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Abstract

As Large Language Models (LLMs) exceed human capabilities, providing reliable
human feedback for evaluating and aligning them, via standard frameworks such as
Reinforcement Learning from Human Feedback, becomes challenging. This raises
a fundamental question: how can we leverage weaker (teacher) supervision to elicit
the full capabilities of a stronger (student) model? This emerging paradigm, known
as Weak-to-Strong (W2S) generalization, however, also introduces a key challenge
as the strong student may “overfit” to the weak teacher’s mistakes, resulting in a
notable performance degradation compared to learning with ground-truth data. We
show that this overfitting problem occurs because learning with weak supervision
implicitly regularizes the strong student’s policy toward the weak reference policy.
Building on this insight, we propose a novel learning approach, called Weak Teacher
Evaluation of Strong Student Demonstrations or EVE, to instead regularize the
strong student toward its reference policy. EVE’s regularization intuitively elicits
the strong student’s knowledge through its own task demonstrations while relying
on the weaker teacher to evaluate these demonstrations — an instance of formative
learning. Extensive empirical evaluations demonstrate that EVE significantly
outperforms existing W2S learning approaches and exhibits significantly better
robustness under unreliable feedback compared to contrastive learning methods
such as Direct Preference Optimization.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) [23} 5] has been a canonical framework for
steering language models (LMs) to align with human values based on human demonstrations. This
framework has demonstrated impressive performance across a wide range of tasks, from conversation
to coding, where humans “can” provide reliable supervision. In the future, as these AI models reach
or exceed human capabilities, they will be capable of solving complex tasks that are difficult for
humans to supervise. For example, when these Al models acquire the ability to generate a code
project with millions of lines of code or summarize an entire book with thousands of pages, humans
are unlikely to provide reliable feedback to align these superhuman AI models effectively.

How can we align these superhuman Al models given the likely unreliable human supervision? Burns
et al. [4] study this question by using a smaller LLM to represent unreliable human supervision
on binary classification tasks. Effectively, this “weaker” teacher is prone to make mistakes when
supervising a “stronger” student model. They observed a phenomenon called weak-to-strong (W2S)
generalization — a stronger model finetuned with labels generated by a weaker model could outperform
this weaker teacher without even seeing the ground truth labels. Despite the promising results, a key
challenge in learning from weak supervision is the risk of overfitting [4], where the strong student
inevitably learns to imitate the errors of the weak teacher. Burns et al. [4] study early-stopping as an
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Figure 1: EVE and existing W2S generalization methods. Naive learning overfits the weak
reference model, potentially imitating its mistakes (e.g., “Eat a lot”). Refinement learning “refines”
the weak supervision (i.e., “Do regular exercise”). In contrast, EVE leverages the weak teacher as a
reward function while eliciting the student’s reference model salient knowledge

implicit regularization to prevent overfitting, but notes that early-stopping does not constitute a valid
method as it unrealistically requires ground-truth labels.

This paper first provides a crucial theoretical insight into the overfitting problem in W2S generalization.
Specifically, by representing the weak teacher as an Energy-Based Model (EBM), we reveal that
learning from weak supervision involves maximizing the reward while simultaneously regularizing
the strong student’s policy toward the weak reference model. This process leads to a drawback: the
strong student not only inherits the informative supervision but also amplifies the errors of the weak
teacher, ultimately degrading the student’s overall performance on the desired tasks [14].

Building upon this insight, we propose a novel learning method, called Weak Teacher Evaluation of
Strong Student Demonstrations (EVE), to enable the strong student to elicit its own (prior) knowledge
of the task while relying on the weak teacher to evaluate, or score, such demonstrations — an instance
of formative learning, effectively utilizing both the knowledge of the weak teacher and the student’s
reference model. As depicted in Fig.[T} EVE utilizes the weak teacher’s demonstrations to prompt the
strong student, allowing it to generate its own training data reflecting its understanding of the tasks.
The generated samples are then adjusted by the logarithmic ratio of the weak teacher’s policy pre-
and post-alignment, which serves as a reward signal to guide the strong student’s learning.

