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Abstract
Reinforcement learning with offline data suffers
from Q-value extrapolation errors. To address
this issue, we first demonstrate that linear extrap-
olation of the Q-function beyond the data range
is particularly problematic. To mitigate this, we
propose guiding the gradual decrease of Q-values
outside the data range, which is achieved through
reward scaling with layer normalization (RS-LN)
and a penalization mechanism for infeasible ac-
tions (PA). By combining RS-LN and PA, we
develop a new algorithm called PARS. We evalu-
ate PARS across a range of tasks, demonstrating
superior performance compared to state-of-the-
art algorithms in both offline training and online
fine-tuning on the D4RL benchmark, with notable
success in the challenging AntMaze Ultra task.

1. Introduction
Reinforcement learning (RL) enables agents to develop op-
timal decision-making strategies through real-time interac-
tions. However, these interactions with real-world envi-
ronments can expose the agent to considerable risks. To
mitigate these risks, Offline RL, which derives optimal poli-
cies from pre-collected data, has emerged as a critical area
of research (Fujimoto & Gu, 2021; Tarasov et al., 2024). Ad-
ditionally, agents trained with offline RL can be deployed in
real-world environments to further acquire knowledge, lead-
ing to the development of offline-to-online RL approaches
(Lee et al., 2022; Nakamoto et al., 2024; LEI et al., 2024).
However, due to the limited coverage of offline data, these
methods often suffer from extrapolation error, where the
Q-values of out-of-distribution (OOD) actions are overesti-
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Figure 1: Comparison of PARS and prior SOTA, with scores
normalized to each task’s maximum performance.

mated, limiting the overall performance (Kumar et al., 2020;
Kostrikov et al., 2022; Mao et al., 2024; Kim et al., 2024).

We first demonstrate that a key factor behind extrapola-
tion error in RL with offline data is the tendency for linear
extrapolation beyond the data range. ReLU-based MLPs
often converge to linear functions outside the observed data
(Agarap, 2018; Xu et al., 2021; Yue et al., 2024), leading to
persistent boundary trends. When this trend is upward, it
causes Q overestimation for OOD actions. To mitigate this,
recent studies (Ball et al., 2023; Yue et al., 2024) propose
applying layer normalization (LN; Ba et al., 2016) to the
Q-function. Ball et al. (2023) shows that LN constrains
Q-function predictions by bounding them to the norm of
weight layers. However, while LN provides this bound, it
does not sufficiently control Q-values outside the data range,
leaving the problem unresolved without online interaction.

Therefore, RL with offline data requires methods that not
only bound but also effectively reduce Q-values outside the
data range. To address this, we propose two approaches:
(1) reward scaling with layer normalization (RS-LN)
and (2) penalizing infeasible actions (PA). Our analysis
shows that increasing the reward scale with LN reduces the
perceived similarity by the function approximator between
actions within the data range and those outside it. As a
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result, gradient updates for in-distribution (ID) actions have
a weaker influence on OOD Q-value predictions, leading
to a reduction in OOD Q-values beyond the data range. In
contrast to previous studies that adjust reward with their
own manipulation methods (Kumar et al., 2020; Kostrikov
et al., 2022; Tarasov et al., 2024), especially in AntMaze,
we offer a novel perspective on reward scaling for OOD
mitigation and demonstrate the effectiveness. Additionally,
to further enforce a gradual decline in Q-values beyond the
data range, we penalize the Q-values of infeasible actions
far from the agent’s feasible action regions.

At the end of the discussion, we introduce PARS (Penalizing
infeasible Actions and Reward Scaling), built on the min-
imalistic TD3+BC framework (Fujimoto & Gu, 2021).
PARS is simple to implement, requiring only a few extra
lines of code. Without excessive conservatism or auxiliary
models, PARS seamlessly transitions to online fine-tuning.
Evaluated across diverse RL tasks, it consistently matches
or surpasses prior state-of-the-art performance (Figure 1).
Notably, PARS excels in the challenging AntMaze Ultra
task, uniquely enabling successful offline-to-online training,
demonstrating its robustness and effectiveness.

2. Preliminaries
The RL problem is formulated as a Markov Decision Process
(MDP, Puterman, 1990) M = ⟨ρ0,S,A, P,R, γ⟩, where
ρ0 is the initial state distribution, S is the state space, A
is the action space, P (st+1|st, at) is the transition proba-
bility, R(st, at) is the reward function, and γ ∈ (0, 1) is
the discount factor. In this study, we focus on scenarios
with a continuous action space. We extend the action space,
typically limited to feasible actions, by defining the infeasi-
ble action space AI to account for potential extrapolation
into infeasible regions by neural networks. Thus, the action
space A is given by the union of the feasible action region
AF , typically confined to a compact subset of Rn, and the
infeasible action region defined as AI = Rn \ AF , which
consists of actions the agent cannot perform in any state.

Neural network extrapolation. Xu et al. (2021) ex-
amine the behavior of neural networks when extrapolating,
specifically focusing on what they learn beyond the scope of
the training distribution. Their analysis reveals that ReLU
MLPs struggle to effectively extrapolate in most nonlinear
tasks due to their linear extrapolation. As predictions move
further from the training data, they quickly transition to
linear behavior along directions originating from the origin.

Neural tangent kernel (NTK). One factor that can influ-
ence network extrapolation is the extent to which a network
update at one point affects the update at another. This can
be measured using the neural tangent kernel (NTK) (Jacot
et al., 2018), defined as Kϕ(x, x

′) = ⟨∇θfθ(x),∇θfθ(x
′)⟩.

The NTK determines how updates generalize across inputs
in gradient-based learning. A high similarity in gradients
implies that the nonlinear function fθ perceives the two
inputs x and x′ as similar points (Yue et al., 2024).

Reducing Q function extrapolation error with layer nor-
malization. Layer normalization (LN; Ba et al., 2016)
stabilizes neural network training by normalizing the outputs
of hidden layers. LN recenters and rescales these outputs
using the transformation: for the feature vector of the i-th
layer hi, ĥi = hi−µi√

σ2
i+ϵ

⊙ηi+βi, for some ϵ > 0, where

⊙ denotes the elementwise product, µi and σ2
i are the mean

and variance of the elements of hi, respectively, and ηi and
βi are learnable rescaling and shifting parameters, respec-
tively. In recent RL studies, LN has been shown to enhance
training stability, leading to improved final performance
(Ball et al., 2023; Yue et al., 2024; Nauman et al., 2024).
Ball et al. (2023) demonstrated that LN can constrain the Q-
function prediction by bounding it to the norm of the weight
layers. Moreover, Yue et al. (2024) provide a theoretical
explanation for LN’s effectiveness in mitigating Q-function
divergence through NTK (Jacot et al., 2018) analysis.

3. Extrapolation Error in RL with Offline Data
3.1. Extrapolation Error for OOD Actions Outside the

Convex Hull of In-distribution Samples

ID action region

action

ground truth Q-values ID action Q-values

action

feasible action region

learned Q-function

Figure 2: Composition of offline data and comparison be-
tween ground truth Q-values and learned Q-function

To gain deeper insight into extrapolation errors in RL with
offline data, we revisit the nature of offline data D. For a
given state s, the associated action set As ⊆ AF , can form
multiple distinct clusters within the feasible action region
AF , as shown in Figure 2. AF is typically centered at the
origin in many RL tasks, e.g., AF = [−1, 1]n, where n is
the action dimension. In this scenario, OOD actions are
defined as AOOD(s) = {a ∈ AF | a ̸∈ As}, and a convex
hull can be constructed from As as follows:

Conv(As) =

{
n∑
i=1

λiai

∣∣∣∣∣ λi ≥ 0,

n∑
i=1

λi = 1, ai ∈ As

}
.

Subsequently, any OOD action a ∈ AOOD(s) can be catego-
rized as:

a ∈

{
AOOD-in(s), if a ∈ Conv(As),

AOOD-out(s), if a ̸∈ Conv(As).
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As shown in Figure 2, extrapolation becomes significantly
more challenging in AOOD-out(s). As discussed in Xu et al.
(2021); Yue et al. (2024), ReLU-based MLPs tend to be-
have linearly outside the data range, generalizing by ex-
trapolating increasing or decreasing trends observed at the
boundary of the convex hull. Since no training data ex-
ists for AOOD-out(s), the Q-function in AOOD-out(s) remains
unconstrained, leading to uncontrollable error growth.

To investigate this, we analyzed how the max-Q action,
which maximizes the learned Q-function for a given state,
differs from the dataset actions across various D4RL (Fu
et al., 2020) datasets, similar to the approach of Yue et al.
(2024). We trained Qϕ using observed state-action pairs
from the dataset (offline SARSA; Sutton, 2018; Kumar et al.,
2022) and then derived the max-Q policy using the loss
function Lmax-Q(ϕ) = Es∼D [maxaQϕ(s, a)] .

Table 1: Mean action norm for dataset actions and max-Q
policy actions, with and without LN, normalized by the
possible maximum norm, averaged over 5 seeds.

Datasets Data
actions

Max-Q actions
(w/o LN)

Max-Q actions
(w/ LN)

hopper-medium 0.62 0.95 0.94
pen-cloned 0.84 0.99 0.99
antmaze-umaze-diverse 0.81 0.99 0.99
antmaze-ultra-diverse 0.81 0.98 0.98

As shown in Table 1, the average action norm in the dataset
is around 0.6-0.8, while actions generated by the max-Q
policy almost always lie at the end of AOOD-out(s) meeting
the boundary of AF . This behavior persists even with LN,
indicating that LN alone can fail to address the issue of
linear extrapolation. This problem can become increasingly
severe as the dimensionality of the action space A increases.
If Q-values rise in AOOD-out(s) along even a single action
dimension, unintended actions may be selected.

