation, diagnosis, and
prognosis tasks, in the context of HECKTOR 2025 challenge at MICCAI
2025. Our MMPL progressively learns three clinical tasks that collec-
tively facilitate personalized treatment planning: (i) tumor segmentation,
(ii) HPV status classification, and (iii) survival prediction. Specifically,
we establish a unified network backbone, consisting of a triple-stream en-
coder with adaptive PET/CT information fusion and an attention-gated
decoder that can be applied to all three tasks. This backbone is suc-
cessively trained for segmentation, classification, and survival prediction
at three learning stages, where the knowledge is progressively learned
with the guidance of prior knowledge accumulating from former stages.
Further, the intermediate outputs (e.g., segmentation masks, HPV sta-
tus) are leveraged as guidance on radiomics analysis or as supplementary
indicators for the final prediction. Our team (InterStellar) attained top-
tier performance across all three tasks in the validation phase, while the
final testing results have yet to be released.
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1 Introduction

With over 900,000 cases diagnosed annually worldwide, Head and Neck (H&N)
cancer poses a significant and persistent challenge to global public health [1].
Clinical decision-making for H&N cancer patients often integrates heterogeneous
multimodal clinical data, such as medical imaging (e.g., MRI, PET/CT) and clin-
ical indicators (e.g., demographics, TNM stage), for comprehensive assessment of
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disease severity and progression risk [2,3,4,5]. This assessment process typically
involves the coordination of three interrelated tasks. First, the precise segmenta-
tion of the primary tumor (GTVp) and metastatic lymph nodes (GTVn) estab-
lishes the lesion localization and spatial context. Second, the diagnostic determi-
nation of crucial clinical characteristics (e.g., HPV status) identifies key etiologic
and biological factors that carry significant prognostic implications and inform
the interpretation of cancer stage and treatment intensity. Third, the prognostic
assessment of the patients’ outcomes synthesizes these upstream findings to es-
timate disease progression risk, which directly facilitates personalized treatment
planning in accordance with clinical guidelines [2]. The above clinical workflow
reflects a systematic process that requires the integration of multimodal data
and the coordination of three tasks: segmentation → diagnosis → prognosis.

Most related methods are optimized for individual tasks, leaving cross-task
synergies underexploited. For example, segmentation-target methods focus on
automated delineation of H&N tumors in PET/CT [6,7,8,9], while imaging-based
diagnosis/prognosis are typically treated as standalone problems that are devel-
oped independently using radiomics or deep-learning models [10,11,12,13,14,15].
Some recent works have explored the joint modeling of segmentation and survival
prediction via joint multi-task learning [16,17,18], indicating that transferring
knowledge from tumor segmentation can significantly benefit survival predic-
tion [19,20]. However, diagnostic phenotyping is still kept outside the loop, and
systems aligned with the clinical workflow of segmentation → diagnosis → prog-
nosis remain scarce, underscoring the need for a unified framework that can
effectively coordinate these tasks to leverage their cross-task synergies.

Since MICCAI 2020, the HECKTOR challenge has provided a multi-center,
multimodal PET/CT benchmark and has completed three editions by 2022 with
broad community engagement [21,22]. In 2025, building on prior focus on seg-
mentation and survival outcome prediction, the HECKTOR 2025 challenge ex-
tends to include HPV status classification as a third task, aligning with the
clinical workflow of segmentation, diagnosis, and prognosis [23]. Specifically, the
2025 edition (HECKTOR 2025) comprises three tasks: Task 1 — automatic
detection and segmentation of H&N primary tumor and lymph nodes in FDG-
PET/CT images; Task 2 — prediction of recurrence-free survival (RFS) from
FDG-PET/CT images together with available clinical information and radio-
therapy planning dose maps; and Task 3 — diagnosis of HPV status from FDG-
PET/CT images together with available clinical information [23].

