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Abstract

Fine-tuning Large Language Models (LLMs) for downstream tasks often compro-
mises safety alignment, even when using parameter-efficient methods like LoRA. In
this work, we uncover a notable property: fine-tuned models preserve the geometric
structure of their loss landscapes concerning harmful content, regardless of the fine-
tuning method employed. This suggests that safety behaviors are not erased but
shifted to less influential regions of the parameter space. Building on this insight,
we propose a curvature-aware alignment restoration method that leverages influ-
ence functions and second-order optimization to selectively increase loss on harmful
inputs while preserving task performance. By navigating the shared geometry be-
tween base and fine-tuned models, our method discourages unsafe outputs while
preserving task-relevant performance, avoiding full reversion and enabling precise,
low-impact updates. Extensive evaluations across multiple model families and ad-
versarial settings show that our approach efficiently reduces harmful responses
while maintaining or even improving utility and few-shot learning performance.

1 Introduction

Large Language Models (LLMs) encode safety-aligned behaviors during pretraining, but these safe-
guards deteriorate during task-specific fine-tuning, a phenomenon we identify as safety alignment
drift. Studies demonstrate that even minimal fine-tuning can compromise safety mechanisms, with
models like GPT-3.5 Turbo becoming consistently unsafe after adaptation on just 10 adversarial
examples Qi et al. (2023b). Attempts to address this issue by modifying model behavior gener-
ally fall into two main categories, both of which suffer from inherent limitations. Behavioral
unlearning methods attempt to remove undesirable knowledge or responses (Cao & Yang, 2015;
Bourtoule et al., 2021a), but often require costly retraining or risk catastrophic forgetting. Model
editing approaches aim to update factual associations or local behaviors through direct parameter
intervention (Meng et al., 2022; Mitchell et al., 2022), yet struggle to generalize beyond narrow
scopes or isolated prompts. To solve these issues, we propose a new direction that treats safety
behavior as an intrinsic property of the model’s geometry and seeks to restore alignment through
curvature-aware navigation of the loss landscape.

Our key insight, supported by extensive empirical analysis (Section 2), is that models preserve
notable structural properties in their loss landscapes with respect to harmful content after fine-
tuning. Specifically, we observe high correlations in models’ responses to harmful inputs before and
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Table 1: Pearson correlation coefficients between base and fine-tuned models’ responses across
harmful content (HEx-PHI), task-specific data (Dolly), general data (Alpaca), and domain-specific
datasets (CodeAlpaca, MedMCQA, SquAD v2 ). Harmful content exhibits consistently high cor-
relations (>0.85) across both LoRA and full fine-tuning, while domain-specific data shows highly
variable correlations (−0.47 to 0.86). This asymmetric preservation, consistent structure for harm-
ful content but variable structure for other domains, rules out simple out-of-distribution effects and
validates our hypothesis that safety mechanisms occupy a functionally distinct region in the loss
landscape.
Fine-tuning Models Harmful Dolly Alpaca CodeAlpaca MedMCQA SquAD v2

LoRA
LLaMA-2 7B 0.992 0.056 −0.055 0.551 −0.465 0.596
LLaMA-3.1 8B 0.995 0.550 0.510 0.780 0.554 0.516
Qwen 2.5 7B 0.994 0.014 0.067 0.696 0.862 0.515

Full FT
LLaMA-2 7B 0.852 −0.004 0.185 0.396 0.597 0.649
LLaMA-3.1 8B 0.990 0.535 0.508 0.746 0.499 0.366
Qwen 2.5 7B 0.941 0.526 0.129 0.363 0.012 0.312

after fine-tuning, despite substantial divergence in other functional behaviors. This suggests that
safety mechanisms remain largely preserved in the parameter space, merely shifted to less dominant
regions during task-specific optimization.

This observation motivates our novel approach: curvature-aware alignment restoration. We leverage
the preserved geometry of the loss landscape to restore safety boundaries. By employing influence
functions and second-order optimization techniques, our method navigates the parameter space to
increase loss on harmful inputs while minimizing impact on task performance. Our contributions
include:

• We identify and empirically validate a key insight: Fine-tuning preserves the geometric
structure of the loss landscape for harmful content across diverse model families.

• We propose a curvature-aware alignment restoration method that leverages influence func-
tions and second-order optimization to suppress harmful behaviors.

• We demonstrate that our approach significantly reduces harmful responses while preserving
task performance, enhancing few-shot generalization, and improving robustness to adver-
sarial attacks and parameter perturbations.

2 Empirical Evidence and Loss Landscape Analysis

In this section, we first present empirical evidence demonstrating high correlations between base
and fine-tuned models’ responses to harmful content across both parameter-efficient and full fine-
tuning methods, despite divergence in task performance. We then visualize and quantify this
preserved geometry through loss landscape analysis, providing the foundation for our curvature-
aware restoration approach.
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2.1 Empirical Validation

We analyze multiple model families, measuring Pearson correlation coefficients between base and
tuned models’ responses across diverse data categories: harmful content (HEx-PHI Qi et al. (2023b):
a benchmark dataset of 330 harmful instructions across 11 policy-based categories), task-specific
data (Dolly testset Databricks (2023), 200 examples), general data (Alpaca testset Taori et al.
(2023), 200 examples), and domain-specific datasets including code generation (CodeAlpaca), med-
ical reasoning (MedMCQA (Pal et al., 2022)), and question answering (SquAD v2 (Rajpurkar et al.,
2018)). We evaluate both LoRA and full fine-tuning to verify that our findings generalize across
fine-tuning methodologies.

These correlations quantify how consistently models respond to the same inputs before and after
fine-tuning. For each dataset D, we compute the Pearson correlation coefficient:

r =
∑

x∈D(Lbase(x)− Lbase)(Ltuned(x)− Ltuned)√∑
x∈D(Lbase(x)− Lbase)2

√∑
x∈D(Ltuned(x)− Ltuned)2

where Lbase(x) and Ltuned(x) are the cross-entropy losses of the base and fine-tuned models on
example x, and Lbase and Ltuned are their respective mean values across dataset D. Higher correla-
tion indicates the fine-tuned model maintains similar response behavior to the base model, despite
parameter changes. By comparing correlations across different input categories, we can detect
whether safety-relevant behaviors remain intact despite changes to task-specific capabilities.

Our analysis reveals three key insights:

1. Consistent safety structure preservation across fine-tuning methods: In Table 1,
harmful content shows consistently high correlation (0.85–0.99) across both LoRA and full
fine-tuning methods and all three model families. Full fine-tuning preserves loss structure
slightly less than LoRA (e.g., 0.852 vs 0.992 for LLaMA-2 7B), which aligns with intu-
ition since full fine-tuning modifies all parameters rather than a low-rank subspace, yet
preservation remains strong (≥ 0.85).

2. Variable structure for domain-specific data: In contrast, domain-specific datasets
exhibit highly variable correlations ranging from −0.47 to 0.86 across models and fine-
tuning methods. Although some datasets show moderate correlations (e.g., CodeAlpaca
0.78 for LLaMA-3.1, MedMCQA 0.86 for Qwen), this variability contrasts sharply with the
consistently high correlations for harmful content (0.85 to 0.99). If preservation were merely
an out-of-distribution effect, all dissimilar data would show similarly high correlations. The
observed variability confirms that safety behaviors occupy a functionally distinct region
rather than reflecting distributional distance alone.

