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Abstract

As Large Language Models (LLMs) exceed human capabilities, providing reliable1

human feedback for evaluating and aligning them, via standard frameworks such as2

Reinforcement Learning from Human Feedback, becomes challenging. This raises3

a fundamental question: how can we leverage weaker (teacher) supervision to elicit4

the full capabilities of a stronger (student) model? This emerging paradigm, known5

as Weak-to-Strong (W2S) generalization, however, also introduces a key challenge6

as the strong student may “overfit” to the weak teacher’s mistakes, resulting in a7

notable performance degradation compared to learning with ground-truth data. We8

show that this overfitting problem occurs because learning with weak supervision9

implicitly regularizes the strong student’s policy toward the weak reference policy.10

Building on this insight, we propose a novel learning approach, called Weak Teacher11

Evaluation of Strong Student Demonstrations or EVE, to instead regularize the12

strong student toward its reference policy. EVE’s regularization intuitively elicits13

the strong student’s knowledge through its own task demonstrations while relying14

on the weaker teacher to evaluate these demonstrations – an instance of formative15

learning. Extensive empirical evaluations demonstrate that EVE significantly16

outperforms existing W2S learning approaches and exhibits significantly better17

robustness under unreliable feedback compared to contrastive learning methods18

such as Direct Preference Optimization.19

1 Introduction20

Reinforcement Learning from Human Feedback (RLHF) [23, 5] has been a canonical framework for21

steering language models (LMs) to align with human values based on human demonstrations. This22

framework has demonstrated impressive performance across a wide range of tasks, from conversation23

to coding, where humans “can” provide reliable supervision. In the future, as these AI models reach24

or exceed human capabilities, they will be capable of solving complex tasks that are difficult for25

humans to supervise. For example, when these AI models acquire the ability to generate a code26

project with millions of lines of code or summarize an entire book with thousands of pages, humans27

are unlikely to provide reliable feedback to align these superhuman AI models effectively.28

How can we align these superhuman AI models given the likely unreliable human supervision? Burns29

et al. [4] study this question by using a smaller LLM to represent unreliable human supervision30

on binary classification tasks. Effectively, this “weaker” teacher is prone to make mistakes when31

supervising a “stronger” student model. They observed a phenomenon called weak-to-strong (W2S)32

generalization – a stronger model finetuned with labels generated by a weaker model could outperform33

this weaker teacher without even seeing the ground truth labels. Despite the promising results, a key34

challenge in learning from weak supervision is the risk of overfitting [4], where the strong student35

inevitably learns to imitate the errors of the weak teacher. Burns et al. [4] study early-stopping as an36
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Figure 1: EVE and existing W2S generalization methods. Naive learning overfits the weak
reference model, potentially imitating its mistakes (e.g., “Eat a lot”). Refinement learning “refines”
the weak supervision (i.e., “Do regular exercise”). In contrast, EVE leverages the weak teacher as a
reward function while eliciting the student’s reference model salient knowledge

implicit regularization to prevent overfitting, but notes that early-stopping does not constitute a valid37

method as it unrealistically requires ground-truth labels.38

This paper first provides a crucial theoretical insight into the overfitting problem in W2S generalization.39

Specifically, by representing the weak teacher as an Energy-Based Model (EBM), we reveal that40

learning from weak supervision involves maximizing the reward while simultaneously regularizing41

the strong student’s policy toward the weak reference model. This process leads to a drawback: the42

strong student not only inherits the informative supervision but also amplifies the errors of the weak43

teacher, ultimately degrading the student’s overall performance on the desired tasks [14].44

Building upon this insight, we propose a novel learning method, called Weak Teacher Evaluation of45

Strong Student Demonstrations (EVE), to enable the strong student to elicit its own (prior) knowledge46

of the task while relying on the weak teacher to evaluate, or score, such demonstrations – an instance47

of formative learning, effectively utilizing both the knowledge of the weak teacher and the student’s48

reference model. As depicted in Fig. 1, EVE utilizes the weak teacher’s demonstrations to prompt the49

strong student, allowing it to generate its own training data reflecting its understanding of the tasks.50

The generated samples are then adjusted by the logarithmic ratio of the weak teacher’s policy pre-51

and post-alignment, which serves as a reward signal to guide the strong student’s learning.52

In summary, (1) we provide a theoretical characterization of overfitting in W2S learning; then (2)53

we introduce EVE, an approach that enables learning from strong student demonstrations, where54

the weak teacher acts as a reward function to evaluate the strong student’s outputs; finally, (3) we55

show that EVE significantly outperforms naive W2S learning by overcoming the overfitting issue,56

demonstrating the effectiveness of utilizing the strong student’s critical thinking ability under the57

weak teacher’s reward evaluation; surprisingly, when learning from a weak and unreliable reward58

signal, EVE – an off-policy method – achieves significantly better performance and robustness to59

contrastive learning methods such as DPO [30].60

2 Related Work61

2.1 Weak-to-strong Generalization62

Burns et al. [4] introduce a synthetic setup to study whether a stronger model can generalize well63

with weaker supervision, compared to training with high-quality or ground-truth data. Prior efforts64

investigate W2S phenomena only in binary classification setups, leaving other practical alignment-65

relevant tasks (e.g., open-ended text generation whose output has no fixed length and requires sharing66

vocabulary size between the strong student and weak teacher) largely under-explored [43, 6, 1].67

