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Abstract

Code-mixing and script-mixing are prevalent across online social networks and multilingual
societies. However, a user’s preference toward code-mixing depends on the socioeconomic
status, demographics of the user, and the local context, which existing generative models
tend to ignore while generating code-mixed texts. In this work, we make a pioneering attempt
to develop a persona-aware generative model to generate texts resembling real-life code-
mixed texts of individuals. We propose PARADOX, a persona-aware generative model for
code-mixed text generation, which is a novel Transformer-based encoder-decoder model
that encodes an utterance conditioned on a user’s persona and generates code-mixed texts
without monolingual reference data. We propose an alignment module that re-calibrates the
generated sequence to resemble real-life code-mixed texts. PARADOX generates code-mixed
texts that are semantically more meaningful and linguistically more valid. To evaluate the
personification capabilities of PARADOX, we propose four new metrics – CM BLEU, CM
Rouge-1, CM Rouge-L and CM KS. On average, PARADOX achieves 1.6 points better CM
BLEU, 47% better perplexity and 32% better semantic coherence than the non-persona-
based counterparts.

1 Introduction

Code-mixing (aka code-switching) appears when two or more languages are used interchangeably in a single
utterance. It is common in multilingual societies like India, where more than 24% of the population speaks
in more than one language (Sengupta et al., 2021). Code-mixing is even more prevalent on social media.
Informal usage of code-mixed languages on social media platforms like Twitter, Facebook, YouTube, and
other online social networks gives rise to script-mixing, in which a user can use a single script (e.g., Roman)
or multiple scripts (e.g., Devanagari for Hindi and Roman for English) within the same text (Srivastava
et al., 2020). Recent literature has made significant efforts to understand syntactic structure and semantics
from code-mixed texts (Singh et al., 2018a;b; Sengupta et al., 2022b). Similar attempts have been made for
pragmatic tasks – humour, sarcasm and hate detection in the code-mixed regime (Sengupta et al., 2022a;
Bansal et al., 2020).

Text generation models need to understand the syntax and semantics of texts and preserve semantic coher-
ence during generation. Previous studies utilized recurrent neural networks with generative models (Zhang
et al., 2017), as well as self-attention-based pre-trained language models (Zhang et al., 2020) for gener-
ating monolingual texts. However, such an effort is limited in case of code-mixing. Previously, linguistic
theories (Pratapa et al., 2018; Gupta et al., 2020), transfer learning (Gupta et al., 2020), and autoencod-
ing (Samanta et al., 2019) based approaches have been used to generate code-mixed texts from parallel
corpora or reference data. However, none of these methods incorporates user information while generating
code-mixed texts. Unlike traditional languages, code-mixing is a derived language whose adoption depends
on different socioeconomic, demographic, and linguistic factors (Rudra et al., 2016; Parshad et al., 2016).
Figure 1 demonstrates the code-mixing behaviour among Indian users on Twitter and YouTube in terms of
adoption and patterns in code-mixing. We visualize the mean and standard deviation of the Code-Mixing
Index (CMI) (Das & Gambäck, 2014) and the length of tweets/comments posted by different users. The
distributions show how different users conceive and prefer code-mixing.
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Figure 1: User-specific distribution of Code-Mixing Index (CMI) and text lengths across different platforms.
CMI is calculated as the fraction of minority language words in a text. For instance, the CMI of the text
“I don’t want your nautanki” (“I don’t want your gimmick”) is 1

5 = 0.2, the fraction of Hindi (minority
language in this example) words in the text. Texts skewed toward monolingualism, i.e., having an unequal
proportion of words between different languages, tend to have lower CMI than multilingual texts.

User persona plays a vital role in generation models, particularly in personalized generation settings, such
as conversational agents and recommendation engines. Several studies have contributed towards persona-
based dialogue generation (Zheng et al., 2019; Wang et al., 2021), personalized story generation (Chandu
et al., 2019), and other sub-tasks in text generation. Being a conversational language, personification of
code-mixing could be deemed appropriate for conversational systems such as recommender engines, mental
health counselling bots, and event booking applications.