3. Distinct safety regions in loss landscape: In Figure 1 we measure the loss of LLaMA-
3.1-8B-Instruct on these data. Generally, harmful content consistently generates higher
loss values (8.54 and 8.09) compared to benign content (1.82–1.95 and 1.08–1.24) in both
model states, suggesting potential separation between harmful and task-relevant regions in
the loss landscape. More detailed loss analysis will be presented in Appendix D.3.
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Figure 1: Average loss comparison across base and fine-tuned LLama-3 8B Instruct models for
three datasets: Dolly (task-specific), Alpaca (general), and HEx-PHI (harmful). Harmful content
consistently exhibits higher loss compared to benign content in both model states, showing that
harmful content consistently lies in a distinct and preserved region of the loss landscape.

Based on these findings, we state our hypothesis: safety behaviors exist in a functionally
distinct region of the loss landscape that remains largely undisturbed by task-specific
fine-tuning, regardless of whether parameter-efficient or full fine-tuning is employed.
Therefore, developing a targeted restoration method to recover safety behaviors without compro-
mising useful task capabilities is feasible.

2.2 Loss Landscape visualization

To further support our hypothesis, we visualize the loss landscapes of both the base and fine-tuned
models using a 3D projection technique. Rather than sampling arbitrary directions in parameter
space, we construct perturbation directions informed by gradients computed on harmful and benign
inputs. Specifically, we focus on attention and MLP layers, which most strongly influence model
behavior. For each model, we generate two approximately orthogonal perturbation vectors (d1
and d2) and evaluate the model’s loss across a grid (20 × 20) of perturbation magnitudes. We
create this grid by varying coefficients λ1 and λ2 within the range [−0.01, 0.01] and applying the
perturbation θperturbed = θoriginal + λ1d1 + λ2d2 to the model parameters. At each grid point, we
compute the loss using a consistent set of 32 validated samples, resulting in a 3D surface where the
x-axis and y-axis represent perturbation magnitudes along each direction, and the z-axis shows the
corresponding loss value. Full implementation details are provided in Appendix C.3.

The 3D plot in Figure 2 reveals clear evidence for our hypothesis. The loss landscape for harmful
content maintains remarkably similar topological features between base and fine-tuned models, with
consistent valleys, peaks, and curvature characteristics. We quantify this structural preservation
using a correlation-based metric: StructDiff = (1− |corr(∇2Lbase,∇2Ltuned)|)× 100%, where ∇2L
is the Laplacian of the loss landscape. This metric captures differences in curvature patterns rather
than absolute loss values, revealing only 1.46% structural difference for harmful content despite
fine-tuning.
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Figure 2: 3D loss landscape visualization for LLama-3 8B Instruct using gradient-informed direction
projection (Section 2.2). The top row shows the loss landscape of harmful content (HEx-PHI), while
the bottom row shows for general data (Alpaca). Comparison between base (left) and fine-tuned
(middle) models reveals preserved topological features for harmful content (structural difference:
1.46%), while general data landscapes undergo substantial transformation (structural difference:
20.37%) . These quantitative measures of landscape change confirm that safety-relevant regions
remain largely undisturbed during task-specific fine-tuning. Detailed percentile statistics are pro-
vided in Appendix D.5.

In contrast, the loss landscape for general-purpose data changes significantly, exhibiting 20.37%
structural difference in both global geometry and local minima positions. This visualization provides
direct confirmation that fine-tuning primarily affects task-specific regions of the parameter space
while leaving safety-relevant regions structurally maintained, creating a natural opportunity for
targeted safety restoration. Additional results on loss landscapes for LoRA fine-tuning are available
in the Appendix C.3.

These visualization results explain the high correlation coefficients documented in Section 2.1 and
establish a foundation for our alignment restoration approach. The idea is to identify and lever-
age preserved landscape features and use these to navigate toward parameter configurations that
maintain task performance while reinforcing safety boundaries.

3 Curvature-aware alignment restoration
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The preserved loss landscape geometry identified in Section 2.1 has a direct implication: safety
restoration can be achieved through small, precise parameter updates rather than large-scale re-
training. If fine-tuning had destroyed safety-relevant structure, restoring appropriate refusal behav-
ior would require either reconstructing these mechanisms from scratch or making large parameter
changes that risk catastrophic forgetting on the task. The high correlation we observe indicates
instead that safety behaviors occupy a functionally distinct region that remains accessible in param-
eter space. This enables a constrained optimization approach where we can restore safety within
tight utility bounds.

We now introduce our curvature-aware alignment restoration approach, which provides a principled
way to steer a fine-tuned LLM back toward the safety behavior encoded in its base model while
preserving desirable task-specific knowledge.

3.1 Problem Formulation and Optimization Approach

Let us define θbase as the parameters of the pretrained, safe base model, and θtuned as the parameters
of the fine-tuned model. We use two distinct datasets:

a retain set containing benign, task-relevant examples where performance should be preserved, and
a forget set containing potentially harmful examples where safety alignment should be restored.

For both datasets, we employ the standard autoregressive language modeling loss:

L(x; θ) = −
|x|∑
i=1

log pθ(xi|x<i) (1)

where x represents an input sequence and pθ(xi|x<i) is the model’s predicted probability for token
xi given preceding tokens.

Our goal is to update θtuned toward a point θupdated that preserves Lretain (the loss on retain set)
while increasing Lforget (the loss on forget set). We formulate this as a constrained optimization
problem:

max
θ

Lforget(θ) s.t. Lretain(θ) ≤ Lretain(θtuned) + ϵ (2)

where ϵ is a small positive scalar allowing limited degradation in retain set performance. Based on
extensive empirical validation, we established ϵ = 0.1 as a default constraint threshold, ensuring
the recovered model maintains task performance within an acceptable margin of the fine-tuned
baseline.

This formulation can be theoretically justified through a second-order Taylor approximation of the
retain loss around θtuned:

Lretain(θtuned + ∆θ) ≈ Lretain(θtuned) +∇L⊤
retain∆θ + 1

2∆θ⊤Hretain∆θ (3)

Under this approximation, the influence function update provides the steepest descent direction for
Lforget in the Riemannian geometry defined by Hretain Amari (1998):
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∆θinfluence = arg max
∆θ
∇L⊤

forget∆θ s.t. ∥∆θ∥Hretain ≤ δ (4)

Here, δ > 0 defines the allowable trust region radius with respect to the local geometry of the
retain loss, measured via the Mahalanobis norm ∥∆θ∥Hretain =

√
∆θ⊤Hretain∆θ. This parameter

is directly related to the constraint threshold ϵ in Equation 2: smaller values of δ ensure updates
remain in regions where the quadratic approximation is valid, thereby helping satisfy the ϵ-bounded
retain loss constraint. Intuitively, this constraint ensures that the update direction increases the
forget loss without significantly increasing the retain loss, as measured by its local curvature. Solving
this constrained optimization yields the steepest ascent direction for Lforget under a Riemannian
metric induced by Hretain.

Directly solving Equation 4 may be computationally expensive. Therefore, we adopt a tractable
approximation based on influence functions, as shown below:

∆θinfluence = H−1
retain∇Lforget(θtuned) (5)

This approximation can be interpreted as the unconstrained solution to Equation 4, where the
trust region constraint is relaxed. Specifically, Equation 5 represents the steepest ascent direction
for Lforget under the curvature geometry of the retain set, without explicitly enforcing a norm
constraint. However, since we have removed the explicit trust region constraint, we need to com-
pensate by adding practical safeguards. We achieve this through step scaling (controlling update
magnitudes) and L-BFGS curvature filtering (ensuring numerical stability), as detailed in Appendix
C.1.