Another line of work [34, 44, 45] leverages the pre-trained knowledge of the strong student to refine68
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labels curated from the weak teacher, thereby improving the supervision quality. Ye et al. [44] study69

W2S generalization on text-generation tasks, where they simulate unreliable demonstrations and70

unreliable comparison feedback during the alignment phase.71

Different from the prior work, this paper extends W2S generalization beyond classification. We elicit72

the latent knowledge of the strong student about the intended tasks, which is then evaluated by the73

weak teacher’s reward model. Additionally, by interpreting learning from weak supervision as reward74

maximization, our approach generalizes refinement-based methods [44, 41].75

‘76

2.2 Reinforcement Learning from Human Feedback77

RLHF aims to align LMs with human preferences and values [5, 3], and has demonstrated impressive78

performance on established benchmarks [22, 15, 39, 40, 38]. However, the RLHF pipeline incurs79

significant computational costs and requires a large amount of high-quality human preference labels.80

Recent advancements, such as Direct Alignment Algorithms (DAAs) [30, 37], bypass the need for81

an explicit reward model and directly train the LMs on the human preference data. Reinforcement82

Learning with AI Feedback [25] uses a well-trained language model (e.g., GPT-4 or Claude-3.583

Sonnet) to provide preference feedback as a substitute for human supervision. More recently, Ye et al.84

[44] study whether standard RLHF remains effective under unreliable feedback.85

We demonstrate that contrastive-learning approaches [31, 2] heavily suffer from the reward over-86

optimization issue [31, 10]. In contrast, EVE – also an offline supervised approach – is significantly87

more robust to unreliable feedback and achieves a better reward-KL tradeoff than DAAs. This finding88

is significant as it contradicts observations in prior work [36], which shows that DAAs with negative89

gradient perform significantly better than offline supervised methods in conventional alignment90

scenarios with human feedback.91

2.3 Reward Maximization with KL Regularization as Distributional Matching92

Prior works show that reward maximization with KL regularization in standard RLHF can be viewed93

as minimizing the reverse KL between the LM policy ωω and the target distribution that represents94

the aligned language model [17, 16, 12]. Other studies also explored the use of forward KL, which95

corresponds to setting the reward maximization as supervised learning [21, 28]. Similarly, our paper96

shows that imitating a weak teacher can be viewed as reward maximization, where the reward is97

defined as the log probability of the weak teacher, with a KL regularization toward the weak reference98

model, causing the over-optimization problem.99

3 Preliminaries100

3.1 LLM Alignment with Human Preferences101

LLM alignment can be viewed as reward-maximization with KL-constrained:102

max
εω

Ex→D,y→εω(·|x) [r(x, y)] → εKL(ωω||ωref) (1)

where y is a sampled response from ωω, ε controls the trade-off between maximizing the reward and103

deviation from the reference model ωref, and r is the reward function that captures human preferences.104

3.2 Offline Fine-Tuning Methods for Reward Maximization105

Directly optimizing the objective in Eq. (1) requires repeated sampling, which is computationally106

expensive. Alternatively, equivalent offline methods fall into 2 main categories:107

Contrastive Learning Methods. Approaches, such as DPO [30] and IPO [2], directly update the108

LM policy ωω on human preference data. These methods represent the reward implicitly via the LM109

ωω and the reference model ωref as:110

rω(x, y) = ε log
ωω(y|x)
ωref(y|x)

+ ε logZ(x) (2)
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where Z(x) =
∑

y ωref(y|x) exp
(

1
ϑ rω(x, y)

)
is the normalization factor. Using this representation,111

a general objective can be derived to train the policy on human preference data, as follows:112

L(ωω,ωref) = →E(x,yw,yl)→D

[
f

(
ε log

ωω(yw|x)
ωref(yw|x) → ε log

ωω(yl|x)
ωref(yl|x)

)]
(3)

where f is a convex loss function. The gradient of contrastive learning approaches, therefore, consists113

of a positive gradient term that increases the likelihood of the preferred response yw and a negative114

gradient term that pushes down the likelihood of the non-preferred response yl.115

Offline Supervised Methods. This alternative class of methods, including RAFT [8] and RWR116

[28], minimizes a weighted maximum likelihood objective. Formally, these methods first sample K117

completions per prompt x from the reference model ωref, i.e., y1,··· ,K ↑ ωref(·|x(i)). These responses118

are then weighted by a non-negative weighting function F (x, yk|y1,··· ,K) conditioned on the other119

sampled responses and maximize:120

max
εω

E(x,y1,···K)→D,εref(·|x)

[
K∑

k=1

log ωω(yk|x) · F (x, yk|y1,··· ,K)

]

Intuitively, since F (x, y|y1,···K) is always non-negative, these methods always increase the likelihood121

of responses generated from ωref. Responses that are more preferred will be assigned higher weights,122

there is no negative gradient effect to push down the likelihood of suboptimal responses.123

3.3 Weak-to-Strong Evaluation Pipeline124

We review the W2S evaluation pipeline in [4], which consists of three stages, as follows:125

(1) Weak Teacher Creation: The weak teacher is created by fine-tuning a small pre-trained model126

to align with human preferences. We utilize SFT+DPO, a standard preference learning pipeline, to127

ensure the weak model acquires knowledge about alignment tasks. The resulting model is denoted as128