This motivates us to develop PARADOX, a novel persona-aware generative model for code-mixed text gener-
ation. It aims to generate personalized code-mixed texts by leveraging users’ historical utterances. It uses
a Transformer-based encoder-decoder architecture to learn the semantics of code-mixed generation. The
model utilizes a novel persona encoder to encode a user persona from their behavioural preferences. Instead
of projecting the user’s persona onto a static space, PARADOX projects it onto a probabilistic latent space and
captures the contextual persona based on their historical persona. Additionally, PARADOX uses an alignment
module to re-align decoder outputs to generate coherent texts.

We evaluate PARADOX against the vanilla Transformer in terms of both the quality and coherence of generated
texts. To quantify the extent of personification in the code-mixed generation, we propose four metrics – CM
BLEU, CM Rouge-1, CM Rouge-L, and CM KS (here CM stands for code-mixing). On average, PARADOX
achieves 1.6 points better CM BLEU than the non-persona counterpart. We also conduct a detailed human
evaluation, concluding that PARADOX-generated code-mixed texts are 32% more semantically coherent than
that of the vanilla Transformer model. PARADOX can imitate a user’s linguistic preference 4% better than the
non-persona-based Transformer model. Our empirical analyses also highlight the effectiveness of PARADOX
over pre-trained large language models. On average, PARADOX achieves 4.2 points better CM BLEU, 11 points
better CM Rouge-1, and 9.6 points better CM Rouge-L than the pre-trained Llama 2 model (Touvron et al.,
2023).

Contributions. The major contributions of this paper are summarized below:
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• We make a pioneering effort in utilizing user persona in code-mixed text generation. Compared to existing
approaches, PARADOX does not require parallel corpora or reference data for code-mixed text generation.

• We propose a probabilistic persona encoder module that learns the latent persona of a user from historical
contexts. PARADOX captures the user persona implicitly and does not require explicit persona features such
as user demographic information to encode user behaviours.

• We design an alignment module to automatically induce alignments between different subwords. Empirical
results show that it improves the coherence of generated texts.

• We propose three metrics influenced by supervised machine translation – CM BLEU, CM Rouge-1, and
CM Rouge-L for evaluating the personification of code-mixed generation models. We also propose CM
KS as a distance measure to evaluate code-mixing generation models.

• We further explore knowledge distillation and meta-knowledge distillation in the context of text generation
and present the effectiveness of knowledge transfer from language models pre-trained on multilingual texts.

• Finally, we collect a large-scale longitudinal dataset from Twitter and YouTube, primarily monolingual
Hindi and Hindi-English code-mixed texts. The datasets will be valuable for code-mixing research.

Reproducibility. The supplementary material comprises the source code and datasets.

2 Related Works

Rule-based and Linguistic Approaches. Code-mixed text generation has garnered much interest in
recent times. Pratapa et al. (2018) explored equivalence constraint (EC) theory to generate Spanish-English
code-mixed texts from monolingual corpora. Their linguistic theory-based approach showed superiority over
recurrent neural networks in complex code-mixed text generation. Rizvi et al. (2021) developed GCM, a
toolkit that utilizes different linguistic theories to generate code-mixed texts. Motivated by embedding ma-
trix theory, Srivastava & Singh (2021) proposed rule-based methods to generate Hindi-English code-mixed
texts. Santy et al. (2021) utilized parse tree structures within the monolingual texts for generating code-
mixed texts. Alternative approaches use generative models – generative adversarial networks (Goodfellow
et al., 2020), or variational autoencoder (VAE) (Kingma & Welling, 2014). Towards this, Garg et al. (2018)
explored recurrent neural networks with SeqGAN pre-training for generating Mandarin-English code-mixed
data. Samanta et al. (2019) developed a VAE-based method to generate realistic and coherent Hindi-English
code-mixed texts. Other classes of code-mixed text generation models explore alignment within parallel
corpora for code-mixed generation. Notably, Winata et al. (2019); Tan & Joty (2021) explored word align-
ments and candidate selection from parallel corpora for generating synthetic code-mixed texts. Amin et al.
(2023) explored word alignments for generating Marathi-English code-mixed text generation. On a similar
attempt, Dowlagar & Mamidi (2021) explored gated convolutional encoder-decoder models to identify the
compositional structure and translate English texts to Hinglish.

