
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ROUTE-AND-REASON: SCALING LARGE LANGUAGE
MODEL REASONING WITH REINFORCED MODEL
ROUTER

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-thought has been proven essential for enhancing the complex reasoning
abilities of Large Language Models (LLMs), but it also leads to high computational
costs. Recent advances have explored the method to route queries among multiple
models and proved it as a promising approach. However, previous works directly
operate at the task level, i.e., assigning user queries to suitable LLMs, which does
not allow hybrid LLMs to truly collaborate on finer-grained sub-tasks. Collabo-
ration at the level of intermediate reasoning steps (thoughts) could enable more
efficient coordination, but it also poses significant challenges for router scheduling,
placing immense demands on the quality of task decomposition and the precision of
the router. To address this, we propose R2-Reasoner, a novel framework centered
around a Reinforced Model Router designed to efficiently scale LLM reasoning.
This router orchestrates collaboration across 9 heterogeneous models, of whom the
parameter scale ranges from less than 1B to hundreds of billions, by first breaking
down a complex query into subtasks with a decomposer, and then assigning each
subtask to the optimal model with a subtask allocator, balancing performance with
cost. To train this router involves a two-stage alternating process for the decomposer
and the allocator, integrating supervised fine-tuning with reinforcement learning
to enable effective self-supervised refinement. Extensive experiments across six
challenging reasoning benchmarks demonstrate that R2-Reasoner reduces API
costs by 84.46% compared with state-of-the-art baselines while maintaining com-
petitive reasoning accuracy. Our framework paves the way for the development
of more scalable and efficient reasoning systems. Our code is open-source at
https://anonymous.4open.science/r/R2_Reasoner.

1 INTRODUCTION

Chain-of-Thought (CoT, (Wei et al., 2022)) reasoning has endowed large language models (LLMs)
with significantly enhanced reasoning capabilities. The reasoning ability of LLMs has evolved from
prompting-based sequential thoughts to reinforcement learning–driven long-chain reasoning (OpenAI,
2024; Guo et al., 2025; Lightman et al., 2023; Snell et al., 2024; Wang et al., 2023; Chen et al., 2024b),
developing into test-time scaling as a paradigm, though with significant computational cost (Wu et al.,
2024). To mitigate the vast increase in computational overhead, model router has been introduced
to route queries across models according to problem difficulty, model capability and associated
cost. This strategy is recognized as an effective means of balancing the enhancement of reasoning
performance with cost control. Its recent deployment in GPT-5 (OpenAI, 2025) further demonstrates
the great potential of this approach.

Recent studies have increasingly explored model routers in various scenarios. One line of research
aims to select one or more models that are most suitable for each task from a knowledge coverage
perspective (Feng et al., 2024; Zhang et al., 2025; Dekoninck et al., 2024; Chen et al., 2024c).
This approach can be viewed as a form of LLM ensembling, motivated by the observation that
different LLMs exhibit complementary strengths in different knowledge domains. While effective for
knowledge-intensive tasks such as factual QA, these methods are limited when applied to multi-step
complex reasoning (e.g., mathematical derivations), and they seldom explicitly optimize for inference
cost efficiency. Another line of work focuses on device-cloud collaboration, where local lightweight

1

https://anonymous.4open.science/r/R2_Reasoner

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

small language models (SLMs) and cloud-based LLMs are coordinated such that simpler tasks are
routed to SLMs, while more complex tasks are escalated to LLMs (Chen et al., 2024a; Shao et al.,
2025a; Li et al., 2019; Hao et al., 2024). However, operating at the task level often results in overly
coarse routing granularity, making accurate routing decisions challenging and introducing additional
overhead.

To address these limitations, we revisit the problem of model routing from the perspective of sub-
tasks. Even complex reasoning problems often comprise relatively simple sub-tasks, which can be
effectively resolved by more computationally efficient small-scale language models (SLMs). If these
simpler “thoughts” can be accurately identified and delegated to such SLMs, while reserving the more
complex, capability-intensive sub-problems for larger LLMs, the overall cost can be substantially
reduced. This hierarchical approach to model utilization aligns naturally with typical data center
deployment scenarios, where a diverse set of models with varying capabilities is often available,
enabling dynamic allocation based on sub-task requirements.

Nevertheless, implementing such a framework faces two core challenges. First, high-quality task
decomposition, splitting the overall problem into coherent, solvable sub-tasks, is non-trivial (Wies
et al., 2023; Zhou et al., 2022), as poor decomposition can produce erroneous intermediate steps or
inefficient work allocation, undermining both outcomes and efficiency (Zhu et al., 2023; Zheng et al.,
2023). Second, determining the difficulty of each sub-task is challenging but critical for assigning the
right model; errors may overload smaller models or waste larger ones, reducing inference efficiency,
accuracy, and the potential cost savings of this approach.

To overcome these challenges, we propose R2-Reasoner, a framework that leverages a Reinforced
Model Router to efficiently scale LLM reasoning. As the core component, the Router operationalizes
task decomposition and subtask allocation as two distinct yet interconnected LLMs: the Task
Decomposer generates a structured sequence of sub-tasks from a complex input, while the Subtask
Allocator assigns each subtask to the most suitable model, ranging from lightweight SLMs to powerful
LLMs, based on estimated difficulty. By explicitly separating decomposition and allocation, R2-
Reasoner enables fine-grained, scalable collaboration across heterogeneous models, optimizing both
reasoning accuracy and computational efficiency.

To fully unlock the potential of the Model Router, we develop a staged reinforcement learning
pipeline that progressively refines its decision-making capability. We decouple the joint training of
the Decomposer and Allocator, two core LLMs, into an alternating iterative process, avoiding the non-
differentiability and gradient blockage in end-to-end updates across multiple LLMs. This approach
combines supervised fine-tuning on task-specific data with Group Relative Policy Optimization
(GRPO) in a multi-stage pipeline, enabling stable and coordinated policy improvement through
self-supervised feedback. The framework requires no additional human annotation and enhances
adaptability in dynamic real-world scenarios.

Extensive evaluations across 6 benchmarks validate the efficacy of our framework. The results
demonstrate a substantial reduction in inference costs, achieving an 84.46% decrease in API expenses
while maintaining reasoning performance competitive with strong baseline methods and even im-
proving average accuracy by 3.73%. Additionally, we conduct further experiments to demonstrate
that R2-Reasoner exhibits strong generalization, capable of directly adapting to previously unseen
models. Moreover, our framework supports a flexible and controllable trade-off between accuracy
and inference cost, enabling practical deployment across diverse budget scenarios. In summary, our
key contributions are:

• We propose R2-Reasoner, a novel framework centered around a Reinforced Model Router
designed to efficiently scale LLM reasoning at test-time. This framework facilitates fine-
grained, collaborative reasoning by decomposing complex tasks and strategically allocating
subtasks across a diverse pool of heterogeneous models.

• We introduce a staged training pipeline to optimize the Model Router. This iterative training
strategy not only enables the router to iteratively refine its performance but also circumvents
the non-differentiability that arises in end-to-end gradient propagation between two LLMs.

• We conduct extensive experiments on six complex reasoning benchmarks, demonstrating
that R2-Reasoner can substantially reduce reasoning costs while maintaining high reasoning
accuracy, thereby paving the way for more scalable test-time scaling.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Final Answer

Allocation Data Collection

TASK

Iterative
RL

Rejection sample
F(D1,D2,D3) =

argmin i∈{1,2,3} len(Di)

TASK

Easy Medium Hard

Decomposition Data Collection

α-quantile
token probability

0.98 0.79 0.72 0.39 0.35

Fitting the allocation

Allocate Models to each Subtask
Procedural Review

Mechanism

Chain-like Reasoning Process

“…Do you think the
current answer to the
subtask is right? If not,
response yourself and
override it….”

Grouping & Initial Allocation

Current Allocation leads to the correct answer. Try to downgrade Model.
Current Allocation leads to the wrong answer. Go backward or upgrade model.

Independent
Supervised
Fine-tuning

Decomposer

Allocator

Inside Groups

Between Groups

M H H

Decomposition Plan 2
Evaluate

Score =
w0 * Numsubtask

+ w1 * token
+ w2 * Coe

S1=1237

S2=1558

S3=875

Pretrained
7B

Decomposition Plan 1

Decomposition Plan 3

Independent
Supervised
Fine-tuning

Pretrained
7B

Right,
no need to

revise

False,
The answer
should be …

1.0

0.9

0

0.1

0

0.9

0.1

0

1.0

0

Figure 1: Overview of Our R2-Reasoner Framework

2 RELATED WORKS

2.1 TASK DECOMPOSITION AND MULTI-STEP REASONING

The chain-of-thought (CoT) prompting technique (Wei et al., 2022) has emerged as a key method
for enhancing LLM reasoning, enabling step-by-step inference without additional training. Building
on this idea, more advanced paradigms such as tree-of-thought (ToT) (Yao et al., 2023) generalize
reasoning into structured sequences of intermediate “thoughts.” Leveraging this notion, task decom-
position methods and process reward models (Lightman et al., 2023) have been proposed to guide or
supervise individual reasoning steps. Together, these approaches illustrate an emerging paradigm that
scales reasoning through both structural decomposition and increased compute (Snell et al., 2024).

2.2 COLLABORATIVE REASONING AMONG LLMS

Recent research has explored several strategies for enabling collaborative reasoning among multiple
language models, each with distinct trade-offs. Model partitioning (Li et al., 2019; Cai et al., 2024;
Zhang et al., 2024) distributes a single LLM across nodes, but suffers from high communication
overhead and limited robustness. Simple referral (Chen et al., 2024a) routes easy queries to small
models and harder ones to stronger LLMs, though performance depends on accurately assessing
query difficulty. Token correction (Hao et al., 2024) lets an SLM draft outputs while an LLM
revises suboptimal tokens, improving quality but incurring extra decoding costs. Despite these
advances, existing methods remain constrained by coordination efficiency, accuracy, and scalability,
underscoring the need for more adaptive collaboration frameworks.

3 PRELIMINARIES

Problem Definition

We consider a highly general scenario of a large-scale LLM platform, where numerous models are
deployed locally on the platform, and some are hosted in the cloud. The goal of the platform is to
make comprehensive use of these LLMs to provide users with high-quality inference services at the
lowest possible cost. Denote the local deployed SLMs asME = {ME1 ,ME2 , . . . ,MEn}, and the
cloud-based LLMs asMC = {MC1 ,MC2 , . . . ,MCq}. The user’s original query is restricted to the
edge model for task decomposition and allocation, while the resulting sub-tasks can be resolved by
eitherME orMC . The entire set of reasoning tasks is represented as T = {T1, T2, . . . , Tn}. Let the
reasoning accuracy over the entire task set be denoted as Acc, with the API cost represented by CApi.

For each task T , denote the decomposition process as: T → {t1, t2, . . . , tk}. Based on the decom-
posed subtasks ti, the model allocation scheme can be denoted as: M : ti 7→ {ME ,MC}, which
prioritizes assigning simple subtasks to on-device SLMs, while invoking the cloud-based LLM for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

handling complex subtasks. The goal of our optimization is to minimize the discrepancy between the
model’s allocation scheme M and the optimal scheme M∗: min |M −M∗|. The optimal scheme M∗

is derived through a search strategy that maximizes SLM usage while maintaining accuracy. During
the optimization process, as the allocation scheme gradually approaches the optimal solution, the
API cost CApi decreases, while Acc remains well-maintained.

4 METHODOLOGY

The R2-Reasoner framework is centered around a Model Router, which consists of two primary
modules: a Task Decomposer (Mdecomp) and a Subtask Allocator (Malloc). The Task Decomposer is
engineered to break down complex input tasks T into more manageable, well-structured, and logically
ordered subtasks {t1, t2, . . . , tk}. Following this, the Subtask Allocator strategically assigns each
subtask ti to the most suitable model from a heterogeneous pool (Mpool =ME ∪MC , comprising
models of diverse capabilities). This allocation process is driven by the estimated difficulty of each
subtask, aiming to strike an optimal balance between reasoning fidelity and computational resource
expenditure. The design and training of these interconnected components are detailed below.

4.1 GENERATING COHERENT SUBTASK SEQUENCES VIA TASK DECOMPOSER

The Task Decomposer (Mdecomp) serves as the first stage of the Model Router, responsible for
transforming a complex task T into a sequence of logically connected subtasks {t1, t2, . . . , tk}.
The quality of this decomposition is crucial: redundant or incoherent breakdowns can cause error
propagation, while clear and concise subtasks provide a strong foundation for subsequent allocation.

To supervise training, we construct a decomposition dataset Ddecomp using a rejection sampling strat-
egy. For each task, multiple candidate decompositions are generated and then evaluated along three
dimensions: Conciseness, assessed by the number of subtasks to avoid both excessive fragmentation
and overly coarse splits. Practicality, estimated by the total token cost of solving all subtasks with a
baseline model. Coherence, measuring the logical continuity between adjacent subtasks, with fewer
breaks indicating higher quality.

These criteria are linearly combined into a weighted score, where lower values correspond to higher-
quality decompositions. A binary correctness signal C(d) ∈ {0, 1} is further incorporated to ensure
that the selected decomposition can solve the original task. When possible, only candidates with
C(d) = 1 are retained, and among them the one with the best score is chosen. This guarantees that
Ddecomp contains decompositions that are concise, coherent, and practical while remaining effective
for solving the task. The resulting pairs (T, d∗) are then used to fine-tuneMdecomp. More details and
formulas are provided in the Appendix B.1.

