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Abstract Bayesian optimization (BO) is a powerful approach to sample-efficient optimization of

black-box functions. However, in settings with very few function evaluations, a successful

application of BO may require transferring information from historical experiments. These

related experiments may not have exactly the same tunable parameters (search spaces),

motivating the need for BO with transfer learning for heterogeneous search spaces. In this

paper, we propose two methods for this setting. The first approach leverages a Gaussian

process (GP) model with a conditional kernel to transfer information between different

search spaces. Our second approach treats the missing parameters as hyperparameters of

the GP model that can be inferred jointly with the other GP hyperparameters or set to fixed

values. We show that these two methods perform well on several benchmark problems.

1 Introduction
Bayesian optimization (BO) is a popular technique for sample-efficient black-box optimization

that has been successfully leveraged for a wide range of applications such as hyperparameter

tuning for machine learning models (Snoek et al., 2012; Turner et al., 2021), A/B testing (Letham

et al., 2019), chemical engineering (Hernández-Lobato et al., 2017), materials science (Ueno et al.,

2016), control systems (Candelieri et al., 2018), and drug discovery (Negoescu et al., 2011). Many

approaches to BO target the setting of expensive black-box functions where we only have access to

a small number of function evaluations. To further improve the performance of BO in this setting,

transfer learning can be used as a way of leveraging relevant historical information. While transfer

learning has been thoroughly studied in the BO literature, traditional transfer learning approaches

typically assume that all related experiments have exactly the same (homogeneous) search space.

This assumption simplifies the modeling process, but significantly limits the applicability of these

methods in real-world scenarios where search spaces often vary between experiments. For instance,

when tuning the hyperparameters of machine learning models, practitioners often make changes

to the search space to add and/or remove parameters or update their ranges.

In this regime, we need a BO method that can seamlessly transfer information from several

historical experiments with different search spaces. To achieve this, we propose two methods

targeting the setting of a small number of function evaluations where we do not have access to

additional domain knowledge, e.g., user priors. Our first method leverages a conditional kernel

that defines a similarity measure between heterogeneous spaces by leveraging a tree-structured

representation of the search spaces. This method has the advantage that it requires no additional hy-

perparameters. Our second method employs a learned imputation which treats missing parameters

as hyperparameters that can be learned jointly with the other GP hyperparameters. Both methods

allow incorporating task-level similarity information and naturally correspond to standard transfer

learning BO in the special case when the search spaces are identical. Our main contributions are:

1. We propose two methods (conditional kernel-based and learned imputation-based) for BO with

transfer learning for heterogeneous search spaces.
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2. We empirically validate our methods on benchmark datasets, demonstrating better sample-

efficiency compared to existing approaches.

3. We provide a BoTorch implementations of both approaches.

2 Related Work

Transfer Learning in Bayesian Optimization (BO). BO has been previously explored with the

common goal of leveraging information from historical source tasks to improve optimization

efficiency on a new target task (Bai et al., 2023). Early work by (Swersky et al., 2013; Yogatama

and Mann, 2014)) employed multi-task Gaussian Processes (MTGPs) to model task similarities. In

addition, (Tighineanu et al., 2022) provide a unified view of hierarchical GP models for transfer

learning in BO. Ensemble methods have also been utilized as surrogate models in the context of

transfer learning (Feurer et al., 2018; Schilling et al., 2016).

Recent work has also considered learning neural network-parameterized GP priors from previ-

ous tasks (Perrone et al., 2018; Wang et al., 2021; Wistuba and Grabocka, 2021). Additionally, (Dai

et al., 2022; Shilton et al., 2017; Wang et al., 2018) performed a theoretical analysis for the regret

metric commonly employed in BO. However, all these approaches focus on the setting where the

search spaces are homogeneous across tasks, i.e., all tasks share the same search space. This limits

these methods applicability for problems with different (heterogeneous) search spaces.

BO with Heterogeneous Search Spaces. (Fan et al., 2024) recently proposed a method for transfer

learning across heterogeneous search spaces that leverages a neural network mapping from domain-

specific contexts to specifications of hierarchical GPs. The data requirements of neural networks

and the need for manually defined domain-specific contexts may limit the applicability of this

method in settings where small amounts of data is available. Another class of recent methods

leverage text-based sequential modeling approaches for meta black-box optimization (Chen et al.,

2022; Song et al., 2024). While this sequential modeling can naturally handle heterogeneous search

spaces, these methods require massive amounts of training data. During paper review, we became

aware of (Stoll et al., 2020), which motivates the heterogeneity through the adjustments made across

a sequence of hyperparameter optimizations for machine learning models. They introduce the

problem, a series of benchmark problems and baseline algorithms; and demonstrate that transferring

knowledge across experiments can lead to significant savings in experimentation budget.
1