ωweak.129

(2) Strong Student Learning with Weak Supervision: The weak model is then used to generate130

weak supervision data Dweak = {x(i), y(i)} where x(i) and y(i) are the prompt and the generated131

response from ωweak, respectively. The strong model ωω is then fine-tuned using the weak supervision132

data with the SFT objective.133

(3) Strong Student Learning with Ground-truth Supervision: Another strong model ωstrong is134

fine-tuned with the Ground-truth human labels to establish the upper-bound performance. To ensure135

that this aligned model fully acquires the target task’s capabilities, it goes through an additional,136

preference learning phase (e.g., DPO).137

The W2S generalization performance of ωω can be measured by Performance Gap Recovered (PGR):138

PGR =
Pweak-to-strong → Pweak

Pstrong → Pweak

where Pweak-to-strong, Pweak, and Pstrong are the task performance of ωω, ωweak, and ωstrong, respectively.139

4 Formative Learning with EVE140

4.1 Learning from Weak Supervision Implicitly Aligns with Weak Reference Model141

This section connects W2S learning to reward maximization and builds the theory behind the model’s142

behavior, i.e., its generalization characteristics.143

We begin by representing the weak teacher in the form of energy-based models [30, 18, 13]:144

ωweak(y|x) = 1

Z(x)
ωweak

ref (y|x) exp
(
rweak(x, y)/ε

)

where ωweak
ref is the SFT version of ωweak.145
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Figure 2: Learning from weak supervision as reward maximization. Left: the strong model ωω

learns to maximize the implicit reward rweak(x, y) = ε log ωweak
align (y|x) - ε log ωweak

ref (y|x). Right: the
strong model also learns to imitate the weak reference model ωweak

ref ’s mistakes, leading to performance
degradation (in PGR).

Proposition 4.1. W2s generalization with a weak teacher ωweak(y|x) and a strong student ωω (the146

training model) can be cast as the following optimization problem:147

min
εω

KL
(
ωweak||ωω

)
(4)

s.t ωweak = argmin
ε

KL
(
ω||ωEBM

)

where ωEBM(y|x) ↓ ωweak

ref
(y|x) exp (r(x, y)/ε).148

The proof is straightforward and deferred to the Appendix D.2. This shows that imitating the weak149

teacher can be seen as finding an EBM policy ωEBM, which is the optimal solution in the lower-level150

objective. This leads to the following theorem.151

Theorem 4.2. The optimal solution to W2S generalization is equivalent to the optimal solution in the152

following objective:153

max
εω

Ex→D,y→εω(·|x)
[
rweak(x, y)

]
→ ϑKL(ωω||ωweak

ref
) (5)

Proof Sketch. Notice that the objective for training the strong student, and the reverse KL share154

the same optimal solution ωω. In addition, it can be shown that minimizing the reverse KL between155

the strong student and the weak teacher,156

min
εω

KL
(
ωω||ωweak) , (6)

is equivalent to maximizing the KL-constrained reward objective in Eq. (5).157

Theorem 4.2 provides a key insight: imitating the weak teacher maximize an implicit reward,158

rweak(x, y) = ε log ωweak(y|x) → ε log ωweak
ref (y|x), while regularizing (with KL objective) the strong159

student toward the weak reference model ωweak
ref . Consequently, instead of aiming to elicit knowledge160

of the strong student, existing W2S learning remains confined to the knowledge of the weak model,161

which may adversely impact the strong student’s performance.162

4.2 Suboptimal Weak-to-Strong Generalization toward Weak Reference Model163

We empirically confirm the theoretical insight in the previous section. Specifically, we analyze the164

W2S training progression on Dweak: at each checkpoint, we generate responses using the correspond-165

ing intermediate model with the same set of prompts, from which we calculate the implicit reward166

rweak(x, y) = ε log ωweak(y|x) → ε log ωweak
ref (y|x), the divergence KL(ωω||ωweak

ref ), and the PGR.167

Fig. 2 shows that while the strong model learns to maximize the implicit reward (Left), the learned168

policy is also regularized towards the weak reference model ωweak
ref , indicated by the consistently169

low KL divergence KL(ωω||ωweak
ref ) shortly after the training progresses (Right). Moreover, we also170

observe that the PGR, as measured by the golden reward function, decreases significantly (Right).171

This suggests that imitating the weak reference model ωweak
ref (and potentially inheriting its mistakes)172

negatively impacts the performance of the strong student.173
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4.3 EVE: Eliciting Strong Student Knowledge174

Motivated by the connection between imitating the weak teacher and reward maximization, we175

“generalize” the KL-constrained reward maximization learning of the strong student ω:176

max
εω

Ex→D,y→εω(·|x)
[
rweak(x, y)

]
→ ϑKL(ωω||ω̂) (7)

where ϑ controls the trade-off between maximizing the reward and deviation from a regularization177

policy ω̂(y|x). Next, we propose one specific choice of the regularization policy ω̂ that can facilitate178

the elicitation of the strong student’s knowledge, thereby enhancing W2S generalization.179