Pre-trained Models. With the inception of self-attention (Vaswani et al., 2017), several attempts have
been made to develop large pre-trained models showing exceptional performances in semantic and gener-
ative tasks. Among these methods, multilingual models, such as XLM (Conneau & Lample, 2019), XLM-
RoBERTa (Conneau et al., 2020), and mBART (Liu et al., 2020) have shown noticeable performance even
on low-resource languages. Recently, MuRIL (Khanuja et al., 2021) was proposed, superseding the perfor-
mances of multilingual-BERT (Devlin et al., 2019) on different syntactic and semantic tasks on a diverse
set of low-resource languages. Gupta et al. (2020) devised a semi-supervised approach to transfer knowl-
edge from XLM to generate synthetic Hindi-English code-mixed texts. Gautam et al. (2021) explored a
pre-trained mBART model for generating Hindi-English code-mixed texts. Jawahar et al. (2021) explored
multilingual text-to-text models with curriculum learning for generating Hindi-English code-mixed texts.
They pre-trained an encoder-decoder model on synthetic code-mixed texts, which improved the generation
quality on the gold code-mixed dataset. In a recent study, Yong et al. (2023) explored multilingual large
language models (LLMs) for generating code-mixed texts in a zero-shot setting. They explored InstructGPT,
ChatGPT (Ouyang et al., 2022), BLOOMZ (Muennighoff et al., 2022) and Flan-T5-XXL (Chung et al., 2022)
for generating code-mixed texts in Indonesian, Malay, Chinese, Tagalog, Vietnamese, Tamil, and Singlish.
They further emphasized the importance of better prompt templates and language pairing for generating
more coherent and natural code-mixed texts.
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Figure 2: PARADOX: Transformer encoder-decoder architecture with persona encoder (multi-headed (M.H.)
fused attention (FAME)).

Major Limitations of Existing Studies. Despite their popularity in several generative applications,
personalization remains neglected in the code-mixed generation. The existing code-mixed generation models
utilize parallel corpora to understand the switching patterns and generate code-mixed texts synthetically.
These limitations motivate us to develop a code-mixed language generation model that can automatically
learn the language’s semantics and capture the linguistic preferences of users while generating texts. Our
proposed method, PARADOX, improves the quality of generated texts and preserves the real-life phenomenon
of code-mixing among users.

3 Proposed Methodology

Here, we explain PARADOX, and the code-mixing (CM, henceforth) generation process utilizing user persona.
PARADOX utilizes a persona encoder to implicitly encode a user’s persona based on her historical utterances.
It further projects the persona onto a probabilistic latent space to capture the user’s contextual persona.
PARADOX employs an alignment module to re-calibrate the output sequences that help our model understand
the language of code-mixing and enable the model to generate coherent texts.

3.1 PARADOX Architecture

PARADOX, as shown in Figure 2, consists of four components – (a) an encoder, (b) a contextual persona
encoder, (c) a decoder, and (d) an alignment module.
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3.1.1 The Encoder with FAME

The encoder is used to jointly learn the semantics of a code-mixed text and a user’s global persona based
on the previous comments/tweets. A comment/tweet Xu by user u is first tokenized using byte-pair encod-
ings (Sennrich et al., 2016) into ⟨x1, x2, ..., xn⟩. The initial contextual embedding of a token xi is conditioned
with the user persona as

˜Emb(xi,u) = Embxi
+ PEi + Embu (1)

where Embxi is the initial token embedding, PEi is the positional encoding at position i, and Embu is
the user’s global persona embedding captured through a static embedding layer. We use a stacked en-
coder, in which each encoder consists of multi-headed fused attention (FAME), followed by a residual,
layer-normalization, and pointwise feed-forward layers. Sengupta et al. (2021) introduced FAME by com-
bining scaled dot-product attention (Vaswani et al., 2017) and outer-product attention (Le et al., 2020) and
showed to be effective in capturing both semantics and morphology of code-mixed texts.