4.2 STRATEGIC MODEL ASSIGNMENT FOR COLLABORATION VIA SUBTASK ALLOCATOR

Once Mdecomp produces a subtask sequence, the Subtask Allocator (Malloc) determines how to
distribute these subtasks across the heterogeneous model poolMpool. Formally, for each subtask
ti, it selects a model Mj ∈ Mpool, yielding an assignment MA : ti 7→ Mj . To enableMalloc to
learn efficient assignment policies, we construct a high-quality dataset Dalloc of model allocation
schemes. Rather than relying on hand-crafted heuristics, we employ a systematic search procedure
over the vast space of possible assignments, seeking schemes that minimize resource consumption
while maintaining perfect accuracy. The resulting allocation pairs ({ti},M∗

A) serve as supervision
signals for trainingMalloc to imitate these cost-effective strategies.

However, exhaustive search over all allocations would be prohibitively expensive in both time and
cost. We therefore design a Grouped Search Strategy to approximate optimal assignments efficiently.
The process begins by estimating the difficulty of each subtask ti using the predictive confidence of a
baseline model: if the maximum token probability exceeds a threshold τeasy, the subtask is labeled
as easy; if it falls below τhard, it is labeled as hard; otherwise, it is labeled as medium. In parallel,
the model poolMpool is partitioned into three capability groups: small language models (SLMs),
medium language models (MLMs), and large language models (LLMs). Each difficulty level is paired
with the corresponding capability group (easy→SLM, medium→MLM, hard→LLM).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

LLM reasoning

Subtask A

1.Subtask Difficulty Estimation
s-Task1 s-Task5 s-Task6 s-Task3 s-Task2 s-Task4

Subtask B

0 𝑰𝒏𝒅𝒆𝒙𝑻𝒐𝒌𝒆𝒏

𝑷𝒓𝒐𝒃𝑻𝒐𝒌𝒆𝒏

EASY

HARD

> > > > >

3. Allocation Search Within Group Difficulty Ranking

EvaluationAnswer A Answer B

Subtask A

Subtask B

Subtask C

Answer C

Subtask C 😏

😑

😟

MEDIUM

Token
Probability

Confidence of
the answer

2.Initial Allocation

s-Task6

s-Task4

s-Task1 s-Task5

s-Task3 s-Task2

Task group Model group

1

Downward Allocation

Evaluation Correct

...

Evaluation Correct

Evaluation

Wrong

2

Upward Allocation

Evaluation Wrong

Upward Allocation

Evaluation

Return

Wrong

2

3

4

Return 4

Evaluation Correct

...

4. Allocation Search Between Groups
1

Evaluation Wrong

Evaluation Wrong

2

3
Evaluation Correct

Return 2

Return 3

Evaluation Correct

Return 1

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

Correct

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

Downward Allocation

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

s-Task6 s-Task3 s-Task2

1

easy

hard

easy

hard

Figure 2: Overview of Our Grouped Search Strategy for Optimal Allocation Scheme

Based on this categorization, an initial allocation M
(0)
A is obtained by assigning each subtask to

the medium-capacity model within its corresponding group. This serves as the starting point for
iterative refinement: if the current allocation already achieves correctness (Acc = 1), the allocator
attempts to replace some models with cheaper ones to reduce cost; if correctness fails, subtasks are
escalated to stronger models within the same group, and only if necessary, across groups. The search
is bounded by a maximum number of iterations (Niter_alloc ≤ 20), after which the resulting allocation
M∗

A is accepted. The collection of such ({ti},M∗
A) pairs constitutes Dalloc, which is then used to

trainMalloc. Details of the search algorithm is shown in Algorithm 1.

This strategy enablesMalloc to learn fine-grained, capability-aware assignment policies that balance
accuracy and efficiency. The detailed formulation of the grouped search procedure is deferred to
Appendix B.2.

4.3 DUAL-MODULE CO-TRAINING VIA ITERATIVE REINFORCEMENT LEARNING

After the initial SFT of Mdecomp(θdecomp) and Malloc(θalloc), We employ a staged RL pipeline to
further refine their capabilities and promote synergistic collaboration within the Model Router. In
each iteration, one module’s parameters are updated while the other remains fixed, allowing targeted
improvements based on task success feedback, which also circumvents the non-differentiability and
discontinuities arising from cascading two LLMs, thereby stabilizing training. The primary reward
signal is a binary indicator based on the final correctness of the task T :

Rfinal(T, {ti},MA) =

{
1 if final answer is correct
0 if final answer is incorrect

(1)

We adopt Group Relative Policy Optimization (GRPO) as the optimization algorithm for this co-
training phase. Training proceeds iteratively for each module:

1. UpdatingMdecomp(θdecomp): The decomposer acts as the policy, generating sequences of
subtasks {ti} for an input task T . The fixed allocatorMalloc(θ̄alloc) assigns models to these
subtasks, and the final outcome is used to compute Rfinal. The reward is propagated back to
estimate the advantage Âi,k for decomposition decisions.

2. UpdatingMalloc(θalloc): The allocator acts as the policy, generating assignments MA(t
k) for

each subtask tk provided by the fixed decomposerMdecomp(θ̄decomp). The final correctness
again determines Rfinal, which guides the advantage estimates Âi,k for allocation choices.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This alternating optimization encourages the two modules to progressively adapt to each other,
leading to improved overall reasoning performance. The detailed algorithmic design can be found in
Appendix B.3.

4.4 END-TO-END REASONING WORKFLOW AT TEST TIME

With the R2-Reasoner’s Task Decomposer (Mdecomp) and Subtask Allocator (Malloc) trained through
SFT and the iterative RL pipeline, the framework can be deployed for inference. For a user query
Quser, the workflow is as follows: (1) Task Decomposition: The query Quser is first processed by
the fine-tuned Task Decomposer: {t1, . . . , tk} =Mdecomp(Quser). (2) Subtask Allocation: The
resulting sequence of subtasks {t1, . . . , tk} is then passed to the fine-tuned Subtask Allocator for
strategic model assignment: MA = Malloc({t1, . . . , tk}), where MA(t

i) ∈ Mpool is the model
assigned to subtask ti. (3) Subtask Execution: Each subtask ti is executed sequentially by its
assigned model MA(t

i). The output of subtask ti can serve as input to the subsequent subtask
ti+1. (4) Result Integration: The results from the executed subtasks are sequentially integrated to
formulate the final answer Afinal.

To flexibly adapt to scenarios with different cost budgets, achieve a controllable accuracy–cost trade-
off, and enhance reasoning robustness, we introduce an optional Procedural Review Mechanism
(PRM). LetMstrong denote a high-capability model (e.g., a frontier LLM fromMpool) andMthresh

a pre-defined threshold model representing a minimum capability level. For each subtask tj , let rj
be the output generated by its initially assigned model MA(t

j). If MA(t
j) is below the threshold

Mthresh, the output will be verified and potentially refined: rfinal
j = PRM_Verify(Mstrong, rj) The

PRM_Verify function utilizesMstrong to assess the correctness of rj . If rj is deemed incorrect or
suboptimal,Mstrong provides a corrected or refined response r′j ; otherwise, rfinal

j = rj . This rfinal
j

is then used for all subsequent reasoning steps. This mechanism allows targeted quality control,
preserving accuracy while maintaining the cost-efficiency of allocation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks

We evaluate our framework on six widely-used open-source benchmarks: (1) P3 (Schuster et al.,
2021) for program synthesis, (2) SCAN (Lake & Baroni, 2018) for language-driven navigation,
(3) MATH (Hendrycks et al., 2021) and CHAMP (Mao et al., 2024)for solving challenging math
problems, and (4) CSQA (Talmor et al., 2018) and MuSiQue (Trivedi et al., 2022) for commonsense
reasoning. For each benchmark, we manually annotate a small set of samples for in-context learning
in task decomposition and select another 200 tasks as the test set. Detailed descriptions and dataset
statistics are provided in the Appendix C.2.

Baselines Considering the scenario of collaborative reasoning, we establish six baselines. (1)
CoT (Wei et al., 2022): The CoT (Chain of Thought) method asks a single LLM to solve a task by
decomposing the original task into a sequence of sub-tasks and answering these sub-tasks sequentially.
(2) ToT (Yao et al., 2023): The ToT (Tree of Thoughts) method, based on the framework of CoT,
prompts multiple answers (N = 2) for each sub-task, and retain the best answer by utilizing a scoring
method. It also only deploys one certian LLM. (3) DataShunt (Chen et al., 2024a): The Datashunt
method dynamically selects between a SLM and a LLM to finish the task. The method first evaluates
the difficulty of the given task, and allocate the task to either SLM or LLM to solve utilizing the
CoT method. (4) AutoMix (Aggarwal et al., 2025): The AutoMix method consists of a few-shot
self-verification mechanism conducted by SLM to evaluate the confidence toward an answer from
SLM and a router that strategically routes queries to LLM based on the confidence. (5) DoT (Shao
et al., 2025b): The DoT method decomposes a task into subtasks, builds a dependency graph, and
allocates subtasks to SLMs or LLMs using a Plug-and-Play Adapter on SLMs. This framework
enables efficient edge-cloud collaborative reasoning. (6) Router-R1 (Zhang et al., 2025): The
Router-R1 method chooses an language model as the router itself, interweaving thinking process by
the router with routing process by the routed models, and integrates every response into the context.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model
Program Synthesis Language-Driven

Navigation
Math Problem

Solving
Commonsense

Reasoning
P3 SCAN MATH CHAMP CSQA MuSiQue

Acc CAPI Acc CAPI Acc CAPI Acc CAPI Acc CAPI Acc CAPI

COT (GPT-4o) 42% 4.45¢ 68% 2.75¢ 51.5% 5.34¢ 55.5% 4.45¢ 80% 3.60¢ 57% 0.85¢
TOT (GPT-4o) 38% 14.55¢ 52% 9.82¢ 63% 9.97¢ 57% 11.65¢ 82% 20.50¢ 59% 2.45¢

COT (Llama 3-8B) 5.5% - 17% - 10% - 19% - 70% - 38% -
TOT (Llama 3-8B) 5.5% - 13% - 29.5% - 25% - 68.5% - 31% -

DataShunt 14% 2.45¢ 23.5% 1.72¢ 16% 1.66¢ 34% 2.98¢ 73% 1.28¢ 47% 0.46¢
AutoMix 14% 0.04¢ 43% 0.12¢ 44% 0.03¢ 44% 0.34¢ 66% 0.001¢ 51% 0.0074¢

DoT 41% 1.58¢ 63% 1.20¢ 59% 1.02¢ 58% 0.84¢ 82% 0.49¢ 50% 0.13¢
Router-R1 7% 0.14¢ 2% 0.15¢ 58% 0.62¢ 47% 9.78¢ 54% 0.12¢ 38% 0.12¢

R2-Reasoner 38% 1.16¢ 75% 0.64¢ 76.5% 0.08¢ 59.5% 0.28¢ 83.5% 0.042¢ 56.5% 0.029¢
Improvement ↓9.52% ↓73.93% ↑10.29% ↓76.73% ↑21.43% ↓99.18% ↑2.59% ↓66.67% ↑1.83% ↓91.43% ↓4.24% ↓98.82%

Table 1: Performance of R2-Reasoner and baselines on 6 benchmarks. CAPI is averaged expense
for each task, where API cost is measured in US dollar cents (¢). “-” appears in experiments where
reasoning is conducted solely using local deployed SLMs without invoking the cloud-based LLMs.
The highest reasoning accuracy is highlighted in bold. Results of the baseline with the highest Acc
are underlined which will be used to compute the “Improvement” in the last row.

Selection and Deployment of LLMs For candidate LLMs to solve different subtasks, We se-
lect Qwen2.5-0.5B-instruct, Qwen2.5-1.5B-instruct, Qwen2.5-3B-instruct, Qwen2.5-7B-instruct,
Qwen2.5-14B-instruct, Qwen2.5-32B-instruct, Qwen2.5-72B-instruct (Qwen et al., 2025), DeepSeek-
V3 (DeepSeek-AI et al., 2025), gpt-4o (OpenAI, 2024) as the LLM pool. The ability of these LLMs
increases following the order above. Among these models, Qwen2.5-0.5B-instruct, Qwen2.5-1.5B-
instruct, Qwen2.5-3B-instruct, Qwen2.5-7B-instruct are fee free for being locally deployed, while
the other cloud-based LLMs charges, and the price of the these LLMs also increases following the
order above. For SFT and RL training on the task decomposer and subtask allocator, we select
Qwen2.5-7B-instruct as the base model.

Evaluation For evaluation, we set two metrics: Acc and CAPI , which represents our two main
concerns in LLM reasoning. Acc measures the accuracy of our framework and the baselines on four
benchmarks.CAPI measures the average API cost for a single task, calculated in US dollar cents.