In the context of HECKTOR 2025, we introduce a Multi-stage Multimodal
Progressive Learning (MMPL) framework that mirrors the clinical workflow
to leverage cross-task synergies among segmentation, diagnosis, and progno-
sis. Specifically, MMPL adopts a unified network backbone shared across the
three tasks, comprising a triple-stream encoder for PET/CT with adaptive cross-
modal fusion and an attention-gated decoder together with task-specific predic-
tion heads for (i) primary tumor and lymph node segmentation, (ii) HPV status
classification, and (iii) RFS prediction. Learning proceeds in three successive
stages that follow the clinical workflow, beginning with segmentation to learn
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robust representations of anatomy and disease extent, continuing with diagno-
sis that uses tumor-anchored features together with PET/CT information and
relevant clinical indicators (e.g., demographics, TNM stage, performance sta-
tus) to classify HPV status, and eventually concluding with RFS prediction that
builds on all the prior knowledge from the earlier stages. Intermediate outputs
are explicitly reused downstream: segmentation provides lesion localization and
enable radiomics extraction from PET/CT within GTVp/GTVn, while HPV
predictions serve as complementary predictive indicator for survival estimation.
This progressive, clinically aligned learning paradigm allows knowledge to flow
from segmentation to diagnosis and then to prognosis, thereby leveraging both
task dependencies and PET/CT complementarity.

2 Methods

2.1 Overview

We propose a Multi-stage Multimodal Progressive Learning (MMPL) framework
that is aligned with the clinical workflow of segmentation → diagnosis → prog-
nosis. MMPL proceeds through three successive learning stages: (S1) primary
tumor and lymph node segmentation, (S2) HPV status classification, and (S3)
RFS prediction, using a unified network backbone shared across all stages. The
backbone follows the encoder–decoder design validated in the prior work [20]: It
uses a triple-stream encoder with separate PET and CT streams and an adap-
tive fusion stream that mixes information across pyramid levels, followed by
an attention-gated decoder that aggregates multi-scale features via gated skip
connections, and produces a task-agnostic representation reused across all three
stages. Three task-specific heads are individually attached to this shared repre-
sentation for task-specific prediction, as illustrated in Fig. 1.

Our MMPL is built on a prior-guided progressive learning strategy that co-
ordinates stages at two complementary levels while remaining faithful to clini-
cal practice. At the parameter level, the shared backbone undergoes knowledge
transfer and refinement: weights learned during segmentation are propagated and
further optimized for diagnosis and then for prognosis, allowing prior knowledge
to accumulate and be reused across tasks. At the output level, intermediate re-
sults serve as explicit guidance: The GTVp/GTVn masks (predicted in S1) pro-
vide lesion localization for mask-guided radiomics extraction reused by S2 and
S3, and the HPV probability (predicted in S2) is incorporated as a supplemen-
tary indicator for S3. Clinical indicators are incorporated in the stage-specific
statistical models, being concatenated with image-derived features for HPV sta-
tus classification and used as covariates in the survival model. This progressive,
clinically aligned learning paradigm enables knowledge to flow from tumor/nodal
segmentation to diagnosis and then to prognosis, leveraging cross-task synergies
while preserving interpretability.
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Fig. 1. Overview of our MMPL framework.

2.2 Data preprocessing

Image preprocessing. All PET/CT images undergo a consistent preprocess-
ing procedure for both training and inference to prevent distribution shift. First,
the co-registered PET and CT scans are resampled to an isotropic 1.0mm spac-
ing using B-spline interpolation over a common grid defined by their physical
intersection. Subsequently, a Region of Interest (ROI) is automatically localized
via a PET-guided strategy. This involves selecting the cranial-most 25% of the
image volume along the z-axis, within which PET intensities are z-score normal-
ized. A binary mask is then created by thresholding voxels with z-score greater
than 1.0. The centroid of the largest 3D connected component in this mask is
designated as the ROI center, where a 200× 200× 310 voxel patch is extracted
from both PET and CT. The CT intensities are clipped to the [−1024, 1024]HU
range and then scaled to [−1, 1], while PET intensities are standardized using
a z-score normalization across all non-zero voxels. For model training, random
1283 sub-patches are cropped from the ROI. The corresponding segmentation
labels are resampled using nearest-neighbor interpolation and processed into two
separate binary masks for GTVp and GTVn.

Clinical data preprocessing. The provided structured clinical indicators are
processed with the following procedure: categorical variables (e.g., sex, smoking
status, alcohol status, performance status) are one-hot encoded; continuous vari-
ables are standardized via z-score normalization, using statistics fitted on the
training split only to prevent information leakage. Missing values are imputed
by the median of the training data for continuous variables. All preprocessing
settings fitted on the training data are frozen and reused for inference.