The choice of regularization policy ω̂. Burns et al. [4] interpret W2S generalization in terms of180

saliency: some tasks are already salient to the strong student; in this view, the role of the weak181

teacher is to elicit the student’s latent knowledge rather than enforcing naive imitation of the weak182

teacher’s own demonstrations. Inspired by this interpretation, we propose to regularize the learning183

policy toward the strong student pre-trained model, i.e., ω̂(y|x) = ωstrong
ref (y|x). This design choice184

serves an important goal: to encourage the learned policy ωω to remain close to the initial strong185

reference model ωstrong
ref , thereby facilitating the elicitation of the student’s prior knowledge while186

simultaneously incorporating assessment from the weak teacher. Similar to [4], to elicit the strong187

student’s knowledge of the task, we first create the weak teacher’s demonstrations, which are then188

used in few-shot prompting the strong reference model ωstrong
ref to generate task-relevant outputs, as189

ωstrong
ref is not trained to follow instructions. We provide detailed examples in Appendix B.6.190
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Figure 3: Evolution of PGR (%). We observe clear signs of overfitting to the weak teacher’s errors
well before finishing a single epoch. Notably, when there is a large gap between the strong student
and the weak teacher, the student reaches its best performance within the first 10% of the epoch. EVE
has little to no PGR degradation and significantly outperforms naive W2S learning (SFT).

Optimization. Directly optimizing the objective in Eq. (7) can incur significant computational costs,191

as it requires repeated sampling from the strong student ωω inside the training loop [30]. Following192

prior work [30, 28, 27], it is straightforward to show that the optimal policy to this KL-constrained193

objective takes the form:194

ωr(y|x) =
1

Z(x)
exp (r(x, y)/ϑ)ωstrong

ref (y|x)

where Z(x) =
∑

y ω
strong
ref (y|x) exp (r(x, y)/ϑ) is the normalization constant. We can also leverage195

the duality between the reward function and the weak teacher ωweak [30]. Given the optimal policy196

ωr, we can then formulate a supervised learning objective for the parametrized strong student ωω to197

match with this optimal policy, resulting in the following objective:198

max
εω

J (ωω) = max
εω

Ex→D,y→εstrong
ref (·|x)

[(
ωweak(y|x)/ωweak

ref (y|x)
)ϑ/ϖ

Z(x)
· log ωω(y|x)

]

where the ε/ϑ ratio controls the impact of the weak-supervision reward signal during the strong199

student’s updates. A high ε/ϑ ratio leads to a more uniform update, where all samples are assigned200

similar weights; i.e., there will be no weak supervision in learning. Conversely, a low ε/ϑ ratio201

results in a more focused policy update that prioritizes samples with high weak-supervision reward202

signals. This objective avoids sampling directly from ωω on every update as ωω changes during203
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training; instead, we can sample the responses from the fixed ωstrong
ref once at the beginning of the204

optimization, which is significantly more efficient.205

We also estimate the intractable normalization factor Z(x) using Self-Normalizing Importance206

Sampling [24]. Formally, given K > 1 i.i.d. completions y1, · · · , yN ↑ ωstrong
ref (·|x) drawn from207

strong reference model, we can define an empirical distribution by normalizing the log-ratio f(x, y) =208
ϑ
ϖ

(
log ωweak(y|x) → log ωweak

ref (y|x)
)

over K samples:209

F (x, yi|y1,··· ,K) =
K · exp

(
f(x, yi)

)
∑K

k=1 exp (f(x, y
k))

(8)

where the normalization is estimated by Z(x) ↔ 1
K

∑K
k=1 exp

(
f(x, yk)

)
. In summary, the final210

estimate is:211

J (ωω) = Ex→D,y1,··· ,K→εstrong
ref (·|x)

[
log ωω(y

i|x)· F (x, yi|y1,··· ,K)
]

We refer to this W2S learning approach as EVE. EVE can be seen as an offline supervised method,212

where the weighting function is the exponential of the implicit reward defined in Eq. (2).213

5 Experiments214

In this section, we empirically evaluate EVE’s W2S generalization performance on two tasks:215

controlled-summarization and instruction following.216

5.1 Controlled-Summarization217

Setup. We choose the representative Reddit TL;DR summarization [35] dataset and follow the218

synthetic setup from [10, 47, 30], where we train a golden reward model rgold(x, y) to label synthetic219

preference data Dgolden for fine-tune weak-aligned model and evaluation. We use GPT2-series [29]220

(GPT2-Base/Medium/Large) as weak teachers and a more advanced LLama-3.2-3B model [19, 20]221

as the strong student. The weak model ωweak is the aligned model with DPO [30] from Dgolden.222

Baselines. In additional to EVE, we evaluate several existing W2S approaches, including SFT –223

which naively fine-tunes the strong student on weak supervision data Dweak – and (2) Refinement224

[34, 41] – which prompts the strong student to refine the responses generated by the weak teacher225

and fine-tunes the strong student with the refined responses.226

Results. Fig. 4 shows the PGR results. EVE consistently outperforms the other227

baselines across all weak teachers. Notably, under the supervision of GPT-2 (the228

weakest model), EVE achieves a nearly 25% performance boost over SFT. Moreover,229

SFT achieves the peak performance early in training (around 10% of the epoch),230
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Figure 4: PGR (%) of SFT, Refinement and EVE.