5.2 MAIN RESULTS

The comparison between our framework and the baselines in six benchmarks are shown in Table 1.
We have highlighted in bold the highest accuracy results among the four baseline experiments
on each benchmark, while the associated time costs and API costs are underlined. We compute
the relative improvement of our results compared to the baseline with the highest accuracy. The
experimental results demonstrate that our framework significantly reduces the API cost while retaining
a comparable reasoning accuracy. The relative changes in accuracy compared to the highest baseline
accuracy are: -9.52%, +10.29%, +21.43%, +2.59%, +1.83%, -4.24%. Even for P3, the decline in
accuracy is still acceptable. The boost in accuracy on benchmark like MATH and SCAN validate
the potential of our work in enhancing reasoning ability. Meanwhile, our framework achieves a
tremendous reduction in API cost compared to the baseline with the highest accuracy, reaching
averagely a decline of 84.46%. The accuracy of our framework on benchmarks like MATH and
SCAN surpassing the CoT and ToT method shows the potential disadvantage of excessive reasoning.
It usually happens in reasoning process conducted by LLMs of large scale, often deviates from the
correct and suitable answer for a subtask because it automatically proceed with reflective or divergent
thinking. We design several precise and exquisite prompts attempting to avoid the phenomenon.

5.3 ABLATION STUDY

To rigorously evaluate the contribution and of each stage, we report the performance metrics (Acc
and CAPI) of the Task Decomposer after each training stage, as summarized in Table 2. The table
compares the base model, the model after supervised fine-tuning (SFT), and the final model after
SFT combined with RL.

As observed, the SFT stage improves performance across all benchmarks compared to the base
model. Importantly, the addition of the RL stage consistently further enhances both accuracy and
cost efficiency on every task. For instance, accuracy increases by 5–8% on most benchmarks, while

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Stages P3 SCAN MATH CHAMP CSQA MuSiQue
Acc CAPI Acc CAPI Acc CAPI Acc CAPI Acc CAPI Acc CAPI

base 23.5% 0.314¢ 14% 0.066¢ 67% 0.150¢ 50% 0.494¢ 70.5% 0.147¢ 43% 0.0226¢
w/ SFT 33% 2.027¢ 68% 0.577¢ 75.5% 0.079¢ 58% 0.370¢ 82% 0.056¢ 51.5% 0.0301¢
w/ SFT+RL 38% 1.160¢ 75% 0.636¢ 76.5% 0.080¢ 59.5% 0.280¢ 83.5% 0.042¢ 56.5% 0.0287¢

Table 2: Performance (Acc and CAPI) after each training stage.

CAPI is reduced or maintained at a comparable level. This consistent improvement demonstrates
that the RL stage not only reliably enhances task performance but also stabilizes the routing decisions
across tasks. Overall, these results strongly validate the effectiveness and robustness of our RL-based
multi-stage training process.

5.4 GENERALIZATION TO NEWLY UNSEEN LLMS

To evaluate the generalization capability of the proposed R2-Reasoner, we conduct an additional
experiment in which several models are replaced with alternatives of comparable capacity, without
retraining the framework. Specifically, Qwen2.5-7B is replaced with GLM-4-9B-Chat (GLM et al.,
2024), and DeepSeek-V3 with Kimi-K2-Instruct (Team et al., 2025). The results are summarized in
Table 3.

Models P3 SCAN MATH CHAMP CSQA MuSiQue
Acc CAPI Acc CAPI Acc CAPI Acc CAPI Acc CAPI Acc CAPI

Initial Pool 38% 1.160¢ 75% 0.636¢ 76.5% 0.080¢ 59.5% 0.280¢ 83.5% 0.042¢ 56.5% 0.0287¢
Modified Pool 33.5% 1.278¢ 75% 0.656¢ 75% 0.105¢ 51.5% 0.310¢ 81.5% 0.060¢ 51.5% 0.0438¢

Table 3: Experimental results of generalization capability of R2-Reasoner to new LLMs

As observed, the performance of our framework remains largely stable on SCAN, MATH and CSQA.
Accuracy decreases by 11.8% on P3, 13% on CHAMP and 9% on MuSiQue, which can be attributed
to differences in the reasoning capabilities of the replaced models. Meanwhile, CAPI increases
due to the higher API costs associated with the new models. Overall, these results indicate that the
framework exhibits robust generalization to previously unseen LLMs. Importantly, the R2-Reasoner
does not rely on any particular model; as long as the relative ordering of model capabilities is
preserved, the router can maintain stable and reliable performance across different model pools.

5.5 TRADE-OFF BETWEEN REASONING COST AND ACCURACY

Our framework supports a flexible trade-off between accuracy and cost, enabling adaptation to
different budget scenarios. By adjusting the routing threshold within our R2-Reasoner, we can
dynamically balance performance and expenditure. As shown in Figure 3, when compared against
the DoT and DataShunt baselines on the MATH and SCAN benchmarks, our method establishes a
new Pareto frontier. The results clearly show that R2-Reasoner consistently achieves significantly
higher accuracy for a given cost budget, or conversely, reaches a target accuracy at a substantially
lower cost than both competing methods.

This remarkable efficiency is quantitatively demonstrated across both datasets. On the MATH
benchmark, R2-Reasoner achieves over 70% accuracy for less than 0.08 cents, while the stronger
baseline, DoT, requires approximately 6 cents to reach similar performance—a cost reduction of more
than 75×. This advantage holds on the SCAN dataset, where our method reaches 60% accuracy for
about 0.4 cents, a task that costs the DoT baseline approximately 5 cents. These results empirically
prove that our routing mechanism enables highly effective and budget-aware reasoning, offering
practical adaptability for diverse real-world deployment scenarios with varying budget constraints.

5.6 INFERENCE TIME COMPARISON ACROSS LLM ROUTERS

We conducted additional experiments under a consistent network environment to evaluate the end-
to-end reasoning latency of our framework against several baseline methods. Each experiment was
performed independently under identical conditions. All API calls were made sequentially in a single

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12

CApi(¢)
10

20

30

40

50

60

70

80

Ac
c

(%
)

DoT
DataShunt
R2-Reasoner

0.06 0.08 0.10 0 2 4 6 8 10

CApi(¢)
20

30

40

50

60

70

Ac
c

(%
)

DoT
DataShunt
R2-Reasoner

0.4 0.5

Figure 3: Acc-Cost trade-off curves on MATH (left) and SCAN (right). A magnified inset is provided
to the right of the original sub-figure to more precisely illustrate the Pareto frontier of our method.

thread to eliminate concurrency-related interference and ensure that external factors did not distort
the latency measurements. The reported results represent the average latency across all tasks in the
benchmark, computed after completing full inference runs for every task. In each bar plot, the bar
with the darkest color corresponds to our proposed method. The summarized results are presented in
Figure 4.

COT
GPT-4o

TOT
GPT-4o

COT
Llama3

TOT
Llama3

Data
Shunt

DoT R2-
Reasoner

0

20

40

60

80

In
fe

re
nc

e
La

te
nc

y
(s

)

35.80

93.10

18.10

58.30

25.10 23.50
14.27

(a) P3

COT
GPT-4o

TOT
GPT-4o

COT
Llama3

TOT
Llama3

Data
Shunt

DoT R2-
Reasoner

0

5

10

15

20

25

30

In
fe

re
nc

e
La

te
nc

y
(s

)

9.21

32.50

5.00

21.80

7.60
5.50

7.22

(b) SCAN

COT
GPT-4o

TOT
GPT-4o

COT
Llama3

TOT
Llama3

Data
Shunt

DoT R2-
Reasoner

0

10

20

30

40

50

60

In
fe

re
nc

e
La

te
nc

y
(s

)

34.50

60.50

21.10

49.00

24.90 22.60

9.88

(c) MATH

Figure 4: Inference latency comparison of different methods across three benchmarks.

The inference latency results demonstrate significant differences among the evaluated routing methods
across the four benchmark tasks. Notably, R2-Reasoner consistently achieves the lowest or near-
lowest latency in most cases. For instance, on P3, R2-Reasoner completes inference in 14.27 seconds,
substantially faster than CoT and ToT configurations with both GPT-4o and LLaMA 3-8B models,
which require between 18.1 and 93.1 seconds. Similar trends are observed on MATH and CSQA,
where R2-Reasoner reduces inference time by more than 50% compared to the heaviest baselines
(ToT).

On SCAN, R2-Reasoner incurs a slightly higher latency than CoT (LLaMA 3-8B), but it still
remains considerably faster than the majority of other methods, including all GPT-4o-based baselines.
This performance advantage can be attributed to the framework’s adaptive routing strategy, which
prioritizes lightweight models for simpler instances and selectively invokes higher-capacity models
only when necessary. As a result, R2-Reasoner achieves both time efficiency and cost efficiency,
without compromising task performance. Overall, these results highlight the framework’s capability
to perform fast and scalable reasoning across diverse benchmarks, demonstrating clear practical
advantages over existing LLM routing methods.

6 CONCLUSION

In this work, we presented R2-Reasoner, a novel framework leveraging a reinforced Model Router
to efficiently scale large language model reasoning by decomposing complex tasks and allocating
subtasks to heterogeneous models. Our staged training pipeline, combining supervised fine-tuning
with iterative reinforcement learning, enables adaptive, cost-effective collaboration among models.
Looking forward, R2-Reasoner offers promising potential for real-world applications requiring
scalable, resource-aware multi-model reasoning, such as complex decision-making systems and cloud
computing platform.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all necessary resources and code used in this
paper. All benchmarks and models employed are fully open-source or publicly accessible, and no
privacy or copyright concerns are involved. All datasets and models are cited in Section 5.1.

Our project code, including the implementation of the R2-Reasoner framework, training scripts,
and evaluation pipelines, is publicly available via the following anonymous link: https://
anonymous.4open.science/r/R2_Reasoner.

Additionally, the main paper, appendix C.2, C.1, and supplementary materials include detailed
descriptions of the experimental setup, hyperparameters, and evaluation protocols. Together with the
provided code, these materials allow other researchers to fully reproduce the results reported in this
work.

REFERENCES

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, Shyam Upadhyay,
Manaal Faruqui, and Mausam. Automix: Automatically mixing language models, 2025. URL
https://arxiv.org/abs/2310.12963.

Fenglong Cai, Dong Yuan, Zhe Yang, and Lizhen Cui. Edge-llm: A collaborative framework for
large language model serving in edge computing. In 2024 IEEE International Conference on Web
Services (ICWS), pp. 799–809. IEEE, 2024.

Dong Chen, Yueting Zhuang, Shuo Zhang, Jinfeng Liu, Su Dong, and Siliang Tang. Data shunt:
Collaboration of small and large models for lower costs and better performance. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 11249–11257, 2024a.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization for
mathematical reasoning. arXiv preprint arXiv:2406.10858, 2024b.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. Routerdc: Query-based
router by dual contrastive learning for assembling large language models. Advances in Neural
Information Processing Systems, 37:66305–66328, 2024c.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,

10

https://anonymous.4open.science/r/R2_Reasoner
https://anonymous.4open.science/r/R2_Reasoner
https://arxiv.org/abs/2310.12963

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.

Jasper Dekoninck, Maximilian Baader, and Martin Vechev. A unified approach to routing and
cascading for llms. arXiv preprint arXiv:2410.10347, 2024.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for llm selections.
arXiv preprint arXiv:2410.03834, 2024.

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego
Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie
Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Jingyu Sun, Juanzi Li, Lei Zhao, Lindong
Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi
Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao
Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song,
Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao
Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang.
Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024. URL
https://arxiv.org/abs/2406.12793.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 645(8081):633–638, 2025.

Zixu Hao, Huiqiang Jiang, Shiqi Jiang, Ju Ren, and Ting Cao. Hybrid slm and llm for edge-cloud
collaborative inference. In Proceedings of the Workshop on Edge and Mobile Foundation Models,
pp. 36–41, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning, pp.
2873–2882. PMLR, 2018.

En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerating deep neural network
inference via edge computing. IEEE Transactions on Wireless Communications, 19(1):447–457,
2019.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Yujun Mao, Yoon Kim, and Yilun Zhou. Champ: A competition-level dataset for fine-grained
analyses of llms’ mathematical reasoning capabilities. arXiv preprint arXiv:2401.06961, 2024.

OpenAI. Introducing openai o1, 2024. URL https://openai.com/o1/.

OpenAI. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, 2025.

11

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2305.20050
https://openai.com/o1/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-gpt-5/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Tal Schuster, Ashwin Kalyan, Oleksandr Polozov, and Adam Tauman Kalai. Programming puzzles.
arXiv preprint arXiv:2106.05784, 2021.

Chenyang Shao, Xinyuan Hu, Yutang Lin, and Fengli Xu. Division-of-thoughts: Harnessing hybrid
language model synergy for efficient on-device agents. In Proceedings of the ACM on Web
Conference 2025, pp. 1822–1833, 2025a.

Chenyang Shao, Xinyuan Hu, Yutang Lin, and Fengli Xu. Division-of-thoughts: Harnessing hybrid
language model synergy for efficient on-device agents, 2025b. URL https://arxiv.org/
abs/2502.04392.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/
2408.03314.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan
Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao,
Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing
Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin
Wang, Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao
Wu, Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu,
Jinjing Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang Yuan,
Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang, Yangkun
Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng Zhang,
Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou, Zaida Zhou,
Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence, 2025. URL
https://arxiv.org/abs/2507.20534.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition, 2022. URL https://arxiv.org/abs/
2108.00573.

12

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2502.04392
https://arxiv.org/abs/2502.04392
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2108.00573
https://arxiv.org/abs/2108.00573

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv
preprint arXiv:2312.08935, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Lilian Weng. Reward hacking in reinforcement learning. lilianweng.github.io, Nov 2024. URL
https://lilianweng.github.io/posts/2024-11-28-reward-hacking/.