3.2. Extrapolation for RL with Offline Data

“What is the good extrapolation for RL with offline data?”

ID action Q-values

action

Imaginary target Q-function

Figure 3: The target Q-
function the Q-function
needs to extrapolate to.

A neural network cannot
know the ground truth
trends beyond the data
range. Therefore, in of-
fline RL, the Q-value in
AOOD-out(s) must be lower
than the maximum Q-value
within the data range to
ensure the selection of
optimal actions from within
the data. Thus, extrapolation is required to ensure that the
curve in AOOD-out(s) remains below the in-data maximum,
flattening or declining from the boundary of the convex hull
Conv(As).

4. Penalizing Infeasible Actions and Reward
Scaling

4.1. Reward Scaling Combined with LN (RS-LN)

Consider training a Q-function Qϕ with a positive TD tar-
get. Since the network is initialized with weights centered
around zero, Qϕ initially produces small outputs, which
gradually increase as it learns to match the targets. During
training, the network generalizes across inputs, so learning
from one input influences the outputs of other inputs deemed
similar by Qϕ (Yue et al., 2024). If Qϕ considers actions
in AOOD-out(s) to be dissimilar from in-distribution actions
AD, then the gradient updates that push Q-values higher
have a weaker effect on AOOD-out(s). As a result, Q-values
for AOOD-out(s) do not increase as much, leading to their
natural suppression relative to AD.

Figure 4: Error
in approximating
y = x and y = 5x

Therefore, our goal is to encourage Qϕ

to better distinguish between AD and
AOOD-out(s), which requires higher
feature resolution in the learned repre-
sentations. How can this be achieved
simply? To build intuition, consider
approximating y = x over the inter-
val [0, 1] using a piecewise constant
function with 5 equal-width bins. The
maximum approximation error in this
case is 0.2. If we increase the scale of the function to y = 5x,
the maximum error increases proportionally to 1. Reducing
this error requires a finer partition of the input space, i.e.,
a higher resolution. In other words, larger output scales in-
herently demand finer resolution to maintain approximation
fidelity.

A similar principle applies to neural networks. When the
output scale increases, small differences in the input lead to
larger differences in the output, encouraging the network to
learn more fine-grained and expressive features, as we will
see shortly. However, this mechanism does not always yield
positive outcomes. It is effective primarily when combined
with LN. Note that even if we change the function to y = 5x,
using five bins still results in the same approximation error
if the input domain is reduced to [0, 0.2]. Therefore, to
necessitate higher resolution for y = 5x, the input volume
must remain the same in both cases. LN facilitates this by
consistently confining the input volume to the unit sphere.

4.1.1. DIDACTIC EXAMPLE

We analyze how reward scaling and LN jointly mitigate
OOD Q-value overestimation by adapting a regression ap-
proach from Ball et al. (2023). The true Q-function is de-
fined as y = f(x1, x2) = creward ·

(√
x2
1 + x2

2

)
, where

creward is the reward scaling factor, and the feasible in-
put region is (x1, x2) ∈ [−1, 1]2. We generate a dataset
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Figure 5: Results of training on a toy dataset using ReLU
MLPs with vanilla regression (the ‘No LN’ column) and
with LN (the ‘LN’ column), varying creward. The ‘LN (Wider
Range)’ column shows results under the same conditions
as ‘LN’, but with the x1 and x2 axes extended to the range
[−5, 5]. For more examples, please refer to Appendix D.

{(x1, x2, y)}, where y is defined only for inputs satisfy-
ing x2

1 + x2
2 ≤ 0.52. Consequently, AOOD-out(s) refers

to the remaining region within (x1, x2) ∈ [−1, 1]2 where
x2
1 + x2

2 > 0.52. We fit the data using a 3-layer MLP (256
hidden units, ReLU activation) for both vanilla regression
and regression with LN, varying creward from 1 to 100.

As illustrated in the ‘No LN’ column, the Q-values exhibit
catastrophic overestimation in AOOD-out(s). Integrating LN
helps mitigate the overestimation caused by linear extrapo-
lation; however, AOOD-out(s) remains overestimated relative
to the in-distribution region. As the reward scale increases
with LN applied (see the ‘LN’ column), the predictions in
AOOD-out(s) become noticeably lower. This effect becomes
more apparent when the x1 and x2 axes are extended to the
range [−5, 5] (see the ‘LN (Wider Range)’ column). With
LN and a higher reward scale, the Q-values in AOOD-out(s)
remain closer to zero overall, making them appear relatively
lower than those in AD. Note that reward scaling is effective
when used together with LN, as expected.

Figure 6: The normalized NTK
map between p = (0.32,−0.38)
and AF for creward = 1, 100.

To investigate this fur-
ther, we plot the normal-
ized NTK map to analyze
the gradient similarity be-
tween the data boundary
point p = (0.32,−0.38)
and the entire feasible
action region AF . As
shown in Figure 6, when
creward = 1, high gradient
similarity is observed between p and AOOD-out(s). In con-
trast, as creward increases to 100, the similarity decreases, in-
dicating that the network perceives the OOD data as less sim-
ilar to the training data. Consequently, the influence of posi-
tive gradient updates from the ID region (x2

1 + x2
2 ≤ 0.52)

on the OOD region is reduced during training, naturally
leading to downward extrapolation.

4.1.2. RL EXAMPLE

We extend our analysis of RS-LN to real RL tasks. In
various RL contexts, neural network expressivity has been
studied especially in online RL (Kumar et al., 2021; Sokar
et al., 2023; Kim et al., 2023; Obando Ceron et al., 2024). In
particular, Sokar et al. (2023) introduced the concept of dor-
mant neurons (neurons with zero activations) in RL, demon-
strating that an increase in dormant neurons correlates with
the network’s underutilization and degraded performance.

Figure 7 shows the evolution of Q-value, dormant neuron ra-
tio, and normalized return as creward increases, with and with-
out LN, when training TD3+BC on the AntMaze-medium-
diverse dataset with γ = 0.995. More examples can be found
in Appendix G. As shown in the figure, more ReLU neurons
are activated up to 50 % to increase expressivity as creward
increases with LN, resulting in overall performance improve-
ment. (Note that 100 % activation rate corresponds to linear
operation and 50 % seems the maximum expressivity ratio
for ReLU.) This result indeed aligns with our analysis that
increasing creward enhances feature resolution or expressivity.
To the best of our knowledge, we are the first to show that
network expressivity, as evaluated by dormant neurons, is
linked to OOD mitigation in RL with offline data.

Figure 7: Plots illustrating how each metric changes during
training in AntMaze-medium-diverse-v2 with TD3+BC.

4.2. Penalizing Infeasible Actions (PA)

While RS-LN aims not to increase the Q-values of
AOOD-out(s) to positive values from initial zero through the
reduced NTK between AD and AOOD-out(s), we additionally
impose a hard constraint to guide the function’s behavior at
the convex hull boundary to trend downward. That is, we
introduce penalties in regions far from the feasible region
(infeasible action regions, AI ), ensuring that the downward
trend persists while minimizing its impact on Q-value pre-
dictions within AF .

Figure 8: AF and AI for n = 1

To achieve this, in addi-
tion to the standard TD
loss, we consider the
PA loss to constrain the
Q-value in AI to Qmin.
Since we want the Q-function in AF to be sufficiently well
estimated with the dataset and not heavily affected by the
constraint in AI , we allow some guard interval between the
feasible action region and the constraint-imposed AI .
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Therefore, we consider the following subset of AI :

AI =

n⋃
i=1

{(−∞, LI,i] ∪ [UI,i,∞)}, (1)

where n is the dimensions of action. Note that AF is defined
as

⋂n
i=1{(ℓi, ui)}, where ℓi and ui denote the lower and up-

per bounds of the feasible space in the i-th dimension. Thus,
LI,i < ℓi and ui < UI,i to allow the guard or transition
interval. Then, the PA loss is determined as

LPA = min
ϕ

Es∼D,a∈AI

[
(Qϕ(s, a)−Qmin)

2
]
, (2)

where Qmin can be calculated as creward ·rmin/(1−γ). If the
minimum reward of the task is unknown, it can be estimated
from the dataset’s minimum reward, as suggested in Mao
et al. (2024). By combining two losses with a weighting
factor α, our modified TD loss is given as follows:

LTotal = min
ϕ

{
Es,a,s′∼D

[(
Qϕ(s, a)− T (s, a, s′)

)2]
+ α · Es,s′∼D

a∈AI

[(
Qϕ(s, a)−Qmin

)2]}
, (3)

where T (s, a, s′) is defined as creward · r(s, a) +
γEa′∼πθ(·|s′)Qϕ(s

′, a′).

4.3. PARS Algorithm

Combining RS-LN and PA, we present a novel algorithm
that prevents Q-value extrapolation error to ensure stable
Q-learning across both offline and online fine-tuning phases:
Penalizing infeasible actions and reward scaling (PARS).
PARS is based on the minimalist offline RL algorithm
TD3+BC, and an extension to the in-sample learning meth-
ods (Kostrikov et al., 2022; Xu et al., 2023; Garg et al., 2023;
Hansen-Estruch et al., 2023) can be found in Section 6.5.
In addition, we provide a theoretical analysis of PARS in
Appendix C.

Infeasible action sampling. The expectation over a ∈ AI

in eq. (2) is practically realized by sample expectation or
sample mean. To sample actions from the support in eq. (1),
we consider the following uniform distribution for infeasible
action sampling:

ai ∼

{
Uniform(LI,i −∆L, LI,i) for ai ≤ LI,i,

Uniform(UI,i, UI,i +∆U ) for ai ≥ UI,i,
(4)

As we shall see in Section 6.4, the performance does not
heavily depend on the values of LI,i, UI,i when these values
are set as 100 to 1000 times the boundary of AF .