In summary, (1) we provide a theoretical characterization of overfitting in W2S learning; then (2)
we introduce EVE, an approach that enables learning from strong student demonstrations, where
the weak teacher acts as a reward function to evaluate the strong student’s outputs; finally, (3) we
show that EVE significantly outperforms naive W2S learning by overcoming the overfitting issue,
demonstrating the effectiveness of utilizing the strong student’s critical thinking ability under the
weak teacher’s reward evaluation; surprisingly, when learning from a weak and unreliable reward
signal, EVE — an off-policy method — achieves significantly better performance and robustness to
contrastive learning methods such as DPO [30]].

2 Related Work

2.1 Weak-to-strong Generalization

Burns et al. [4] introduce a synthetic setup to study whether a stronger model can generalize well
with weaker supervision, compared to training with high-quality or ground-truth data. Prior efforts
investigate W2S phenomena only in binary classification setups, leaving other practical alignment-
relevant tasks (e.g., open-ended text generation whose output has no fixed length and requires sharing
vocabulary size between the strong student and weak teacher) largely under-explored 6, 1.
Another line of work leverages the pre-trained knowledge of the strong student to refine
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labels curated from the weak teacher, thereby improving the supervision quality. Ye et al. [44] study
W2S generalization on text-generation tasks, where they simulate unreliable demonstrations and
unreliable comparison feedback during the alignment phase.

Different from the prior work, this paper extends W2S generalization beyond classification. We elicit
the latent knowledge of the strong student about the intended tasks, which is then evaluated by the
weak teacher’s reward model. Additionally, by interpreting learning from weak supervision as reward
maximization, our approach generalizes refinement-based methods [44} |41].

3

2.2 Reinforcement Learning from Human Feedback

RLHF aims to align LMs with human preferences and values [5. 3], and has demonstrated impressive
performance on established benchmarks [22, (15} 39, 40, 138]]. However, the RLHF pipeline incurs
significant computational costs and requires a large amount of high-quality human preference labels.

Recent advancements, such as Direct Alignment Algorithms (DAAs) [30, 1371, bypass the need for
an explicit reward model and directly train the LMs on the human preference data. Reinforcement
Learning with AI Feedback [25]] uses a well-trained language model (e.g., GPT-4 or Claude-3.5
Sonnet) to provide preference feedback as a substitute for human supervision. More recently, Ye et al.
[44] study whether standard RLHF remains effective under unreliable feedback.

We demonstrate that contrastive-learning approaches [31, 2] heavily suffer from the reward over-
optimization issue [31} [10]. In contrast, EVE — also an offline supervised approach — is significantly
more robust to unreliable feedback and achieves a better reward-KL tradeoff than DAAs. This finding
is significant as it contradicts observations in prior work [36]], which shows that DAAs with negative
gradient perform significantly better than offline supervised methods in conventional alignment
scenarios with human feedback.

2.3 Reward Maximization with KL. Regularization as Distributional Matching

Prior works show that reward maximization with KL regularization in standard RLHF can be viewed
as minimizing the reverse KL between the LM policy 7y and the target distribution that represents
the aligned language model [[17,16,|12]]. Other studies also explored the use of forward KL, which
corresponds to setting the reward maximization as supervised learning [21}28]]. Similarly, our paper
shows that imitating a weak teacher can be viewed as reward maximization, where the reward is
defined as the log probability of the weak teacher, with a KL regularization toward the weak reference
model, causing the over-optimization problem.

3 Preliminaries

3.1 LLM Alignment with Human Preferences

LLM alignment can be viewed as reward-maximization with KL-constrained:
II}T%XEIL‘ND,Z/NTFQ("(E) [T(I7y)} - ﬂKL(’/TgHﬂref) ()

where y is a sampled response from 7y, /3 controls the trade-off between maximizing the reward and
deviation from the reference model 7.¢, and  is the reward function that captures human preferences.

