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Abstract. Head and Neck (H&N) cancer is among the most common
cancers worldwide, and its related clinical decision-making constitutes
a systematic process that requires the integration of multimodal clin-
ical data and the coordination of diverse tasks in the clinical work-
flow. However, how to effectively coordinate the interrelated clinical
tasks to maximize their synergistic potential is still an open question.
In this study, we propose a Multi-stage Multimodal Progressive Learn-
ing (named MMPL) framework for coordinated modeling of segmenta-
tion, diagnosis, and prognosis tasks, in the context of HECKTOR 2025
challenge at MICCAI 2025. Our MMPL progressively learns three clini-
cal tasks that collectively facilitate personalized treatment planning: (i)
tumor segmentation, (ii) HPV status classification, and (iii) survival pre-
diction. Specifically, we establish a unified network backbone, consisting
of a triple-stream encoder with adaptive PET/CT information fusion
and an attention-gated decoder that can be applied to all three tasks.
This backbone is successively trained for segmentation, classification,
and survival prediction at three learning stages, where the knowledge is
progressively learned with the guidance of prior knowledge accumulating
from former stages. Further, the intermediate outputs (e.g., segmenta-
tion masks, HPV status) are leveraged as guidance on radiomics analysis
or as supplementary indicators for the final prediction. In the final test-
ing phase, our team InterStellar achieved top-tier performance across all
three tasks, ranking first in HPV status classification and fourth in other
two tasks.
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1 Introduction

With over 900,000 cases diagnosed annually worldwide, Head and Neck (H&N)
cancer poses a significant and persistent challenge to global public health [IJ.
Clinical decision-making for H&N cancer patients often integrates heterogeneous
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multimodal clinical data, such as medical imaging (e.g., MRI, PET/CT) and clin-
ical indicators (e.g., demographics, TNM stage), for comprehensive assessment of
disease severity and progression risk [23J4l5]. This assessment process typically
involves the coordination of three interrelated tasks. First, the precise segmenta-
tion of the primary tumor (GTVp) and metastatic lymph nodes (GTVn) estab-
lishes the lesion localization and spatial context. Second, the diagnostic determi-
nation of crucial clinical characteristics (e.g., HPV status) identifies key etiologic
and biological factors that carry significant prognostic implications and inform
the interpretation of cancer stage and treatment intensity. Third, the prognostic
assessment of the patients’ outcomes synthesizes these upstream findings to es-
timate disease progression risk, which directly facilitates personalized treatment
planning in accordance with clinical guidelines [2]. The above clinical workflow
reflects a systematic process that requires the integration of multimodal data
and the coordination of three tasks: segmentation — diagnosis — prognosis.

Most related methods are optimized for individual tasks, leaving cross-task
synergies underexploited. For example, segmentation-target methods focus on
automated delineation of H&N tumors in PET/CT [6I7I8[9], while imaging-based
diagnosis/prognosis are typically treated as standalone problems that are devel-
oped independently using radiomics or deep-learning models [TO/TTIT2/T3IT4ITH].
Some recent works have explored the joint modeling of segmentation and survival
prediction via joint multi-task learning [T6/T7T8], indicating that transferring
knowledge from tumor segmentation can significantly benefit survival predic-
tion [T9120]. However, diagnostic phenotyping is still kept outside the loop, and
systems aligned with the clinical workflow of segmentation — diagnosis — prog-
nosis remain scarce, underscoring the need for a unified framework that can
effectively coordinate these tasks to leverage their cross-task synergies.

Since MICCAT 2020, the HECKTOR. challenge has provided a multi-center,
multimodal PET/CT benchmark and has completed three editions by 2022 with
broad community engagement [21122]. In 2025, building on prior focus on seg-
mentation and survival outcome prediction, the HECKTOR, 2025 challenge ex-
tends to include HPV status classification as a third task, aligning with the
clinical workflow of segmentation, diagnosis, and prognosis [23]. Specifically, the
2025 edition (HECKTOR 2025) comprises three tasks: Task 1 — automatic
detection and segmentation of H&N primary tumor and lymph nodes in FDG-
PET/CT images; Task 2 — prediction of recurrence-free survival (RFS) from
FDG-PET/CT images together with available clinical information and radio-
therapy planning dose maps; and Task 3 — diagnosis of HPV status from FDG-
PET/CT images together with available clinical information [23].