Critic ensemble. Following prior works (Ghasemipour
et al., 2022; Lee et al., 2022; Ball et al., 2023), PARS can

also utilize a critic ensemble with a limited number of critics
(4 for AntMaze, 10 for MuJoCo, and Adroit). Appendix
G discusses its impact. For policy evaluation, we adopt
the same approach as in Ball et al. (2023). For policy im-
provement, we use the minimum critic value during offline
training, while averaging a subset of critics during online
fine-tuning to avoid restricting online exploration.

5. Related Work
Critic regularization in offline RL To address the ex-
trapolation error in offline RL, various critic regularization
methods have been proposed. An et al. (2021) showed that
increasing the number of critics in an ensemble can pro-
vide effective critic regularization. However, relying solely
on ensembles for sufficient regularization can require up
to 500 ensembles depending on the dataset, and even then,
challenging tasks such as AntMaze may not be effectively
solved (Tarasov et al., 2022; 2024).

Additionally, Kumar et al. (2020); Lyu et al. (2022); Mao
et al. (2024) introduce a penalty to reduce Q-values for OOD
actions that deviate from the behavior policy µ. Unlike our
approach, which focuses more on AOOD-out(s) and addresses
critic regularization from a more Q-network-centric perspec-
tive, prior works do not distinguish between AOOD-out(s)
and AOOD-in(s), instead regulating them together by uti-
lizing density differences or an auxiliary behavior model
to better differentiate OOD actions within the data sup-
port. However, these approximation-based methods face
increased uncertainty as the action dimension grows or tasks
become more complex. In addition, penalizing OOD ac-
tions in AOOD-in(s) can also impact Q-value predictions for
nearby in-distribution actions. Moreover, online fine-tuning
introduces the challenge of adapting density differences and
auxiliary models learned offline to the online setting.

Offline-to-online RL methods. The policy trained on
offline can be fine-tuned with additional online interaction,
but this often causes distributional shifts between offline
and online data (Nair et al., 2020; Lee et al., 2022; Uchendu
et al., 2023). To tackle this, various approaches have been
proposed based on existing offline algorithms (Lee et al.,
2022; Nakamoto et al., 2024; Zhang et al., 2023a; Beeson
& Montana, 2022). However, traditional offline algorithms
are already designed with limited datasets in mind, leading
to a conservative learning approach that can limit perfor-
mance in online fine-tuning. To overcome this, Uni-O4 (LEI
et al., 2024) proposes removing conservatism during the of-
fline phase to facilitate a smoother transition to the online
phase. Recently, Zhao et al. (2024) proposed ENOTO, effec-
tively utilizing ensembles for efficient offline-to-online RL.
Compared to existing methods, we do not propose new spe-
cialized techniques for online fine-tuning, enabling smooth
transitions and superior performance with PARS.
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Table 2: Offline PARS evaluation on the AntMaze, Adroit, and MuJoCo domains. We report the final normalized score
averaged over five random seeds, with ± representing the standard deviation.

AntMaze TD3+BC IQL CQL SAC-N EDAC MCQ MSG SPOT SAC-RND ReBRAC PARS
antmaze-u 78.6 87.5 74.0 0.0 0.0 27.5 97.9 93.5 97.0 97.8 93.8±2.1

antmaze-u-d 71.4 62.2 84.0 0.0 0.0 0.0 79.3 40.7 66.0 88.3 89.9±7.5
antmaze-m-p 10.6 71.2 61.2 0.0 0.0 0.0 85.9 74.7 38.5 84.0 91.2±3.9
antmaze-m-d 3.0 70.0 53.7 0.0 0.0 0.0 84.6 79.1 74.7 76.3 92.0±2.2
antmaze-l-p 0.2 39.6 15.8 0.0 0.0 0.0 64.3 35.3 43.9 60.4 84.8±5.9
antmaze-l-d 0.0 47.5 14.9 0.0 0.0 0.0 71.2 36.3 45.7 54.4 83.2±5.6
antmaze-ultra-p 0.0 13.3 16.1 0.0 0.0 0.0 0.6 4.4 20.6 22.4 66.4±4.4
antmaze-ultra-d 0.0 14.2 6.5 0.0 0.0 0.0 1.0 12.0 10.5 0.8 51.4±11.6
average 20.5 50.7 40.8 0.0 0.0 3.4 60.6 47.0 49.6 60.6 81.6

Adroit TD3+BC IQL CQL SAC-N EDAC MCQ SVR SPOT SAC-RND ReBRAC PARS
pen-cloned 61.5 77.2 39.2 64.1 68.2 35.3 65.6 15.2 2.5 91.8 107.5±15.8
pen-expert 146.0 133.6 107.0 87.1 -1.5 121.2 119.9 117.3 45.4 154.1 152.7±1.0
door-cloned 0.1 0.8 0.4 -0.3 9.6 0.2 1.1 0.0 0.2 1.1 4.3±6.1
door-expert 84.6 105.3 101.5 -0.3 106.3 73.0 83.3 0.2 73.6 104.6 106.0±0.2
hammer-cloned 0.8 1.1 2.1 0.2 0.3 5.2 0.5 2.5 0.1 6.7 23.3±20.8
hammer-expert 117.0 129.6 86.7 25.1 28.5 75.9 103.3 86.6 24.8 133.8 133.5±0.4
relocate-cloned -0.1 0.2 -0.1 0.0 0.0 -0.1 0.0 -0.1 0.0 0.9 1.2±0.7
relocate-expert 107.3 106.5 95.0 -0.3 71.9 82.5 59.3 0.0 3.4 106.6 110.5±1.5
average 64.7 69.3 54.0 22.0 35.4 49.2 54.1 27.8 18.8 75.0 79.9

MuJoCo TD3+BC IQL CQL SAC-N EDAC MCQ SVR SPOT SAC-RND ReBRAC PARS
halfcheetah-r 11.0 13.1 17.5 28.0 28.4 28.5 27.2 23.8 29.0 29.5 30.4±0.7
hopper-r 8.5 7.9 7.9 31.3 25.3 31.8 31.0 31.2 31.3 8.1 25.4±11.5
walker2d-r 1.6 5.4 5.1 21.7 16.6 17.0 2.2 5.3 21.5 18.4 21.8±0.2
halfcheetah-m 48.3 47.4 44.0 67.5 65.9 64.3 60.5 58.4 66.6 65.6 64.2±1.2
hopper-m 59.3 66.3 58.5 100.3 101.6 78.4 103.5 86.0 97.8 102.0 104.1±0.4
walker2d-m 83.7 78.3 72.5 87.9 92.5 91.0 92.4 86.4 91.6 82.5 97.3±2.5
halfcheetah-m-r 44.6 44.2 45.5 63.9 61.3 56.8 52.5 52.2 54.9 51.0 57.0±0.6
hopper-m-r 60.9 94.7 95.0 101.8 101.0 101.6 103.7 100.2 100.5 98.1 103.1±0.6
walker2d-m-r 81.8 73.9 77.2 78.7 87.1 91.3 95.6 91.6 88.7 77.3 95.8±1.4
halfcheetah-m-e 90.7 86.7 91.6 107.1 106.3 87.5 94.2 86.9 107.6 101.1 103.0±2.4
hopper-m-e 98.0 91.5 105.4 110.1 110.7 111.2 111.2 99.3 109.8 107.0 113.1±0.3
walker2d-m-e 110.1 109.6 108.8 116.7 114.7 114.2 109.3 112.0 105.0 111.6 111.8±0.7
average 58.2 59.9 60.8 76.3 76.0 72.8 73.6 69.4 75.4 71.0 77.3

6. Experiments
6.1. Experiment Setup

Benchmark. We use three domains (AntMaze, Adroit,
and MuJoCo) with a total of 28 datasets from the D4RL
benchmark (Fu et al., 2020). In the performance comparison
table, we used the following abbreviations: u for umaze, m
for medium, l for large, p for play, d for diverse, r for random,
m-r for medium replay, and e for expert. For a detailed
explanation of the benchmark please refer to Appendix F.1.

Hyperparameters. We uniformly set LI,i = LI
and UI,i = UI across all action dimensions i. We use
∆L = |LI | and ∆U = |UI |, where LI and UI are scaled by
either 100 or 1000 times the boundary of AF . Given that
in the tasks considered, LI < 0 and UI > 0, we sample in-
feasible actions from the intervals [2LI , LI ] and [UI , 2UI ],
respectively. Furthermore, we enable the tuning of around
10 sets of hyperparameters, including α and TD3+BC’s β,
similar to prior works (Wu et al., 2022; Nikulin et al., 2023;
Tarasov et al., 2024). For AntMaze, strong performance
can be achieved even with a single hyperparameter set, as

shown in Appendix G. For detailed hyperparameters and
implementation, please refer to Appendix F.3.

6.2. Baseline Comparison

Offline training. We evaluate PARS in comparison with
10 prior SOTA baselines: TD3+BC (Fujimoto & Gu, 2021),
IQL (Kostrikov et al., 2022), CQL (Kumar et al., 2020),
SAC-N (An et al., 2021), EDAC (An et al., 2021), MSG
(Ghasemipour et al., 2022), SPOT (Wu et al., 2022), SVR
(Mao et al., 2024), SAC-RND (Nikulin et al., 2023), and
ReBRAC (Tarasov et al., 2024). The details of the baselines
are described in Appendix F.2. We primarily used official
scores from the respective papers. If a score was unavailable
for certain dataset versions, we referenced other benchmark-
ing papers or conducted our own experiments, tuning the
algorithm with the recommended hyperparameters.