3 Background

Bayesian Optimization. Bayesian optimization (BO) is an iterative approach to black-box optimiza-

tion, see (Frazier, 2018; Garnett, 2023) for a comprehensive overview. BO consists of two main steps

where we first build a probabilistic surrogate model from available data followed by optimizing

an acquisition function to select the most promising candidate(s) to evaluate next. This iterative

process continues until the evaluation budget has been exhausted. The probabilistic surrogate

model is commonly a Gaussian process (GP) (Rasmussen et al., 2006) and a common choice of

acquisition function is the expected improvement (EI) (Jones et al., 1998).

Bayesian Optimization with Transfer Learning. Our goal is to optimize a target black-box function
(task) 𝑓𝑡 (𝑥) where each evaluation of 𝑓𝑡 (𝑥) is expensive and the number of function evaluations is

limited. We assume a budget of 𝑛 function evaluations for 𝑓𝑡 (𝑥), where 𝑛 is commonly between 5

and 40. In the transfer learning setting we are also given data from a set of 𝑡 − 1 related optimization

experiments, referred to as source tasks, 𝑓1, 𝑓2, . . . , 𝑓𝑡−1. We want to leverage this existing data to

improve the sample-efficiency of BO on the target task 𝑓𝑡 (𝑥).
1
We thank the reviewer who pointed this reference to us during the review period.
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In this paper, we are interested in the setting where tasks are heterogeneous, i.e., correspond to

different search spaces. As an example, consider tuning a few hyperparameters of a simple neural

network with source tasks 𝑓1(𝑥), 𝑓2(𝑥) and target task 𝑓3(𝑥) with search spaces defined as follows:

• Search space of 𝑓1: X1 = {learning rate, dropout rate}

• Search space of 𝑓2 : X2 = {learning rate, dropout rate, batch size}

• Search space of 𝑓3: X3 = {learning rate, dropout rate, number of hidden layers}

In this simple example, the common parameters are {learning rate, dropout ratio}, with the search

spaces of 𝑓2(𝑥) and 𝑓3(𝑥) having some additional parameters not present in the other tasks.

4 BO with Transfer Learning for Heterogeneous Search Spaces
In this section, we will propose two methods for BO with transfer learning for heterogeneous

search spaces. Our first method uses a conditional kernel which allows us to leverage a GP model to

correlate the common parameters across tasks. Our second method treats the missing parameters

for each task as hyperparameters that will need to be inferred when training the GP model. A clear

benefit of these methods compared to existing methods in the literature, e.g., (Chen et al., 2022; Fan

et al., 2024; Song et al., 2024), is that neither method assumes additional information beyond the

previously evaluated inputs and corresponding function values of the source and target tasks.

4.1 MTGP with Conditional Kernels
Next, we will describe a GP model that employs a new kernel (referred as Conditional Kernel) to
handle the challenge of modeling heterogeneous search spaces across different tasks. The key idea

behind Conditional Kernel is to leverage a set of base kernels, e.g., Matern-5/2, to conditionally
compare inputs from different tasks based on their matching parameters in a dependency tree

representing the search spaces of all the tasks.

Tree-Structured Representation of Heterogeneous Search Spaces. To make this more concrete, let

U =
⋃𝑡

𝑖=1X𝑖 be the universal set of parameters from all the tasks. We create a tree-representation

of this universal set U where each node of the tree corresponds to a subset of parameters. Starting

from the root node, we assign a maximal subset of parameters to each node that are common across

as many tasks as possible. Subsequently, we define a set of base kernels that is equal to the number

of nodes in the tree. Fig. 1 illustrates this tree for the example given in Sec. 3.

k1 
learning rate,  
dropout rate 

k2 
batch size 

k3 
number of hidden 

layers 

Common parameters 
for f1, f2, f3

Unique 
parameters 
for  f2

Unique 
parameters 
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Figure 1: The tree-based representation and the corresponding kernels of the search spaces X1,X2 and

X3 given in Sec. 3.

Conditional kernel. The Conditional Kernel (K𝑐 ) of any two inputs 𝑥 and 𝑥 ′ coming from two

tasks 𝑖, 𝑖′ is defined as the sum of base kernels over all nodes that contain the common parameters

across both task 𝑖 and task 𝑖′:

K𝑐 ({𝑥, 𝑖}, {𝑥 ′, 𝑖′}) =
𝑝∑︁
𝑗=1

I[𝑁U [ 𝑗] ⊂ X𝑖 ∩ X𝑖′] · 𝑘 𝑗 (𝑥 [𝑁U [ 𝑗]], 𝑥 ′ [𝑁U [ 𝑗]]),
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where 𝑁U [ 𝑗] refers to the subset of parameters that are contained in node indexed by 𝑗 and I is
the indicator function that determines whether the corresponding subset 𝑁U [ 𝑗] is part of tasks X1

and X2. See Sec. A in the appendix for a concrete example of constructing the conditional kernel.