In practice, we construct H−1
retain using a low-rank L-BFGS Liu & Nocedal (1989) approximation

that incorporates curvature information from both the retain set and a subset of the forget set.
This hybrid construction enables the trust region to balance retention of task-specific knowledge
with awareness of harmful content boundaries, resulting in more effective influence updates. We
discuss implementation details and ablation results in the Appendix C.1.

3.2 Practical Implementation

Directly computing and inverting the Hessian matrix Hretain for modern LLMs is computationally
intractable due to the enormous parameter space. To address this challenge, we implement two key
techniques:

(1) Parameter-Efficient Fine-Tuning. We apply our method within the Low-Rank Adaptation
(LoRA) framework. This reduces the dimensionality of the Hessian matrix to just the trainable
parameters, making curvature estimation feasible.

(2) Approximate Hessian Inversion. We employ L-BFGS (Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno) to efficiently approximate H−1

retain, reducing computation to O(mp)
where m is the memory size and p is the parameter dimensionality.

This quasi-Newton method builds an approximation of the inverse Hessian through successive low-
rank updates, avoiding explicit matrix inversion.
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4 Experimental Results

In this section, we empirically evaluate our curvature-aware safety restoration method across di-
verse architectures and benchmarks. Our experiments investigate three core questions: (1) How
well does our method restore safety compared to state-of-the-art approaches? (2) Does it preserve
model utility and adaptability? (3) How robust is the restored alignment to adversarial attacks
and parameter perturbations? We outline our experimental setup—architectures, fine-tuning proto-
col, and baselines—before presenting results on safety performance, utility preservation, in-context
learning, and robustness to both prefilling attacks and weight-space perturbations. Overall, our
method consistently restores safety without degrading task performance, addressing a central chal-
lenge in fine-tuning LLMs.

4.1 Experimental Setup

Base LLMs We evaluate our curvature-aware alignment restoration method on three represen-
tative large language models that span different architectures and training paradigms: LLama-2
7B Chat, LLama 3.1 8B Instruct, and Qwen 2.5 7B Instruct. These models were selected for their
widespread adoption in the research community, comparable parameter scales (7-8B parameters),
which allow us to assess how our method generalizes across model families with different inherent
safety characteristics.

Fine-tuning Protocol To maintain computational efficiency while preserving model quality, we
implement Parameter-Efficient Fine-Tuning (PEFT) via Low-Rank Adaptation (LoRA). Across all
experiments, we utilize a consistent configuration with rank r = 32 and learning rate α = 2× 10−4.
We apply LoRA adapters to the query and value projections in attention layers, following the
default configuration used in the PEFT library Mangrulkar et al. (2022).

For our primary instruction-tuning dataset, we employ Dolly, a diverse collection of 15,000 human-
generated instruction-response pairs spanning multiple domains. We fine-tune each model for 1
epoch with a batch size of 128 examples, using the AdamW optimizer. All experiments were
conducted on 1 NVIDIA H100 GPUs with 80 GB memory.

Baseline Methods We compare our curvature-aware alignment restoration approach against
several state-of-the-art methods for safety-preserving fine-tuning:(1) Vanilla Fine-tuning Hu
et al. (2022): Standard LoRA fine-tuning without any safety preservation mechanisms, serving as
our primary control. (2) Vaccine Huang et al. (2024): A preventative approach that operates
during the initial alignment phase by adding crafted perturbations to hidden embeddings, making
the model robust against harmful perturbations that may be introduced during subsequent fine-
tuning. (3) Safe LoRA Hsu et al. (2024): A data-free, training-free approach that preserves
safety alignment during fine-tuning by projecting LoRA weight updates onto an alignment subspace
defined by the difference between aligned and unaligned model weights, applying this projection only
when updates deviate significantly from the alignment direction. (4) SaLoRA Li et al. (2025a):
A technique that preserves safety alignment during LoRA fine-tuning by introducing a fixed safety
module that projects new features to a subspace orthogonal to original safety features, along with
task-specific initialization for trainable parameters.
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Table 2: Comparison of safety restoration methods across three model families. HRR (Harmful
Response Rate, lower is better) measures safety on AdvBench, while Eval shows performance on
fine-tuning dataset (average cross-entropy loss across all examples in the Dolly test set). Utility
metrics include four zero-shot tasks: ARC-Challenge (ARC-C), GSM8K, ToxiGen, and TruthfulQA.
Our curvature-aware approach achieves best safety across all models while maintaining competitive
task performance. Bold indicates best method, underline indicates second-best for each metric
within model family.

Models Methods Eval ↓ HRR ↓ Utility ↑
ARC-C GSM8K ToxiGen TruthfulQA

Llama-3.1 8B

Base 1.9 1.4 52.0 75.2 53.3 45.5
LoRA 1.2 25.5 51.2 72.4 44.9 39.0

Vaccine 1.3 21.3 44.3 39.5 43.4 34.1
SaLoRA 1.2 8.1 52.3 75.7 49.3 41.8

Safe LoRA 1.3 11.0 51.1 75.6 48.7 42.0
Ours 1.3 3.0 51.8 76.5 46.0 43.6

Qwen 2.5 7B

Base 3.6 0.0 53.0 76.4 57.2 56.3
LoRA 1.2 24.7 55.0 60.2 57.2 44.5

Vaccine 1.2 19.3 54.6 74.3 57.9 44.5
SaLoRA 1.2 3.4 55.0 69.5 57.2 49.2

Ours 1.4 1.5 54.2 75.1 57.1 53.3

Llama-2 7B

Base 2.5 0.0 43.3 20.1 52.9 37.2
LoRA 1.1 21.4 44.4 19.6 44.7 32.3

Vaccine 1.1 16.7 42.6 11.6 41.1 31.7
SaLoRA 1.1 0.0 45.9 23.6 49.5 34.7

Safe LoRA 1.2 0.0 45.6 21.5 43.8 33.1
Ours 1.3 0.0 44.7 22.1 51.7 36.8

For all baseline methods, we follow the hyperparameter settings recommended in their respective
papers, adapting only when necessary to maintain fairness in the comparison.

4.2 Safety Evaluation

We evaluate model safety on AdvBench, containing 520 adversarial prompts designed to elicit unsafe
responses. We allocate 138 samples for constructing the safety matrix required by SaLoRA and
reserve the remaining 382 samples for evaluation. Our primary safety metric is the harmful response
rate (HRR), calculated as the percentage of evaluation samples eliciting unsafe responses. For a
comprehensive assessment, we employ both LLama-3 Guard as an automated safety evaluator and
human review to validate the quality and accuracy of safety judgments, ensuring a more reliable
evaluation of model safety across different methods.

Safety performance Table 2 demonstrates our curvature-aware alignment restoration method
achieves superior safety results across model families. For Llama-3.1 8B, our approach reduces
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HRR to just 3.0%, significantly outperforming both SaLoRA (8.1%), Vaccine (21.3%), and Safe
LoRA (11.0%). For Qwen 2.5 7B, we achieve a remarkable 1.5% HRR, substantially lower than all
fine-tuning methods including SaLoRA (3.4%). With Llama-2 7B, our method successfully restores
complete safety alignment (0% HRR), matching the excellent performance of SaLoRA and Safe
LoRA on this model.

Task Performance and Utility Evaluation. To show that safety improvements do not com-
promise task performance, we evaluate models on both the original fine-tuning task (Dolly) and four
diverse zero-shot tasks: ARC-Challenge (commonsense reasoning), GSM8K (mathematical reason-
ing), ToxiGen (toxicity detection), and TruthfulQA (factual consistency). The column ‘Eval’ in
Table 2 shows that our method maintains a comparable performance to other safety techniques in
the original fine-tuning task, with scores of 1.3, 1.4, and 1.2 in the three model families.