In the context of HECKTOR 2025, we introduce a Multi-stage Multimodal
Progressive Learning (MMPL) framework that mirrors the clinical workflow
to leverage cross-task synergies among segmentation, diagnosis, and progno-
sis. Specifically, our MMPL adopts a unified network backbone shared across
the three tasks, comprising a triple-stream encoder for PET/CT with adaptive
cross-modal fusion and an attention-gated decoder together with task-specific
prediction heads for (i) primary tumor and lymph node segmentation, (ii) HPV
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status classification, and (iii) RFS prediction. Learning proceeds in three suc-
cessive stages that follow the clinical workflow, beginning with segmentation to
learn robust representations of anatomy and disease extent, continuing with di-
agnosis that uses tumor-anchored features together with PET/CT information
and relevant clinical indicators (e.g., demographics, TNM stage, performance
status) to classify HPV status, and eventually concluding with RFS prediction
that builds on all the prior knowledge from the earlier stages. Intermediate out-
puts are explicitly reused downstream: segmentation provides lesion localization
and enables radiomics extraction from PET/CT within GTVp/GTVn, while
HPYV predictions serve as a complementary predictive indicator for survival esti-
mation. This progressive, clinically aligned learning paradigm allows knowledge
to flow from segmentation to diagnosis and then to prognosis, thereby leveraging
both task dependencies and PET/CT complementarity.

2 Methods

2.1 Overview

We propose a Multi-stage Multimodal Progressive Learning (MMPL) framework
that is aligned with the clinical workflow of segmentation — diagnosis — prog-
nosis. MMPL proceeds through three successive learning stages: (S1) primary
tumor and lymph node segmentation, (S2) HPV status classification, and (S3)
RF'S prediction, using a unified network backbone shared across all stages. The
backbone follows the encoder—decoder design validated in the prior work [20]: It
uses a triple-stream encoder with separate PET and CT streams and an adap-
tive fusion stream that mixes information across pyramid levels, followed by
an attention-gated decoder that aggregates multi-scale features via gated skip
connections, and produces a task-agnostic representation reused across all three
stages. Three task-specific heads are individually attached to this shared repre-
sentation for task-specific prediction, as illustrated in Fig. [T}

Our MMPL is built on a prior-guided progressive learning strategy that co-
ordinates stages at two complementary levels while remaining faithful to clini-
cal practice. At the parameter level, the shared backbone undergoes knowledge
transfer and refinement: weights learned during segmentation are propagated
and further optimized for diagnosis and then for prognosis, allowing prior knowl-
edge to accumulate and be reused across tasks. At the output level, intermediate
results serve as explicit guidance: the GTVp/GTVn masks (predicted in S1) pro-
vide lesion localization for mask-guided radiomics extraction reused by S2 and
S3, and the HPV probability (predicted in S2) is incorporated as a supplemen-
tary indicator for S3. Clinical indicators are incorporated in the stage-specific
statistical models, being concatenated with image-derived features for HPV sta-
tus classification and used as covariates in the survival model. This progressive,
clinically aligned learning paradigm enables knowledge to flow from tumor/nodal
segmentation to diagnosis and then to prognosis, leveraging cross-task synergies
while preserving interpretability.
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Fig. 1. Overview of our MMPL framework.
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2.2 Data preprocessing

Image preprocessing. All PET/CT images undergo a consistent preprocess-
ing procedure for both training and inference to prevent distribution shift. First,
the co-registered PET and CT scans are resampled to an isotropic 1.0 mm spac-
ing using B-spline interpolation over a common grid defined by their physical
intersection. Subsequently, a Region of Interest (ROI) is automatically localized
via a PET-guided strategy. This involves selecting the cranial-most 25% of the
image volume along the z-axis, within which PET intensities are z-score normal-
ized. A binary mask is then created by thresholding voxels with z-score greater
than 1.0. The centroid of the largest 3D connected component in this mask is
designated as the ROI center, where a 200 x 200 x 310 voxel patch is extracted
from both PET and CT. The CT intensities are clipped to the [-1024, 1024] HU
range and then scaled to [—1, 1], while PET intensities are standardized using
a z-score normalization across all non-zero voxels. For model training, random
1283 sub-patches are cropped from the ROIL The corresponding segmentation
labels are resampled using nearest-neighbor interpolation and processed into two
separate binary masks for GTVp and GTVn.