MTGP with Conditional Kernels. Many MTGP models leverage a base kernel for the input

space and a task kernel representing the task correlations. In the setting of heterogeneous search

spaces, we can combine the Conditional Kernel K𝑐 ({𝑥, 𝑖}, {𝑥 ′, 𝑖′}) with a parameterized positive

definite matrix 𝐵 representing the task correlations to define the popular intrinsic model of co-

regionalization (ICM) kernel (Swersky et al., 2013):

Overall MTGP Kernel | 𝑘 ({𝑥, 𝑖}, {𝑥 ′, 𝑖′}) = K𝑐 ({𝑥, 𝑖}, {𝑥 ′, 𝑖′}) · 𝐵

4.2 MTGP with Imputed Values

In many applications, the missing parameters represent fixed settings that have not been tuned

in the experiment. With this motivation, we propose an approach that treats each missing (from

the union of search spaces) parameter in a task as an additional hyperparameter (for the unknown

fixed value) in the MTGP model. These missing parameters can either be learned jointly with the

other GP hyperparameters or set to some fixed value. While this approach introduces additional

hyperparameters (one per missing parameter per task), the computational complexity of GP training

is on the same order as an MTGP defined over the union of search spaces.

5 Experiments

In this section, we provide an empirical evaluation of different methods for BO with heterogeneous

search spaces. All experiments use 100 replications and we show the mean performance with

two standard errors in all plots. All methods use a squared exponential (SE) kernel. We use the

Log-Normal priors proposed in (Hvarfner et al., 2024), which are designed to be performant in both

low and high-dimensional settings, using length-scale priors that scale by

√
𝐷 . We use the recently

proposed LogEI extension of the popular Expected Improvement (EI) acquisition function (Ament

et al., 2023). For each replication, we initialize all methods with exactly the same initial random

points and generate a new set of random trials for the source tasks.

Methods. We compare six different methods. Random Search which samples randomly from the

search space. Vanilla BO uses standard BO on the target task and ignores the data from the source

tasks. MTGP with Conditional Kernels uses the approach described in Sec. 4.1. MTGP on Common
Parameters uses an MTGP + LogEI on the common parameters and samples other parameters

randomly. Imputed MTGP uses the imputed model as described in Sec. 4.2 and sets missing

parameters to the center of the parameter range. Learnable Imputed MTGP uses the imputed MTGP

from Sec. 4.2 and learns the missing parameters jointly with the other GP model hyperparameters.

Synthetic problems. Our first test problem uses the popular synthetic Hartmann6 function. We

use one source task which corresponds to a 4D search space where last 2 parameters are fixed to 0.

The target task is the original Hartmann6 problem. The results are show in the left plot of Fig. 2.

HPO-B benchmark problems. HPO-B is a large transfer learning benchmarking suite for hyper-

parameter optimization (Pineda et al., 2021)
2
. We construct two different test problems based on

problems available in HPO-B. The first problem is Ranger, which has 11 tunable parameters. We

use search space ids 5965 (missing parameter index 10) and 7607 (missing parameter index 5 and 9)

as the source tasks. The target task is search space id 5889 with parameters [0, 1, 2, 3, 6, 7]. The

second problem is Rpart where we use search space ids 5636 and 5859 (both with all 6 parameters)

as source tasks. The target task has search space id 4796 and only has parameters [0, 2, 3].

2
The code for the HPO-B benchmark is available at https://github.com/releaunifreiburg/HPO-B
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Figure 2: (Left) The Learned Imputed MTGP performs the best on the 6D Hartmann problem. (Mid-

dle/Right) The MTGP-based methods outperform Vanilla BO and Random Search on the 11D

Ranger and 6D Rpart problems. Each experiment employs 30 source task trials.

We use 30 source trials from each source task, resulting in a total of 60 source trials. The results

for the Ranger and Rpart problems are shown in the middle and right plots in Fig. 2.

Code. All methods were implemented in Python using BoTorch (Balandat et al., 2020). The source

code and the instructions to reproduce the benchmark results can be found in our Github repository:

https://github.com/facebookresearch/heterogeneous_botl.