For broader utility, our approach maintains strong performance across tasks. On Llama-3.1 8B,
our method achieves the highest scores on GSM8K (76.5) and TruthfulQA (43.6) while maintain-
ing competitive ARC-C performance (51.8). For Qwen 2.5 7B, we obtain the best performance
on TruthfulQA (53.3) and GSM8K (75.1). With Llama-2 7B, our approach achieves the highest
TruthfulQA (36.8) and ToxiGen (51.7) scores. This demonstrates our curvature-aware method ef-
fectively balances safety restoration with preservation of diverse reasoning capabilities. We further
validate in Appendix D.1 that our method generalizes to full fine-tuning, achieving comparable
safety restoration (HRR reductions of 57–75%) while maintaining task performance, confirming
that the preserved loss landscape geometry enables effective restoration regardless of fine-tuning
methodology.

4.3 In-Context Learning Performance

We assess in-context learning capability via a few-shot evaluation to determine if alignment restora-
tion preserves the model’s adaptability. We measure how different safety restoration methods affect
Llama-2 7B’s few-shot learning performance across six commonsense reasoning benchmarks. For
each task, we compare zero-shot performance with 5-shot performance, where five task examples
are included in the prompt before the test instance, allowing the model to perform in-context learn-
ing. The improvement from zero-shot to 5-shot performance reflects the model’s ability to leverage
examples for rapid adaptation, a fundamental capability that should remain intact after safety
restoration.

In Table 3, our method demonstrates the highest few-shot learning gains on five of six tasks. On
ARC-Easy, our approach achieves a substantial +4.4% improvement over zero-shot, significantly
outperforming all baselines, including SaLoRA (+3.0%) and Safe LoRA (+2.6%). This pattern con-
tinues across other tasks, most notably on ARC-Challenge, where our method achieves a remarkable
+5.0% improvement, more than double that of SaLoRA (+2.4%).

Notably, our method shows a +1.3% improvement on PIQA, while all other methods demonstrate
minimal or negative transfer. This suggests our curvature-aware approach better preserves the
model’s commonsense physical reasoning capabilities, which are particularly sensitive to parameter
modifications.
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Table 3: In-context learning performance on six commonsense reasoning tasks using Llama-2 7B
Chat. Results show 5-shot accuracy percentages with improvements over zero-shot in parentheses.
Our curvature-aware method achieves the highest few-shot learning gains on five of six tasks, demon-
strating that safety restoration preserves and enhances the model’s ability to leverage examples.
Bold indicates best absolute performance, while underlines highlight the largest zero-to-five-shot
improvements.

Methods ARC-Easy BoolQ PIQA HellaSwag ARC-Challenge WinoGrande
LoRA 78.2 (+1.0) 81.5 (+4.6) 77.6 (-0.1) 55.6 (+0.0) 46.2 (+1.8) 72.5 (+3.5)
Vaccine 77.2 (+1.7) 82.4 (+5.0) 77.1 (-0.8) 54.6 (+0.3) 44.3 (+1.7) 71.1 (+3.6)
SaLoRA 79.4 (+3.0) 82.3 (+3.5) 78.0 (-0.2) 57.3 (+0.3) 48.3 (+2.4) 72.5 (+3.8)
Safe LoRA 78.9 (+2.6) 80.7 (+2.2) 77.8 (-0.7) 56.5 (+0.0) 46.8 (+1.2) 72.2 (+4.1)
Ours 79.8 (+4.4) 82.2 (+2.5) 78.2 (+1.3) 58.7 (+0.9) 49.7 (+5.0) 72.2 (+4.4)
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Figure 3: Attack success rates (the lower the better) for prefilling attacks across different alignment
restoration methods on Llama-3.1 8B evaluated on AdvBench. Our curvature-aware approach
achieves 63.0% ASR, significantly outperforming baseline LoRA (78.4%) and other safety methods,
while approaching the robustness of the base model (47.4%).

4.4 Robustness Evaluation

We evaluate the robustness of our safety alignment restoration through two distinct experiments:
resistance to adversarial prefilling attacks and stability under parameter perturbations.

4.4.1 Prefilling Attack Resistance

This experiment assesses the robustness of our method against inference-time attacks that exploit
shallow safety alignment vulnerabilities in LLMs Qi et al. (2024).

Experimental Setup We use 382 adversarial prompts from AdvBench (used in Section 4.2) to
simulate a prefilling attack. Following prior work Qi et al. (2024); Andriushchenko et al. (2024),
each input is prepended with four non-refusal tokens, which are designed to bypass the model’s
standard safety refusal mechanisms.1

1Details of the non-refusal token construction are provided in Appendix C.4.
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Table 4: VISAGE scores measuring safety basin robustness. Higher scores indicate more robust
safety basins resistant to parameter perturbations. Our approach achieves 56.1, substantially out-
performing all baselines.

Method VISAGE Score
LoRA 21.1
Vaccine 28.8
SaLoRA 32.1
Ours 56.1

We evaluate models fine-tuned with five different methods: vanilla LoRA, Vaccine Huang et al.
(2024), Safe LoRA Hsu et al. (2024), SaLoRA Li et al. (2025a), and our curvature-aware approach.
We report attack success rate (ASR) as the percentage of inputs that lead to harmful comple-
tions (lower is better).

Results Analysis As shown in Figure 3, our method achieves a lower ASR (63.0%) than all other
alignment restoration baselines. Compared to standard LoRA fine-tuning (78.4%), our approach
yields a 19.6% relative reduction in attack success, and also demonstrates improved robustness over
Vaccine, Safe LoRA, and SaLoRA. These findings highlight the effectiveness of our curvature-aware
approach in mitigating shallow alignment vulnerabilities and preserving safety under adversarial
prompting.

4.4.2 Parameter Perturbation Stability

We further evaluate the robustness of alignment restoration methods under parameter perturbations
by analyzing the safety basin Peng et al. (2024a), which refers to the region in parameter space
where the model continues to behave safely despite small changes.

Experimental Setup We test the Qwen 2.5 7B Instruct model fine-tuned with four methods:
vanilla LoRA (as the baseline), and three safety alignment techniques: Vaccine Huang et al. (2024),
SaLoRA Li et al. (2025a), and our curvature-aware approach. For each model, we apply parameter
perturbations along randomly sampled directions, varying the perturbation magnitude within the
range [−0.5, 0.5].

We compare the attack success rate (ASR) at each perturbation level and compute the VISAGE
score Peng et al. (2024a), which measures the average safety margin across all directions. A higher
VISAGE score indicates that the model remains safe under a wider range of parameter variations.

Results Analysis As shown in Table 4 and Figure 4, our curvature-aware method achieves the
highest VISAGE score (56.1), substantially outperforming SaLoRA (32.1), Vaccine (28.8), and
LoRA (21.1). The safety landscape visualization confirms that our method maintains a broader
and deeper safety basin, with nearly zero ASR at the origin and slower degradation as perturba-
tion magnitude increases. These results indicate that our method produces more resilient safety
alignment, offering stronger robustness to parameter noise and adaptation.
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Figure 4: Safety landscape visualization showing Attack Success Rate (ASR) across parameter
perturbations for different methods on Qwen 2.5 7B. Our approach maintains a significantly wider
and deeper safety basin, with near 0% ASR at the origin and slower degradation with distance.

4.5 Hyperparameter Sensitivity

We evaluate our method’s sensitivity to key hyperparameters on LLaMA-3.1 8B: retain loss thresh-
old ϵ, trust region radius δ, and forget set size (Table 5).