Noam Wies, Yoav Levine, and Amnon Shashua. Sub-task decomposition enables learning in sequence
to sequence tasks, 2023. URL https://arxiv.org/abs/2204.02892.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for problem-solving with language models. arXiv
preprint arXiv:2408.00724, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Haozhen Zhang, Tao Feng, and Jiaxuan You. Router-r1: Teaching llms multi-round routing and
aggregation via reinforcement learning. arXiv preprint arXiv:2506.09033, 2025.

Mingjin Zhang, Jiannong Cao, Xiaoming Shen, and Zeyang Cui. Edgeshard: Efficient llm inference
via collaborative edge computing. arXiv preprint arXiv:2405.14371, 2024.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H Chi, Quoc V Le, and
Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models. arXiv
preprint arXiv:2310.06117, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

Wang Zhu, Jesse Thomason, and Robin Jia. Chain-of-questions training with latent answers for
robust multistep question answering. arXiv preprint arXiv:2305.14901, 2023.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu
Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

13

https://lilianweng.github.io/posts/2024-11-28-reward-hacking/
https://arxiv.org/abs/2204.02892

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A SUPPLEMENTARY EXPERIMENT RESULTS

A.1 PERFORMANCE IMPROVEMENT OF TASK DECOMPOSER

To evaluate how the two stages of SFT and RL training have improved the task decomposer, we test
100 tasks on four benchmark (one from each category) and report results using two global metrics:
Cd and the comprehensive Score (defined in Section 4.1). The Cd is calculated as the accuracy of the
final answer obtained by allocating all subtasks generated from the current checkpoint to Llama3-8B,
while the Score is computed following Equation 3. The comparison between the base model and our
trained checkpoints is shown in Table 4. On average, SFT and RL jointly yield a 27% increase in Cd
and a 6% reduction in Score. Across all benchmarks, SFT provides consistent improvements, while
RL exhibits mild instability but still contributes overall gains. We attribute this instability to potential
insufficiencies in the reward function design.

Model
P3 SCAN MATH CSQA

Cd Score Cd Score Cd Score Cd Score

base 0.06 2200.51 0.38 1600.19 0.28 1311.71 0.69 1171.53
w/ SFT 0.10 1848.40 0.46 1557.43 0.31 1265.60 0.75 1161.46

w/ SFT+RL 0.10 1788.41 0.45 1508.50 0.34 1234.63 0.72 1201.73

Table 4: Performance improvement achieved of the Task Decomposer after multi-stage training.

Beyond these global metrics, we further analyze decomposition quality on three finer-grained dimen-
sions: Conciseness, Practicality, and Coherence. These dimensions are operationalized as follows:
Conciseness: measured by the number of subtasks generated. Practicality: measured by the token
cost required for reasoning. Coherence: measured by the proportion of logically incoherent subtask
pairs (as described in Section 4.1).

Benchmark Conciseness Practicality Coherence

SCAN 3.00→2.9263 2197.04→2208.89 0.1459→0.1367
MATH 7.54→4.36 848.03→939.45 0.0364→0.0116

Table 5: Evaluation of decomposition quality before and after the training pipeline.

Fewer subtasks are generally preferred, as they directly reduce API cost and latency. An excessive
number of subtasks may cause redundancy and confusion. Token consumption is ideally lower, since
concise answers are desirable, though moderately longer reasoning chains may yield more thorough
inference. For coherence, a smaller value is better, indicating stronger logical consistency among
subtasks. As shown in Table 5, our multi-stage training significantly improves decomposition quality
across these dimensions, further validating the effectiveness of our approach.

A.2 PERFORMANCE IMPROVEMENT OF SUBTASK ALLOCATOR

To measure how the 2 stages of SFT and RL training have improved the ability of subtask allocator,
we test 100 tasks on each benchmark and set 2 metrics for evaluation: Acc and MAE. The Acc metric
measures how many allocation samples are correct according to the labels in our allocation dataset.
The MAE metrics is based on the LLM pool listed below: Qwen2.5-0.5B-instruct, Qwen2.5-1.5B-
instruct, Qwen2.5-3B-instruct, Qwen2.5-7B-instruct, Qwen2.5-14B-instruct, Qwen2.5-32B-instruct,
Qwen2.5-72B-instruct, DeepSeek-V3, gpt-4o. Starting from Qwen2.5-0.5B-instruct as model 0, we
sequentially assign model indices from 0 to 8, making the size of the number align with the scale
of the LLMs. We calculate the MAE between the prediction LLM ID and the label LLM ID. The
MAE metric indicates the distance on the LLM map, providing a supplementary sign showing that
even if the prediction is wrong, how close it is to the labelled correct answer. The comparison of the
base model and our training checkpoint are shown in Table 6. In overall the SFT and RL method
have achieved on average 121.29% increase on accuracy and 24.08% decrease on MAE. On all
benchmarks, the SFT method shows significant improvement in both metrics. RL method is also
slightly unstable but still further achieve an overall improvement on the base of SFT method. The

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

insuffiency of RL method’s effect may be because some inevitable reward hacking during the RL
process.

Model
P3 SCAN MATH CSQA

Acc MAE Acc MAE Acc MAE Acc MAE

base 0.0923 3.0763 0.1138 3.1041 0.1016 2.5355 0.1773 2.5638
w/ SFT 0.2197 2.7762 0.2067 1.9107 0.2362 1.8685 0.3274 1.9419

w/ SFT+RL 0.2187 2.7862 0.2606 1.9361 0.2410 1.8603 0.3227 1.9834

Table 6: Performance improvement achieved of the Subtask Allocator after multi-stage training.

A.3 RL TRAINING REDUCES DEPENDENCE ON SFT DATA

To further examine the effectiveness of the RL stage, we conducted an additional experiment on the
MATH dataset by deliberately reducing the amount of supervised fine-tuning (SFT) data. Specifically,
the SFT training set was reduced by 50%, while the number of RL training epochs was doubled.

Under this setting, the model’s accuracy initially dropped by 23% immediately after SFT due to
the reduced amount of annotated data. However, after applying RL, not only was this performance
degradation fully recovered, but the reasoning accuracy was further improved by an additional 1.5%
compared to the original full-data SFT baseline.

This result highlights a key advantage of our RL process: beyond improving reasoning ability, it
substantially reduces dependence on large quantities of annotated data. In practice, this suggests that
RL can serve as a scalable alternative when labeled resources are limited, making our approach more
data-efficient and broadly applicable.

A.4 EXPLORING MODEL ENSEMBLING

Our proposed framework supports flexible extensions and adaptations to different scenarios. As an
illustrative case, we evaluate its capability on the task of model ensembling. Model ensembling is a
widely used strategy that combines the outputs of multiple models in order to improve robustness and
potentially enhance accuracy. To enable ensembling within our framework, we design a voting-based
mechanism: multiple models are assigned to the same subtask in parallel, and the final answer is
determined via majority voting. This mechanism serves as a drop-in replacement for the single-model
assignment in our allocator.

As shown in Table 7, ensembling improves the accuracy on MATH, but it does not provide consistent
advantages on other benchmarks. Upon further analysis, we suspect that introducing additional
models may also introduce misleading signals, which can interfere with the reasoning process of
the framework. This experiments demonstrate that our framework not only supports rerouting after
failure, but also generalizes to multi-model allocation for a single subtask when ensemble behavior is
desired.

A.5 CLARIFICATIONS ON POTENTIAL BIAS IN CONSTRUCTED TRAINING DATASET

In the construction of our task decomposition dataset, we applied uniform evaluation metrics across
different models, such as token counts, to ensure comparability. To mitigate potential biases arising
from inherent differences in how models generate responses (e.g., varying token length distributions),
we conducted additional experiments. Specifically, we measured the average token consumption of

Model P3 SCAN MATH CSQA
Acc CAPI Acc CAPI Acc CAPI Acc CAPI

R2-Reasoner 38% 1.160¢ 75% 0.640¢ 76.5% 0.080¢ 83.5% 0.042¢
R2-Reasoner w/ Ensembling 38% 2.577¢ 54.5% 0.934¢ 83% 0.222¢ 81.5% 0.105¢

Table 7: Performance comparison of R2-Reasoner with and without model ensembling.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

each model on two benchmark datasets and computed the mean and standard deviation across models.
The results are summarized in Table 8.

Model Name CSQA Token Num MATH Token Num

Qwen2.5-0.5B 97.22 192.15
Qwen2.5-1.5B 82.75 105.37
Qwen2.5-3B 69.72 61.17
Qwen2.5-7B 58.99 48.72
Llama3-8B 58.34 64.42

Qwen2.5-14B 49.03 78.65
Qwen2.5-32B 52.98 116.10
Qwen2.5-72B 48.51 95.01
DeepSeek-V3 63.91 60.26

GPT-4o 57.28 71.10

Mean 63.87 89.29
Std. Dev. 15.55 42.07

Table 8: Average token consumption on CSQA and MATH.

The results show no substantial or systematic variation in token consumption across models, indicating
that differences in token usage are not a major source of variability. Instead, the primary source of
cost variation lies in the per-token inference cost, which is positively correlated with the model’s
parameter scale.

B FURTHER SUPPLEMENTS TO THE METHODS AND FORMULAS

B.1 DETAILED FORMULATION OF THE TASK DECOMPOSER

Here, we provide a detailed formulation of the dataset construction process for the Task Decomposer
(4.1). The Task Decomposer, denoted asMdecomp, is responsible for transforming a complex input task

T into a sequence of clearly defined and logically connected subtasks: T
Mdecomp−−−−→ {t1, t2, . . . , tk},

where k is the number of subtasks. To systematically evaluate and select high-quality decomposi-
tions, we define three complementary metrics. Conciseness measures the number of subtasks k,
balancing between over-fragmentation and overly coarse decomposition. Practicality estimates the
computational cost by summing the token usage of all subtasks under a baseline evaluation model
Meval:

Practicality(d) =
k∑

i=1

Tokens(ti,Meval). (2)

Coherence evaluates the logical flow by counting adjacent subtask pairs that lack meaningful
connection, denoted as Coepair(d). Lower values indicate better continuity.

These metrics are combined into an overall score for a candidate decomposition d = {ti}ki=1:

Score(d) = wc · k + wp ·
k∑

i=1

Tokens(ti,Meval) + wd · Coepair(d), (3)

where wc, wp, wd > 0 are weighting coefficients. Lower scores correspond to higher-quality decom-
positions.

Additionally, a binary correctness signal C(d) ∈ {0, 1} is determined by attempting to solve the
original task using decomposition d with the evaluation modelMeval. For each task T , we generate
a set of candidate decompositions ST = {d1, d2, . . . , dm} and select the decomposition d∗ that
minimizes the score while satisfying correctness if possible:

d∗ =

{
argmind∈ST ,C(d)=1 Score(d) if any C(d) = 1,

argmind∈ST
Score(d) otherwise.

(4)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The collection of all (T, d∗) pairs forms the decomposition dataset Ddecomp.

Finally, the Task Decomposer is fine-tuned on Ddecomp using a standard cross-entropy loss:

Ldecomp = −
∑

(T,d∗)∈Ddecomp

∑
i

logPθdecomp(d
∗
i | T), (5)

where d∗i denotes the i-th subtask in the target decomposition. This training ensures thatMdecomp
consistently generates concise, practical, and coherent subtask sequences suitable for efficient reason-
ing.

B.2 GROUPED SEARCH STRATEGY FOR ALLOCATOR TRAINING

Here, we provide the full details of the grouped search algorithm used to construct the allocation
dataset Dalloc (4.2).

Formal Problem. Given subtasks {ti} fromMdecomp and a model poolMpool, the objective is to
find an allocation scheme M∗

A that minimizes resource consumption while ensuring correctness:

M∗
A = argmin

MA

E[CApi(MA) + CTime(MA)] s.t. Acc(MA) = 1. (6)

Granularity Expansion. Each subtask ti is labeled with a difficulty level based on α-quantile token
probabilities:

G(ti) =


GE p(ti) ≥ τdiff1,

GM τdiff2 < p(ti) < τdiff1,

GH p(ti) ≤ τdiff2.

(7)

Simultaneously, models are grouped by capability:

Mpool = GSLM
M ∪GMLM

M ∪GLLM
M . (8)

An initial allocation MA,0 maps each subtask to the medium-capacity model within the corresponding
group.

Within-Group Refinement. For each iteration j, the allocation MA,j is updated as:

MA,j+1(t
i) =

{
smaller(GX

M) if Acc(MA,j) = 1,

larger(GX
M) if Acc(MA,j) = 0,

(9)

where X = G(ti).

Cross-Group Adjustment. If correctness cannot be achieved with within-group adjustments, inter-
group changes are made:

MA,j+1(t
i) ∈ GY

M, Y ̸= X, (10)

subject to available model capacities.

Termination. The algorithm halts after at most Niter_alloc ≤ 20 iterations or when Acc(MA,j) = 1
with minimal resource usage. The resulting allocations {({ti},M∗

A)} populate Dalloc.