3.1.2 Contextual Persona Encoder

We project the static persona embedding onto a probabilistic latent space for generating the contextual
persona embedding for each user in a given context. We hypothesize that each user has a static (global)
persona and a contextual (local) persona. The motivation behind projecting the persona embedding to a
latent space is to capture the contextual perturbations in the user persona. For example, a user can have a
generally positive outlook (global) on a particular concept; however, given a specific situation, the extent of
the positive outlook (local) might change. Formally, we generate a contextual persona embedding

Ẽmbu ∼ qϕ(z|Embu) = N (µu, σ2
u). (2)

Towards this, we define two linear projection matrices to learn the distribution location and scale parameters
as

µu = Embu.Wµ and σu = Embu.Wσ.

Following the reparameterization trick (Kingma & Welling, 2014), we define the final generated persona
encoding as:

Ẽmbu = µu + ϵu ⊙ σu (3)

where ϵu is the random noise, independently drawn from N (0, 1). We obtain the hidden representation of
token xi conditioned on the contextual persona encoding as

h̃(xi,u) = h(xi,u) + Ẽmbu (4)

where h(xi,u) is the final hidden representation obtained from the final layer of the encoder.

3.1.3 The Decoder

We adopt the Transformer decoder conditioned on the contextual user persona. Similar to the original
Transformer decoder, we use a stacked decoder initialized with the encoded output sequence. Drawing the
motivation from autoregressive generative language models like GPT2 (Radford et al., 2019), the decoder’s
objective is to predict the next token, conditioned on all the previous tokens. The input to the decoder is the
encoded input sequence added with positional encoding. Each decoder block consists of masked multi-headed
FAME, a residual connection, and a normalization layer. We also deploy multi-headed FAME to attend to
each decoder token with the encoded input tokens h̃(xi,u). For each decoder input position j, we generate a
hidden representation h

(dec)
(j,u) ∈ R|V |, representing the output token at (j +1)th position; |V | is the vocabulary

size of the decoder.

5



Under review as submission to TMLR

3.1.4 The Alignment Module

The final layer of PARADOX is an alignment module that learns the latent alignment matrix and re-aligns the
outputs generated by the decoder. The primary objective behind using alignments in generative models is
explicitly learning the global semantic similarity between different tokens. We use two projection matrices,
W Q and W K , to project the decoder token embedding matrix Emb(dec) into two different subspaces. The
alignment matrix is defined as,

A = softmax

(
Q · KT

√
d

)
(5)

where Q = Emb(dec) ·W Q, K = Emb(dec) ·W K , and d is the hidden size of the decoder. This operation
resembles the scaled dot-product attention mechanism (Vaswani et al., 2017). However, as opposed to atten-
tion, we compute the global context by considering the original embedding space of all tokens. Finally, the
re-aligned hidden representation is derived as,

h̃(j,u)
(dec)

= h
(dec)
(j,u) · A+ h

(dec)
(j,u) (6)

This hidden representation is finally fed to a softmax layer to convert the outputs into probabilities.

For the sake of simplicity, we denote the combination of text encoder and persona encoder as ‘encoder’
and the combination of Transformer decoder and the alignment module as ‘decoder’ throughout this paper.
The generative model is trained w.r.t. the decoder reconstruction cross-entropy loss. The contextual persona
encoder gives rise to a variational KL-divergence loss. We use a variational hyperparameter λ to assign its
weightage in the final computed loss.

3.2 Training Curricula

Figure 3: Meta knowledge distillation training curriculum
for PARADOX.

To learn the model parameters, we primarily
minimize the reconstruction loss on output se-
quence ⟨y1, y2, ..., ym⟩ between defined as,

L1
(x,u) =

m∑
j=1

y(j,u) log(Pθdec (y(j,u)|Y(0:j−1,u), X1:n, u))

(7)
The output sequence is initialized with y0 =
[CLS] token. The contextual persona encoder
module arises a Kullback–Leibler divergence
loss between the variational distribution and
true posterior distribution, which can be de-
rived (Kingma & Welling, 2014) to

L2
(u) = −1

2

d∑
k=1

(
1 + 2 · log(σk

u) − (µk
u)2 − (σk

u)2)
(8)

During training, we minimize the task-specific
loss

L(x,u) = L1
(x,u) + λ · L2

(u) (9)

for each text and user id pair (x, u) ∼ D on
training data. The persona encoding weight λ
is a hyperparameter we set before running the
experiments.