Multi-stage Multimodal Progressive Learning for H&N Cancer 5

2.3 Stage 1: Tumor segmentation

The segmentation head is a 3D convolutional layer attached to the shared back-
bone. As described in [20], the attention-gated decoder performs four successive
upsampling stages from the coarsest features, and the resulting features from
the last decoder stage are projected by the segmentation head into two channels
to produce voxel-wise probability maps for GTVp and GTVn.

Overlap–Detection–Aware (ODA) loss. To reflect clinical priorities of precise
GTVp boundaries and high sensitivity to small GTVn lesions, we use a composite
objective coupling Dice with a focal Tversky term [24,25]. For c∈ {T,N} with
binary labels yc and predictions ŷc,

Lseg =
∑

c∈{T,N}

[
LDice(yc, ŷc) +

(
1− TI(yc, ŷc;αc, βc)

)γc
]
+ Lstab, (1)

where LDice(y, ŷ) = 1− 2⟨y, ŷ⟩+ ε

∥y∥1 + ∥ŷ∥1 + ε
and

TI(y, ŷ;α, β) =
TP + ε

TP + αFP + β FN + ε
, (2)

with TP = ⟨y, ŷ⟩, FP = ⟨1− y, ŷ⟩, and FN = ⟨y, 1− ŷ⟩. We use near-symmetric
parameters for GTVp (αT , βT , γT ) = (0.5, 0.5, 1.33) and recall-biased param-
eters for GTVn (αN , βN , γN ) = (0.3, 0.7, 1.50). A stabilization term improves
optimization on empty or low-signal crops:

Lstab =
∑

c∈{T,N}

(
LBCE(yc, ŷc) + LDice(1− yc, 1− ŷc)

)
(3)

Inference procedure. We compute the PET-guided 1.0mm ROI (as described in
Section 2.2) and run overlapping sliding-window inference; window-wise proba-
bilities are averaged across overlaps. Class-specific thresholds are applied, labels
are composed with tumor-first priority, and the result is mapped back to the na-
tive CT grid. Post-processing consists of 3D hole filling and removal of connected
components smaller than 50 voxels per class.

Mask-guided radiomics. Using the predicted masks of GTVp and GTVn, we
extract radiomics features from both PET and CT to provide structured, in-
terpretable descriptors to later stages. In particular, features cover morphol-
ogy/shape, first-order statistics, and texture families (e.g., GLCM, GLRLM,
GLSZM) computed on the original images as well as on standard filtered images
(e.g., LoG, wavelet sub-bands), with fixed-bin discretization and filter settings as
specified in [17]. Subsequently, features are standardized by z-score normaliza-
tion using statistics fitted on the training data to prevent information leakage.
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2.4 Stage 2: HPV status classification

The HPV prediction head is a shallow MLP head attached to the attention-
gated decoder at four scales (1/8, 1/4, 1/2, full resolution). At each scale, the
output of the last convolutional layer is fed into a global average pooling layer
to form a scale-wise vector. The four vectors are concatenated and fed into the
HPV prediction head, yielding a scalar logit whose sigmoid is supervised with
a class-balanced binary cross-entropy. The logit is used as the deep score for
downstream integration with clinical indicators and radiomics features.

Supervised classifier. In line with clinical diagnosis practice, we aggregate three
evidence sources: (i) the deep score from the HPV prediction head; (ii) the pre-
extracted, mask-guided PET/CT radiomics from Stage 1, and (iii) structured
clinical indicators as encoded and standardized as in Section 2.2. The concate-
nated vector is fed into a supervised ensemble classifier (random forest [26],
scikit-learn) to output the HPV probability pHPV. To enhance robustness, class
imbalance is handled with SMOTE within each training fold [27]. Hyperparam-
eters (e.g., number of trees, depth, minimum samples per leaf) are selected on
validation folds to maximize balanced accuracy.

2.5 Stage 3: Survival prediction

The survival prediction head is also a shallow MLP head that uses the same
multi-scale features as Stage 2. Unlike Stage 2, the prediction head maps the
four vectors to a K-dimensional vector of conditional survival probabilities over
consecutive time intervals and is trained with a censoring-aware discrete-time
negative log-likelihood [28]. Given a fixed setting of time intervals, the expected

survival time is T̂ =
∑K

i=1 Si ∆ti, where Si denotes the cumulative survival
probability up to interval i, and ∆ti is the duration of interval i.