but its performance steadily declines thereafter.231

In contrast, EVE demonstrates minimal to no232

degradation in PGR over the course of the233

training process. As discussed in Section 4,234

this can be attributed to the ability of EVE to235

more effectively balance learning from the weak236

teacher and the salient knowledge of the strong237

reference model.238

Impact of ε/ϑ ratio. We investigate the impact239

of ε/ϑ on W2S performance. Fig. 5 illustrates240

the impact of ε/ϑ on PGR across different weak241

teachers. Setting ε/ϑ around 1.0 achieves opti-242

mal or near-optimal performance. Consequently,243

we default ε/ϑ = 1.0 in all experiments, elim-244

inating the need for hyperparameter tuning245

that requires ground-truth labels. Without the246

weak supervision (i.e., ε/ϑ = ↗), the performance significantly decreases; this confirms the benefit247

of learning from the weak teacher’s reward signals. Conversely, setting ε/ϑ to a very low value can248
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also degrade the performance. One possible explanation is that, as ε/ϑ ↘ 0, the weighting function249

F (x, yi|y1,··· ,K) converges to a one-hot distribution, where the response with the highest reward is250

assigned a weight of 1 and the rest are ignored. This limits learning from a few samples, making it251

susceptible to simply memorizing the training data [26].
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Figure 5: PGR (%) of various ε/ϑ ratios in EVE’s objective.

252

Scaling dataset size. We additionally study the impact of scaling the number of responses K per253

prompt. Fig. 6 shows the performance of EVE and SFT. EVE demonstrates improved performance as254

we increase the size of the training dataset (especially as the weak teacher is stronger), while SFT’s255

performance decreases. This can be explained by the fact that as the training data size increases, the256

strong student also becomes more susceptible to learning the weak teacher’s mistakes. In contrast,257

EVE is designed to avoid this overfitting problem, thus, it can leverage the increased supervision258

significantly better.259
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Figure 6: Scaling the training size (32k, 64k and 128k) in EVE and SFT (trained for one epoch). EVE
shows notable improvement as the training size increases, while SFT suffers from overfitting.

5.2 Instruction Following260

Setup. We use Qwen2.5-7B as the strong student and Llama-3.2-1B as the weak teacher. The strong261

reference model ωstrong
base is initialized from the pre-trained distribution, and the weak model ωweak is262

fine-tuned with DPO on the UltraFeedback dataset [7].263

Evaluation. We evaluate EVE on two standard instruction-following benchmarks, AlpacaEval 2.0264

[9] and IFEval [46]. For AlpacaEval 2.0, we report length-controlled win-rates against gpt4-turbo,265

with gpt-4o-mini serving as the judge.266

Baselines. We evaluate EVE against SFT, Refinement and DPO - which uses the weak teacher as267

reward signal to label preference data generated by the strong student. Following prior works [31, 11],268

we train DPO for 1 epoch with ε = 0.05 as default hyperparameters.269

Results. We report the results in Fig. 7. EVE consistently outperforms the other W2S approaches270

across all benchmarks. Interestingly, we find that weak supervision can provide a reliable signal for271

guiding the strong student, not only in encouraging instruction-following behavior but also helping to272

filter out non-compliant responses.273
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Figure 7: Results on various instruction following benchmarks for various methods.

5.3 MLE and Contrastive Learning in W2S Generalization274

Fig. 7 also shows the advantages of EVE over contrastive learning approaches (e.g., DPO). Standard275

RLHF frameworks (e.g., PPO [33] and DPO [30]) can be seen as optimizing the reverse KL, while276

EVE optimizes the forward KL. As noted in [36], the reverse KL can modify the probability mass277

more aggressively than forward KL, resulting in a large deviation from ωref to find the peak reward278

region. Conversely, the forward KL tends to deviate less from its initial distribution towards the peak279

reward. This might be beneficial in W2S learning due to the following reasons:280

(i) Unreliable learning signal. Unlike standard RLHF, W2S’s feedback is highly unreliable. Finding281

the peak reward region with the reverse KL can result in performance degradation due to over-282

optimization as observed in [44] (and re-confirmed in Fig 9 in our Appendix). Importantly, over-283

optimization can be more severe in W2S generalization as even humans cannot providea reliable284

signal to avoid these undesirable behaviors [4].285

(ii) Already capable strong student. Similar to prior works [4, 44, 6], we assume that the strong286

student is already capable of solving the target tasks. Consequently, we hypothesize that the response287

region that achieved high rewards should be near the strong student. Therefore, the forward KL,288

inducing less deviation from the initial distribution, can be seen as an additional implicit regularization289

and performs better.290

6 Limitations291

We did not experiment with larger language models (> 7B) due to limited computational resources.292

Given the resource demands of generating data from the strong student, future work will focus on293

using the strong student for evaluation to eliminate the need for generating strong student data. For294

example, one direction is to explore extensions to our strategy proposed in Section D.1, which relies295

on the strong student only for reward evaluation. Tajwar et al. [36]. While our method does introduce296

additional memory overhead from teacher feedback calculations, this cost is relatively minimal297

compared to the overall training process of the strong student.298

7 Conclusion and Discussion299

This paper studies the W2S generalization and provides a new theoretical perspective on imitating300

the weak teacher. We show that imitating the weak teacher is equivalent to maximizing an implicit301

reward and regularizing the student towards the weak reference policy, which can amplify the bias or302

mistakes of this supervised fine-tuned weak teacher while not effectively eliciting knowledge from the303

strong student. Building upon this observation, we propose EVE, which directly optimizes the strong304

student using an RLHF objective with the “forward KL” regularization towards its latent knowledge305

of the given task. Extensive empirical results demonstrate that EVE achieves superior performance to306

existing W2S baselines and effectively mitigates the overfitting problem in W2S generalization.307
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Justification: The paper faithfully adheres to the claims and motivation in the abstract and492

provides proof and detailed empirical studies in support.493

Guidelines:494

• The answer NA means that the abstract and introduction do not include the claims495

made in the paper.496

• The abstract and/or introduction should clearly state the claims made, including the497

contributions made in the paper and important assumptions and limitations. A No or498