3.2 Offline Fine-Tuning Methods for Reward Maximization

Directly optimizing the objective in Eq. requires repeated sampling, which is computationally
expensive. Alternatively, equivalent offline methods fall into 2 main categories:

Contrastive Learning Methods. Approaches, such as DPO [30] and IPO [2], directly update the
LM policy mg on human preference data. These methods represent the reward implicitly via the LM
7o and the reference model 7f as:

o (ylz)

(7, y) :Blogm—&—ﬁlogZ(x) ()
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where Z(z) = 3, mer(y|x) exp %rg(x, y) ) is the normalization factor. Using this representation,

a general objective can be derived to train the policy on human preference data, as follows:

7o (Yw|T) _ Blo 770@”“”))}

Wref(yw |£C) 7rref(yl |(E)

£(7797 7Tref) = _E(m,yw,yl)N'D |:f (ﬁ log 3)
where f is a convex loss function. The gradient of contrastive learning approaches, therefore, consists
of a positive gradient term that increases the likelihood of the preferred response y,, and a negative
gradient term that pushes down the likelihood of the non-preferred response y;.

Offline Supervised Methods. This alternative class of methods, including RAFT [8] and RWR
[28], minimizes a weighted maximum likelihood objective. Formally, these methods first sample /&
completions per prompt x from the reference model 7, i.€., Y1,... K ~ 7Tref('|l'(i)). These responses
are then weighted by a non-negative weighting function F (z, yx|y1.... k) conditioned on the other
sampled responses and maximize:

K

rr;r%xE(m,yl,_«)wm,ef(.\x) Zlogm(yklx) - F(z,yxly1,... k)
k=1

Intuitively, since F' (x, y|y1.... k) is always non-negative, these methods always increase the likelihood
of responses generated from 7..¢. Responses that are more preferred will be assigned higher weights,
there is no negative gradient effect to push down the likelihood of suboptimal responses.

3.3 Weak-to-Strong Evaluation Pipeline

We review the W2S evaluation pipeline in [4], which consists of three stages, as follows:

(1) Weak Teacher Creation: The weak teacher is created by fine-tuning a small pre-trained model
to align with human preferences. We utilize SFT+DPO, a standard preference learning pipeline, to

ensure the weak model acquires knowledge about alignment tasks. The resulting model is denoted as
7.rweak.

(2) Strong Student Learning with Weak Supervision: The weak model is then used to generate
weak supervision data Dyeq = {2, y(?} where 2(?) and y(*) are the prompt and the generated
response from 7V respectively. The strong model 7y is then fine-tuned using the weak supervision
data with the SFT objective.

(3) Strong Student Learning with Ground-truth Supervision: Another strong model 757" is
fine-tuned with the Ground-truth human labels to establish the upper-bound performance. To ensure
that this aligned model fully acquires the target task’s capabilities, it goes through an additional,
preference learning phase (e.g., DPO).

The W2S generalization performance of my can be measured by Performance Gap Recovered (PGR):

PGR — Pweak—lo»strong - Pweak

Pstmng - Pweak

weak

where Pyeak-to-strong> Pweak> aid Pyrong are the task performance of g, 7%, and 7", respectively.

4 Formative Learning with EVE

4.1 Learning from Weak Supervision Implicitly Aligns with Weak Reference Model

This section connects W2S learning to reward maximization and builds the theory behind the model’s
behavior, i.e., its generalization characteristics.

We begin by representing the weak teacher in the form of energy-based models [30} 18} [13]:

Tk () = %mﬁ?“(ylw) exp (% (2, y)/B)

where 77¢% is the SFT version of 7%,

ref
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Figure 2: Learning from weak supervision as reward maximization. Left: the strong model 7y

learns to maximize the implicit reward r¥<%(z, 3y) = Blog w:{fgalf(m:r) - Blog m¥¥ (y|z). Right: the

strong model also learns to imitate the weak reference model 7%¢3’s mistakes, leading to performance
degradation (in PGR).

Proposition 4.1. W2s generalization with a weak teacher 7 (yy|x) and a strong student 7y (the

training model) can be cast as the following optimization problem:
min KL (7| 4)
T

weak EBM )

5.t ™% = arg min KL (7||m
us

where mEBM(

yla) oc my(ylw) exp (r(2,y)/B).