Clinical data preprocessing. The provided structured clinical indicators are
processed with the following procedure: categorical variables (e.g., sex, smoking
status, alcohol status, performance status) are one-hot encoded; continuous vari-
ables are standardized via z-score normalization, using statistics fitted on the
training split only to prevent information leakage. Missing values are imputed
by the median of the training data for continuous variables. All preprocessing
settings fitted on the training data are frozen and reused for inference.
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2.3 Stage 1: Tumor segmentation

The segmentation head is a 3D convolutional layer attached to the shared back-
bone. As described in [20], the attention-gated decoder performs four successive
upsampling stages from the coarsest features, and the resulting features from
the last decoder stage are projected by the segmentation head into two channels
to produce voxel-wise probability maps for GTVp and GTVn.

Overlap—Detection-Aware (ODA) loss. To reflect clinical priorities of precise
GTVp boundaries and high sensitivity to small GTVn lesions, we use a composite
objective coupling Dice with a focal Tversky term [24125]. For c€ {T, N} with
binary labels y. and predictions g,

Lseg = Z |:£Dice(yca Te) + (1 = TU(Ye, Pe; Ctes ﬁc))’yc} + Lstab, (1)
ce{T,N}

ol g
(y,9) +¢ 0d

where Lpice(y,9) =1 — ———=———— a
e ylle + gl +e

_ TP + ¢
~ TP+ aFP+BFN+¢’

TI(y, §; o, B) (2)
with TP = (y,9), FP = (1 — y,9), and FN = (y,1 — ¢). We use near-symmetric
parameters for GTVp (ar, Br,vr) = (0.5,0.5,1.33) and recall-biased param-
eters for GTVn (ay, Bn,vwv) = (0.3,0.7,1.50). A stabilization term improves
optimization on empty or low-signal crops:

Estab = Z (LBCE(yc’ gc) + LDice(l — Ye, 1 - gC)> (3)
ce{T,N}

Inference procedure. We compute the PET-guided 1.0 mm ROI (as described in
Section 2.2) and run overlapping sliding-window inference; window-wise proba-
bilities are averaged across overlaps. Class-specific thresholds are applied, labels
are composed with tumor-first priority, and the result is mapped back to the na-
tive CT grid. Post-processing consists of 3D hole filling and removal of connected
components smaller than 50 voxels per class.

Mask-guided radiomics. Using the predicted masks of GTVp and GTVn, we
extract radiomics features from both PET and CT to provide structured, in-
terpretable descriptors to later stages. In particular, features cover morphol-
ogy/shape, first-order statistics, and texture families (e.g., GLCM, GLRLM,
GLSZM) computed on the original images as well as on standard filtered images
(e.g., LoG, wavelet sub-bands), with fixed-bin discretization and filter settings as
specified in [I7]. Subsequently, features are standardized by z-score normaliza-
tion using statistics fitted on the training data to prevent information leakage.
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2.4 Stage 2: HPYV status classification

The HPV prediction head is a shallow MLP head attached to the attention-
gated decoder at four scales (1/8, 1/4, 1/2, full resolution). At each scale, the
output of the last convolutional layer is fed into a global average pooling layer
to form a scale-wise vector. The four vectors are concatenated and fed into the
HPYV prediction head, yielding a scalar logit whose sigmoid is supervised with
a class-balanced binary cross-entropy. The logit is used as the deep score for
downstream integration with clinical indicators and radiomics features.

Supervised classifier. In line with clinical diagnosis practice, we aggregate three
evidence sources: (i) the deep score from the HPV prediction head; (ii) the pre-
extracted, mask-guided PET/CT radiomics from Stage 1, and (iii) structured
clinical indicators as encoded and standardized as in Section 2.2. The concate-
nated vector is fed into a supervised ensemble classifier (random forest [26],
scikit-learn) to output the HPV probability pgpy. To enhance robustness, class
imbalance is handled with SMOTE within each training fold [27]. Hyperparam-
eters (e.g., number of trees, depth, minimum samples per leaf) are selected on
validation folds to maximize balanced accuracy.