Cox proportional hazards (CoxPH) integration. For the final risk score predic-
tion, we integrate (i) the predicted survival time, (ii) the pre-extracted, mask-
guided PET/CT radiomics from Stage 1, (iii) the final HPV probability from
Stage 2, and (iv) structured clinical indicators (as encoded and standardized as
in Section 2.2) via a CoxPH model [29]. Feature selection is performed within
each training fold to avoid information leakage: Univariate Cox analysis retains
clinical indicators with p<0.05, while Least Absolute Shrinkage and Selection
Operator (LASSO) regression is applied to select radiomics features.

3 Experimental Setup

Dataset overview. HECKTOR 2025 uses a multi-center, multimodal head-
and-neck cancer dataset [23]. The corpus contains 1,123 pretreatment FDG-
PET/CT studies from ten institutions. Major contributors are MD Anderson
(444 cases; 39.6%), CHUB (216 cases; 19.2%), and University Hospital Zurich
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(101 cases; 9.0%). Harmonized clinical data include RFS time and censoring
indicator, HPV status, demographics, and staging. Across the full cohort, RFS
information is available for 1,052 patients: 843 censored and 209 events; HPV sta-
tus is available for 873 patients: 587 positive and 286 negative [23]. Our method
was developed with the organizer-released training subset, including 726 patients
from seven centers for all three tasks, while the remaining data was retained by
the organizers for online validation and testing.

Training subset. All internal validation, model selection, and ablations were
conducted on the organizer-released training subset available to us. The effective
label availability in the training data is as follows:

– Tumor Segmentation (Task 1): 680 cases with valid GTVp/GTVn masks.
– Survival Prediction (Task 2): 678 cases with RFS labels (542 censored and

136 non-censored).
– HPV status classification (Task 3): 588 cases with HPV labels (58 HPV-

negative and 530 HPV-positive).

Data splits. We used two complementary validation schemes on the organizer-
released training subset. (i) Five-fold patient-level cross-validation: patients were
randomly partitioned into five disjoint folds at the patient level. Task-specific
folds were induced by intersecting the global split with each task’s label-available
subset (segmentation, HPV, RFS). (ii) Five-fold center-out validation: the seven
centers were grouped into five folds by holding out one large center or a pair
of smaller centers per fold to balance validation size; all patients from held-
out centers form the validation set for that fold, ensuring that the validation
distribution is center-disjoint from training.

Challenge protocol. We followed the official HECKTOR 2025 rules: Our
method was developed merely on the released training subset, and the perfor-
mance on the held-out data was assessed by the organizers. The testing labels
are not public, and no external data was used.

4 Results

All quantitative results reported below are the mean across five-fold patient-level
cross-validation on the released training data, which guided our model selection
during development. For the final challenge submission, we additionally trained
five models using five-fold center-out validation. The final results ensemble the
output of ten models. The results on the held-out testing data were computed
by the organizers and have not been released yet.

4.1 Performance of Tumor Segmentation (Task 1)

The evaluation metrics follow the official HECKTOR protocol: GTVp is tracked
by mean Dice, whereas GTVn emphasizes both volumetric overlap and lesion
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Table 1. Five-fold cross-validation results for Task 1.

Method Dice(GTVp) Dice(GTVn) F1(GTVn)

Dice-only 0.7643 0.6616 0.7164
ODA (Dice+Focal Tversky+stabilizers) 0.8161 0.8206 0.8391

Table 2. Five-fold cross-validation results for Task 3. AUC is used for model selection
within each fold. Sensitivity and specificity are computed at the validation threshold
that maximizes balanced accuracy.

Method AUC Sensitivity Specificity

Deep-only 0.9535 0.9863 0.5338
Deep+Rad+Clin 0.9601 0.9795 0.7667

detectability. Accordingly, we report Dice results for GTVp and GTVn, whereas
for GTVn, the aggregated F1 score is reported to evaluate detection performance.

Table 1 presents the five-fold cross-validation results on the training data,
which demonstrates that compared to using Dice loss alone (Dice-only), ODA
improves GTVn detectability and overlap (higher lesion F1 and GTVn Dice)
and also raises GTVp Dice.

4.2 Performance of HPV status classification (Task 3)

During development, model selection within each fold was based on AUC (threshold-
independent). After selecting the model, we chose a decision threshold on the
corresponding validation split to maximize balanced accuracy, and then reported
sensitivity and specificity at that threshold.