The proof is straightforward and deferred to the Appendix [D.2] This shows that imitating the weak
teacher can be seen as finding an EBM policy 7FBM, which is the optimal solution in the lower-level
objective. This leads to the following theorem.

Theorem 4.2. The optimal solution to W2S generalization is equivalent to the optimal solution in the
following objective:

H}‘_%X Ewa,y~rrg(-|r) [Tw'eak($7 y)] - )‘KL(Weuﬁrvgje‘ak) (5)

Proof Sketch. Notice that the objective for training the strong student, and the reverse KL share
the same optimal solution 7. In addition, it can be shown that minimizing the reverse KL between
the strong student and the weak teacher,

min KL (7g|[7V) (6)
o

is equivalent to maximizing the KL-constrained reward objective in Eq. (5)). O

Theorem provides a key insight: imitating the weak teacher maximize an implicit reward,
rYeik (g y) = Blog V¥ (y|z) — Blog TN (y|z), while regularizing (with KL objective) the strong
student toward the weak reference model . Consequently, instead of aiming to elicit knowledge
of the strong student, existing W2S learning remains confined to the knowledge of the weak model,

which may adversely impact the strong student’s performance.

4.2 Suboptimal Weak-to-Strong Generalization toward Weak Reference Model

We empirically confirm the theoretical insight in the previous section. Specifically, we analyze the
W2S training progression on Dy.,: at each checkpoint, we generate responses using the correspond-
ing intermediate model with the same set of prompts, from which we calculate the implicit reward
rvek(g ) = Blog TV (y|z) — Blog m¥e¥ (y|x), the divergence KL (mp||m¢%), and the PGR.

ref ref

Fig. [2 shows that while the strong model learns to maximize the implicit reward (Left), the learned

policy is also regularized towards the weak reference model 7rr"e“§ak, indicated by the consistently

low KL divergence KL(mg||m¥%) shortly after the training progresses (Right). Moreover, we also
observe that the PGR, as measured by the golden reward function, decreases significantly (Right).
This suggests that imitating the weak reference model 7%¢% (and potentially inheriting its mistakes)
negatively impacts the performance of the strong student.
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4.3 [EVE: Eliciting Strong Student Knowledge

Motivated by the connection between imitating the weak teacher and reward maximization, we
“generalize” the KL-constrained reward maximization learning of the strong student 7:

Hflr%X EzwD,yNﬂ'QHm) [rweak(x, y):l - )‘KL(,]T9 ‘ |ﬁ) @)

where A controls the trade-off between maximizing the reward and deviation from a regularization
policy 7 (y|x). Next, we propose one specific choice of the regularization policy 7 that can facilitate
the elicitation of the strong student’s knowledge, thereby enhancing W2S generalization.

The choice of regularization policy 7. Burns et al. [4] interpret W2S generalization in terms of
saliency: some tasks are already salient to the strong student; in this view, the role of the weak
teacher is to elicit the student’s latent knowledge rather than enforcing naive imitation of the weak
teacher’s own demonstrations. Inspired by this interpretation, we propose to regularize the learning
policy toward the strong student pre-trained model, i.e., 7 (y|z) = Ty "¢ (y|z). This design choice
serves an important goal: to encourage the learned policy 7y to remain close to the initial strong
reference model 75, "¢, thereby facilitating the elicitation of the student’s prior knowledge while
simultaneously incorporating assessment from the weak teacher. Similar to [4]], to elicit the strong
student’s knowledge of the task, we first create the weak teacher’s demonstrations, which are then

used in few-shot prompting the strong reference model 7. ¢ to generate task-relevant outputs, as

strong - . . . . . . .
oot ¢ is not trained to follow instructions. We provide detailed examples in Appendix E.6.
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Figure 3: Evolution of PGR (%). We observe clear signs of overfitting to the weak teacher’s errors
well before finishing a single epoch. Notably, when there is a large gap between the strong student
and the weak teacher, the student reaches its best performance within the first 10% of the epoch. EVE
has little to no PGR degradation and significantly outperforms naive W2S learning (SFT).