In addition to the vanilla training, we define two other training curricula for jointly learning the code-mixed
semantics and improving the reconstruction ability of our model by transferring knowledge from other large
language models pre-trained on multilingual corpora.
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Algorithm 1: Training with Distillation
Require: student S, teacher T , training data D
Require: λ, scaling factor; µ, learning rate
while not converged do

Sample training batch x, u ∼ D;
Encode hT

x from teacher encoder;
Encode hS

(x,u) from student encoder;
Calculate Ldistill

(x,u) using Eqn. 10;
Calculate L(x,u) = L(x,u) + λ · Ldistill

(x,u) using Eqn. 9;
Update θS with θS ← θS − µ · ∇θSL(x,u);

end

3.2.1 Knowledge Distillation

Distillation (Hinton et al., 2015) (Distill, henceforth) is a widely popular method to transfer knowledge from
large teacher models to smaller student models. In this study, we adopt large pre-trained language models
as teacher models to transfer knowledge to a lighter student encoder of our model. Distillation not only
improves the student model’s learning ability but also improves our generative model’s convergence. We
define the distillation loss between teacher model T and the student model S as the average mean squared
error (MSE) between the encoded representation of the input text as follows,

Ldistill
(x,u) = 1

n

n∑
i=1

(∥∥hT
xi

− hS
(xi,u)

∥∥2
)

(10)

We highlight the distillation process in Algorithm 1.

3.2.2 Meta Knowledge Distillation

Meta Knowledge Distillation (MetaDistill) (Zhou et al., 2022) is recently proposed to reduce the teacher-
student gap during distillation. This technique improves student learning in a context where the teacher
is trained out-of-domain. Most existing pre-trained language models are trained on large monolingual or
multilingual corpora and lack knowledge of script-mixing. Under this context, MetaDistill can be effective
for the adaptive learning of the teacher and student models. However, our adaptation of MetaDistill is slightly
modified from the original technique, as we use a different learning objective for the teacher and student. The
code-mixed MetaDistill process follows student evaluation→ teacher alignment→ student relearning
(shown in Figure 3). In student evaluation, the student model is trained on the generative task without any
teacher’s supervision. In the next step, we align the teacher model to minimize distillation loss between the
teacher and the student encoders on separate quiz data, keeping the student model weights frozen. Teacher
alignment is necessary for the adaptive learning of the teacher in an out-of-domain code-mixed setting.
Finally, the student is retrained with the teacher’s supervision. In this step, we fine-tune the student model
on the training data with task-specific (Equation 9) and distillation loss (Equation 10). We highlight our
training curriculum with MetaDistil in Algorithm 2.

3.3 Code-Mixed Generation

We adopt an auto-regressive generation technique to generate new code-mixed texts for different users. To
encode the user’s historical persona, we use the user’s last utterance (comment/tweet) in the encoder. Based
on the decoder input, we devise a cold-start generation strategy. In the cold-start generation, we pass a
seed word as input to the decoder and generate the rest of the text. We formally report the text generation
process in Algorithm 3.
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Algorithm 2: Training with Meta Distillation
Require: Student S, Teacher T , training data D, quiz data Q
Require: Scaling factor: λ; learning rates: µ1, µ2, µ3
while not converged do