Table 2 presents the five-fold cross-validation results for the deep learn-
ing model (Deep-only) and the additional integration with radiomics features
and clinical indicators (Deep+Rad+Clin). Compared to the deep-only baseline,
adding radiomics features and clinical indicators yields a higher AUC and sub-
stantially improves specificity with only a minor degrade in sensitivity, thereby
increasing balanced accuracy at the selected thresholds.

4.3 Performance of RFS prediction (Task2)

Following the official HECKTOR protocol, the survival prediction performance
is evaluated with C-index [30]. Table 3 presents the five-fold cross-validation re-
sults for the deep learning model (Deep-only) and the CoxPH integration model,
which demonstrates that the integration of radiomics features, clinical indicators,
and HPV probability yields a higher C-index.
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Table 3. Five-fold cross-validation results for Task 2.

Method C-index

Deep-only 0.6974
CoxPH Integration 0.7107

5 Conclusion and Limitations

In the study, we have outlined MMPL, a Multi-stage Multimodal Progressive
Learning framework that mirrors the clinical workflow of segmentation → di-
agnosis → prognosis. Built on a unified PET/CT backbone with task-specific
heads, MMPL links the stages through a prior-guided progressive learning strat-
egy at both the parameter and the output levels. This clinically aligned learning
paradigm enables knowledge to flow from segmentation to diagnosis and then to
prognosis, promotes cross-task synergy. As demonstrated in the five-fold cross-
validation, MMPL improved lymph node detectability and overall segmentation
quality with the proposed ODA objective, increased HPV specificity at compa-
rable sensitivity when combining deep score with mask-guided radiomics and
clinical indicators, and raised the survival prediction via CoxPH integration.
Our final submission ensembles ten models trained with both patient-level and
center-out cross-validation and achieved top-tier validation performance across
all three tasks (testing results remain pending).

Although the challenge provides radiotherapy dose maps for outcome model-
ing, our current implementation does not incorporate dose information because
only a very small number of cases in the available training subset included usable
dose maps. Future work will integrate dose maps and examine their interaction
with PET/CT images and clinical indicators.

References

1. Sung, H., Ferlay, J., Siegel, R.L., et al.: Global Cancer Statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA:
A Cancer Journal for Clinicians 71(3), 209–249 (2021).

2. Colevas, A.D., Cmelak, A.J., Pfister, D.G., et al.: NCCN Guidelines® Insights:
Head and Neck Cancers, Version 2.2025. Journal of the National Comprehensive
Cancer Network 23(2) (2025).

3. Ang, K.K., Harris, J., Wheeler, R., et al.: Human papillomavirus and survival of
patients with oropharyngeal cancer. New England Journal of Medicine 363(1),
24–35 (2010).

4. Amin, M.B., Edge, S., Greene, F., et al. (eds.): AJCC Cancer Staging Manual, 8th
ed. Springer, New York (2017).

5. Meng, M., Bi, L., Fulham, M., Feng, D. and Kim, J.: Merging-diverging hybrid
transformer networks for survival prediction in head and neck cancer. In: MICCAI
2023, LNCS 14225, 400-410 (2023)



10 Y. Lin et al.

6. Murugesan, G.K., et al.: Head and Neck Primary Tumor Segmentation Using
Deep Learning (nnU-Net framework). In: HECKTOR 2021, LNCS 13209, 224-
235 (2022).

7. Oreiller, V., Andrearczyk, V., Jreige, M., Castelli, J., Prior, J.O., Vallières, M.,
Visvikis, D., Hatt, M., Depeursinge, A.: Head and neck tumor segmentation in
PET/CT: the HECKTOR challenge. Medical Image Analysis 77, 102336 (2022).

8. Andrearczyk, V., Oreiller, V., Boughdad, S., et al.: Automatic head and neck tumor
segmentation and outcome prediction relying on FDG-PET/CT images: Findings
from the second edition of the HECKTOR challenge. Medical Image Analysis 90,
102972 (2023).

9. Li, G.Y., Chen, J., Jang, S.-I., Gong, K., Li, Q.: SwinCross: Cross-modal
Swin Transformer for Head-and-Neck Tumor Segmentation in PET/CT Images.
arXiv:2302.03861 (2023).

10. Jo, K.H., et al.: 18F-FDG PET/CT parameters enhance MRI radiomics for pre-
dicting HPV status in OPSCC. Yonsei Medical Journal 64(12), 992–1002 (2023).