Optimization. Directly optimizing the objective in Eq. (7)) can incur significant computational costs,
as it requires repeated sampling from the strong student 7y inside the training loop [30]. Following
prior work [30, 128, [27], it is straightforward to show that the optimal policy to this KL-constrained
objective takes the form:

(k) = 5 exp (1)) 7o)

where Z(z) = Y., mo " (y|z) exp (r(2,) /) is the normalization constant. We can also leverage
the duality between the reward function and the weak teacher 7%°* [30]. Given the optimal policy
7., we can then formulate a supervised learning objective for the parametrized strong student 7y to
match with this optimal policy, resulting in the following objective:
WEE weal ﬁ/)\
(r < (ylo) /e (y|))

ref

Z(x)

max J (mg) = Max By p, i f2) log o (y|)

where the 3/ ratio controls the impact of the weak-supervision reward signal during the strong
student’s updates. A high 3/ ratio leads to a more uniform update, where all samples are assigned
similar weights; i.e., there will be no weak supervision in learning. Conversely, a low 8/ ratio
results in a more focused policy update that prioritizes samples with high weak-supervision reward
signals. This objective avoids sampling directly from my on every update as my changes during
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training; instead, we can sample the responses from the fixed 7,

optimization, which is significantly more efficient.

once at the beginning of the

We also estimate the intractable normalization factor Z(z) using Self-Normalizing Importance

Sampling [24]. Formally, given K > 1i.i.d. completions y',--- ,y" ~ 7' ""¥(-|2) drawn from

strong reference model, we can define an empirical distribution by normalizing the log-ratio f(z,y) =
B (log m* (y|z) — log ¥ (y|x)) over K samples:
i1 K -exp (f(z,9")
F(:E7y |y1’ ’K) = K ( k:)
> k=1 exp (f(z,y"))

where the normalization is estimated by Z(z) ~ & 3> exp (f(x,y")). In summary, the final
estimate is:

®

J(mp) = EzND,yl"">K~7r::fmlg('|m) [IOgWG(yqx)' F(xvyi|y17m ’K)]

We refer to this W2S learning approach as EVE. EVE can be seen as an offline supervised method,
where the weighting function is the exponential of the implicit reward defined in Eq. (2).

S Experiments

In this section, we empirically evaluate EVE’s W2S generalization performance on two tasks:
controlled-summarization and instruction following.

5.1 Controlled-Summarization

Setup. We choose the representative Reddit TL;DR summarization [35] dataset and follow the
synthetic setup from [[10, 47, [30], where we train a golden reward model ry01q(2, ) to label synthetic
preference data Dygigen for fine-tune weak-aligned model and evaluation. We use GPT2-series [29]
(GPT2-Base/Medium/Large) as weak teachers and a more advanced LLama-3.2-3B model [19, [20]]
as the strong student. The weak model vek g the aligned model with DPO [30]] from Dgoigen.

Baselines. In additional to EVE, we evaluate several existing W2S approaches, including SFT —
which naively fine-tunes the strong student on weak supervision data Dy, — and (2) Refinement
[34},141] — which prompts the strong student to refine the responses generated by the weak teacher
and fine-tunes the strong student with the refined responses.

Results. Fig. 4 shows the PGR results. EVE consistently outperforms the other
baselines across all weak teachers. Notably, under the supervision of GPT-2 (the
weakest model), EVE achieves a nearly 25% performance boost over SFT. Moreover,
SFT achieves the peak performance early in training (around 10% of the epoch),
but its performance steadily declines thereafter.