Sample training batch x, u ∼ D;
Calculate L(x,u) from Eqn. 9;
Update θS with θS ← θS − µ1 · ∇θSL(x,u), keeping θT fixed;
Sample quiz batch x́, ú ∼ Q;
Encode hT

x́ from teacher encoder;
Encode hS

(x́,ú) from student encoder;
Calculate Ldistill

(x́,ú) using Eqn. 10;
Update θT with θT ← θT − µ2 · ∇θT Ldistill

(x́,ú), keeping θS fixed;
Sample training batch x, u ∼ D;
Encode hT

x from teacher encoder;
Encode hS

(x,u) from student encoder;
Calculate Ldistill

(x,u) using Eqn. 10;
Calculate L(x,u) = L(x,u) + λ · Ldistill

(x,u) using Eqn. 9;
Update θS with θS ← θS − µ3 · ∇θSL(x,u), keeping θT fixed

end

Algorithm 3: Code-Mixed Text Generation with PARADOX
Require: Trained model M = (enc, dec), user id u, historical utterance xu, prompt word {w1},
decoder vocabulary V

Require: max_length ∈ N
L← {w1};
w̃ ← ∅;
i = m;
while w̃ ̸= [SEP ] and i < max_length do

h(xu,u) = enc(xu, u);
Pi+1 = dec(L, h(xu,u));
w̃ ← arg maxV Pi+1;
L← L ∪ {w̃};

end
Return L

4 Experimental Setup

This section elaborates on the experimental setup we adopt to evaluate our model and baselines on person-
alized code-mixed generation.

4.1 Datasets

To the best of our knowledge, no existing longitudinal dataset is available for Hindi-English code-mixed.
A longitudinal dataset is required to study the temporal evolution of a language. Although some datasets
in the literature consist of Hindi-English code-mixed texts collected from various online social networks,
none of them contain user-specific information, making them unsuitable for our study. To overcome this, we
collected code-mixed texts from the two most popular mediums where Indians are engaged – Twitter and
YouTube. From Twitter, we collected over 0.8 million in tweets starting from the year 2011 till date, from
which we filtered only tweets originating from Mumbai and Delhi metropolitan regions, two cities with the
largest Hindi population. We used Twitter API for academic research with full archival access1. Further, for

1https://api.twitter.com/2/tweets/search/all
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relevance, we restricted ourselves to tweets related to ‘Cricket’, ‘Bollywood’, ‘Politics’, and ‘Government’.
Starting at 2014, Twitter automatically tags the language of a tweet. We selected tweets with only non-empty
language tags. This gives us a total of 226, 480 tweets from 19, 782 users.

From YouTube, we chose two channels – NishaMadhulika2 (a popular chef based out of India with more
than 12.7 million followers), and T-Series3 (a popular Hindi music record channel started in 1983 having
more than 200 million followers). We selected 42 videos from the NishaMadhulika channel and 69 from the
T-Series that were first posted in 2011. We scraped all comments corresponding to these videos, accounting
for 144, 822 comments from 99, 998 users.

For both datasets, we use a pre-trained language model open-sourced with Huggingface4, that was fine-tuned
on Hindi-English parts-of-speech (PoS) and language identification (LID) tasks. Using this model, we label
each token in each text with the corresponding language (Hindi or English) and their associated PoS. We
tag a text as code-mixed only when the text contains at least one Hindi verb written in either Devanagari
or Roman script. We select users who have at least three utterances in their entire timeline. Finally, we are
left with 18, 126 tweets (from 2, 241 users) and 8, 957 YouTube comments (from 1, 349 users).

We remove all the HTML tags, URLs, emoticons, user mentions (starting with ‘@’), and hashtags (starting
with ‘#’). For simplicity, we remove all numeric values from texts, as well. Finally, we convert all texts to
lowercase. We highlight the key statistics of the datasets in Table 1. We use a 75-25 split for training and
validation with stratified sampling. Therefore, we can ensure at least one training and validation sample for
each user. For the meta distillation curriculum, we split the training dataset in a 2 : 1 ratio to generate
the quiz dataset. Although the generative models can generate text with any starting seed word (e.g., [CLS]
token), to guide the code-mixed generation, we use the seed word as the first word of each validation utterance
for each user.

4.2 Evaluation Metrics

Dataset #Texts #Users Mean text length Mean CMI

Twitter 18126 2241 21.77 0.41
YouTube 8957 1349 28.89 0.36

Table 1: Dataset statistics, with mean text CMI and
the average text lengths, demonstrating the extent of
code-mixing.