Table 5: Hyperparameter sensitivity analysis showing robust performance across practical param-
eter ranges.

ϵ HRR↓ ARC-C BoolQ δ HRR↓

0.1 5.5 52.1 84.0 0.01 7.5
0.2 3.0 52.1 84.0 0.05 3.0
0.3 3.0 52.1 84.2 0.10 3.0
0.4 2.0 52.4 84.2 0.20 3.5

Set Size HRR↓ HellaSwag WinoGrande

50 3.0 59.1 74.3
100 3.0 59.1 73.8
150 4.0 59.1 73.8
200 3.5 59.1 74.4

Our method demonstrates robustness across practical ranges: ϵ ∈ [0.1, 0.4] maintains HRR ≤ 5.5%
with stable utility, δ ∈ [0.05, 0.2] shows consistent performance, and even with 50 samples, effective
restoration is achieved. Default settings (ϵ = 0.1, δ = 0.1, 50 samples) generalize well across all
tested models.
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5 Conclusion

We present a curvature-aware alignment restoration framework that addresses the challenge of
safety degradation in fine-tuned LLMs. Our approach builds on the empirical observation that the
loss landscape associated with harmful content remains structurally preserved after task-specific
fine-tuning. Leveraging this geometric insight, we apply influence functions and second-order op-
timization to selectively increase loss on harmful inputs while maintaining task performance. Ex-
tensive evaluations across multiple model families and adversarial settings demonstrate that our
method consistently reduces harmful responses while preserving few-shot generalization and utility
on downstream tasks.

Discussion While our work focuses on safety alignment restoration, the proposed curvature-aware
framework is mathematically general and may extend to other scenarios involving conflicting ob-
jectives. The key insight enabling our approach is the geometric separation between task-relevant
regions in the loss landscape. For safety, we empirically observe that harmful content occupies a
structurally distinct region that remains preserved after fine-tuning. This property may not univer-
sally hold for arbitrary task pairs, when two objectives share substantial parameter dependencies,
small curvature-constrained updates may be insufficient to optimize one without degrading the
other. Investigating which objective pairs exhibit favorable geometric separation and developing
metrics to predict this property a priori represents a promising direction for future research.
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A Appendix

B Related Work

B.1 Safety and Robustness in Large Language Models

Safety Alignment in Large Language Models Ensuring the safety of large language models
(LLMs) has become a central research challenge as their deployment expands into high-stakes do-
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mains. Models pretrained on vast internet corpora often internalize harmful behaviors, prompting
the development of post-training alignment methods such as Reinforcement Learning from Human
Feedback (RLHF) Ouyang et al. (2022); Dai et al. (2023) and supervised instruction tuning Bai et al.
(2023); Zhang et al. (2023); Zhou et al. (2023). Despite their effectiveness, these safety mechanisms
remain fragile, with studies showing that fine-tuning aligned models on downstream tasks can lead
to significant safety degradation Qi et al. (2023a;b). Concurrently, parameter-efficient fine-tuning
(PEFT) techniques have emerged to adapt large models with minimal updates. Low-Rank Adapta-
tion (LoRA) Hu et al. (2021) has become particularly popular by constraining updates to low-rank
matrices applied to the model’s weight matrices, significantly reducing trainable parameters while
maintaining performance. Building on LoRA’s efficiency, several safety-preserving fine-tuning ap-
proaches have been developed to address safety degradation. Vaccine Huang et al. (2024) introduces
adversarial perturbations during training to immunize models against unsafe queries. SafeLoRA Hsu
et al. (2024) extends LoRA by projecting weight updates onto an alignment subspace defined by
the difference between aligned and unaligned model weights. Similarly, SaLoRA Li et al. (2025a)
preserves safety during LoRA fine-tuning by introducing a fixed safety module that projects new
features to a subspace orthogonal to original safety features. However, these approaches typically
either compromise task performance or rely on heuristic projections without geometric insights.
Recent findings suggest that safety-relevant behaviors occupy distinct, resilient regions in the loss
landscape Peng et al. (2024b), indicating that geometric properties of the parameter space could
enable more robust alignment preservation Li et al. (2025b); Arditi et al. (2024). Our work builds
on these geometric insights by employing influence functions and curvature-aware optimization to
restore safety alignment without sacrificing task performance. Unlike previous approaches that use
heuristic constraints, our method directly leverages the preserved structure of the loss landscape to
navigate toward parameter configurations that enhance safety while maintaining model capabilities.

B.2 Unlearning and Parameter Space Geometry

When harmful behaviors emerge in LLMs following fine-tuning, machine unlearning offers a prin-
cipled framework to selectively remove them Huu-Tien et al. (2024); Li et al. (2024); Liu et al.
(2024). Influence function-based unlearning Koh & Liang (2017); Chen et al. (2023); Yuan et al.
(2024) estimates the gradient direction that increases the loss on undesired examples while mini-
mally impacting desired behaviors, effectively reversing their influence in parameter space Liu et al.
(2025); Barez et al. (2025). Other approaches such as SISA Bourtoule et al. (2021b) or trust-region
unlearning Golatkar et al. (2020) offer certified deletion by retraining from strategically partitioned
checkpoints. However, these methods often incur high computational costs or suffer from degraded
generalization. In parallel, curvature-aware optimization techniques have been explored to control
model drift during fine-tuning. Elastic Weight Consolidation Kirkpatrick et al. (2017) and similar
continual learning strategies use curvature estimates (e.g., Fisher information) to constrain updates
in directions that preserve previously acquired capabilities. Trust-region policy optimization Schul-
man et al. (2015) and natural gradient methods Amari (1998) apply second-order constraints to
keep parameter updates within functionally safe neighborhoods. Our method unifies these perspec-
tives by framing safety restoration as a second-order constrained optimization problem over the
loss landscape. We employ influence functions and L-BFGS-based curvature estimation to direct
updates that increase loss on harmful content while staying within a trust region defined by the
retain set, enabling scalable and stable safety restoration in fine-tuned LLMs.
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C Detailed Implementation

C.1 Curvature-Aware L-BFGS Construction

Data Partitioning. To avoid overlap between curvature estimation and influence-based safety
restoration, we partition the HEx-PHI dataset Qi et al. (2023b), which contains 330 adversari-
ally constructed harmful prompts. For L-BFGS curvature pair construction, we use a total of 256
examples (64 examples from each of four batches) selected from HEx-PHI as part of the mixed
curvature set Dcurv

forget. Separately, to compute the forget loss Lforget, we reserve 50 held-out exam-
ples from the remaining HEx-PHI data (named as Dforget). These examples are not used during
curvature approximation and are exclusively employed to evaluate or guide updates that suppress
harmful generations. This partitioning ensures clean separation between curvature modeling and
influence-based optimization targets.

To approximate the inverse Hessian H−1
retain in Equation 5, we construct a low-rank L-BFGS history

over LoRA parameters using a carefully designed curvature buffer. This buffer integrates informa-
tion from three strategically selected disjoint datasets: a subset of the forget set Dcurv

forget (HEx-PHI
dataset) and two distinct subsets of the retain set D(1)

retain,D(2)
retain (derived from the fine-tuning

dataset). This multi-dataset approach ensures the captured curvature spans both safety-critical
and task-aligned directions in parameter space.