NA answer to this question will not be perceived well by the reviewers.499

• The claims made should match theoretical and experimental results, and reflect how500

much the results can be expected to generalize to other settings.501

• It is fine to include aspirational goals as motivation as long as it is clear that these goals502

are not attained by the paper.503

2. Limitations504

Question: Does the paper discuss the limitations of the work performed by the authors?505

Answer: [Yes]506

Justification: A discussion of our limitations can be found at section A Appendix.507

Guidelines:508

• The answer NA means that the paper has no limitation while the answer No means that509

the paper has limitations, but those are not discussed in the paper.510

• The authors are encouraged to create a separate "Limitations" section in their paper.511

• The paper should point out any strong assumptions and how robust the results are to512

violations of these assumptions (e.g., independence assumptions, noiseless settings,513

model well-specification, asymptotic approximations only holding locally). The authors514

should reflect on how these assumptions might be violated in practice and what the515

implications would be.516

• The authors should reflect on the scope of the claims made, e.g., if the approach was517

only tested on a few datasets or with a few runs. In general, empirical results often518

depend on implicit assumptions, which should be articulated.519

• The authors should reflect on the factors that influence the performance of the approach.520

For example, a facial recognition algorithm may perform poorly when image resolution521

is low or images are taken in low lighting. Or a speech-to-text system might not be522

used reliably to provide closed captions for online lectures because it fails to handle523

technical jargon.524

• The authors should discuss the computational efficiency of the proposed algorithms525

and how they scale with dataset size.526

• If applicable, the authors should discuss possible limitations of their approach to527

address problems of privacy and fairness.528

• While the authors might fear that complete honesty about limitations might be used by529

reviewers as grounds for rejection, a worse outcome might be that reviewers discover530

limitations that aren’t acknowledged in the paper. The authors should use their best531

judgment and recognize that individual actions in favor of transparency play an impor-532

tant role in developing norms that preserve the integrity of the community. Reviewers533

will be specifically instructed to not penalize honesty concerning limitations.534

3. Theory assumptions and proofs535

Question: For each theoretical result, does the paper provide the full set of assumptions and536

a complete (and correct) proof?537

Answer: [Yes]538
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Justification: We provide proofs and empirical evidence to support all our theoretical results539

Guidelines:540

• The answer NA means that the paper does not include theoretical results.541

• All the theorems, formulas, and proofs in the paper should be numbered and cross-542

referenced.543

• All assumptions should be clearly stated or referenced in the statement of any theorems.544

• The proofs can either appear in the main paper or the supplemental material, but if545

they appear in the supplemental material, the authors are encouraged to provide a short546

proof sketch to provide intuition.547

• Inversely, any informal proof provided in the core of the paper should be complemented548

by formal proofs provided in appendix or supplemental material.549

• Theorems and Lemmas that the proof relies upon should be properly referenced.550

4. Experimental result reproducibility551

Question: Does the paper fully disclose all the information needed to reproduce the main ex-552

perimental results of the paper to the extent that it affects the main claims and/or conclusions553

of the paper (regardless of whether the code and data are provided or not)?554

Answer: [Yes]555

Justification: We provide detailed guidance on reproducibility by specifying all datasets and556

hyperparameters used in this work. Furthermore, we will release our GitHub implementation557

if the paper is accepted.558

Guidelines:559

• The answer NA means that the paper does not include experiments.560

• If the paper includes experiments, a No answer to this question will not be perceived561

well by the reviewers: Making the paper reproducible is important, regardless of562

whether the code and data are provided or not.563

• If the contribution is a dataset and/or model, the authors should describe the steps taken564

to make their results reproducible or verifiable.565

• Depending on the contribution, reproducibility can be accomplished in various ways.566

For example, if the contribution is a novel architecture, describing the architecture fully567

might suffice, or if the contribution is a specific model and empirical evaluation, it may568

be necessary to either make it possible for others to replicate the model with the same569

dataset, or provide access to the model. In general. releasing code and data is often570

one good way to accomplish this, but reproducibility can also be provided via detailed571

instructions for how to replicate the results, access to a hosted model (e.g., in the case572

of a large language model), releasing of a model checkpoint, or other means that are573

appropriate to the research performed.574

• While NeurIPS does not require releasing code, the conference does require all submis-575

sions to provide some reasonable avenue for reproducibility, which may depend on the576

nature of the contribution. For example577

(a) If the contribution is primarily a new algorithm, the paper should make it clear how578

to reproduce that algorithm.579

(b) If the contribution is primarily a new model architecture, the paper should describe580

the architecture clearly and fully.581

(c) If the contribution is a new model (e.g., a large language model), then there should582

either be a way to access this model for reproducing the results or a way to reproduce583

the model (e.g., with an open-source dataset or instructions for how to construct584

the dataset).585

(d) We recognize that reproducibility may be tricky in some cases, in which case586

authors are welcome to describe the particular way they provide for reproducibility.587