In contrast, EVE demonstrates minimal to no 60.01 R
degradation in PGR over the course of the m— Refinement
training process. As discussed in Section [4, 50.0 Eve
this can be attributed to the ability of EVE to

more effectively balance learning from the weak ~ —40.01

teacher and the salient knowledge of the strong =

reference model. § 30.01

Impact of 5/ ratio. We investigate the impact

of /A on W2S performance. Fig.[5 illustrates 20.01 ll
the impact of 3/ on PGR across different weak

teachers. Setting 5/ around 1.0 achieves opti- 00 o P2 Medium GPT2-Large

mal or near-optimal performance. Consequently,
we default 5/A = 1.0 in all experiments, elim- Figure 4: PGR (%) of SFT, Refinement and EVE.
inating the need for hyperparameter tuning
that requires ground-truth labels. Without the
weak supervision (i.e., /A = 00), the performance significantly decreases; this confirms the benefit
of learning from the weak teacher’s reward signals. Conversely, setting 5/ to a very low value can
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also degrade the performance. One possible explanation is that, as 3/ — 0, the weighting function
F(z,y'|ly* %) converges to a one-hot distribution, where the response with the highest reward is
assigned a weight of 1 and the rest are ignored. This limits learning from a few samples, making it
susceptible to simply memorizing the training data [26].

Weak Model: GPT2 Weak Model: GPT2-Medium Weak Model: GPT2-Large
53.4 200
53.2 50.0
A53.0 0.0 15.0
23528 10.0
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o524 20.0 0.0
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Figure 5: PGR (%) of various 3/ ratios in EVE’s objective.

Scaling dataset size. We additionally study the impact of scaling the number of responses K per
prompt. Fig. [6]shows the performance of EVE and SFT. EVE demonstrates improved performance as
we increase the size of the training dataset (especially as the weak teacher is stronger), while SFT’s
performance decreases. This can be explained by the fact that as the training data size increases, the
strong student also becomes more susceptible to learning the weak teacher’s mistakes. In contrast,
EVE is designed to avoid this overfitting problem, thus, it can leverage the increased supervision
significantly better.

Weak Model: GPT2 Weak Model: GPT2-Medium Weak Model: GPT2-Large
50 -0~ SFT
50 45 2 EvE
45 P 21
—40
s 35 20 —
;35 30
O30 2 19
25 20 18
% ’\_.\. 15 .\./.
10 17
32k 64k 128k 32k 64k 128k 32k 64k 128k
Training Size Training Size Training Size

Figure 6: Scaling the training size (32k, 64k and 128k) in EVE and SFT (trained for one epoch). EVE
shows notable improvement as the training size increases, while SFT suffers from overfitting.

5.2 Instruction Following

Setup. We use Qwen2.5-7B as the strong student and Llama-3.2-1B as the weak teacher. The strong
reference model myo® is initialized from the pre-trained distribution, and the weak model 7V is

fine-tuned with DPO on the UltraFeedback dataset [7].

Evaluation. We evaluate EVE on two standard instruction-following benchmarks, AlpacaEval 2.0
[9] and IFEval [46]. For AlpacaEval 2.0, we report length-controlled win-rates against gpt4-turbo,
with gpt-4o-mini serving as the judge.

Baselines. We evaluate EVE against SFT, Refinement and DPO - which uses the weak teacher as
reward signal to label preference data generated by the strong student. Following prior works 31} 11]],
we train DPO for 1 epoch with 5 = 0.05 as default hyperparameters.

Results. We report the results in Fig.[7, EVE consistently outperforms the other W2S approaches
across all benchmarks. Interestingly, we find that weak supervision can provide a reliable signal for
guiding the strong student, not only in encouraging instruction-following behavior but also helping to
filter out non-compliant responses.
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Figure 7: Results on various instruction following benchmarks for various methods.

5.3 MLE and Contrastive Learning in W2S Generalization

Fig.[7]also shows the advantages of EVE over contrastive learning approaches (e.g., DPO). Standard
RLHF frameworks (e.g., PPO and DPO [30]) can be seen as optimizing the reverse KL, while
EVE optimizes the forward KL. As noted in [36]], the reverse KL can modify the probability mass
more aggressively than forward KL, resulting in a large deviation from 7 to find the peak reward
region. Conversely, the forward KL tends to deviate less from its initial distribution towards the peak
reward. This might be beneficial in W2S learning due to the following reasons:

(i) Unreliable learning signal. Unlike standard RLHF, W2S’s feedback is highly unreliable. Finding
the peak reward region with the reverse KL can result in performance degradation due to over-
optimization as observed in [44] (and re-confirmed in Fig [ in our Appendix). Importantly, over-
optimization can be more severe in W2S generalization as even humans cannot providea reliable
signal to avoid these undesirable behaviors [4]].