The evaluation results are summarized in Table 2. As shown,
while other algorithms often perform well in specific do-
mains but falter in others, PARS consistently demonstrates
robust performance across a diverse range of domains. For
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Table 3: PARS evaluation on the AntMaze, Adroit, and MuJoCo domains after fine-tuning with 300k online samples.
We report the final normalized score averaged over five random seeds, with ± indicating the standard deviation. The
corresponding performance graphs are in Appendix A.

Antmaze CQL1 SPOT PEX RLPD Cal-QL ReBRAC PARS
antmaze-u 99.0±0.6 98.4±1.9 95.2±1.6 99.4±0.8 90.1±10.8 99.4±0.9 99.7±0.8
antmaze-u-d 76.9±39.7 55.2±32.8 34.8±30.1 99.2±1.0 75.2±35.0 97.4±2.1 97.8±2.1
antmaze-m-p 94.4±3.0 91.2±3.8 83.4±2.3 97.4±1.4 95.1±6.3 96.8±1.9 99.1±1.8
antmaze-m-d 98.8±2.5 91.6±3.5 86.6±5.0 98.6±1.4 96.3±4.8 95.8±3.6 99.4±1.1
antmaze-l-p 87.3±5.6 60.4±21.5 56.0±3.9 93.0±2.5 75.0±14.7 71.4±30.9 96.2±3.0
antmaze-l-d 65.3±28.3 69.4±23.7 60.4±6.8 90.4±3.9 74.4±11.8 89.0±3.4 96.8±2.7
antmaze-ultra-p 21.3±19.0 0.0±0.0 13.3±5.8 8.8±16.5 6.9±2.7 0.0±0.0 86.5±4.4
antmaze-ultra-d 6.3±6.6 5.8±11.5 26.7±11.3 40.0±37.0 5.7±11.2 1.0±1.7 86.4±6.5
average 68.7 59.0 57.1 78.4 64.8 68.9 95.2

Adroit CQL Off2On SPOT RLPD Cal-QL ReBRAC PARS
pen-cloned -2.6±0.1 102.5±166.0 117.1±13.4 154.8±11.8 -1.6±1.6 134.1±7.2 155.4±3.1
door-cloned -0.34±0.00 -8.0±0.2 0.05±0.06 110.8±6.1 -0.34±0.0 53.3±35.3 102.1±26.8
hammer-cloned 0.24±0.03 -7.4±0.4 90.2±23.2 139.7±5.6 0.21±0.08 114.4±10.3 141.5±1.9
relocate-cloned -0.33±0.01 -1.5±0.5 -0.29±0.04 4.8±7.1 -0.34±0.01 1.5±1.1 53.8±7.7
average -0.8 21.4 51.8 102.5 -0.5 75.8 113.2

MuJoCo CQL Off2On PEX RLPD Cal-QL Uni-O4 PARS
halfcheetah-r 26.5±3.4 92.7±5.7 60.9±5.0 91.5±2.5 32.9±8.1 6.8±3.9 100.1±2.9
hopper-r 10.0±1.5 95.3±9.2 48.5±38.9 90.2±19.1 17.7±26.0 12.4±1.8 109.7±5.3
walker2d-r 12.4±7.9 27.9±2.2 9.8±1.6 87.7±14.1 9.4±5.6 5.7±0.8 113.9±13.9
halfcheetah-m 78.9±1.3 103.3±1.4 70.4±2.3 95.5±1.5 77.0±2.2 56.6±0.8 107.0±5.0
hopper-m 100.9±0.6 106.3±1.7 86.2±26.3 91.4±27.8 100.7±0.8 104.8±2.6 111.5±0.4
walker2d-m 88.7±0.4 109.8±29.6 91.4±14.3 121.6±2.3 97.0±8.2 106.5±3.4 126.4±2.1
halfcheetah-m-r 50.3±28.3 95.6±1.7 55.4±5.1 90.1±1.3 62.1±1.1 53.2±5.4 98.5±1.0
hopper-m-r 103.9±1.8 101.7±14.8 95.3±7.2 78.9±24.5 101.4±2.1 103.4±6.6 107.0±1.4
walker2d-m-r 105.4±1.8 120.3±9.4 87.2±13.6 119.0±2.1 98.4±3.3 115.5±2.9 130.1±4.4
average 64.1 96.4 67.2 96.2 66.3 62.8 111.6

instance, SAC-N (An et al., 2021) shows strong performance
in MuJoCo, but it struggles to learn effectively in AntMaze.
In contrast, ReBRAC excels in Adroit but falls behind other
algorithms in both MuJoCo and AntMaze. Specifically, in
the challenging AntMaze Large and Ultra datasets, PARS
achieves approximately 24% and 280% performance im-
provements over existing baselines, respectively. These
impressive results, achieved without excessive computa-
tional resources (as shown in Appendix H) and through a
straightforward implementation (as shown in Appendix E),
have the potential to advance the practical application of
offline RL.

Online fine-tuning. After offline training, we conduct
online fine-tuning with 300K of online samples and compare
its score with 8 prior SOTA baselines: CQL (Kumar et al.,
2020), Off2On (Lee et al., 2022), SPOT (Wu et al., 2022),
RLPD (Ball et al., 2023), PEX (Zhang et al., 2023a), Cal-
QL (Nakamoto et al., 2024), Uni-O4 (LEI et al., 2024),
ReBRAC (Tarasov et al., 2024). We reproduced the results
using the official implementations for all baseline scores in
online fine-tuning, with details provided in Appendix F.2.

The experimental results are presented in Table 3, and the
corresponding performance graphs can be found in Ap-

1CQL can be fine-tuned with SAC (Haarnoja et al., 2018), as
proposed in Nakamoto et al. (2024).

pendix A. Observing the results, except for two datasets,
PARS outperforms all baselines across all datasets. For
the online phase, RLPD, which leverages an offline dataset
while learning from scratch online without an explicit of-
fline training phase, showed strong performance compared
to other baselines. This aligns with previous findings sug-
gesting that offline-trained policies and critics can some-
times hinder online fine-tuning (Zhang et al., 2023b; Kong
et al., 2024; Zhang et al., 2024; Zhou et al., 2025). How-
ever, PARS surpassed RLPD, challenging these findings and
highlighting that online fine-tuning can be a highly effec-
tive framework when proper critic regularization is applied.
Notably, in the cases of AntMaze ultra-play, ultra-diverse,
and Adroit relocate-cloned, PARS is the only algorithm to
demonstrate strong performance in these challenging sce-
narios.

PARS enhances network expressivity by increasing the re-
ward scale, enabling swift adaptation to novel online sam-
ples. Additionally, the progressive reduction of Q-values
at AOOD-out(s) facilitates online exploration by using of-
fline data as an anchor for initiating exploration, thereby
significantly narrowing the search space. This approach is
particularly effective for online fine-tuning, especially in
complex tasks like AntMaze Ultra, where online interaction
steps are limited.
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6.3. Comparing PARS with Goal-Conditioned Offline
RL in AntMaze

We further compare PARS with recent goal-conditioned of-
fline RL baselines tailored for complex, long-horizon tasks
like AntMaze (Kostrikov et al., 2022; Yang et al., 2022;
Hejna et al., 2023; Park et al., 2024b; Zeng et al., 2024),
which leverage techniques such as goal relabeling (Yang
et al., 2022; Hejna et al., 2023), hierarchical frameworks
(Park et al., 2024b), and advanced architectures like trans-
formers (Zeng et al., 2024). Details are in Appendix F.2.

Table 4: Performance comparison of PARS on AntMaze
with goal-conditioned offline RL baselines.

GC-
IQL

WGCSL DWSL HIQL GCPC PARS

u 91.6 90.8 71.2 79.2 71.2 93.8±2.1

u-d 88.8 55.6 74.6 86.2 71.2 89.9±7.5

m-p 82.6 63.2 77.6 84.1 70.8 91.2±3.9

m-d 76.2 46.0 74.8 86.8 72.2 92.0±2.2

l-p 40.0 0.6 15.2 86.1 78.2 84.8±5.9

l-d 29.8 2.4 19.0 88.2 80.6 83.2±5.6

ultra-p 20.6 0.2 25.2 39.2 56.6 66.4±4.4
ultra-d 28.4 0 25.0 52.9 54.6 51.4±11.6
avg 57.3 32.4 47.8 75.3 69.4 81.6

In Table 4, PARS surpasses goal-conditioned baselines not
only on the challenging ultra dataset but also in the overall
average score across the AntMaze domain. These results
highlight that even in sparse, long-horizon tasks, funda-
mental off-policy RL with proper regularization can excel
without specialized designs or architectures.

6.4. Discussion on the Components of PARS

How does each component of PARS affect offline perfor-
mance?

LN LN & PANone PA

Figure 9: PARS offline perfor-
mance, with varying creward and
the application of LN and PA.

To identify the source
of PARS’s performance
gains, we evaluate offline
performance across differ-
ent settings: the critic net-
work without LN or PA
(None), with only PA (PA),
with only LN (LN), and
with both LN and PA (LN
& PA), while varying the
reward scale creward. The
results are shown in Figure 9, with error bars indicating the
standard deviation. As illustrated, PA helps mitigate extrap-
olation error, although its effect diminishes at larger reward
scales. The presence of LN leads to a consistent trend of
improved performance as creward increases. Furthermore,
combining LN with PA results in even higher performance,
aligning with the earlier discussion in Section 4.2. Addi-
tional ablation results are provided in Appendix G.

How significant is the infeasible action penalty in online
fine-tuning? PA can be applied not only during offline
training but also in the online fine-tuning phase. To inves-
tigate its benefits in this setting, we conducted additional
experiments by varying the use of PA during fine-tuning, fol-
lowing offline training with PA applied. The results, shown
in Figure 10, indicate that removing PA during online fine-
tuning after using it in offline training led to instability. In
contrast, maintaining PA throughout resulted in more stable
learning and significant performance improvements.