11. Woo, C., et al.: Development and testing of a machine-learning model for HPV
status using 18F-FDG PET/CT-derived parameters in OPSCC. Korean Journal of
Radiology 24(1), 1–12 (2023).

12. Fanizzi, A., et al.: Explainable CNN-based prediction of HPV status in OPSCC.
Scientific Reports 14, 16134 (2024).

13. Vallières, M., Kay-Rivest, E., Perrin, L.J., et al.: Radiomics strategies for risk
assessment of tumour failure in head-and-neck cancer. Scientific Reports 7, 10117
(2017).

14. Huynh, B.N., Groendahl, A.R., Tomic, O., et al.: Head and neck cancer treatment
outcome prediction: conventional radiomics vs. deep-learning radiomics on pre-
treatment PET/CT. Frontiers in Medicine 10, 1217037 (2023).

15. Gu, B., et al.: Prediction of 5-year progression-free survival in advanced na-
sopharyngeal carcinoma with pretreatment PET/CT using multi-modality deep
learning-based radiomics. Frontiers in oncology, 12, 899351 (2022).

16. Meng, M., Peng, Y., Bi, L., Kim, J.: Multi-task Deep Learning for Joint Tumor
Segmentation and Outcome Prediction in Head and Neck Cancer. In: HECKTOR
2021, LNCS 13209, 160-167 (2022).

17. Meng, M., Bi, L., Feng, D.D., Kim, J.: Radiomics-Enhanced Deep Multi-task
Learning for Outcome Prediction in Head and Neck Cancer. In: HECKTOR 2022,
LNCS 13626, 135-143 (2023).

18. Meng, M., Gu, B., Bi, L., Song, S., Feng, D.D., Kim, J.: DeepMTS: Deep Multi-
Task Learning for Survival Prediction in Patients With Advanced Nasopharyngeal
Carcinoma Using Pretreatment PET/CT. IEEE Journal of Biomedical and Health
Informatics 26(9), 4497–4507 (2022).

19. Gu, B., et al.: Multi-task deep learning-based radiomic nomogram for prognostic
prediction in locoregionally advanced nasopharyngeal carcinoma. European journal
of nuclear medicine and molecular imaging, 50(13), 3996-4009 (2023).

20. Meng, M., Gu, B., Kim, J.: Adaptive segmentation-to-survival learning for sur-
vival prediction from multi-modality medical images. npj Precision Oncology 8, 63
(2024).

21. Andrearczyk, V., Oreiller, V., Boughdad, S., et al.: Overview of the HECKTOR
Challenge at MICCAI 2020: Automatic Head and Neck Tumor Segmentation in
PET/CT. In: Head and Neck Tumor Segmentation. LNCS, Springer (2021).

22. Andrearczyk, V., Oreiller, V., Abobakr, M., et al.: Overview of the HECKTOR
Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and



Multi-stage Multimodal Progressive Learning for H&N Cancer 11

Outcome Prediction in PET/CT. In: Head and Neck Tumor Segmentation and
Outcome Prediction (HECKTOR 2022). LNCS, Springer (2023).

23. Saeed, N., Hassan, S., Hardan, S., et al.: A Multimodal and Multi-centric Head
and Neck Cancer Dataset for Tumor Segmentation and Outcome Prediction.
arXiv:2509.00367 (2025).

24. Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Tversky loss function for image seg-
mentation. In: MLMI, MICCAI Workshops, pp. 379–387 (2017).

25. Abraham, N., Khan, N.: A novel focal Tversky loss function with improved Atten-
tion U-Net for lesion segmentation. In: ISBI Workshops, pp. 1–4 (2019).

26. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001).
27. Chawla, N.V., Bowyer, K.W., Hall, L.O., et al.: SMOTE: Synthetic Minority Over-

sampling Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002).
28. Kvamme, H., Borgan, Ø.: Continuous and discrete-time survival prediction with

neural networks. Lifetime Data Analysis 27, 710–736 (2021).
29. Cox, D.R.: Regression models and life-tables. Journal of the Royal Statistical So-

ciety: Series B (Methodological) 34 (2), 187-202 (1972).
30. Harrell, F.E. Jr., Califf, R.M., Pryor, D.B., Lee, K.L., Rosati, R.A.: Evaluating the

yield of medical tests. JAMA 247(18), 2543–2546 (1982).


	Multi-stage Multimodal Progressive Learning for Coordinated Segmentation, Diagnosis, and Prognosis in Head and Neck Cancer