Each L-BFGS pair (st, yt) is computed via gradient accumulation over batches of 64 examples.
Our empirical analysis reveals that just 10 high-quality pairs sufficiently approximate the local
curvature structure for effective influence updates. We allocate these pairs approximately equally
across the three datasets, requiring a minimum of 192 examples per set. To enhance curvature
diversity, we employ varying learning rates (0.001, 0.002, 0.005) across optimization steps. A trust
region δt constrains update magnitudes by scaling steps to a bounded norm, while a reduction ratio
ρt determines step acceptance and dynamically adjusts δt.

To ensure robust and numerically stable curvature estimation, we implement several filtering mech-
anisms: (1) rejecting curvature pairs with insufficient curvature (⟨st, yt⟩ < 10−6), (2) normalizing
st, yt vectors to unit norm before storage, (3) applying adaptive damping when negative curvature
is encountered, and (4) excluding pairs with degenerate step or gradient norms. These safeguards
collectively prevent ill-conditioning in the inverse Hessian approximation.

In practice, we recompute curvature pairs at the beginning of each safety restoration iteration.
Our experiments demonstrate that just three such iterations suffice for effective alignment restora-
tion across all evaluated model architectures, and this 3-step procedure is consistently employed
throughout our experimental validation.
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Algorithm 1 Curvature-Aware L-BFGS History Construction
1: Input: Model fθ, datasets Dcurv

forget,D
(1,2)
retain, LoRA parameters θLoRA

2: Initialize empty history lists: S,Y
3: Set initial trust radius δ = 0.05
4: for t = 1 to T do
5: Sample batch Bt from one of the datasets (round-robin)
6: Compute initial loss Linit and gradients gt

7: Propose step dt = −gt and rescale to ∥dt∥ ≤ δ
8: Save θt, apply step to get θt+1
9: Compute final loss Lfinal and gradients gt+1

10: Compute actual and predicted reduction, ratio ρt

11: if ρt < 0.25 then
12: Shrink trust radius: δ ← 0.5δ
13: Revert to θt

14: continue
15: else if ρt > 0.75 then
16: Expand trust radius: δ ← 1.5δ
17: end if
18: Compute st = θt+1 − θt, yt = gt+1 − gt

19: if ⟨st, yt⟩ > ϵ then
20: Normalize st, yt, add to S,Y
21: end if
22: end for
23: return S,Y

C.2 Influence Update Mechanism

To prevent overcorrection and preserve generalization capabilities of the model during alignment
restoration, we apply L2 regularization to the influence-based update direction ∆θ. At each itera-
tion, the update to the LoRA parameters is computed as:

θnew = θtuned + η ·∆θ − λ · θ,

where:

• η is the update scale (determined by a fixed multiplier or small grid search),

• ∆θ is the L-BFGS-projected gradient direction (from Appendix C.1),

• λ is the L2 regularization weight, progressively annealed across iterations (e.g., λ← 0.95·λ).

Unlearning Objective The harmful gradient ∇Lforget is obtained by evaluating the model on
the forget set using a cross-entropy loss:

Lforget = CE(ŷ, y)
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Algorithm 2 Safety Restoration via Influence Update
1: Input: LoRA parameters θ, L-BFGS history (S,Y), forget dataset Dforget, step size η, L2

weight λ
2: Initialize accumulated gradient g ← 0
3: for each batch B in Dforget do
4: Compute loss Lforget = CE(fθ(B))
5: Compute gradient ∇Lforget and accumulate into g
6: end for
7: Project g through inverse Hessian: ∆θ ← −H−1g using L-BFGS (see Appendix C.1)
8: Normalize ∆θ ← ∆θ/∥∆θ∥
9: for each parameter θi in LoRA:

10: Extract corresponding slice ∆θi

11: Compute L2-regularized update:

θi ← θi + η ·∆θi − λ · θi

12: return Updated parameters θ

C.3 Loss Landscape Visualization Implementation

This section provides a detailed description of our methodology for visualizing the loss landscapes
of language models before and after fine-tuning.

Gradient-Informed Direction Generation Unlike conventional approaches that use random
directions in parameter space, we generate perturbation directions informed by gradients computed
on the model’s loss function. For computational tractability, we focus only on attention and MLP
layers, which most strongly influence model behavior. For each perturbation direction di, we
calculate:

di = RandomScale(∇θL(θ)) (6)

where ∇θL(θ) represents accumulated gradients from a fixed set of validation samples, and
RandomScale(·) applies random scaling factors to different parameters using a direction-specific
random seed. We generate two perturbation directions d1 and d2 using different random seeds
(1000 and 2000), which affects the scaling factors applied to the gradients. Due to the high di-
mensionality of the parameter space, these two directions are approximately orthogonal with high
probability.

Grid Construction and Evaluation To visualize the loss landscape, we construct a 2D grid in
parameter space by varying perturbation magnitudes along these two directions:

θi,j = θoriginal + λi · d1 + λj · d2 (7)

where λi, λj ∈ [−α, α] are scalar coefficients with α = 0.01. We construct a 20 × 20 grid by
uniformly sampling λ values. For each grid point θi,j , we compute the model’s loss on both harmful
and benign datasets, creating separate loss landscapes for each model state.
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Memory-Optimized Implementation Large language models present significant memory chal-
lenges for loss landscape visualization. To address this, we implement several optimizations: row-by-
row processing to compute one grid row at a time; parameter subsetting that applies perturbations
only to attention and MLP layers; gradient accumulation over small batches; and bfloat16 preci-
sion for all computations. These techniques allow us to visualize loss landscapes of multi-billion
parameter models without excessive memory requirements.

Structural Difference Quantification To quantify the structural similarity between base and
fine-tuned model loss landscapes, we define a correlation-based metric:

StructDiff = (1− |corr(∇2Lbase,∇2Ltuned)|)× 100% (8)

where ∇2L is the Laplacian of the loss landscape, approximated using finite differences on our com-
puted grid. This metric captures differences in curvature patterns rather than absolute loss values,
providing a more reliable measure of structural preservation. The figure visualizes a visualization
on LLama-3-8B, under LoRA fine-tuning (where hyperparameters are used the same as in the main
experiments), which further confirms the model preserver structure on harmful data compared to
the benign ones.

Cross-Sectional Analysis To provide additional insight into the loss landscape structure, we
extract cross-sectional views along each perturbation direction at the origin point. Figure 6 shows
these cross-sections across our three evaluation datasets. For Dolly and Alpaca datasets (left and
middle columns), we observe significant structural divergence between base and fine-tuned models.
The fine-tuned model consistently exhibits lower loss values in negative direction regions, reflecting
optimization for task-specific objectives. The intersection points where the curves cross represent
transition zones in parameter space where model behaviors begin to diverge more dramatically.

On the other hand, for harmful content (right column), the base and fine-tuned model loss curves
remain remarkably parallel with nearly identical structural features. Both models show similar
sharp increases in loss (forming "cliff" patterns) at similar positions along both directions. This
preserved geometric correspondence provides quantitative evidence for our hypothesis that safety-
relevant regions in the loss landscape maintain their structural integrity during fine-tuning. These
cross-sectional visualizations complement our 3D surface plots and structural difference metrics,
providing a more granular view of how loss landscapes change along specific directions of interest.