LN LN & PA

Figure 10: Ablation on PA: normalized score over 300k
online fine-tuning steps.

How far should infeasible actions be from the feasible
action region? As described in Section 4.3, we sample
infeasible actions far from the feasible region. The distance
is determined by |LI | and |UI |, and for the benchmark com-
parison, we set |LI | = |UI |. Figure 11 demonstrates the
impact of this configuration. When |LI | is small, meaning
the sampled infeasible actions are near the feasible region,
suboptimal performance is noted, indicating that penalizing
infeasible actions may influence policy evaluation within
the feasible region.

Figure 11: Final normalized score of PARS averaged over
five random seeds with varying |LI | = |UI |.

6.5. Extension to In-Sample Learning-Based Methods

TD3+BC is an actor-critic method that may sample OOD
actions during training. Alternatively, in-sample learning-
based methods (Kostrikov et al., 2022; Xu et al., 2023;
Garg et al., 2023; Hansen-Estruch et al., 2023) avoid OOD
action sampling by implicitly learning the maximum Q-
values using only in-sample data. Building on this, we
investigated whether RS-LN and PA could also be applied
to such methods. Specifically, we conducted experiments
with IQL (Kostrikov et al., 2022), a representative in-sample
learning approach, using a discount factor γ = 0.995 and
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increasing the temperature parameter τ to 20. We also varied
γ and τ to report the best-performing results for IQL. For
RS-LN, the reward scaling factor creward was set to 1000.

Table 5: Performance improvement after applying RS-LN
and PA to IQL. The scores are the averages of the final
evaluations across five random seeds.

AntMaze
IQL

(reproduce)
IQL with RS-LN

(Ours)
IQL with PA and RS-LN

(Ours)
u-d 66.5±5.5 83.0±6.2 81.1±7.9
l-p 45.4±5.8 60.4±6.2 60.6±5.3
ultra-p 13.3±5.7 36.6±13.3 37.3±10.7

As shown in Table 5, PA was not particularly effective in this
setting, likely due to its nature as a method that avoids OOD
sampling. Conversely, RS-LN demonstrated noticeable ef-
fectiveness, possibly because a more expressive Q-function
approximator provides better estimates even for in-sample
Q-values. However, it did not surpass the performance of
TD3+BC-based PARS.

Why does the combination of TD3+BC with RS-LN and
PA lead to better results? To understand this more
deeply, let us assume the existence of a highly expressive
policy capable of accurately capturing the in-sample actions.
Then, consider the following two major policy extraction
methods in offline RL:

(1) Weighted behavioral cloning (e.g., AWR, IQL)

max
π

Es,a∼D
[
eα(Q(s,a)−V (s)) log π(a | s)

]
, (5)

with α to control the (inverse) temperature.

(2) Behavior-constrained policy gradient (e.g.,
DDPG+BC, TD3+BC, diffusion-QL)

max
π

Es∼D, a′∼π(·|s) [Q(s, a′)]−w·Es∼D [R(π(·|s), πβ(·|s))] ,
(6)

where Es∼D [R(π(·|s), πβ(·|s))] is a behavior regulariza-
tion term. Thus, a more expressive policy can better approxi-
mate the target distribution, such as exp

(
α(Q(s, ·)−V (s))

)
in Eq. (5), which in turn increases the value of the objective
function.

Consider the example illustrated in Figure 12 (a), which
contains two disjoint in-sample action regions separated by
an intermediate AOOD-in region. Suppose we apply IQL’s
in-sample policy learning using Equation (5), with a per-
fectly learned Q-function and a highly expressive policy πθ
initialized near zero. The resulting policy (Figure 12 (b))
will match the Q-function within the in-sample regions but
assign near-zero probability elsewhere.

As a result, the policy does not generate OOD actions. While
this behavior reduces the risk of selecting poor actions, it

(a)

action

in-sample max action

(b)

action

optimal action
policy
π(·|s)

Q(·|s)
True Q

0

Figure 12: (a) True Q-values at a fixed state s for the feasible
action region AF (b) Learned policy obtained using a highly
expressive policy.

also prevents the policy from discovering the globally op-
timal action when it lies within AOOD-in. Therefore, prior
work (Park et al., 2024a) highlights that allowing a cer-
tain degree of deviation from the in-sample region, without
straying too far, can be beneficial. Broadening the range
of considered actions helps utilize the Q-function over a
wider action space and enhances overall performance, as-
suming the Q-function is well trained. In addition, when
considering online finetuning, assigning near-zero probabil-
ity to all OOD actions can severely limit online exploration,
restricting performance improvements.

To overcome the limitation of in-sample policy learning
of IQL, we need to go beyond in-sample policy learning.
One way is to consider the policy learning, eq. (6). e.g.,
TD3-BC in which R(π(·|s), πβ(·|s)) = |π(s)− a|2. Here,
the policy is allowed to generate OOD action a′ from s′, but
not too far from in-sample actions. Then, the Q-values of
OOD actions, especially those in AOOD-out, matter now, and
suppressing the upward trend in AOOD-out becomes crucial.
Here, RS-LN and PA play an important role, creating strong
synergy with eq. (6), which leads to strong performance in
both offline training and online finetuning.

7. Conclusion
We introduce PARS, aimed at preventing critic extrapola-
tion error and enhancing overall performance in both offline
training and online fine-tuning of RL with offline data. Our
analysis of reward scaling with LN reveals that increas-
ing the reward scale reduces the function approximator’s
perceived similarity between in-range and OOD actions,
weakening the influence of gradient updates on OOD Q-
values and leading to their reduction. Additionally, applying
penalties to the infeasible action region can impose addi-
tional constraints to ensure that OOD Q-values beyond the
data range trend downward. PARS demonstrated substantial
performance improvements over previous SOTA across di-
verse RL tasks in both offline training and online fine-tuning
phases. Our findings suggest a new perspective, departing
from conventional views, that strong performance across a
wide array of RL tasks is achievable with only simple adjust-
ments to off-policy algorithms, provided that appropriate
regularization for OOD mitigation is applied.
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taszewski, M., and Cygan, M. Overestimation, overfitting,
and plasticity in actor-critic: the bitter lesson of reinforce-
ment learning. In Forty-first International Conference on
Machine Learning, 2024.

Nikulin, A., Kurenkov, V., Tarasov, D., and Kolesnikov, S.
Anti-exploration by random network distillation. In In-
ternational Conference on Machine Learning, pp. 26228–
26244. PMLR, 2023.

Obando Ceron, J., Bellemare, M., and Castro, P. S. Small
batch deep reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

Park, S., Frans, K., Levine, S., and Kumar, A. Is value
learning really the main bottleneck in offline RL? In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a.

Park, S., Ghosh, D., Eysenbach, B., and Levine, S. Hiql:
Offline goal-conditioned rl with latent states as actions.
Advances in Neural Information Processing Systems, 36,
2024b.

Puterman, M. L. Markov decision processes. Handbooks in
operations research and management science, 2:331–434,
1990.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Sohl-
Dickstein, J. On the expressive power of deep neural net-
works. In International Conference on Machine Learning,
pp. 2847–2854. PMLR, 2017.

Sokar, G., Agarwal, R., Castro, P. S., and Evci, U. The dor-
mant neuron phenomenon in deep reinforcement learning.
In International Conference on Machine Learning, pp.
32145–32168. PMLR, 2023.

Sutton, R. S. Reinforcement learning: An introduction. A
Bradford Book, 2018.

Tarasov, D., Nikulin, A., Akimov, D., Kurenkov, V., and
Kolesnikov, S. CORL: Research-oriented deep offline re-
inforcement learning library. In 3rd Offline RL Workshop:
Offline RL as a ”Launchpad”, 2022.

Tarasov, D., Kurenkov, V., Nikulin, A., and Kolesnikov,
S. Revisiting the minimalist approach to offline rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024.

Uchendu, I., Xiao, T., Lu, Y., Zhu, B., Yan, M., Simon, J.,
Bennice, M., Fu, C., Ma, C., Jiao, J., et al. Jump-start
reinforcement learning. In International Conference on
Machine Learning, pp. 34556–34583. PMLR, 2023.

Wu, J., Wu, H., Qiu, Z., Wang, J., and Long, M. Supported
policy optimization for offline reinforcement learning.
Advances in Neural Information Processing Systems, 35:
31278–31291, 2022.

Xu, H., Jiang, L., Li, J., Yang, Z., Wang, Z., Chan, V. W. K.,
and Zhan, X. Offline RL with no OOD actions: In-sample

11

https://openreview.net/forum?id=POvMvLi91f
https://openreview.net/forum?id=POvMvLi91f


Penalizing Infeasible Actions and Reward Scaling in Reinforcement Learning with Offline Data

learning via implicit value regularization. In The Eleventh
International Conference on Learning Representations,
2023.

Xu, K., Zhang, M., Li, J., Du, S. S., Kawarabayashi,
K.-I., and Jegelka, S. How neural networks extrapo-
late: From feedforward to graph neural networks. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=UH-cmocLJC.

Yang, R., Lu, Y., Li, W., Sun, H., Fang, M., Du, Y., Li,
X., Han, L., and Zhang, C. Rethinking goal-conditioned
supervised learning and its connection to offline RL. In
International Conference on Learning Representations,
2022.

Yue, Y., Lu, R., Kang, B., Song, S., and Huang, G. Un-
derstanding, predicting and better resolving q-value di-
vergence in offline-rl. Advances in Neural Information
Processing Systems, 36, 2024.