Training Objective. The allocatorMalloc is trained on Dalloc via supervised fine-tuning. The loss
function is defined as:

Lalloc = −
∑

({ti},M∗
A)∈Dalloc

∑
i

logPθalloc(M
∗
A(t

i) | ti). (11)

The algorithmic workflow of grouped search strategy for allocator training is illustrated in Algorithm
1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 Grouped Search Strategy for Optimal Allocation Scheme M∗
A

Require: Subtask sequence {ti}; Model pool Mpool; Difficulty thresholds τdiff1, τdiff2; Max
iterations Niter_alloc ≤ 20.

Ensure: Near-optimal allocation scheme M∗
A that minimizes cost with Acc = 1.

1: Phase 1: Initialization via Granularity Expansion and α-quantile
2: for each subtask ti do
3: G(ti)← ClassifyDifficulty(ti, τdiff1, τdiff2) ▷ Categorize as GE , GM , GH

4: end for
5: PartitionMpool into capability groups GSLM

M ,GMLM
M ,GLLM

M
6: MA ←MA,0 by mapping each G(ti) to medium_model(GX

M)
7: Initialize best-found scheme M∗

A ← null

8: Phase 2: Iterative Search and Refinement
9: for j = 0 to Niter_alloc − 1 do

10: if EvaluateAccuracy(MA) == 1 then
11: M∗

A ←MA ▷ Update best-found valid scheme
12: MA ← AdjustDown_WithinGroup(MA) ▷ Seek a more resource-efficient solution
13: else ▷ Accuracy is 0, need a more powerful scheme
14: MA,next ← AdjustUp_WithinGroup(MA) ▷ Try upgrading models within their groups
15: if MA,next == MA then ▷ Within-group adjustments are maxed out
16: MA ← AdjustUp_BetweenGroup(MA) ▷ Escalate to inter-group model upgrades
17: else
18: MA ←MA,next
19: end if
20: end if
21: end for
22: return M∗

A

B.3 GRPO OBJECTIVE FOR CO-TRAINING

For completeness, we provide the full GRPO objective function used in our co-training phase (4.3).
The general form is:

JGRPO(θRL) =Eq∼P (Q),{oi}G
i=1∼πθold (O|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
k=1

{
min

[
πθRL

(oi,k|q, oi,<k)

πθold(oi,k|q, oi,<k)
Âi,k,

clip
(
πθRL

(oi,k|q, oi,<k)

πθold(oi,k|q, oi,<k)
, 1− ϵ, 1 + ϵ

)
Âi,k

]
− βDKL[πθRL

(·|q, oi,<k)||πref(·|q, oi,<k)]

}] (12)

Here: - θRL are the parameters being optimized. - πθRL
is the current policy, while πθold is the policy

used to generate trajectories. - oi,k is the k-th action in the i-th trajectory given context q. - Âi,k is
the estimated advantage for that action. - The first term is a clipped surrogate objective (as in PPO),
and the second term penalizes deviation from a reference policy πref, controlled by β.

This formulation is applied identically when training eitherMdecomp orMalloc, depending on which
module is currently being updated.

C EXPERIMENT DETAILS

C.1 EXPERIMENTAL ENVIRONMENT AND TRAINING HYPERPARAMETERS

The hardware environment used for our experiments and the specific training hyperparameters are
summarized in Table 9.

In addition to the hardware specifications and basic training parameters, we also set hyperparam-
eters during dataset construction. During constructing the dataset for the Task Decomposer, we
computed a weighted average over the three dimensions of task decomposition, which involves three

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

hyperparameters: wc, wp, and wd. These three hyperparameters serve as weights for: (1) the total
number of subtasks, (2) the total number of tokens used during inference, and (3) the coherence score,
respectively. Empirically, these three components exhibit significantly different value ranges across a
wide range of tasks. Specifically, our analysis shows that their average values are approximately 5.87
(number of subtasks), 676.59 (token count), and 0.1541 (coherence score). To ensure the comparabil-
ity of these components during weighted aggregation, our hyperparameter selection strategy is based
on normalizing them to a similar scale. Accordingly, we set wc = 100, wp = 1, and wd = 1000,
which balances their contributions in the combined scoring function.

To assess the sensitivity, we also conducted experiments using 10 distinct parameter settings during
the data construction process. We found that the dataset quality is generally stable when the weight
ratios stay within a reasonable balance (i.e., fluctuating within ±30Among the parameters, the first one
wc plays the dominant role, critically affecting the quality of decomposition and the complexity of
subsequent reasoning, while the other two serve auxiliary roles. We plan to include a more thorough
sensitivity analysis in the revised manuscript.

Module Element Detail

System

OS Ubuntu 20.04.6 LTS
CUDA 12.4
Python 3.12.9
Pytorch 2.6.0

trl 0.17.0
accelerate 1.6.0

peft 0.15.1
flash_attn 2.7.4.post1

Device 2*NVIDIA A100 80G

Workflow API Siliconflow & Microsoft Azure

SFT

Mode Lora
Batch size 4, 8

Number of epochs 2, 3
Max token length 2048

Lora rank 32, 64
Optimzer AdamW

Learning rate 0.00002, 0.00003

RL Training

Algorithm GRPO
Number of Generation 4

Batch size 1
Global step 1024

Max token length 2048
Optimzer AdamW

Learning rate 0.0001, 0.00015

Table 9: Detailed Experimental Settings

C.2 DETAILS OF THE BENCHMARKS

We verify the effectiveness of our framework upon six open-source benchmarks. These benchmarks
target four distinct aspects of the model’s capability, including:

• (1) Program Synthesis: We select P3 (Schuster et al., 2021) (Python Programming Puzzle)
for evaluation. P3 defines each puzzle by a python program f and evaluate the concerned
ability of program synthesis by checking if the candidate input provided by machines
could make f return True. By a form comprehensible for both humans and machines, it
emphasizes on the ability involved during coding process such as syntax correctness and
algorithmic reasoning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

For task decomposer, we randomly choose 1500 puzzles from the original P3 benchmark,
and filter out 1085 puzzles with their decomposition results which are valid for SFT training.
For subtask allocator, we originally randomly select 2000 puzzles and eventally filter out
1687 puzzles with a total number of over 12000 subtask allocation samples as the candidate
dataset. We choose 4000 subtask allocation samples for SFT training on the subtask allocator.

• (2) Language-Driven Navigation: We select SCAN (Lake & Baroni, 2018) (Simplified
version of the CommAI Navigation) for this evaluation. This benchmark consists of a set of
navigation commands with the corresponding action sequences. By instructing machines
to convert the navigation commands in natural language into a sequence of actions and
comparing the generated sequence sample with the label, it focus on assesing the ability of
logical navigation, including traversal, backward reasoning and anomaly detection.

For task decomposer, we randomly choose 2814 commands out of the original SCAN
benchmark, and filter out 1180 commands with their decomposition results for the SFT
stage training. For subtask allocator, we originally randomly select 2000 commands and
obtain a set of 7708 sub-command allocation samples. We also select 4000 sub-command
allocation samples for training the subtask allocator.

• (3) Solving Math Problems: We select MATH (Hendrycks et al., 2021) and CHAMP (Mao
et al., 2024) for this evaluation. The MATH benchmark consists of 12,500 challenging
competition mathematics problems, while the CHAMP benchmark contains 270 diverse
high school competition-level math problems. These two mainly involves LLM’s con-
ducting computation, memorizing mathematical knowledge and utilizing problem-solving
techniques.Solving math problems has been universally acknowledged as a crucial aspect to
measure LLM’s reasoning ability.

For task decomposer, we randomly choose 2044 math problems from the original MATH
benchmark, and use 1430 problems with their decomposition results for fine-tuning the task
decomposer. For subtask allocator, we first select 2000 original math problems from the
benchmark. After building our own allocation dataset, we obtain over 7000 sub-problem
allocation samples, and choose 4000 sub-problem allocation samples for training and
boosting the ability of subtask allocator.

• (4) Commonsense Reasoning: We select CSQA (Talmor et al., 2018) (CommonsenseQA)
and MuSiQue (Trivedi et al., 2022) for this evaluation. These 2 benchmarks require a broader
commonsense knowledge base for LLM. Considering the knowledge base varies as the scale
of LLM varies, it is a suitable benchmark to test if different LLMs in our framework could
collaborate and compose an integrated knowledge base in commonsense scenario.

For task decomposer, we randomly select 2273 commonsense queries from the original
benchmark, and utilize 1591 out of the queries to finish the training process. For subtask
allocator, we obtain an original dataset of 1800 commonsense queries, and obtain over 5500
sub-problem allocation samples, and select nearly 4000 sub-problem allocation samples for
SFT training.

D DISCUSSIONS

D.1 ENHANCING LLM REASONING VIA REINFORCEMENT LEARNING

The reasoning process of LLMs can be formulated as a partially observable Markov decision process
(POMDP), where context serves as the state, token generation as the action, and the objective is to
learn a policy maximizing cumulative reward. Since DeepSeek-R1 (Guo et al., 2025), reinforcement
learning has become central to enhancing LLM reasoning (Yu et al., 2025; Zuo et al., 2025; Liu
et al., 2025). Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has recently gained
widespread attention as a leading RL algorithm: it evaluates batches of outputs, computes relative
advantages, and uniformly assigns rewards across tokens. Unlike actor-critic methods relying on value
estimators, GRPO avoids estimation bias, instability, and reward hacking (Weng, 2024), achieving
more stable and faithful optimization.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.2 ALTERNATIVE REWARD DESIGNS

We considered several alternative reward formulations beyond the outcome-based design adopted in
our experiments. One natural idea is to provide step-wise (intermediate) rewards. However, in tasks
such as 24-point arithmetic or multi-step mathematical reasoning, it is often difficult to accurately
assess the quality of intermediate steps without knowledge of the final outcome. This makes step-level
reward annotation or computation unreliable in practice.

Another potential direction is to leverage Monte Carlo Tree Search (MCTS) to approximate inter-
mediate rewards. While this strategy can, in principle, provide more informative supervision, it
introduces substantial computational overhead and significantly increases the complexity of the data
construction pipeline, thereby limiting its scalability.

Inspired by the outcome-driven reward design used in DeepSeek R1, we ultimately adopted a final-
outcome-based reward scheme. This approach achieves a good balance between effectiveness and
efficiency, while remaining scalable to large-scale training. Our experimental results demonstrate that
this reward formulation is both practical and effective for the considered reasoning tasks.

D.3 BROADER IMPACTS

Our R2-Reasoner framework has the potential to significantly broaden the accessibility and appli-
cability of advanced AI reasoning capabilities. By substantially reducing computational costs and
latency associated with complex multi-step reasoning, it can democratize the use of powerful Large
Language Models. This could enable smaller organizations, individual researchers, or developers
with limited resources to leverage state-of-the-art reasoning techniques that are currently prohibitively
expensive. In practical terms, this could spur innovation across various sectors. For instance, in
education, it could power more sophisticated and responsive AI tutors capable of breaking down
complex problems for students in a cost-effective manner. In scientific research, R2-Reasoner could
facilitate more intricate automated hypothesis generation and experimental design by making deep
reasoning chains more feasible. For enterprise applications, it could lead to the development of more
intelligent and nuanced customer service bots, data analysis tools, or decision support systems that
can handle complex queries without incurring excessive operational costs.

Furthermore, the principle of dynamically allocating resources based on sub-task complexity could
inspire more sustainable AI practices. By preferentially using smaller, more energy-efficient models
for simpler tasks, the overall energy consumption and carbon footprint associated with large-scale AI
deployments could be reduced. The framework also encourages the development and utilization of
a more diverse ecosystem of language models, fostering innovation in both large and small model
architectures. Ultimately, by making sophisticated reasoning more efficient and economical, R2-
Reasoner can help unlock new applications and accelerate the integration of AI into various aspects
of daily life and industry, fostering more intelligent and adaptive systems.

E PROMPTS

Below show how we construct our prompts for the four aspects of model’s reasoning capability, each
aspect taking one benchmark’s prompt as an example:

E.1 PROGRAM SYNTHESIS: P3

Below is the prompt for decomposition data collection on benchmark P3:

You will be provided with a Programming Puzzle. The ultimate task is
to find an input that will make the program return True.

To better accomplish this task, now you need to break the puzzle
into multiple steps, preferably between 3 and 8 steps.

These steps are organized in a chain-like manner, in which the steps
are supposed to be solved following a certain order.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Meanwhile when writing each broken-down question step on a separate
line, the order of the questions should be the order of how to
solve these broken-down question steps.

4 examples are as follows:

Program 1:
def sat(li: List[int], k=6):

def prod(nums):
ans = 1
for i in nums:

ans *= i
return ans

return min(li) > 1 and len(li) == k and all((1 + prod(li[:i] +
li[i + 1:])) % li[i] == 0 for i in range(k))

Result 1 of decomposed steps:
step 1: Understand the conditions required by the function.
step 2: Choose the length of the list based on k.
step 3: Generate potential elements for the list.
step 4: Calculate the product of all other elements for each element

in the list when i = 0 and add 1 to the product.
step 5: Calculate the product of all other elements for each element

in the list when i = 1 and add 1 to the product.
step 6: Calculate the product of all other elements for each element

in the list when i = 2 and add 1 to the product.
step 7: Calculate the product of all other elements for each element

in the list when i = 3 and add 1 to the product.
step 8: Calculate the product of all other elements for each element

in the list when i = 4 and add 1 to the product.
step 9: Calculate the product of all other elements for each element

in the list when i = 5 and add 1 to the product.
step 10: Verify the divisibility condition for each element.
step 11: Adjust the elements and repeat until a valid list is found.
step 12: Confirm that the list meets all conditions.