C.4 Prefill Attack Construction and Non-Refusal Token Injection

To simulate prefilling attacks, we adopt the setup introduced in AdvBench Zou et al. (2023), which
provides a collection of adversarial goal-target pairs designed to bypass refusal mechanisms in safety-
aligned language models. Each goal represents a harmful instruction, and the corresponding target
is a benign-looking prefix that avoids immediate refusal while steering the model toward unsafe
completions. In our setup, we construct the prefilled input by first applying a prompt template
to each goal, then appending the associated target prefix directly to the end of the prompt. The
resulting input is passed to the model, forcing it to generate from a context that includes several non-
refusal tokens. We use a fixed number of prefix tokens (e.g., the first 4 tokens from each target) to
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Figure 5: 3D loss landscape visualization for LLaMA-3 8B with LoRA fine-tuning using gradient-
informed direction projection. Top row: harmful content (HEx-PHI); bottom row: general data
(Alpaca). LoRA fine-tuning preserves the loss landscape structure for harmful content (12.79%
structural difference) while substantially altering general data landscapes (71.98% structural differ-
ence), demonstrating that parameter-efficient methods similarly maintain safety-relevant geometric
features.

ensure consistent perturbation across examples. This approach effectively bypasses shallow safety
filters by shifting the harmful intent away from the beginning of the prompt, thereby exposing
vulnerabilities in the model’s alignment mechanisms.

D Ablation Study

D.1 Safety Restoration Under Full Fine-tuning

To verify that our curvature-aware restoration method generalizes beyond parameter-efficient fine-
tuning (LoRA) to full fine-tuning scenarios, we applied our approach to fully fine-tuned models.
Table 6 presents the safety restoration results alongside task performance metrics.

Our method achieves substantial reductions in harmful response rates: 57% for LLaMA-2 7B (from
52.0% to 22.5%) and 75% for LLaMA-3.1 8B (from 42.0% to 10.5%). Critically, these safety
improvements are achieved while maintaining or slightly improving task performance across all
benchmarks. For LLaMA-3.1 8B, we observe notable improvements in TruthfulQA (+8.5 points)
and ToxiGen (+4.1 points), demonstrating that safety restoration does not necessitate utility trade-
offs.
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Figure 6: Loss landscape cross-sections along two perturbation directions for base (blue) and fine-
tuned (red) models utilizing Qwen 2.7 7B Instruct across three datasets: Dolly (left), Alpaca
(middle), and HEx-PHI harmful content (right). While task-specific and general datasets show
significant divergence between models, harmful content exhibits remarkable structural similarity
with preserved curvature characteristics, particularly near the origin (0,0).

Table 6: Safety restoration results for full fine-tuning. Our curvature-aware method significantly
reduces harmful response rates (HRR) while maintaining or improving performance on utility bench-
marks (TruthfulQA, ToxiGen, ARC-C, BoolQ).
Model Method HRR ↓ TruthfulQA ToxiGen ARC-C BoolQ

LLaMA-2 7B Original (full FT) 52.0 33.2 56.0 21.4 62.3
+ Ours 22.5 34.5 56.8 20.7 62.1

LLaMA-3.1 8B Original (full FT) 42.0 36.9 42.8 51.6 83.1
+ Ours 10.5 45.4 46.9 53.3 84.2

These results confirm that the preserved loss landscape geometry identified in Section 2.1 that
harmful content maintains high correlation (0.85–0.99) even under full fine-tuning. This enables
effective curvature-aware restoration regardless of whether parameter-efficient or full fine-tuning is
employed. The slightly higher HRR compared to LoRA-based restoration (Table 2) aligns with
the observation that full fine-tuning exhibits somewhat lower correlation (e.g., 0.852 vs 0.992 for
LLaMA-2 7B in Table 1), yet restoration remains highly effective.

D.2 Recovery of Base Model Behavior

A key result of our alignment restoration approach is its ability to recover the original base model’s
safety behavior patterns. To verify this property, we analyze the relationship between the restored
model and the base model throughout the recovery process on Qwen 2.5 7B Instruct model. Figure 7
illustrates Pearson correlation coefficients between the base model and the restored model on a held-
out evaluation set (Dolly) under increasing restoration steps. We report correlations on both the
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Figure 7: Correlation analysis during restoration. Top row: Dolly (test set) correlation improves
from r = 0.014 to r = 0.456, showing functional recovery. Bottom row: Forget set correlation
stabilizes at r = 0.996, demonstrating realignment with base model behavior in harmful regions.

retain (Dolly) set and forget (harmful) set, computed between per-example loss values as a proxy
for functional alignment.

Initially, the fine-tuned (unsafe) model exhibits near-zero correlation with the base model on the
retain set (e.g., r = 0.014), indicating severe deviation. As alignment restoration progresses, the
correlation increases steadily (e.g., r = 0.145, then r = 0.460), reflecting functional recovery. On
the forget set, we observe near-perfect preservation of the base model’s loss ranking by the third
step (r = 0.996), suggesting that the restored model re-aligns closely with the base behavior in
harmful regions. These results support the hypothesis that the safety properties of the base model
remain geometrically accessible even after fine-tuning, and that our method effectively re-navigates
the loss landscape to recover them.

D.3 Connection to Machine Unlearning

Our safety restoration approach shares similarities with machine unlearning—both involve mod-
ifying model behavior on specific data subsets—but differ in crucial ways regarding objectives,
mechanisms, and constraints.

Machine unlearning aims to remove knowledge or capabilities from a model, making it behave as if
certain training data were never seen (Yao et al., 2024; Bourtoule et al., 2021b; Maini et al., 2024).
This typically requires the model to "forget" how to produce specific outputs. In contrast, our safety
restoration leverages the empirical observation that alignment mechanisms remain structurally pre-
served after fine-tuning (Section 2.1), with safety behaviors merely suppressed rather than erased.
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Rather than eliminating capabilities, we aim to restore appropriate refusal responses that already
exist in the model’s loss landscape.

This conceptual difference leads to distinct technical challenges. Previous work (Yuan et al., 2024)
categorize unlearning methods into untargeted approaches that maximize loss on forget data, and
targeted approaches that train models to produce specific template responses. Untargeted methods
face an output quality problem: higher loss can result from random token sequences or incoherent
text rather than the coherent refusals desired for safety. Targeted methods encounter a different
issue, because forget and retain inputs are distributionally similar, increasing the probability of
refusal templates on forget examples also increases refusal probability on retain examples, producing
what they term "excessive ignorance" where models incorrectly refuse benign requests.

Additionally, effective unlearning typically requires substantial parameter updates to meaningfully
alter output distributions and remove memorized patterns. Our method exploits the preserved
geometric structure to achieve safety restoration through precise, localized updates that avoid
catastrophic forgetting on task-relevant knowledge.

To empirically assess whether standard unlearning techniques can effectively restore safety, we
compare our curvature-aware method against three representative baselines on LLaMA-3.1 8B:

• Gradient Ascent: θ ← θ + η∇θLforget

• GradDiff: θ ← θ − η(∇θLretain − α∇θLforget), α ∈ {0.5, 1.0, 2.0}

All methods use identical data and comparable parameter update budgets (controlled via ϵ).