Zeng, Z., Zhang, C., Wang, S., and Sun, C. Goal-
conditioned predictive coding for offline reinforcement
learning. Advances in Neural Information Processing
Systems, 36, 2024.

Zhang, H., Xu, W., and Yu, H. Policy expansion for bridging
offline-to-online reinforcement learning. In International
Conference on Learning Representations, 2023a.

Zhang, H., Xu, W., and Yu, H. Policy expansion for bridging
offline-to-online reinforcement learning. In The Eleventh
International Conference on Learning Representations,
2023b. URL https://openreview.net/forum?
id=-Y34L45JR6z.

Zhang, Y., Liu, J., Li, C., Niu, Y., Yang, Y., Liu, Y., and
Ouyang, W. A perspective of q-value estimation on
offline-to-online reinforcement learning. In Proceed-
ings of the AAAI conference on artificial intelligence,
pp. 16908–16916, 2024.

Zhao, K., Hao, J., Ma, Y., Liu, J., Zheng, Y., and Meng, Z.
Enoto: Improving offline-to-online reinforcement learn-
ing with q-ensembles. In Proceedings of the 23rd Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, pp. 2609–2611, 2024.

zhengyao jiang, Zhang, T., Janner, M., Li, Y., Rocktäschel,
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A. Performance Graphs for Online Fine-Tuning (300K)

PARS CQL Off2On SPOT PEX

RLPD Cal-QL ReBRAC Uni-O4

Figure 13: The performance graph of the online fine-tuning (300k), using five random seeds, corresponds to Table 3. The
solid line indicates the mean, while the shaded region represents the standard deviation.
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B. Limitations and Future Research.
Although PARS has achieved superior performance, its approach is most effective when the target Q-value is positive. To
naturally mitigate OOD, it is necessary to assume a positive Q-value so that reducing the impact of in-distribution data’s
gradient updates on OOD output leads to OOD value reduction. In RL, rewards can include both positive rewards and
negative penalties. If the penalties outweigh the rewards, the Q-value can become negative. In such cases, the Q-function
can be trained by adjusting the offline data rewards to ensure that the overall reward remains positive. Moreover, it still
benefits from the support of a critic ensemble, particularly in MuJoCo and Adroit, where misestimated Q-values in OOD
actions within the convex hull of the data can be further corrected by the ensemble. We expect that further investigation into
data fitting challenges in limited datasets, coupled with potential refinements, could lead to robust performance with just a
double-critic setup.

As a future research direction, exploring the most efficient way to apply LN to RL with offline data, both theoretically and
empirically, would be valuable. Additionally, designing activation functions in combination with RS-LN or PA presents an
intriguing research area.

C. Theoretical Analysis
C.1. Theoretical Justification of PARS

Here, we show the convergence of the PARS loss function defined in eq. (3). For this, we define the following sets:

ID = {(s, a) | β(a | s) > 0}
OODin = ConvexHull(ID) \ ID
OODout = (ConvexHull(ID))

c

(7)

Now, we define the operator Tπpars as:

TπparsQ(s, a) =


TπQ(s, a), if (s, a) ∈ ID,

E(s′,a′)∈kNN(s,a;ID)[T
πQ(s′, a′)], if (s, a) ∈ OODin,

Qmin, if (s, a) ∈ OODout,

(8)

where kNN(s, a; ID) denotes the set of the k-nearest neighbors within ID. We show that Tπpars is a contraction under
the| · |∞ norm:

Case 1:
∣∣TπparsQ1 − TπparsQ2

∣∣ = |TπQ1 − TπQ2| ≤ γ∥Q1 −Q2∥∞
Case 2:

∣∣TπparsQ1 − TπparsQ2

∣∣ = |EkNN[T
πQ1]− EkNN[T

πQ2]| ≤ γ∥Q1 −Q2∥∞
Case 3: |Qmin −Qmin| = 0 ≤ γ∥Q1 −Q2∥∞

(9)

Thus, Tπpars is a contraction, and the Q-function converges accordingly.

In Case 2, computing kNN(s, a; ID) is computational expensive. Since the Q-function is approximated by a neural network,
we allow it to implicitly learn this behavior rather than explicitly incorporating it into the loss function. For the same reason,
assigning Qmin can unintentionally affect nearby values. To prevent this, we introduce a “guard interval” that excludes
actions just outside AF from being evaluated as Qmin. In practice, a guard interval of about 1000 (see Figure 11) is sufficient
to avoid influencing Q-updates.

C.2. Comparison of TD3+BC and IQL Critic Updates and the Effectiveness of RS-LN

Following the discussion of applying RS-LN to in-sample learning-based methods in Section 6.5, we compare the critic
update of TD3+BC (Fujimoto & Gu, 2021), as used in PARS, with the critic updates of other in-sample learning-based
methods. We focus on a representative method, IQL (Kostrikov et al., 2022), to analyze in depth whether RS-LN can be
broadly applied.

First, the TD3+BC critic update loss function is defined as:

LQ = min
ϕ

Es,a,s′∼D

[(
Qϕ(s, a)−

(
creward · r(s, a) + γEa′∼πθ(·|s′)Qϕ(s

′, a′)
))2]

. (10)
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Additionally, the critic update loss function of IQL is expressed as:

LQ = min
ϕ

Es,a,s′∼D

[
(Qϕ(s, a)− (creward · r(s, a) + γVψ(s

′)))
2
]
, (11)

with an additional value function loss that aligns Vψ(s) with Qϕ(s, a):

LV = min
ψ

Es,a∼D
[
L2
τ (Qϕ(s, a)− Vψ(s))

]
, (12)

where expectile regression is defined as L2
η(u) = |η − 1(u < 0)|u2, with η ∈ [0.5, 1), to formulate the asymmetrical loss

function for the value network Vψ .

Therefore, the critic updates in TD3+BC and IQL can be expressed in a unified form. The generalized critic loss is as
follows:

LCritic = min
ϕ

Es,a,s′∼D

[
(Qϕ(s, a)− Y (s, a, s′))

2
]
, (13)

where the target Y (s, a, s′) is defined as:

Y (s, a, s′) = creward · r(s, a) + γG(s′). (14)

The key difference lies in the definition of the next-state value estimate G(s′):

G(s′) =

{
Ea′∼πθ(·|s′)Qϕ(s

′, a′), (TD3+BC)
Vψ(s

′), (IQL)
. (15)

Although the target Y (s, a, s′) varies between TD3+BC and IQL and is dynamically adjusted throughout the learning process
rather than remaining fixed, the core task of fitting Qϕ to Y follows a structurally similar approach in both methods. Each
method minimizes the squared error between Qϕ and the changing Y , providing a common framework for understanding
their update mechanisms. In this context, both methods share the characteristic that an increase in creward leads to an increase
in the target value Y and that the application of LN helps mitigate catastrophic overestimation. As analyzed in Figures 5
and 7, this can have the same effect on regression fitting and network expressivity, suggesting the potential for the general
applicability of RS-LN.

D. More Discussion on Didactic Example
Analyzing split data distributions. Figure 5 illustrate a scenario in which data is concentrated in a single region.
Additionally, we examined a new toy dataset consisting of two slightly separated inverted cones and analyzed its learning
characteristics.

Figure 14: Results of fitting the two inverted, cone-shaped input datasets using an MLP network, with and without LN and
PA, at a creward of 1 or 100.

15



Penalizing Infeasible Actions and Reward Scaling in Reinforcement Learning with Offline Data

Figure 14 demonstrates the data fitting behavior when creward is set to 1 or 100, comparing cases where only LN is applied
(the ‘LN’ column) and where both LN and PA are applied (the ‘LN & PA’ column). As observed, LN mitigates OOD
Q-value overestimation, and when the reward scale increases, the predicted values in AOOD-out(s) even decrease relative to
the in-distribution predictions, similar to the results in Figure 5. Additionally, when both LN and PA are applied, the Q-value
in AOOD-out(s) is further pushed downward, gradually decreasing as it moves further from the data range. Furthermore, LN
enables smooth interpolation between the two split data regions.

Impact of activation functions. In Section 4.1, we demonstrated that RS-LN’s effectiveness is tied to the network
expressivity, which can be also influenced by the activation function (Raghu et al., 2017). The activation function plays a
crucial role in determining whether neurons are activated or remain inactive during training. Accordingly, we examined how
fitting characteristics, including OOD mitigation, vary depending on the activation function.

We tested the toy dataset from Figure 5 in a setting with creward = 100 and LN applied, using GELU (Hendrycks & Gimpel,
2016), Sigmoid, SiLU (Elfwing et al., 2018), as well as cases with no activation function. The results can be seen in
Figure 15. While the Sigmoid prevents OOD Q-values from increasing, it does not reduce them as effectively as other
activation functions. GELU reduces OOD Q-values, but it was overly conservative. Exploring the effect of activation
functions on network expressivity could also be an interesting topic for future research. In the absence of activation, OOD
Q-values remained high, even with a large creward. This effect extends beyond the didactic setting, influencing real-world RL
performance, as detailed in Appendix G.

(a)

(b)

Figure 15: (a) The fitting results of applying various activation functions to the toy dataset from Figure 5 in a setting with
creward = 100 and LN applied, (b) Plot of various activation functions.