Program 2:
def sat(indices: List[int], s=\"aeEm%%uIV0imR&xUvQvZf#1z4\"):

i, j = indices
return s[i] == s[j] and 0 <= i < j < i + 3

Result 2 of decomposed steps:
step 1: Understand there are two conditions need to fulfill for the

input indices that i and j in the indices should meet first s[i]
== s[j] and 0 <= i < j < i + 3

step 2: Iterate through the string sin a group of 3 characters, s[n]
s[n+1] s[n+2]

step 3: Compare the three characters to see if any of two characters
are the same.

step 4: If identical strings are found, Count the index of both % in
the string s; If no identical characters, move to the

consecutive three characters.
step 5: Write the index of two identical characters and yield the

final answer of list indices.

Program 3:
def sat(path: List[int], weights=[{{1: 20, 2: 1}}, {{2: 2, 3: 5}},

{{1: 10}}], bound=11):
return path[0] == 0 and path[-1] == 1 and sum(weights[a][b] for

a, b in zip(path, path[1:])) <= bound
Result 3 of decomposed steps:
step 1: Create a list that fulfill the first contraint to have 0 at

index 0.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

step 2: Create a list that fulfill the second contraint to have 1 at
last.

step 3: Given that the sum of weights[a][b] for a, b in zip(path,
path[1:])) <= bound, we need to find values in the list weights
that is less than 11.

step 4: First checking if combining step 1 and step 2 to be path
could be the correct input by calculating sum(weights[a][b] for
a, b in zip(path, path[1:])) <= bound

step 5: If the previous step is not correct, then think about what
could be the integer filling between 0 and 1.

step 6: Eliminate the incorrect candidates.
step 7: Fill in the number to the list of integer.
step 8: Verify the if the new list will make the function return

True.

Program 4:
"name": "LastLetters:3",
def sat(y: List[bool], x=[’ryxadec’, ’pyfixotibujadyxe’,

’mopubywewexi witethig 7’, ’ !’,
’jethi sed c’, ’lotextusavufubynyb’,
’wuxesafetatextysima pebutextiwafufok’,
’tuchonip’, ’ S’,
’xyvovikofutex pylekazuquekedajota E’,
’wik xofoxujegerigubo ?’,
’gipimakude 1’, ’ O’, ’ ^’,
’lakiquuvuhenugu vajyquy P’,
’ 6’, ’fezore’, ’vabithin

textusichytilejocoke’,
’ B’, ’lasuthasebuvy que &’,
’mymanuzuzudyc thazufys y’, ’’, ’ ?’,
’gecohywelawu’, ’wath’]):

assert len(x) == len(y)
for s, b in zip(x, y):

if len(s.split(" ")[-1]) == 1:
assert b == s[-1].isalpha()

else:
assert not b

return True
Result 4 of decomposed steps:
step 1: Determine the length of the list x to ensure y has the same

length.
step 2: Loop through the list x to check the last word of each

string.
step 3: Check if the last segment of the string in x (seperated by

space) have length 1.
step 4: If Step 3 meet, check if that character is alphabetical

characters.
step 5: If step 4 is true, then the boolean value in list y with

corresponding index should also be True. If not, False.
step 6: If Step 3 do not meet, the boolean value in list y with

corresponding index should be False.
step 7: The final result should a list of boolean values.

Now here is the puzzle for you to decompose: {question}
Requirements:
1. The steps broken down should preferably be between 3 to 8 steps.
2. Each step needs to be executable, have a clear meaning, or

produce a meaningful result.

Answer Format:
The process of solving the problem can be divided into the following

steps:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1. question step 1
2. question step 2
3. question step 3
...

Below is the prompt for solving subtasks sequentially on benchmark P3:

You will be provided with a Programming Puzzle. Your task is to find
an input that will make the program return True.

Here is the puzzle:{puzzle}

The data type of your final answer should be {ans_type}.
I have broken this puzzle down into many easier subtasks.
Following the order of the subtasks and solving every subtask in

sequence lead to finding out the correct input.
I will assign you sub-tasks one by one, and provide the results of

the previous sub-tasks as a reference for your reasoning.
Please follow the sequence of our subtasks to find the correct input

.

Now, the first several subtasks are already solved, these subtasks
listed below following the sequence:{previous_tasks}.

Their answers are listed below, also following the sequence:{
previous_moves}.

Now you need to solve the subtask: {Step_dict[str(cnt)]}.

Focus exclusively on solving the subtask.
Your answer should be concise and directly address the core

reasoning process.
Avoid any unnecessary comments, greetings, or expressions of

enthusiasm. Only provide the essential reasoning process and
answer.

Please provide the answer to the subtask.

Below is the prompt for synthesizing to obtain the final answer on benchmark P3:

We are provided with a progamming puzzle. Our task is to find an
input that will make the program return True.

Here is the puzzle:{puzzle}
The data type of our correct input should be {ans_type}.

I have broken this puzzle down into many easier subtasks.
Following the order of the subtasks and solving every subtask in

sequence lead to finding out the correct input.
All the subtasks are listed in the order: {previous_tasks}
The answers to all the subtasks are listed in the same order: {

previous_answs}

We can synthesize the final answer based on all the answers to the
subtasks.

You must synthesize the final answer strictly based on the provided
answers to the subtasks, without performing any error correction
or independent recalculations.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Even if a subtask answer contains a reasoning mistake or calculation
error, you must still use it as given.

Do not infer the correct answer based on correct reasoning steps if
the computed result is incorrect.

Your final synthesis should reflect the exact values and conclusions
stated in the subtask answers, even if they are incorrect.

The final answer is the input that will make the program return True
.

Please give the input and just give the answer without any
additional explanation or clarification.

for example, if the final answer is 3, you are supposed to output 3.
To output "the answer is 3" is forbidden.

for example, if the final answer is [1,2,3], you are supposed to
output [1,2,3]. To output "‘‘‘python [1,2,3]‘‘‘" is forbidden.

Below is the prompt for using task decomposer to decompose the original puzzle into a sequence of
subtasks on benchmark P3:

You will be provided with a Programming Puzzle. The ultimate task is
to find an input that will make the program return True.

To better accomplish this task, now you need to break the puzzle
into multiple steps, preferably between 3 and 8 steps.

These steps are supposed to be solved in a chain-like manner
following a certain order.

Meanwhile when writing each broken-down step on a separate line, the
order of the steps should be the order of solving these broken-

down steps.

1 examples is as follows:
Programming Puzzle:
def sat(indices: List[int], s=\"aeEm%%uIV0imR&xUvQvZf#1z4\"):

i, j = indices
return s[i] == s[j] and 0 <= i < j < i + 3

Answer:
The process of solving the programming puzzle can be divided into

the following steps:
1: Understand there are two conditions need to fulfill for the input

indices that i and j in the indices should meet first s[i] == s
[j] and 0 <= i < j < i + 3

2: Iterate through the string sin a group of 3 characters, s[n] s[n
+1] s[n+2]

3: Compare the three characters to see if any of two characters are
the same.

4: If identical strings are found, Count the index of both % in the
string s; If no identical characters, move to the consecutive
three characters.

5: Write the index of two identical characters and yield the final
answer of list indices.

Now here is the puzzle for you to decompose: {original_question}
Requirements:
1. The steps broken down should preferably be between 3 to 8 steps.
2. Each step needs to be executable, have a clear meaning, or

produce a meaningful result.

Answer Format:
The process of solving the programming puzzle can be divided into

the following steps:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1. step 1
2. step 2
3. step 3
...

Below is the prompt for using subtask allocator to allocate candidate model to a certain subtask on
benchmark P3:

Now we have a programming puzzle.
We need to find the corrct input that will make the program return

true.
We decide to break this puzzle into subtasks.
Now we have to solve a subtask, and there are 9 models that can be

chosen to solve this subtask.
These 9 models are:
qwen2.5-0.5b, qwen2.5-1.5b, qwen2.5-3b, qwen2.5-7b, qwen2.5-14b,

qwen2.5-32b, qwen2.5-72b, deepseek-V3, gpt-4o.
We list these models in ascending order acoording to their

capability and the difficulty levels of the subtasks they are
suitable for.

For example,
qwen2.5-0.5b has the lowest capability thus is suitable for the

easiest subtask;
gpt-4o has the highest capability thus is suitable for the hardest

subtask.
Task: choose the most appropriate model from the list above to solve

the given subtask.
Output only the chosen model’s name.

the original puzzle: {original_problem}
the subtask: {subtask}

E.2 LANGUAGE-DRIVEN NAVIGATION: SCAN

Below is the prompt for decomposition data collection on benchmark SCAN:

I will give you a piece of natural language command. I need you to
decompose it to smaller commands.

8 examples are as follows:

Command: "look right after look twice"
Result of decomposition: "look right after look twice" can be solved

by: "look right", "look twice".

Command: "jump opposite right thrice and walk"
Result of decomposition: "jump opposite right thrice" can be solved

by: "jump opposite right", "jump opposite right thrice". "walk"
can be solved by: "walk". So, "jump opposite right thrice and
walk" can finally be solved by: "jump opposite right", "jump
opposite right thrice", "walk".

Command: "run left twice and run right"
Result of decomposition: "run left twice" can be solved by: "run

left", "run left twice". "run right" can be solved by "run right
". So, "run left twice and run right" can finally be solved by:
"run left", "run left twice", "run right".

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Command: "run opposite right"
Result of decomposition: "run opposite right" can finally be solved

by "run opposite right".

Command: "look opposite right thrice after walk"
Result of decomposition: "look opposite right thrice" can be solved

by: "look opposite right", "look opposite right thrice". "walk"
can be solved by "walk". So, "look opposite right thrice after
walk" can finally be solved by: "look opposite right", "look
opposite right thrice", "walk".

Command: "jump around right"
Result of decomposition: "jump around right" can be solved by: "jump

right", "jump around right". So, "jump around right" can
finally be solved by: "jump right", "jump around right".

Command: "look around right thrice and walk"
Result of decomposition: "look around right thrice" can be solved by

: "look right", "look around right", "look around right thrice".
"walk" can be solved by "walk". So, "look around right thrice

and walk" can finally be solved by: "look right", "look around
right", "look around right thrice", "walk".

Command: "turn right after run right thrice"
Result of decomposition: "turn right" can be solved by: "turn right

". "run right thrice" can be solved by: "run right", "run right
thrice". So, "turn right after run right thrice" can finally be
solved by: "turn right", "run right", "run right thrice".

Now the command is {question}, please decompose it into smaller
commands like the examples.

Answer Format: xxx can be solved by: xxx. xxx can be solved by xxx.
... So, xxx can finally be solved by: "subcommand_0", "
subcommand_1",...

Below is the prompt for solving sub-commands sequentially on benchmark SCAN:

There is a natural language instruction representing a sequence of
actions. I need you to translate this sentence from natural
language into a standardized meta-action sequence."

Here is the instruction:{question}

I have broken this instruction down into some smaller instructions.
I will assign you sub-instructions one by one, and provide the
results of the previous sub-instructions as a reference for your
reasoning.

Please organize your reasoning according to the combination and
progression of actions.

For your reference, 13 examples for translation together with the
corresponding explanations are as follows:

Q: "turn left"
A: "turn left" outputs "TURN LEFT".

Q: "turn right"
A: "turn right" outputs "TURN RIGHT".

Q: "jump left"

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A: The output of jump l e f t concatenates: the output of turn
l e f t , the output of jump . turn l e f t outputs
TURN L E F T . jump outputs JUMP . So concatenating
the output of turn l e f t and the output of jump

leads to TURN L E F T + JUMP . So the output of jump
l e f t is TURN L E F T + JUMP .

Q: "run right"
A: The output of "run right" concatenates: the output of "turn right

", the output of "run". "turn right" outputs "TURN RIGHT". "run"
outputs "RUN". So concatenating the output of "turn right" and

the output of "run" leads to "TURN RIGHT" + "RUN". So the output
of "run right" is "TURN RIGHT" + "RUN".

Q: "look twice"
A: The output of "look twice" concatenates: the output of "look",

the output of "look". "look" outputs "LOOK". So repeating the
output of "look" two times leads to "LOOK" * 2. So the output of
"look twice" is "LOOK" * 2.

Q: "run and look twice"
A: The output of "run and look twice" concate+nates: the output of "

run", the output of "look twice". "run" outputs "RUN". "look
twice" outputs "LOOK" * 2. So concatenating the output of "run"
and the output of "look twice" leads to "RUN" + "LOOK" * 2. So
the output of "run and look twice" is "RUN" + "LOOK" * 2.

Q: "jump right thrice"
A: The output of "jump right thrice" concatenates: the output of "

jump right", the output of "jump right", the output of "jump
right". "jump right" outputs "TURN RIGHT" + "JUMP". So repeating
the output of "jump right" three times leads to ("TURN RIGHT" +
"JUMP") * 3. So the output of "jump right thrice" is ("TURN

RIGHT" + "JUMP") * 3.

Q: "walk after run"
A: The output of "walk after run" concatenates: the output of "run",

the output of "walk". "run" outputs "RUN". "walk" outputs "WALK
". So concatenating the output of "run" and the output of "walk"
leads to "RUN" + "WALK". So the output of "walk after run" is "

RUN" + "WALK".