(ii) Already capable strong student. Similar to prior works [6]], we assume that the strong
student is already capable of solving the target tasks. Consequently, we hypothesize that the response
region that achieved high rewards should be near the strong student. Therefore, the forward KL,
inducing less deviation from the initial distribution, can be seen as an additional implicit regularization
and performs better.

6 Limitations

We did not experiment with larger language models (> 7B) due to limited computational resources.
Given the resource demands of generating data from the strong student, future work will focus on
using the strong student for evaluation to eliminate the need for generating strong student data. For
example, one direction is to explore extensions to our strategy proposed in Section [D.T] which relies
on the strong student only for reward evaluation. Tajwar et al. [36]. While our method does introduce
additional memory overhead from teacher feedback calculations, this cost is relatively minimal
compared to the overall training process of the strong student.

7 Conclusion and Discussion

This paper studies the W2S generalization and provides a new theoretical perspective on imitating
the weak teacher. We show that imitating the weak teacher is equivalent to maximizing an implicit
reward and regularizing the student towards the weak reference policy, which can amplify the bias or
mistakes of this supervised fine-tuned weak teacher while not effectively eliciting knowledge from the
strong student. Building upon this observation, we propose EVE, which directly optimizes the strong
student using an RLHF objective with the “forward KL’ regularization towards its latent knowledge
of the given task. Extensive empirical results demonstrate that EVE achieves superior performance to
existing W2S baselines and effectively mitigates the overfitting problem in W2S generalization.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper faithfully adheres to the claims and motivation in the abstract and
provides proof and detailed empirical studies in support.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A discussion of our limitations can be found at section A Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide proofs and empirical evidence to support all our theoretical results

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed guidance on reproducibility by specifying all datasets and
hyperparameters used in this work. Furthermore, we will release our GitHub implementation
if the paper is accepted.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We’ve only used open-source models and open-source datasets for all experi-
ments in our work. We provide details experiments in section B Appendix and Section 5 to
reproduce the results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We list experiment details about the training and results details in Section 5
and Section B Appendix. Our experiments only use open-source datasets and models.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Training large language models is computationally expensive. Due to con-
straints in computational resources and financial budget, our experiments do not include

multiple random seeds for each configuration. However, our evaluation protocol aligns with
that of prior works in W2S generalization and RLHF. [44] 142} [31]].

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on computational resources in the experimental details
section B in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our paper follows the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss societal impacts in Section A of the appendix. We do no expect
any negative societal impacts directly resulting from the contributions of our paper.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use public models that are fine-tuned for alignment on open-source datasets.
Our work does not contribute any risk to these public models.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:We have properly cited papers and resources used in our experiment. The
pretrained model comes from Llama-3.2-3B, which are classified under the Community
License agreement: https://huggingface.co/meta-llama/Llama-3.2-3B. Both the TL:DR and
UltraFeedback datasets used in this work use the MIT License.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t have experiments involving crowdsourcing or research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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801 * Depending on the country in which research is conducted, IRB approval (or equivalent)

802 may be required for any human subjects research. If you obtained IRB approval, you
803 should clearly state this in the paper.

804 * We recognize that the procedures for this may vary significantly between institutions
805 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
806 guidelines for their institution.

807 * For initial submissions, do not include any information that would break anonymity (if
808 applicable), such as the institution conducting the review.

809 16. Declaration of LLLM usage

810 Question: Does the paper describe the usage of LLMs if it is an important, original, or
811 non-standard component of the core methods in this research? Note that if the LLM is used
812 only for writing, editing, or formatting purposes and does not impact the core methodology,
813 scientific rigorousness, or originality of the research, declaration is not required.

814 Answer: [NA]

815 Justification: We use LLM for grammar checking only.

816 Guidelines:

817 * The answer NA means that the core method development in this research does not
818 involve LLMs as any important, original, or non-standard components.

819 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
820 for what should or should not be described.
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