E. Reference Implementation
We provide a JAX-based reference implementation of the critic loss, and the complete training code is available at
https://github.com/LGAI-Research/pars.

def _critic_loss(self,
critic_params,
critic_target_params,
actor_target_params,
transition,
rng):

state, action, next_state, reward, not_done = transition

# Scale the reward by the predefined reward scaling factor
reward = self.reward_scale * reward

# Compute the target Q-value (implementation details omitted)
target_Q = ... # Placeholder for target Q-value computation

# Get current Q estimates (implementation details omitted)
current_Q = ... # Placeholder for current Q estimate computation

# Compute critic loss
Q_loss = jnp.mean(jnp.square(current_Q - target_Q[:, 0][None, ...]))

# Uniform infeasible action sampling
infeasible_action = (jax.random.uniform(rng, action.shape) * 2) - 1
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infeasible_action = jnp.where(infeasible_action < 0, infeasible_action - 1, infeasible_action + 1) * self.L

# Compute current Q-value for infeasible action
current_Q_infeasible = self.critic_model.apply(critic_params, state, infeasible_action)

# Set target Q-value for infeasible action to min_q
target_Q_infeasible = jnp.ones_like(target_Q) * self.min_q

# Compute infeasible Q loss
Q_loss_infeasible = jnp.mean(jnp.square(current_Q_infeasible - target_Q_infeasible[:, 0][None, ...]))

# Combine the losses
critic_loss = Q_loss + self.alpha * Q_loss_infeasible

return critic_loss

Listing 1: An example of reward scaling and infeasible action sampling implementation in JAX.

F. Experiment Details
F.1. Benchmark Details

Fu et al., 2020 introduced a variety of datasets designed for different RL tasks, such as AntMaze, Adroit, and MuJoCo.
Additionally, zhengyao jiang et al., 2023 expanded the AntMaze domain by proposing an ultra dataset, featuring a larger
map size than previously proposed, thus increasing the complexity of the task.

For the AntMaze domain, we leverage eight datasets: {umaze-v2, umaze-diverse-v2, medium-play-v2, medium-diverse-v2,
large-play-v2, large-diverse-v2, ultra-play-v0, ultra-diverse-v0}. These datasets encompass different levels of difficulty
based on the maze’s size, complexity, and the diversity of start and goal positions.

In the Adroit domain, we utilize four tasks: {pen, door, hammer, relocate}, each associated with two dataset qualities:
{cloned-v1, expert-v1}. The cloned datasets are created by training an imitation policy using demonstration data, executing
the policy, and mixing the resulting data with the original demonstrations in a 50-50 ratio. In contrast, expert datasets are
derived from fine-tuned RL policy.

For the MuJoCo domain, we use three tasks: {halfcheetah, hopper, walker2d}, each of which has four dataset qualities:
{random-v2, medium-replay-v2, medium-v2, medium-expert-v2}. The random dataset consists of data generated by
randomly initialized policies, the medium dataset comes from partially trained policies, the medium-replay dataset includes
data from replay buffers during training, and the expert dataset contains demonstrations from well-trained agents performing
near-optimal behavior.

F.2. Baselines

Offline training. We primarily relied on the officially reported scores from each paper for datasets benchmarked for
comparison. For datasets that were not benchmarked in the original paper, we referred to scores from other works that
reported results for those datasets. For datasets without available scores from other sources, we reproduced the results using
the respective implementations, tuning hyperparameters according to the recommendations in each paper.

Specifically, for datasets not benchmarked in the original paper, we either obtained the scores or conducted experiments
as outlined below. In all other cases, we used the scores reported in the original paper. In cases where we conducted the
experiments, we reported the final evaluation scores using five random seeds, with the mean and standard deviation provided
in Tables 6 and 7.

- AntMaze: To begin, since the AntMaze Ultra datasets had not been benchmarked in previous studies we compared,
we conducted experiments for all prior baselines. For MSG and SAC-RND, we ran the experiments using the official
implementations. For TD3+BC, IQL, CQL, SPOT, and ReBRAC, we used the CORL library (Tarasov et al., 2022), which
provides a single-file implementation of state-of-the-art (SOTA) offline RL algorithms. For the remaining datasets, we
referenced the SAC-N and EDAC scores from Tarasov et al. (2022). Additionally, we sourced the MSG and SAC-RND
scores from Tarasov et al. (2024), as those works benchmarked the v0 and v1 versions of the AntMaze datasets, rather than
the v2 versions.

- Adroit: For Adroit, we obtained the TD3+BC, IQL, CQL, and SAC-RND scores from Tarasov et al. (2024), and the
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SAC-RND and EDAC scores for expert datasets from Tarasov et al. (2022). Moreover, for SPOT and SVR, we ran the
experiments using the CORL library and the official SVR implementation, respectively.

- MuJoCo: For MuJoCo, we obtained the IQL and CQL scores for random datasets from Lyu et al. (2022). Moreover, we ran
SPOT on random datasets using the CORL library.

The URLs for each implementation are listed below:

• CORL - https://github.com/tinkoff-ai/CORL

• MSG - https://github.com/google-research/google-research/tree/master/jrl

• SAC-RND - https://github.com/tinkoff-ai/sac-rnd

• SVR - https://github.com/MAOYIXIU/SVR

Table 6: Final normalized evaluation scores averaged over five random seeds for SPOT and SVR. For each dataset, we tuned
them as recommended in the paper and reported the best scores.

Dataset SPOT
halfcheetah-r 23.8±0.5
hopper-r 31.2±0.4
walker2d-r 5.3±9.3
pen-cloned 15.2±18.7
pen-expert 117.3±14.9
door-cloned 0.0±0.0
door-expert 0.2±0.0
hammer-cloned 2.5±3.2
hammer-expert 86.6±46.3
relocate-cloned -0.1±0.0
relocate-expert 0.0±0.0

Dataset SVR
pen-cloned 65.6±18.8
pen-expert 119.9±11.2
door-cloned 1.1±1.6
door-expert 83.3±14.9
hammer-cloned 0.5±0.4
hammer-expert 103.3±16.2
relocate-cloned 0.0±0.0
relocate-expert 59.3±10.2

Dataset MCQ
antmaze-u 27.5±20.6
antmaze-u-d 0.0±0.0
antmaze-m-p 0.0±0.0
antmaze-m-d 0.0±0.0
antmaze-l-p 0.0±0.0
antmaze-l-d 0.0±0.0
pen-cloned 35.3±28.1
pen-expert 121.2±15.9
door-cloned 0.2±0.5
door-expert 73.0±2.2
hammer-cloned 5.2±6.3
hammer-expert 75.9±30.2
relocate-cloned -0.1±0.0
relocate-expert 82.5±7.2

Table 7: Final normalized evaluation scores averaged over five random seeds for the baselines on the AntMaze Ultra datasets.
For each dataset, we tuned them as recommended in the paper and reported the best scores.

Dataset TD3+BC IQL CQL MCQ MSG SPOT SAC-RND ReBRAC
antmaze-ultra-p 0.0±0.0 13.3±5.7 16.1±8.5 0.0±0.0 0.6±0.9 4.4±1.3 20.6±15.0 22.4±11.7
antmaze-ultra-d 0.0±0.0 14.2±6.2 6.5±3.5 0.0±0.0 1.0±1.4 12.0±4.4 10.5±8.8 0.8±1.8

Online fine-tuning. During the online fine-tuning phase, since the official score for 300k online samples is typically
unavailable, we re-run all the baselines using their corresponding official implementations, except for CQL, which uses the
provided code from Cal-QL. The URLs for each implementation are listed below:

• RLPD - https://github.com/ikostrikov/rlpd

• Cal-QL - https://github.com/nakamotoo/Cal-QL

• Off2On - https://github.com/shlee94/Off2OnRL

• PEX - https://github.com/Haichao-Zhang/PEX

• Uni-O4 - https://github.com/Lei-Kun/Uni-O4

• SPOT - https://github.com/thuml/SPOT

Goal-conditioned offline RL. We obtain the HIQL scores from Park et al., 2024b, and the GC-IQL, WGCSL, DWSL, and
GCPC scores from Zeng et al., 2024. For the umaze and umaze-diverse scores for HIQL, we run the experiments using
the implementations provided for each respective algorithm in the official HIQL repository (https://github.com/
seohongpark/HIQL). The resulting scores are as follows: umaze: 79.2±4.2, umaze-diverse: 86.2±5.7.
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F.3. PARS

We built our code on the JAX (Bradbury et al., 2018) implementation of TD3 (Fujimoto et al., 2018) (https://github.
com/yifan12wu/td3-jax) and made modifications to suit the PARS algorithm, such as adding an infeasible action
penalty, and reward scaling. For critic ensembles, we referenced the implementation of SAC-N (https://github.
com/Howuhh/sac-n-jax).

Table 8: Qmin for each task.

AntMaze Qmin

antmaze-umaze 0
antmaze-medium 0
antmaze-large 0
antmaze-ultra 0
Adroit Qmin

pen -715
door -42
hammer -348
relocate 0
MuJoCo Qmin

halfcheetah -366
hopper -166
walker2d -229

Table 9: PARS’s general hyperparameters.

Offline Hyperparameters Value
optimizer Adam (Kingma & Ba, 2015)
batch size 256
learning rate (all networks) 3e-4
tau (τ ) 5e-3
hidden dim (all networks) 256
gamma (γ) 0.995 on AntMaze, 0.99 on others
infeasible region distance 1000 on AntMaze, 100 on others
actor cosine scheduling True on Adroit, False on others
nonlinearity ReLU (Agarap, 2018)

Online Fine-Tuning Hyperparameters Value
exploration noise 0.1 on MuJoCo 0.05 on others
learning starts 0
update to data (UTD) ratio 20

AntMaze. For offline training, we tuned creward to 100, 1000, and 10,000, β between 0.005 and 0.01, and α between 0.001
and 0.01. During online fine-tuning, we used a 50/50 mix of offline and online data. The online β was tuned to 0, 0.001, and
0.01, while α was fixed at 0.001, except for ultra-play, which used 0.0001, and Skactor was set to 1. The hyperparameters for
each dataset are listed in Table 10.