Q: "turn opposite left"
A: The output of "turn opposite left" concatenates: the output of "

turn left", the output of "turn left". "turn left" outputs "TURN
LEFT". So repeating the output of "turn left" twice leads to "

TURN LEFT" * 2. So the output of "turn opposite left" is "TURN
LEFT" * 2.

Q: "turn around left"
A: The output of "turn around left" concatenates: the output of "

turn left", the output of "turn left", the output of "turn left
", the output of "turn left". "turn left" outputs "TURN LEFT".
So repeating the output of "turn left" four times leads to "TURN
LEFT" * 4. So the output of "turn around left" is "TURN LEFT" *
4. Q: "turn opposite right" A: The output of "turn opposite

right" concatenates: the output of "turn right", the output of "
turn right". "turn right" outputs "TURN RIGHT". So repeating the
output of "turn right" twice leads to "TURN RIGHT" * 2. So the

output of "turn opposite right" is "TURN RIGHT" * 2.

Q: "turn around right"

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

A: The output of "turn around right" concatenates: the output of "
turn right", the output of "turn right", the output of "turn
right", the output of "turn right". "turn right" outputs "TURN
RIGHT". So repeating the output of "turn right" four times leads
to "TURN RIGHT" * 4. So the output of "turn around right" is "

TURN RIGHT" * 4.

Q: "walk opposite left"
A: The output of "walk opposite left" concatenates: the output of "

turn opposite left", the output of "walk". "turn opposite left"
outputs "TURN LEFT" * 2. "walk" outputs "WALK". So concatenating
the output of "turn opposite left" and the output of "walk"

leads to "TURN LEFT" * 2 + "WALK". So the output of "walk
opposite left" is "TURN LEFT" * 2 + "WALK".

Q: "walk around left"
A: The output of "walk around left" concatenates: the output of "

walk left", the output of "walk left", the output of "walk left
", the output of "walk left". "walk left" outputs "TURN LEFT" +
"WALK". So repeating the output of "walk around left" four times
leads to ("TURN LEFT" + "WALK") * 4. So the output of "walk

around left" is ("TURN LEFT" + "WALK") * 4.

Please pay attention to the use of parentheses.

Now, the first several sub-instructions are already solved, these
sub-instructions are listed below following the sequence:{
previous_steps}.

Their answers are listed below, also following the sequence:{
previous_answs}.

Now you need to solve the sub-instruction: {Step_dict[str(cnt)]}.

Focus exclusively on solving the sub-instruction.
Your answer should be concise and directly address the core

reasoning process.
Avoid any unnecessary comments, greetings, or expressions of

enthusiasm. Only provide the essential reasoning process and
answer.

Please provide the answer to the sub-instruction.

Below is the prompt for synthesizing to obtain the final answer on benchmark SCAN:

There is a natural language instruction representing a sequence of
actions. I need you to translate this sentence from natural
language into a standardized meta-action sequence."

Here is the instruction:{problem}

For your reference, 13 examples for translation together with the
corresponding explanations are as follows:

Q: "turn left"
A: "turn left" outputs "TURN LEFT".

Q: "turn right"
A: "turn right" outputs "TURN RIGHT".

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Q: "jump left"
A: The output of jump l e f t concatenates: the output of turn

l e f t , the output of jump . turn l e f t outputs
TURN L E F T . jump outputs JUMP . So concatenating
the output of turn l e f t and the output of jump

leads to TURN L E F T + JUMP . So the output of jump
l e f t is TURN L E F T + JUMP .

Q: "run right"
A: The output of "run right" concatenates: the output of "turn right

", the output of "run". "turn right" outputs "TURN RIGHT". "run"
outputs "RUN". So concatenating the output of "turn right" and

the output of "run" leads to "TURN RIGHT" + "RUN". So the output
of "run right" is "TURN RIGHT" + "RUN".

Q: "look twice"
A: The output of "look twice" concatenates: the output of "look",

the output of "look". "look" outputs "LOOK". So repeating the
output of "look" two times leads to "LOOK" * 2. So the output of
"look twice" is "LOOK" * 2.

Q: "run and look twice"
A: The output of "run and look twice" concate+nates: the output of "

run", the output of "look twice". "run" outputs "RUN". "look
twice" outputs "LOOK" * 2. So concatenating the output of "run"
and the output of "look twice" leads to "RUN" + "LOOK" * 2. So
the output of "run and look twice" is "RUN" + "LOOK" * 2.

Q: "jump right thrice"
A: The output of "jump right thrice" concatenates: the output of "

jump right", the output of "jump right", the output of "jump
right". "jump right" outputs "TURN RIGHT" + "JUMP". So repeating
the output of "jump right" three times leads to ("TURN RIGHT" +
"JUMP") * 3. So the output of "jump right thrice" is ("TURN

RIGHT" + "JUMP") * 3.

Q: "walk after run"
A: The output of "walk after run" concatenates: the output of "run",

the output of "walk". "run" outputs "RUN". "walk" outputs "WALK
". So concatenating the output of "run" and the output of "walk"
leads to "RUN" + "WALK". So the output of "walk after run" is "

RUN" + "WALK".

Q: "turn opposite left"
A: The output of "turn opposite left" concatenates: the output of "

turn left", the output of "turn left". "turn left" outputs "TURN
LEFT". So repeating the output of "turn left" twice leads to "

TURN LEFT" * 2. So the output of "turn opposite left" is "TURN
LEFT" * 2.

Q: "turn around left"
A: The output of "turn around left" concatenates: the output of "

turn left", the output of "turn left", the output of "turn left
", the output of "turn left". "turn left" outputs "TURN LEFT".
So repeating the output of "turn left" four times leads to "TURN
LEFT" * 4. So the output of "turn around left" is "TURN LEFT" *
4. Q: "turn opposite right" A: The output of "turn opposite

right" concatenates: the output of "turn right", the output of "
turn right". "turn right" outputs "TURN RIGHT". So repeating the
output of "turn right" twice leads to "TURN RIGHT" * 2. So the

output of "turn opposite right" is "TURN RIGHT" * 2.

Q: "turn around right"

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

A: The output of "turn around right" concatenates: the output of "
turn right", the output of "turn right", the output of "turn
right", the output of "turn right". "turn right" outputs "TURN
RIGHT". So repeating the output of "turn right" four times leads
to "TURN RIGHT" * 4. So the output of "turn around right" is "

TURN RIGHT" * 4.

Q: "walk opposite left"
A: The output of "walk opposite left" concatenates: the output of "

turn opposite left", the output of "walk". "turn opposite left"
outputs "TURN LEFT" * 2. "walk" outputs "WALK". So concatenating
the output of "turn opposite left" and the output of "walk"

leads to "TURN LEFT" * 2 + "WALK". So the output of "walk
opposite left" is "TURN LEFT" * 2 + "WALK".

Q: "walk around left"
A: The output of "walk around left" concatenates: the output of "

walk left", the output of "walk left", the output of "walk left
", the output of "walk left". "walk left" outputs "TURN LEFT" +
"WALK". So repeating the output of "walk around left" four times
leads to ("TURN LEFT" + "WALK") * 4. So the output of "walk

around left" is ("TURN LEFT" + "WALK") * 4.

Please pay attention to the use of parentheses.

Following the order of the sub-instructions and solving every sub-
instruction in sequence lead to the final answer.

All the sub-instructions are listed in the order: {previous_tasks}
The answers to all the sub-instructions are listed in the same order

: {previous_answs}

We can synthesize the final answer based on all the answers to the
sub-instructions.

You must synthesize the final answer strictly based on the provided
answers to the sub-instructions, without performing any error
correction or independent recalculations.

Even if a sub-instruction answer contains a reasoning mistake or
calculation error, you must still use it as given.

Do not infer the correct answer based on correct reasoning steps if
the computed result is incorrect.

Your final synthesis should reflect the exact values and conclusions
stated in the sub-instruction answers, even if they are

incorrect.

Please give the final action sequence without any additional
explanation or clarification.

Below is the prompt for translating a pseudo action sequence expression into a sequence of actions
on benchmark SCAN:

Now I have a pseudo action sequence expression with parentheses and
multiplication. I need you to help me convert this into a
sequence of actions without an operator sign.

6 examples are as follows:

Q: "JUMP" * 3
Rewrite: "JUMP" * 3
A: 1 JUMP 2 JUMP 3 JUMP

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Q: "RUN" * 4 * 2
Rewrite: "RUN" * 8
A: 1 RUN 2 RUN 3 RUN 4 RUN 5 RUN 6 RUN 7 RUN 8 RUN

Q: "TURN RIGHT" + "WALK"
Rewrite: "TURN RIGHT" + "WALK"
A: TURN RIGHT WALK

Q: ("TURN LEFT" + "LOOK") * 2 + "TURN LEFT" + "LOOK"
Rewrite: ("TURN LEFT" + "LOOK") * 2 + "TURN LEFT" + "LOOK"
A: 1 (TURN LEFT LOOK) 2 (TURN LEFT LOOK) TURN LEFT LOOK

Q: ("TURN RIGHT" * 2 + "JUMP") * 4
Rewrite: ("TURN RIGHT" * 2 + "JUMP") * 4
A: 1 (1 TURN RIGHT 2 TURN RIGHT JUMP) 2 (1 TURN RIGHT 2 TURN RIGHT

JUMP) 3 (1 TURN RIGHT 2 TURN RIGHT JUMP) 4 (1 TURN RIGHT 2 TURN
RIGHT JUMP)

Q: "TURN LEFT" * 2 + ("TURN RIGHT" + "WALK") * 4 * 2
Rewrite: "TURN LEFT" * 2 + ("TURN RIGHT" + "WALK") * 8
A: 1 TURN LEFT 2 TURN LEFT 1 (TURN RIGHT WALK) 2 (TURN RIGHT WALK) 3

(TURN RIGHT WALK) 4 (TURN RIGHT WALK) 5 (TURN RIGHT WALK) 6 (
TURN RIGHT WALK) 7 (TURN RIGHT WALK) 8 (TURN RIGHT WALK)

The pseudo action sequence to be converted is as follows: {sentence}
Please change it to the action sequences.
Please JUST answer the result.

Below is the prompt for using task decomposer to decompose the original command into a sequence
of sub-commands on benchmark SCAN:

I will give you a piece of natural language command. I need you to
decompose it to smaller commands.

3 examples are as follows:

Command: "look right after look twice"
Answer:
The given command can finally be solved by: "look right", "look

twice".

Command: "jump opposite right thrice and walk"
Answer:
The given command can finally be solved by: "jump opposite right", "

jump opposite right thrice", "walk".

Command: "run left twice and run right"
Answer:
The given command can finally be solved by: "run left", "run left

twice", "run right".

Now the command is {original_question}, please decompose it into
smaller commands like the examples.

Answer Format:
The given command can finally be solved by: "subcommand_0", "

subcommand_1",...

Below is the prompt for using subtask allocator to allocate candidate model to a certain sub-command
on benchmark SCAN:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Now we have an original command.
To conduct this command, we decide to break this command into

subcommands.
Now we have to conduct a subcommand, and there are 9 models that can

be chosen to conduct this subcommand.
These 9 models are:
qwen2.5-0.5b, qwen2.5-1.5b, qwen2.5-3b, qwen2.5-7b, qwen2.5-14b,

qwen2.5-32b, qwen2.5-72b, deepseek-V3, gpt-4o.
We list these models in ascending order acoording to their

capability and the difficulty levels of the subcommands they are
suitable for.

For example,
qwen2.5-0.5b has the lowest capability thus is suitable for the

easiest subcommand
gpt-4o has the highest capability thus is suitable for the hardest

subcommand.
Task: choose the most appropriate model from the list above to

conduct the given subcommand.
Output only the chosen model’s name.

the original command: {original_problem}
the subcommand: {subtask}

E.3 SOLVING MATH PROBLEMS: MATH

Below is the prompt for decomposition data collection on benchmark MATH:

I will now give you a math problem. The type of problem is {type}.
Please break this math problem down into several easy-to-solve
steps.

These steps are organized in a chain-like manner, in which the steps
are supposed to be solved following a certain order.

Meanwhile when writing each broken-down step, the order of the steps
should be the order of how to solve these broken-down question

steps.

1 examples are as follows:
Question: Four years ago, Kody was only half as old as Mohamed. If

Mohamed is currently twice 30 years old, how old is Kody
currently?

Answer: To solve the question "How old is Kody currently?", we need
to know: "How old is Mohamed cuurently?", "How old was Mohamed
four years ago?", "How old was Kody four years ago?".

Now the command is {question}, please decompose it into easy-to-
solve steps like the examples.

Answer Format: (Please write each broken-down question step on a
separate line, starting with a number.)

To solve the question "xxx", we need to know:
"1. question step 1",
"2. question step 2",
"3. question step 3".
...

Below is the prompt for solving sub-problems sequentially on benchmark MATH:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

You are provided with a math problem. Your task is to solve it and
give it an answer.

Here is the problem:\n{problem}
The question belongs to the type pf {question_type}.

I have broken this problem down into many easier subproblems.
Following the order of the subproblems and solving every subproblem

in sequence lead to the final answer.

Now, the first several subproblems are already solved, these
subproblems are listed below following their order:{
previous_tasks}.

Their answers are listed below, also following their order:{
previous_answs}.