2.5 Stage 3: Survival prediction

The survival prediction head is also a shallow MLP head that uses the same
multi-scale features as Stage 2. Unlike Stage 2, the prediction head maps the
four vectors to a K-dimensional vector of conditional survival probabilities over
consecutive time intervals and is trained with a censoring-aware discrete-time
negative log-likelihood [28]. Given a fixed setting of time intervals, the expected
survival time is T = Zf; S; At;, where S; denotes the cumulative survival
probability up to interval i, and At; is the duration of interval i.

Cozx proportional hazards (CoxPH) integration. For the final risk score predic-
tion, we integrate (i) the predicted survival time, (ii) the pre-extracted, mask-
guided PET/CT radiomics from Stage 1, (iii) the final HPV probability from
Stage 2, and (iv) structured clinical indicators (as encoded and standardized as
in Section 2.2) via a CoxPH model [29]. Feature selection is performed within
each training fold to avoid information leakage: Univariate Cox analysis retains
clinical indicators with p<0.05, while Least Absolute Shrinkage and Selection
Operator (LASSO) regression is applied to select radiomics features.

3 Experimental Setup

Dataset overview. HECKTOR 2025 uses a multi-center, multimodal head-
and-neck cancer dataset [23]. The corpus contains 1,123 pretreatment FDG-
PET/CT studies from ten institutions. Major contributors are MD Anderson
(444 cases; 39.6%), CHUB (216 cases; 19.2%), and University Hospital Zurich
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(101 cases; 9.0%). Harmonized clinical data include RFS time and censoring
indicator, HPV status, demographics, and staging. Across the full cohort, RFS
information is available for 1,052 patients: 843 censored and 209 events; HPV sta-
tus is available for 873 patients: 587 positive and 286 negative [23]. Our method
was developed with the organizer-released training subset, including 726 patients
from seven centers for all three tasks, while the remaining data was retained by
the organizers for online validation and testing.

Training subset. All internal validation, model selection, and ablations were
conducted on the organizer-released training subset available to us. The effective
label availability in the training data is as follows:

— Tumor Segmentation (Task 1): 680 cases with valid GTVp/GTVn masks.

— Survival Prediction (Task 2): 678 cases with RFS labels (542 censored and
136 non-censored).

— HPV status classification (Task 3): 588 cases with HPV labels (58 HPV-
negative and 530 HPV-positive).

Data splits. We used two complementary validation schemes on the organizer-
released training subset. (i) Five-fold patient-level cross-validation: patients were
randomly partitioned into five disjoint folds at the patient level. Task-specific
folds were induced by intersecting the global split with each task’s label-available
subset (segmentation, HPV, RFS). (ii) Five-fold center-out validation: the seven
centers were grouped into five folds by holding out one large center or a pair
of smaller centers per fold to balance validation size; all patients from held-
out centers form the validation set for that fold, ensuring that the validation
distribution is center-disjoint from training.

Challenge protocol. We followed the official HECKTOR 2025 rules: Our
method was developed merely on the released training subset, and the perfor-
mance on the held-out data was assessed by the organizers. The testing labels
are not public, and no external data was used.

4 Results

All quantitative results reported below are the mean across five-fold patient-level
cross-validation on the released training data, which guided our model selection
during development. For the final challenge submission, we additionally trained
five models using five-fold center-out validation. The final results ensemble the
output of ten models. The organizers evaluated our final submission on the held-
out test set of HECKTOR 2025; according to the official leaderboard, our team
InterStellar ranked 4th, 4th, and 1st on Tasks 1-3, respectively. Since the test
labels and full per-case metrics are not publicly available, we restrict detailed
quantitative analyses in this paper to the organizer-released training subset and
summarize the official test-set performance separately.
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Table 1. Five-fold cross-validation results for Task 1.