Table 7: Comparison with unlearning methods on LLaMA-3.1 8B under similar update budgets.
Forget Loss measures the model’s cross-entropy loss on harmful content (higher indicates the model
assigns lower probability to harmful responses).
Method Forget Loss ↑ HRR ↓ TruthfulQA ToxiGen ARC-C BoolQ
Fine-tuned 8.8 25.5 43.6 46.0 51.8 84.0
Gradient Ascent 25.9 24.5 34.8 43.6 30.5 73.8
GradDiff (α=0.5) 44.0 22.0 34.5 55.7 20.2 43.6
GradDiff (α=1.0) 19.0 27.0 36.5 43.3 18.8 55.8
GradDiff (α=2.0) 17.9 23.8 35.5 43.0 47.5 82.1
Ours 15.5 3.0 45.4 46.9 53.3 84.2

Table 7 reveals a critical disconnect between forget loss and safety outcomes. GradDiff with α = 0.5
achieves the highest forget loss (44.0) yet provides minimal safety improvement (HRR 22.0%). More
strikingly, our method achieves the smallest forget loss compared to other methods. This confirms
that maximizing loss alone does not guarantee appropriate refusal behavior—models may generate
incoherent outputs rather than helpful refusals. Our curvature-aware approach navigates toward
semantically meaningful refusals while maintaining utility, whereas first-order methods degrade
performance substantially (e.g., ARC-C drops to 18.8–30.5 vs our 53.3).
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Figure 8: Parameter space navigation comparison between first-order (blue) and curvature-aware
(red) methods at a conservative learning rate (0.01), projected onto the first two principal compo-
nents. The contour plot shows the combined objective landscape (forget loss minus retain loss),
where higher values (yellow) represent more effective safety restoration while preserving task per-
formance. Our curvature-aware approach follows a more direct path through higher-value regions,
demonstrating superior landscape navigation. Both methods start from the same fine-tuned model
parameters (green star).

D.4 Comparison with First-Order Methods

First-order optimization methods dominate machine unlearning approaches due to their computa-
tional efficiency. However, these methods struggle with the complex non-convex landscapes charac-
teristic of fine-tuned LLMs. Our curvature-aware approach fundamentally improves upon first-order
methods by incorporating second-order information about the loss landscape’s geometry. Figures 8
and 9 visualize the optimization trajectories of our curvature-aware method versus a representative
first-order approach at different learning rates (relate to first-order methods, we choose gradient
ascent for simplicity). We project the high-dimensional parameter space into a 2D representation
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using Principal Component Analysis (PCA) on parameter updates during optimization. The con-
tour plots represent the combined objective landscape, where higher values (yellow regions) indicate
better safety restoration while preserving task performance.

At a conservative learning rate (0.01, Figure 8), the first-order method (blue trajectory) exhibits
inefficient navigation, following a suboptimal path that initially makes progress but then traverses
through lower-value regions. In contrast, our curvature-aware approach (red trajectory) identifies
and follows a more direct path toward the high-value region, demonstrating superior awareness
of the landscape’s geometry. At a higher learning rate (0.05, Figure 9), the limitations of first-
order methods become even more pronounced. The blue trajectory exhibits dramatic oscillations
and instability, making large, erratic movements through parameter space. Our curvature-aware
method maintains remarkable stability even at this higher learning rate, following an almost per-
fectly straight path that steadily progresses through increasingly favorable regions of the objective
landscape.

D.5 Quantitative Analysis of Loss Landscape Preservation

To complement the visual analysis in Figure 2, we provide quantitative statistics of loss differences
across the perturbation grid. Table 8 reports percentile distributions of Ltuned − Lbase for both
harmful and benign content.

Table 8: Percentile statistics of loss differences across perturbation grid (LLaMA-3 8B, Figure 2).
Percentile Harmful (Raw) Benign (Raw) Harmful (Abs) Benign (Abs)
10th −0.603 −0.445 0.102 0.203
20th −0.497 −0.399 0.177 0.279
30th −0.430 −0.363 0.215 0.327
40th −0.388 −0.350 0.247 0.348
50th −0.321 −0.330 0.325 0.360
60th −0.242 −0.283 0.388 0.380
70th −0.204 −0.167 0.430 0.433
80th −0.115 0.248 0.497 0.582
90th 0.099 0.672 0.603 0.878
Mean −0.346 −0.257 0.389 0.538
Std 0.387 0.810 0.343 0.658

Harmful content exhibits tighter distribution (Std=0.387) than benign content (Std=0.810). Across
all percentiles, absolute differences |Ltuned − Lbase| are systematically smaller for harmful content,
confirming more consistent loss structure preservation. Note that the "Struct Diff" metric in Figure 2
measures curvature correlation rather than absolute loss magnitudes—two landscapes can have
similar loss ranges but different geometric structure. Figure 6 provides cross-sectional views showing
parallel curves for harmful content versus divergent curves for benign content.

D.6 Computational Cost
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Figure 9: Parameter space navigation comparison at a higher learning rate (0.05). The first-order
method (blue) exhibits extreme oscillation and instability, making large erratic movements and
repeatedly venturing into negative-value regions (purple/dark blue). In contrast, our curvature-
aware method (red) demonstrates remarkable stability, following an almost perfectly straight path
that steadily progresses through higher-value regions. This visualization highlights how curvature
awareness provides robustness to hyperparameter choices and avoids wasteful exploration of the
parameter space.

We evaluate computational efficiency by comparing runtime, memory usage, and inference overhead
against baseline methods on LLaMA-2 7B using an NVIDIA H100 80GB GPU.

In Table 9, our method requires 18.5 minutes, which is comparable to SaLoRA (18.4 min) and faster
than Vaccine (26.1 min). Higher memory consumption (48.9GB vs 22–34GB) stems from L-BFGS
gradient history storage, but this is a one-time cost during restoration. Critically, we introduce
no inference overhead unlike SaLoRA’s +10% from additional safety modules, and require fewer
harmful samples (50 vs 138). This represents a tradeoff between memory and accuracy: one-time
2 × memory overhead yields substantially better safety (3.0% vs 11.0% HRR) with no deployment
cost. Table 10 breaks down our restoration pipeline across architectures. L-BFGS construction
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Figure 10: Average loss comparison across base and fine-tuned models for three datasets: Dolly
(task-specific), Alpaca (general), and HEx-PHI (harmful). Across all three model families, harmful
content consistently exhibits substantially higher loss (8.09-13.11) compared to benign content
(0.98-3.75) in base models. Fine-tuning reduces loss on both task-specific and general content while
simultaneously reducing the loss gap on harmful content.

Table 9: Comprehensive computational comparison. All methods measured on same hardware
(H100 GPU) with LLaMA-2 7B.

Method Time (min) Memory (GB) Inference Harmful Data
LoRA (baseline) 14.3 22.0 None No
SafeLoRA 15.0 22.0 None No
SaLoRA 18.4 34.2 +10% Yes (138)
Vaccine 26.1 24.6 None No
Ours 18.5 48.9 None Yes (50)

takes 6–7 minutes; influence updates only 16–18 seconds. The curvature estimation dominates but
remains tractable for modern LLMs.

Table 10: Runtime breakdown per restoration iteration on H100 GPU with 50 harmful samples.
Model L-BFGS Construction (s) Influence Update (s)
LLaMA-2 7B 399 16
LLaMA-3.1 8B 433 18
Qwen 2.5 7B 409 17

30


	Introduction
	Empirical Evidence and Loss Landscape Analysis
	Empirical Validation
	Loss Landscape visualization

	Curvature-aware alignment restoration
	Problem Formulation and Optimization Approach
	Practical Implementation

	Experimental Results
	Experimental Setup
	Safety Evaluation
	In-Context Learning Performance
	Robustness Evaluation
	Prefilling Attack Resistance
	Parameter Perturbation Stability

	Hyperparameter Sensitivity

	Conclusion
	Appendix
	Related Work
	Safety and Robustness in Large Language Models
	Unlearning and Parameter Space Geometry

	Detailed Implementation
	Curvature-Aware L-BFGS Construction
	Influence Update Mechanism
	Loss Landscape Visualization Implementation
	Prefill Attack Construction and Non-Refusal Token Injection

	Ablation Study
	Safety Restoration Under Full Fine-tuning
	Recovery of Base Model Behavior
	Connection to Machine Unlearning
	Comparison with First-Order Methods
	Quantitative Analysis of Loss Landscape Preservation
	Computational Cost