In the case of closed-source models, it may be that access to the model is limited in588

some way (e.g., to registered users), but it should be possible for other researchers589

to have some path to reproducing or verifying the results.590

5. Open access to data and code591

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-592

tions to faithfully reproduce the main experimental results, as described in supplemental593

material?594

Answer: [Yes]595

Justification: We’ve only used open-source models and open-source datasets for all experi-596

ments in our work. We provide details experiments in section B Appendix and Section 5 to597

reproduce the results.598

Guidelines:599

• The answer NA means that paper does not include experiments requiring code.600

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/601

public/guides/CodeSubmissionPolicy) for more details.602

• While we encourage the release of code and data, we understand that this might not be603

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not604

including code, unless this is central to the contribution (e.g., for a new open-source605

benchmark).606

• The instructions should contain the exact command and environment needed to run to607

reproduce the results. See the NeurIPS code and data submission guidelines (https:608

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.609

• The authors should provide instructions on data access and preparation, including how610

to access the raw data, preprocessed data, intermediate data, and generated data, etc.611

• The authors should provide scripts to reproduce all experimental results for the new612

proposed method and baselines. If only a subset of experiments are reproducible, they613

should state which ones are omitted from the script and why.614

• At submission time, to preserve anonymity, the authors should release anonymized615

versions (if applicable).616

• Providing as much information as possible in supplemental material (appended to the617

paper) is recommended, but including URLs to data and code is permitted.618

6. Experimental setting/details619

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-620

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the621

results?622

Answer: [Yes]623

Justification: We list experiment details about the training and results details in Section 5624

and Section B Appendix. Our experiments only use open-source datasets and models.625

Guidelines:626

• The answer NA means that the paper does not include experiments.627

• The experimental setting should be presented in the core of the paper to a level of detail628

that is necessary to appreciate the results and make sense of them.629

• The full details can be provided either with the code, in appendix, or as supplemental630

material.631

7. Experiment statistical significance632

Question: Does the paper report error bars suitably and correctly defined or other appropriate633

information about the statistical significance of the experiments?634

Answer: [No]635

Justification: Training large language models is computationally expensive. Due to con-636

straints in computational resources and financial budget, our experiments do not include637

multiple random seeds for each configuration. However, our evaluation protocol aligns with638

that of prior works in W2S generalization and RLHF. [44, 42, 31].639

Guidelines:640

• The answer NA means that the paper does not include experiments.641

• The authors should answer "Yes" if the results are accompanied by error bars, confi-642

dence intervals, or statistical significance tests, at least for the experiments that support643

the main claims of the paper.644
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• The factors of variability that the error bars are capturing should be clearly stated (for645

example, train/test split, initialization, random drawing of some parameter, or overall646

run with given experimental conditions).647

• The method for calculating the error bars should be explained (closed form formula,648

call to a library function, bootstrap, etc.)649

• The assumptions made should be given (e.g., Normally distributed errors).650

• It should be clear whether the error bar is the standard deviation or the standard error651

of the mean.652

• It is OK to report 1-sigma error bars, but one should state it. The authors should653

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis654

of Normality of errors is not verified.655

• For asymmetric distributions, the authors should be careful not to show in tables or656

figures symmetric error bars that would yield results that are out of range (e.g. negative657

error rates).658

• If error bars are reported in tables or plots, The authors should explain in the text how659

they were calculated and reference the corresponding figures or tables in the text.660

8. Experiments compute resources661

Question: For each experiment, does the paper provide sufficient information on the com-662

puter resources (type of compute workers, memory, time of execution) needed to reproduce663

the experiments?664

Answer: [Yes]665

Justification: We provide information on computational resources in the experimental details666

section B in the appendix.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,670

or cloud provider, including relevant memory and storage.671

• The paper should provide the amount of compute required for each of the individual672

experimental runs as well as estimate the total compute.673

• The paper should disclose whether the full research project required more compute674

than the experiments reported in the paper (e.g., preliminary or failed experiments that675

didn’t make it into the paper).676

9. Code of ethics677

Question: Does the research conducted in the paper conform, in every respect, with the678

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?679

Answer: [Yes]680

Justification: Our paper follows the NeurIPS Code of Ethics.681

Guidelines:682

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.683

• If the authors answer No, they should explain the special circumstances that require a684

deviation from the Code of Ethics.685

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-686

eration due to laws or regulations in their jurisdiction).687

10. Broader impacts688

Question: Does the paper discuss both potential positive societal impacts and negative689

societal impacts of the work performed?690

Answer: [Yes]691

Justification: We discuss societal impacts in Section A of the appendix. We do no expect692

any negative societal impacts directly resulting from the contributions of our paper.693

Guidelines:694

• The answer NA means that there is no societal impact of the work performed.695
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• If the authors answer NA or No, they should explain why their work has no societal696

impact or why the paper does not address societal impact.697

• Examples of negative societal impacts include potential malicious or unintended uses698