Adroit. For offline training, we set creward to 10 and tuned β between 0.1 and 0.01, and α to 0.001 and 0.01. During online
fine-tuning, a 50/50 mix of offline and online data was used. The online α was set to 0.001, and β was tuned to 0 and 0.01,
and Skactor was set to 1. The specific hyperparameters for each dataset are provided in Table 10.

Table 10: Dataset-specific hyperparameters of PARS for AntMaze and Adroit domains used in offline training and online
fine-tuning.

Offline Online
AntMaze creward β α β

antmaze-umaze 10000 0.005 0.001 0
antmaze-umaze-diverse 10000 0.005 0.001 0.001
antmaze-medium-play 1000 0.01 0.001 0
antmaze-medium-diverse 1000 0.01 0.001 0
antmaze-large-play 1000 0.01 0.001 0.01
antmaze-large-diverse 10000 0.01 0.01 0.01
antmaze-ultra-play 100 0.01 0.001 0.001
antmaze-ultra-diverse 10000 0.01 0.01 0.01

Offline Online
Adroit β α β

pen-cloned 0.01 0.01 0
door-cloned 0.01 0.01 0.01
hammer-cloned 0.1 0.001 0
relocate-cloned 0.01 0.01 0.01
pen-expert 0.01 0.01 -
door-expert 0.1 0.001 -
hammer-expert 0.01 0.001 -
relocate-expert 0.1 0.001 -

MuJoCo. For offline training, we used a creward of 5 for HalfCheetah and a creward of 10 for Walker2d and Hopper. The β
was set to 0, and α was tuned between 0.01, 0.001 and 0.0001. Additionally, for this domain, we found that adjusting policy
noise and Skcritic provides further benefits, so we varied the policy noise between 0 and 0.2, and Skcritic between 2 and 10.
During online fine-tuning, we used 5% offline data for the HalfCheetah and random datasets, and 50% for the remaining
datasets. We also tuned α among 0.1, 0.01, and 0.0001, and the critic sample size for policy improvement between 1 and 10.
The specific hyperparameters for each dataset can be found in Table 11.
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Table 11: Dataset-specific hyperparameters of PARS for MuJoCo domain used in offline training and online fine-tuning.

Offline Online
MuJoCo α policy noise Skcritic α Skactor

halfcheetah-random 0.0001 0.2 2 0.0001 1
halfcheetah-medium 0.0001 0 2 0.0001 10
halfcheetah-medium-replay 0.0001 0 2 0.0001 10
halfcheetah-medium-expert 0.0001 0.2 10 - -
hopper-random 0.01 0.2 2 0.01 1
hopper-medium 0.01 0 10 0.1 1
hopper-medium-replay 0.01 0 10 0.1 1
hopper-medium-expert 0.0001 0.2 10 - -
walker2d-random 0.01 0 10 0.0001 10
walker2d-medium 0.01 0 10 0.1 1
walker2d-medium-replay 0.01 0 10 0.01 1
walker2d-medium-expert 0.0001 0.2 10 - -

G. More Ablation Study
Extended results on the impact of PARS components on offline performance. In addition to Figure 9 in Section 6.4,
we conducted additional experiments on various datasets to further explore the impact of the PARS components in offline
training. As shown in Figure 16, beyond AntMaze, the application of RS-LN in MuJoCo and Adroit leads to a general
improvement in performance. Furthermore, incorporating PA results in a more robust enhancement.

LN LN & PANone

Figure 16: Extended ablation results of PARS components beyond Figure 9. We evaluate PARS with varying creward and the
application of LN and PA, averaged over five random seeds. The error bars represent the standard deviation.

Impact of creward on the dormant neuron ratio. In Section 4.1.2, we demonstrated that RS-LN effectively enhances
network expressivity in the RL example, contributing to performance improvements. Additionally, we analyzed how the
dormant neuron ratio changes with creward when LN is applied across various datasets. Similarly to Section 4.1.2, we
examined the dormant neuron ratio for Qϕ, trained using TD3+BC with γ = 0.995.

Table 12: Dormant neuron ratio across various AntMaze datasets based on creward while applying LN to TD3+BC Qϕ.

AntMaze Dormant neurons [%] (creward = 1) Dormant neurons [%] (creward = 100)
antmaze-umaze-diverse 91±3.0 58±2.1
antmaze-ultra-play 93±2.1 57±1.5
antmaze-ultra-diverse 94±1.8 54±2.3

As shown in Table 12, the trend observed in Figure 7 remains consistent across different datasets. We confirmed that as the
reward scale increases, the number of dormant neurons decreases, facilitating the utilization of higher feature resolution and
enhancing network expressivity.

AntMaze performance using a single hyperparameter setting. We further verified that comparable performance in
the AntMaze domain can be achieved with just a single hyperparameter setting. This is particularly significant because
many offline algorithms have struggled in the AntMaze domain, especially in the Ultra environment. Achieving significantly
better performance than the baseline with a single hyperparameter setting in AntMaze, even though it is slightly lower
than the PARS score presented in the paper, highlights a key advantage of PARS. The hyperparameters used in the
single-hyperparameter experiment are a reward scale of 10,000, an alpha of 0.001, and a beta of 0.01.
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Table 13: PARS AntMaze performance using a single hyperparameter setting. We averaged the scores over five random
seeds, with ± indicating the standard deviation.

AntMaze other SOTA other SOTA (goal-conditined) PARS PARS (single hyperparam)
umaze 97.9 (MSG) 91.6 (GC-IQL) 93.8 93.3±3.2
umaze-diverse 88.3 (ReBRAC) 88.8 (GC-IQL) 89.9 84.7±5.7
medium-play 85.9 (MSG) 84.1 (HIQL) 91.2 89.4±2.9
medium-diverse 84.6 (MSG) 86.8 (HIQL) 92.0 86.2±5.6
large-play 64.3 (MSG) 86.1 (HIQL) 84.8 77.5±1.8
large-diverse 71.2 (MSG) 88.2 (HIQL) 83.2 83.5±3.6
ultra-play 22.4 (ReBRAC) 56.6 (GCPC) 66.4 60.2±7.6
ultra-diverse 14.2 (IQL) 54.6 (GCPC) 51.4 50.8±11.1

Sensitivity analysis of α hyperparameter. When applying PA, the hyperparameter α in eq. (3) is important. It should be
set such that assigning a Qmin penalty to infeasible actions does not interfere with the TD update for actions in the dataset.
Accordingly, we set α to a small value in the range of 0.0001 to 0.001.

Table 14: PARS performance comparison across different values of α. We averaged the scores over five random seeds, with
± indicating the standard deviation.

AntMaze α = 0.0001 α = 0.001 α = 0.01 α = 0.1 α = 1

umaze-diverse 71.6±10.5 89.9±7.5 88.6±5.9 87.5±6.9 82.3±8.2
medium-diverse 72.5±14.4 92.0± 2.2 91.7±3.5 91.2±2.8 40.5±25.4
large-diverse 79.5±8.2 83.0±4.9 83.2± 5.6 82.4±2.8 76.1±10.3
ultra-diverse 47.5±15.2 49.5±13.7 51.4± 11.6 50.9±9.5 45.4±13.1

We additionally conducted a sensitivity analysis on α. As shown in Table 14, PARS performs well when α is in the range of
0.001 to 0.1. On the other hand, if α is too small (e.g., 0.0001), the penalty does not take effect properly, and if it is too
large, it starts to interfere with the TD update on the dataset, leading to a decrease in performance.

Impact of the number of critic ensembles. As discussed in Section 4.3, PARS can be used in combination with a critic
ensemble. We analyzed the effect of the number of critic ensembles on offline performance in Figure 17. As shown in the
figure, while the impact is minimal in the Antmaze domain, incorporating an ensemble in the MuJoCo and Adroit domains
enables more stable learning and thus contributes to improved performance.

Figure 17: Final normalized score of PARS for offline training, averaged over five random seeds with varying numbers of
critics. Error bars represent the standard deviation.

Which activation function would be most compatible with PARS? In Appendix D, we examine the effect of activation
functions on fitting toy data. Additionally, we analyze how activation functions, when combined with PARS, influence
performance in real RL tasks.

Figure 18 presents the results of applying each activation function to PARS, showing that the ReLU activation function
consistently performs well across various tasks. While other activation functions outperform ReLU in some tasks, they lack
robustness across all tasks. The impact of activation functions on RL tasks, in conjunction with RS-LN and PA, could be an
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ReLU GELU Sigmoid SiLU No Activation

Figure 18: Final normalized score of PARS for offline training averaged over five random seeds with varying activation
functions. The error bars represent the standard deviation.

interesting topic for future research.

H. Computation Cost
We compared the training time and GPU memory usage of PARS with various offline baselines. The comparison was
conducted using a single L40S GPU, and the training time was measured over 5000 gradient steps. The baselines were
implemented using either PyTorch or JAX. Given that JAX is generally recognized for its speed advantage over PyTorch due
to optimizations like just-in-time compilation and efficient hardware utilization (Bradbury et al., 2018), we distinguished the
training time and GPU memory usage for PyTorch and JAX with yellow and blue bars, respectively. PARS, implemented in
JAX, is indicated by a red bar.

Showing the comparison results presented in Figure 19, PARS has faster training time compared to methods like SAC-N
(PyTorch) and MSG (JAX), which use a large number of critic ensembles. Additionally, while SAC-RND and ReBRAC
have faster training times than PARS, they use significantly more GPU memory. In contrast, PARS efficiently reduces
computation costs by using both less training time and less GPU memory.

Figure 19: Comparison of PARS’s training time and GPU memory usage with various offline baselines. Yellow bars
represent PyTorch implementations, blue bars represent JAX implementations, and the red bar represents PARS implemented
in JAX.
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