5.1 Ablation study

We perform an ablation study where we vary the number of source trials on the 11D Ranger

problem. Fig. 3 shows the results for 10, 30, and 50 source trials for each source task.
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Figure 3: Ablation study for varying the number of trials for each source task on the 11D Ranger

problem. We observe that the MTGP with conditional kernels performs the best when only a

small number of source trials are available. As more source data is available, the Learned

Imputed MTGP and MTGP on common parameters perform the best.

6 Conclusions
Our results show that BO with transfer learning can be successfully leveraged in the setting of

heterogeneous search spaces where we have access to small amounts of historical data. For future

work, we plan on exploring ways of leveraging additional domain-specific information. Additionally,

leveraging other probabilistic models, e.g., Bayesian neural networks, may address some of the

scaling limitation of our approach that come from leveraging exact MTGP models.

7 Broader Impact
After careful reflection, the authors have determined that this work presents no notable negative

impacts to society or the environment.
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information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [No]

We left license out of the submission to preserve anonymity during review. All code and

assets will be released under MIT license upon publication.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] Implementation of all models and benchmarking related

code is provided via an anoymized GitHub link.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]
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7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]
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A Example conditional kernel construction

Without loss of generality, we can assign each parameter a unique integer id. For the example from

Sec. 3:

• Search space of 𝑓1: X1 = {1: learning rate, 2: dropout rate}

• Search space of 𝑓2 : X2 = {1: learning rate, 2: dropout rate 3: batch size}

• Search space of 𝑓3: X3 = {1: learning rate, 2: dropout rate, 4: number of hidden layers}

This means that the universal set of parameters is U = {1, 2, 3, 4}. The conditional kernel can
be constructed as follows:

1. First, we construct a set Ũ of size 𝑝 consisting of subsets of ids that are common across as many

tasks as possible. For example, in the case above, Ũ = {[1, 2], [3], [4]} with 𝑝 = 3. Algorithm 1

provides the pseudo-code for this procedure.

2. We define 𝑝 base kernels {𝑘1, 𝑘2, · · · , 𝑘𝑝 } for each subset in Ũ . For example, in the case above,

we define three base kernels {𝑘1, 𝑘2, 𝑘3}.

3. The conditional kernelK𝑐 value of two inputs 𝑥 and 𝑥 ′ coming from two tasks 𝑖, 𝑖′ is then defined

as the sum of the base kernels that correspond to the subsets containing common parameters of

both task 𝑖 or task 𝑖′:

K𝑐 ({𝑥, 𝑖}, {𝑥 ′, 𝑖′}) =
𝑝∑︁
𝑗=1

I[Ũ [ 𝑗] ⊂ X𝑖∩ ⊂ X𝑖′] · 𝑘 𝑗 (𝑥 [Ũ [ 𝑗]], 𝑥 ′ [Ũ [ 𝑗]]), (1)

where I is the indicator function that determines if the corresponding subset Ũ [ 𝑗] is part of both
tasks X1 and X2 We let Ũ [ 𝑗] refer to the 𝑗 th subset of Ũ . For example, in the example above, the

conditional kernel for inputs 𝑥 from task 1 and 𝑥 ′ from task 2 is defined as:

K𝑐 ({𝑥, 𝑖}, {𝑥 ′, 𝑖′}) = 𝑘1(𝑥 [1, 2], 𝑥 ′ [1, 2]) . (2)

Similarly, if the inputs 𝑥 and 𝑥 ′ are from the same task 2, the conditional kernel is:

K𝑐 ({𝑥, 𝑖}, {𝑥 ′, 𝑖′}) = 𝑘1(𝑥 [1, 2], 𝑥 ′ [1, 2]) + 𝑘2(𝑥 [3], 𝑥 ′ [3]) (3)

Remark. Our approach only transfers information between the shared parameters in any two tasks.

If there is no overlap, no information can be transferred as this will result in two independent

sub-kernels being trained and utilized for the two tasks.
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Algorithm 1 Construct Ũ : Subsets of Common Indices

Require: List of parameter index lists F = [𝐹1, 𝐹2, ..., 𝐹𝑡 ] where 𝐹𝑖 corresponds to task 𝑖

1: Ũ ← {set(𝐹1)}
2: for 𝑖 ← 2 to 𝑛 do
3: idx_set← set(𝐹𝑖)
4: new_subsets← []
5: for sub ∈ Ũ do
6: common← idx_set ∩ sub
7: remaining← sub \ common

8: if common ≠ ∅ then
9: new_subsets.append(common)
10: idx_set← idx_set \ common

11: end if
12: if remaining ≠ ∅ then
13: new_subsets.append(remaining)
14: end if
15: end for
16: if idx_set ≠ ∅ then
17: new_subsets.append(idx_set)
18: end if
19: Ũ ← new_subsets

20: end for
21: return Ũ
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