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations699

(e.g., deployment of technologies that could make decisions that unfairly impact specific700

groups), privacy considerations, and security considerations.701

• The conference expects that many papers will be foundational research and not tied702

to particular applications, let alone deployments. However, if there is a direct path to703

any negative applications, the authors should point it out. For example, it is legitimate704

to point out that an improvement in the quality of generative models could be used to705

generate deepfakes for disinformation. On the other hand, it is not needed to point out706

that a generic algorithm for optimizing neural networks could enable people to train707

models that generate Deepfakes faster.708

• The authors should consider possible harms that could arise when the technology is709

being used as intended and functioning correctly, harms that could arise when the710

technology is being used as intended but gives incorrect results, and harms following711

from (intentional or unintentional) misuse of the technology.712

• If there are negative societal impacts, the authors could also discuss possible mitigation713

strategies (e.g., gated release of models, providing defenses in addition to attacks,714

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from715

feedback over time, improving the efficiency and accessibility of ML).716

11. Safeguards717

Question: Does the paper describe safeguards that have been put in place for the responsible718

release of data or models that have a high risk for misuse (e.g., pretrained language models,719

image generators, or scraped datasets)?720

Answer: [NA]721

Justification: We use public models that are fine-tuned for alignment on open-source datasets.722

Our work does not contribute any risk to these public models.723

Guidelines:724

• The answer NA means that the paper poses no such risks.725

• Released models that have a high risk for misuse or dual-use should be released with726

necessary safeguards to allow for controlled use of the model, for example by requiring727

that users adhere to usage guidelines or restrictions to access the model or implementing728

safety filters.729

• Datasets that have been scraped from the Internet could pose safety risks. The authors730

should describe how they avoided releasing unsafe images.731

• We recognize that providing effective safeguards is challenging, and many papers do732

not require this, but we encourage authors to take this into account and make a best733

faith effort.734

12. Licenses for existing assets735

Question: Are the creators or original owners of assets (e.g., code, data, models), used in736

the paper, properly credited and are the license and terms of use explicitly mentioned and737

properly respected?738

Answer: [Yes]739

Justification:We have properly cited papers and resources used in our experiment. The740

pretrained model comes from Llama-3.2-3B, which are classified under the Community741

License agreement: https://huggingface.co/meta-llama/Llama-3.2-3B. Both the TL:DR and742

UltraFeedback datasets used in this work use the MIT License.743

Guidelines:744

• The answer NA means that the paper does not use existing assets.745

• The authors should cite the original paper that produced the code package or dataset.746

• The authors should state which version of the asset is used and, if possible, include a747

URL.748
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.749

• For scraped data from a particular source (e.g., website), the copyright and terms of750

service of that source should be provided.751

• If assets are released, the license, copyright information, and terms of use in the752

package should be provided. For popular datasets, paperswithcode.com/datasets753

has curated licenses for some datasets. Their licensing guide can help determine the754

license of a dataset.755

• For existing datasets that are re-packaged, both the original license and the license of756

the derived asset (if it has changed) should be provided.757

• If this information is not available online, the authors are encouraged to reach out to758

the asset’s creators.759

13. New assets760

Question: Are new assets introduced in the paper well documented and is the documentation761

provided alongside the assets?762

Answer: [NA]763

Justification: Our paper does not release new assets.764

Guidelines:765

• The answer NA means that the paper does not release new assets.766

• Researchers should communicate the details of the dataset/code/model as part of their767

submissions via structured templates. This includes details about training, license,768

limitations, etc.769

• The paper should discuss whether and how consent was obtained from people whose770

asset is used.771

• At submission time, remember to anonymize your assets (if applicable). You can either772

create an anonymized URL or include an anonymized zip file.773

14. Crowdsourcing and research with human subjects774

Question: For crowdsourcing experiments and research with human subjects, does the paper775

include the full text of instructions given to participants and screenshots, if applicable, as776

well as details about compensation (if any)?777

Answer: [NA]778

Justification: We don’t have experiments involving crowdsourcing or research with human779

subjects.780

Guidelines:781

• The answer NA means that the paper does not involve crowdsourcing nor research with782

human subjects.783

• Including this information in the supplemental material is fine, but if the main contribu-784

tion of the paper involves human subjects, then as much detail as possible should be785

included in the main paper.786

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,787

or other labor should be paid at least the minimum wage in the country of the data788

collector.789

15. Institutional review board (IRB) approvals or equivalent for research with human790

subjects791

Question: Does the paper describe potential risks incurred by study participants, whether792

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)793

approvals (or an equivalent approval/review based on the requirements of your country or794

institution) were obtained?795

Answer: [NA]796

Justification: We do not involve crowdsourcing or research with human subjects.797

Guidelines:798

• The answer NA means that the paper does not involve crowdsourcing nor research with799

human subjects.800
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• Depending on the country in which research is conducted, IRB approval (or equivalent)801

may be required for any human subjects research. If you obtained IRB approval, you802

should clearly state this in the paper.803

• We recognize that the procedures for this may vary significantly between institutions804

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the805

guidelines for their institution.806

• For initial submissions, do not include any information that would break anonymity (if807

applicable), such as the institution conducting the review.808

16. Declaration of LLM usage809

Question: Does the paper describe the usage of LLMs if it is an important, original, or810

non-standard component of the core methods in this research? Note that if the LLM is used811

only for writing, editing, or formatting purposes and does not impact the core methodology,812

scientific rigorousness, or originality of the research, declaration is not required.813

Answer: [NA]814

Justification: We use LLM for grammar checking only.815

Guidelines:816

• The answer NA means that the core method development in this research does not817

involve LLMs as any important, original, or non-standard components.818

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)819

for what should or should not be described.820
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