Now you need to solve the subproblem: {Step_dict[str(cnt)]}.

Focus exclusively on solving the subproblem.
Your answer should be concise and directly address the core

reasoning process.
Avoid any unnecessary comments, greetings, or expressions of

enthusiasm. Only provide the essential reasoning process and
answer.

Please provide the answer to the subproblem.

Below is the prompt for synthesizing to obtain the final answer on benchmark MATH:

We are provided with a math problem. Our task is to solve it and
give it an answer.

Here is the problem:\{problem}
The question belongs to the type pf {question_type}.

I have broken this problem down into many easier subproblems.
Following the order of the subproblems and solving every subproblem

in sequence lead to the final answer.
All the subproblems are listed in the order: {previous_tasks}
The answers to all the subproblems are listed in the same order: {

previous_answs}

We can synthesize the final answer based on all the answers to the
subproblems.

You must synthesize the final answer strictly based on the provided
answers to the subproblems, without performing any error
correction or independent recalculations.

Even if a subproblem answer contains a reasoning mistake or
calculation error, you must still use it as given.

Do not infer the correct answer based on correct reasoning steps if
the computed result is incorrect.

Your final synthesis should reflect the exact values and conclusions
stated in the subproblem answers, even if they are incorrect.

Please give the final answer without any additional explanation or
clarification.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Below is the prompt for judging if the final answer is correct on benchmark MATH:

Here is a math problem with a standard answer and a student’s answer
. Please help me determine if the student’s answer is correct.

Problem: {problem}

question type: {question_type}

Standard answer: {solution}

Answer: {final_answ}

If the student’s answer is correct, just output True; otherwise,
just output False.

No explanation is required.

Below is the prompt for using task decomposer to decompose the original problem into a sequence of
sub-problems on benchmark MATH:

I will now give you a math problem. Please break this math problem
down into several easy-to-solve steps.

These sub-problems are supposed to be solved in a chain-like manner
following a certain order.

When writing each broken-down sub-problem, the order of the sub-
problems should be the order of solving these broken-down sub-
problems.

1 examples is as follows:
Question: Four years ago, Kody was only half as old as Mohamed. If

Mohamed is currently twice 30 years old, how old is Kody
currently?

Answer:
To solve the given question, we need to know:
1. How old is Mohamed cuurently?
2. How old was Mohamed four years ago?
3. How old was Kody four years ago?

Now the command is {original_question}, please decompose it into
easy-to-solve steps like the examples.

Answer Format: (Please write each broken-down question step on a
separate line, starting with a number.)

To solve the given question, we need to know:
1. question step 1
2. question step 2
3. question step 3
...

Below is the prompt for using subtask allocator to allocate candidate model to a certain sub-problem
on benchmark MATH:

Now we have an original problem.
To solve this problem, we decide to break this problem into

subproblems.
Now we have to solve a subproblem, and there are 9 models that can

be chosen to solve this subproblem.
These 9 models are:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

qwen2.5-0.5b, qwen2.5-1.5b, qwen2.5-3b, qwen2.5-7b, qwen2.5-14b,
qwen2.5-32b, qwen2.5-72b, deepseek-V3, gpt-4o.\n\n

We list these models in ascending order acoording to their
capability and the difficulty levels of the subproblems they are
suitable for.

For example,
qwen2.5-0.5b has the lowest capability thus is suitable for the

easiest subproblem
gpt-4o has the highest capability thus is suitable for the hardest

subproblem.
Task: choose the most appropriate model from the list above to solve

the given subproblem.
Output only the chosen model’s name.

the original problem: {original_problem}
the subproblem: {subtask}

E.4 COMMONSENSE REASONING: CSQA

Below is the prompt for decomposition data collection on benchmark CSQA:

I have a single-choice question involving common sense reasoning
that I want to solve. I hope you can break down the problem-
solving process into several sub-problems. You can consider
analyzing the question itself as well as the options.

The number of sub-problems doesn’t need to be too many; each sub-
problem should have a clear meaning and purpose.

These sub-problems are organized in a chain-like manner, in which
the sub-problems are supposed to be solved following a certain
order.

Meanwhile when writing each broken-down sub-problem, the order of
the sub-problems should be the order of how to solve these
broken-down sub-problems.

8 examples are as follows:
Question 1:
You can read a magazine where while waiting for your transportation

on rails to arrive?
Choices 1:
A. Train station, B. Bookstore, C. Newsstand, D. Waiting room, E.

Airport
Answer 1:
1. What does "waiting for your transportation on rails" indicate

about your current location?
2. Which place in the options can accommodate you reading a magazine

?
3. Which places that satisfy question 2 are near your current

location?

Question 2:
If I wanted to see a lizard in its natural habitat but I do not

speak Spanish, where would I go?
Choices 2:
A. Utahc, B. South America, C. New Hampshire, D. Japan, E. New

Mexico
Answer 2:
1. Which places are natural habitats for lizards?
2. Which places have Spanish as the primary language?

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

3. Combine the answers from sub-question 1 and sub-question 2, among
the natural habitats for lizards, which places do not speak

Spanish?

Question 3:
John was stuck in his house. He couldn’t get out the door. He was

very frightened when the smoke detectors went off, but luckily
it was a false alarm. Why might he be stuck?

Choices 3:
A. fire, B. belong to, C. winter storm, D.face south, E.burn down
Answer 3:
1. What are possible reasons for being stuck in a house?
2. Which options are related to situations that might cause a person

to be stuck?
3. Why might these specific conditions make it difficult to leave

the house?

Question 4:
John was stuck in his house. He couldn’t get out the door. He was

very frightened when the smoke detectors went off, but luckily
it was a false alarm. Why might he be stuck?

Choices 4:
A. fire, B. belong to, C. winter storm, D.face south, E.burn down
Answer 4:
1. What are possible reasons for being stuck in a house?
2. Which options are related to situations that might cause a person

to be stuck?
3. Why might these specific conditions make it difficult to leave

the house?

Question 5:
When looking for a non-perishable food in your house, you’ll often

go look in the?
Choices 5:
A. Stove, B. Table, C. Plate, D. Jar, E. Pantry
Answer 5:
1. What is non-perishable food?
2. Where are non-perishable foods commonly stored in a household?
3. Which of the options (stove, table, plate, jar, pantry) is the

most logical place for storing non-perishable food?

Question 6:
What must elementary school students do when they are going into

class?
Choices 6:
A. Think for himself, B. Answer question, C. Wait in line, D. Speak

a foreign language, E. Cross road
Answer 6:
1. What do elementary school students typically do before entering a

classroom?
2. Which actions among the options are related to classroom entry

procedures?
3. Why might students perform this action before entering the

classroom?

Question 7:
After eating dinner, having plenty to eat, and exercising, what is

likely to happen?
Choices 7:
A. Become tired, B. Indigestion, C. Flatulence, D. Become

intoxicated, E. Become full
Answer 7:
1. What happens to the body after eating a large meal?

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

2. What are common effects of exercising after eating?
3. Which of the options (become tired, indigestion, flatulence,

become intoxicated, become full) best matches the expected
outcome of eating a large meal followed by exercise?

Question 8:
He didn’t like the walk up, but living on the top floor meant there

was nobody above him in the what?
Choices 8:
A. Apartment building, B. Tall building, C. Go down, D. Garden, E.

Office building
Answer 8:
1. What does "walk up" suggest about the type of building?
2. What kind of building would have a "top floor" and residents

living above or below each other?
3. Which option (apartment building, tall building, go down, garden,

office building) best describes a place where living on the top
floor would mean no one lives above?

Now the question is {question}, the options are: {options}, please
decompose it into sub-problems.

Answer Format: (Please write each broken-down sub-problem on a
separate line, starting with a number.)

To solve the question "xxx", we need to clarify / solve:
"1. sub-problem 1",
"2. sub-problem 2",
"3. sub-problem 3".
...

Below is the prompt for solving sub-problems sequentially on benchmark CSQA:

There is a single-choice question involving common sense reasoning.
I need you to solve it and give the right answer.

Here is the question:{problem}
Here are the options:{options}

I have broken this common sense reasoning question down into several
smaller subproblems.

Following the order of the subproblems and solving every subproblem
in sequence lead to the final answer.

Now, the first several subproblems are already solved, these
subproblems are listed below following their order:{
previous_tasks}.

Their answers are listed below, also following their order:{
previous_answs}.

Now you need to solve the subproblem: {Step_dict[str(cnt)]}.

Focus exclusively on solving the subproblem.
Your answer should be concise and directly address the core

reasoning process.
Avoid any unnecessary comments, greetings, or expressions of

enthusiasm. Only provide the essential reasoning process and
answer.

Please provide the answer to the subproblem.

Below is the prompt for synthesizing to obtain the final answer on benchmark CSQA:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

There is a single-choice question involving common sense reasoning.
I need you to solve it and give the right answer.

Here is the question:{problem}
Here are the options:{options}

I have broken this common sense reasoning question down into several
smaller subproblems.

Following the order of the subproblems and solving every subproblem
in sequence lead to the final answer.

All the subproblems are listed in the order: {previous_tasks}
The answers to all the subproblems are listed in the same order: {

previous_answs}

We can synthesize the final answer based on all the answers to the
subproblems, and finally choose the letter of the correct option
.

You must synthesize the final answer strictly based on the provided
answers to the subproblems, without performing any error
correction or independent recalculations.

Even if a subproblem answer contains a reasoning mistake or
calculation error, you must still use it as given.

Do not infer the correct answer based on correct reasoning steps if
the computed result is incorrect.

Your final synthesis should reflect the exact values and conclusions
stated in the subproblem answers, even if they are incorrect.

Please provide only the letter of the option, without any additional
explanation or description.

Below is the prompt for using task decomposer to decompose the original problem into a sequence of
sub-problems on benchmark CSQA:

I have a single-choice question involving common sense reasoning
that I want to solve. I hope you can break down the problem-
solving process into several sub-problems. You can consider
analyzing the question itself as well as the options.

The number of sub-problems doesn’t need to be too many; each sub-
problem should have a clear meaning and purpose.

These sub-problems are supposed to be solved in a chain-like manner
following a certain order.

When writing each broken-down sub-problem, the order of the sub-
problems should be the order of solving these broken-down sub-
problems.

1 example is as follows:
Question 1:
You can read a magazine where while waiting for your transportation

on rails to arrive?
Choices 1:
A. Train station, B. Bookstore, C. Newsstand, D. Waiting room, E.

Airport
Answer 1:
To solve the given question, we need to clarify / solve:
1. What does "waiting for your transportation on rails" indicate

about your current location?

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

2. Which place in the options can accommodate you reading a magazine
?

3. Which places that satisfy question 2 are near your current
location?

Now the question is {original_question}, the options are: {options},
please decompose it into sub-problems.

Answer Format: (Please write each broken-down sub-problem on a
separate line, starting with a number.)

To solve the given question, we need to clarify / solve:
1. sub-problem 1,
2. sub-problem 2,
3. sub-problem 3.
...

Below is the prompt for using subtask allocator to allocate candidate model to a certain sub-problem
on benchmark CSQA:

Now we have an original problem.
To solve this problem, we decide to break this problem into

subproblems.
Now we have to solve a subproblem, and there are 9 models that can

be chosen to solve this subproblem.
These 9 models are:
qwen2.5-0.5b, qwen2.5-1.5b, qwen2.5-3b, qwen2.5-7b, qwen2.5-14b,

qwen2.5-32b, qwen2.5-72b, deepseek-V3, gpt-4o.\n\n
We list these models in ascending order acoording to their

capability and the difficulty levels of the subproblems they are
suitable for.

For example,
qwen2.5-0.5b has the lowest capability thus is suitable for the

easiest subproblem
gpt-4o has the highest capability thus is suitable for the hardest

subproblem.
Task: choose the most appropriate model from the list above to solve

the given subproblem.
Output only the chosen model’s name.

the original problem: {original_problem}
the subproblem: {subtask}

You may include other additional sections here.

40

	Introduction
	Related works
	Task Decomposition and Multi-step Reasoning
	Collaborative Reasoning Among LLMs

	Preliminaries
	Methodology
	Generating Coherent Subtask Sequences via Task Decomposer
	Strategic Model Assignment for Collaboration via Subtask Allocator
	Dual-Module Co-training via Iterative Reinforcement Learning
	End-to-End Reasoning Workflow at Test Time

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Generalization to Newly Unseen LLMs
	Trade-off Between Reasoning Cost and Accuracy
	Inference Time Comparison Across LLM Routers

	Conclusion
	Supplementary Experiment Results
	Performance Improvement of Task Decomposer
	Performance Improvement of Subtask Allocator
	RL Training Reduces Dependence on SFT Data
	Exploring Model Ensembling
	Clarifications on Potential Bias in Constructed Training Dataset

	Further supplements to the methods and formulas
	Detailed Formulation of the Task Decomposer
	Grouped Search Strategy for Allocator Training
	GRPO Objective for Co-training

	Experiment Details
	Experimental Environment and Training Hyperparameters
	Details of the benchmarks

	Discussions
	Enhancing LLM Reasoning via Reinforcement Learning
	Alternative Reward Designs
	Broader Impacts

	Prompts
	Program Synthesis: P3
	Language-Driven Navigation: SCAN
	Solving Math Problems: MATH
	Commonsense Reasoning: CSQA