Method Dice(GTVp) Dice(GTVn) F1(GTVn)
Dice-only 0.7643 0.6616 0.7164
ODA (Dice+Focal Tversky+stabilizers) 0.8161 0.8206 0.8391

Table 2. Five-fold cross-validation results for Task 3. AUC is used for model selection
within each fold. Sensitivity and specificity are computed at the validation threshold
that maximizes balanced accuracy.

Method AUC Sensitivity Specificity
Deep-only 0.9535  0.9863 0.5338
Deep+Rad+Clin 0.9601  0.9795 0.7667

4.1 Performance of Tumor Segmentation (Task 1)

The evaluation metrics follow the official HECKTOR. protocol: GTVp is tracked
by mean Dice, whereas GTVn emphasizes both volumetric overlap and lesion
detectability. Accordingly, we report Dice results for GTVp and GTVn, whereas
for GTVn, the aggregated F1 score is reported to evaluate detection performance.

Table (1] presents the five-fold cross-validation results on the training data,
which demonstrates that compared to using Dice loss alone (Dice-only), ODA
improves GTVn detectability and overlap (higher lesion F1 and GTVn Dice)
and also raises GTVp Dice.

4.2 Performance of HPV status classification (Task 3)

During development, model selection within each fold was based on AUC (threshold-
independent). After selecting the model, we chose a decision threshold on the
corresponding validation split to maximize balanced accuracy, and then reported
sensitivity and specificity at that threshold.

Table [2| presents the five-fold cross-validation results for the deep learn-
ing model (Deep-only) and the additional integration with radiomics features
and clinical indicators (Deep+Rad+Clin). Compared to the deep-only baseline,
adding radiomics features and clinical indicators yields a higher AUC and sub-
stantially improves specificity with only a minor degrade in sensitivity, thereby
increasing balanced accuracy at the selected thresholds.

4.3 Performance of survival prediction (Task2)

Following the official HECKTOR protocol, the survival prediction performance
is evaluated with C-index [30]. Table [3|presents the five-fold cross-validation re-
sults for the deep learning model (Deep-only) and the CoxPH integration model,
which demonstrates that the integration of radiomics features, clinical indicators,
and HPV probability yields a higher C-index.
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Table 3. Five-fold cross-validation results for Task 2.

Method C-index

Deep-only 0.6974
CoxPH Integration 0.7107

Table 4. Test-set performance of team InterStellar on the held-out HECKTOR 2025
test set.

Task Metric Score

Task 1: Segmentation GTVp DSC 0.7301
GTVn Agg DSC  0.7406
GTVn Agg F1 0.6638
Task 2: Survival C-index 0.5873
Task 3: HPV status Balanced accuracy 0.5583

4.4 Official test-set performance

In addition to the internal cross-validation results reported above, we also report
the official HECKTOR 2025 test-set performance of our final submission, as
evaluated by the organizers on the held-out test set. As summarized in Table [4
our team InterStellar ranked first in HPV status classification and fourth in
other two tasks.

5 Conclusion and Limitations

In the study, we have outlined MMPL, a Multi-stage Multimodal Progressive
Learning framework that mirrors the clinical workflow of segmentation — di-
agnosis — prognosis. Built on a unified PET/CT backbone with task-specific
heads, MMPL links the stages through a prior-guided progressive learning strat-
egy at both the parameter and the output levels. This clinically aligned learning
paradigm enables knowledge to flow from segmentation to diagnosis and then
to prognosis, promoting cross-task synergy. As demonstrated in the five-fold
cross-validation, MMPL improved lymph node detectability and overall segmen-
tation quality with the proposed ODA objective, increased HPV specificity at
comparable sensitivity when combining deep score with mask-guided radiomics
and clinical indicators, and raised the survival prediction via CoxPH integra-
tion. Our final submission ensembles ten models trained with both patient-level
and center-out cross-validation and achieved top-tier performance on the offi-
cial HECKTOR 2025 leaderboard, ranking first in HPV status classification and
fourth in other two tasks.

Although the challenge provides radiotherapy dose maps for outcome model-
ing, our current implementation does not incorporate dose information because
only a very small number of cases in the available training subset included usable
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dose maps. Future work will integrate dose maps and examine their interaction
with PET/CT images and clinical indicators.
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