We adopt intrinsic and extrinsic evaluation metrics
to evaluate our model in terms of semantic under-
standing of code-mixing language and the ability to
personify code-mixing for different users.

For the intrinsic evaluation, we use perplexity, a
metric that measures the predictive power of a lan-
guage model, compared against ground truth. We
calculate perplexity as eloss, with loss being the
cross-entropy reconstruction loss on the validation data. A lower perplexity score indicates better recon-
structibility and ability to learn the semantics of a generative model.

Unlike Gupta et al. (2020), we do not have any labelled gold data for evaluating our generative model.
Therefore, traditional supervised evaluation metrics – BLEU (Papineni et al., 2002), Rouge (Lin, 2004) can
not be used directly to evaluate the personification aspects of code-mixed generation models. Similarly, other
extrinsic evaluation measures such as Multilingual index (M Index) (Barnett et al., 2000), Burstiness and
Span Entropy (Guzmán et al., 2017) can not be used, as these metrics are predominantly used to evaluate the
ability to capture corpus-level switching patterns of generative models. To overcome the limitations of the
existing evaluation metrics, we propose four metrics for benchmarking generated code-mixed texts against
the historical utterances by different users. We devise CM BLEU by calculating the BLEU score between
the candidate and reference language sequences. For example - consider a candidate code-mixed text “mujhe
park janaa hai” (“I want to go to the park”) and a reference text “mujhe rice aur curry khana hai” (“I want
to eat rice and curry”). Using the LID model, we can extract the corresponding language sequences {Hi, Hi,
Hi, Hi} and {Hi, En, Hi, En, Hi, Hi, Hi, Hi, Hi, Hi, Hi } from the candidate and reference texts, respectively
(here, Hi and En stand for Hindi and English, respectively). Therefore, considering only the unigram and

2https://www.youtube.com/c/nishamadhulika
3https://www.youtube.com/aashiqui2
4https://huggingface.co/sagorsarker/codeswitch-hineng-lid-lince
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bigram overlaps between the candidate and the reference, we calculate the CM BLEU score5 of 0.606. If we
use a different reference text “I don’t want your nautanki” (Translation - “I don’t want your gimmick”) with
the corresponding language sequence {En, En, En, En, Hi}, the CM BLEU reduces to 0.218. The proposed
metric could calculate the similarity between the switching patterns demonstrated in the candidate text and
the historical references by calculating the overlap between the language sequences. Similarly, we compute
CM Rouge-1 and CM Rouge-L by computing Rouge-1 and Rouge-L scores between the candidate and
reference language sequences.

Perplexity CM BLEU CM Rouge-1 CM Rouge-L CM KS
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Figure 4: Pearson correlation between different evaluation measures on the validation dataset.

Additionally, we leverage the user-level historical CMI to evaluate the linguistic patterns of the generated
texts. If a user historically prefers monolingualism over multilingualism, we want the generative model to
learn the pattern and generate texts with a lower CMI value for the user. Towards this, we propose CM KS, a
metric that computes the Kolmogorov-Smirnov distance between the generated and original CMI distribution
of users. We highlight the relationships between these metrics by calculating the Pearson correlation between
these measures, reported in Figure 4. Strong negative correlations between perplexity and CM BLEU, CM
Rouge-1, and CM Rouge-L indicate that understanding semantics is essential to personify and replicate the
switching patterns. Therefore, by learning semantics well, the generative models can learn the code-mixing
patterns for different users and generate texts that imitate users’ linguistic patterns. On the other hand, the
correlations between CM KS and other metrics are weak, indicating that the linguistic preferences of users
have no apparent linear relationships with switching patterns.

4.3 Baseline Methods

We consider several code-mixed generation models for comparative evaluation.

� VACS (Samanta et al., 2019) is a VAE-based encoder-decoder model, primarily developed for generating
Hindi-English synthetic code-mixed texts.

� GCM (Rizvi et al., 2021) toolkit uses several linguistic theories and heuristics to generate code-mixed
texts.

� CM-XLM (Gupta et al., 2020) is a generative model that utilizes pre-trained multilingual language model
XLM to generate Hindi-English code-mixed texts from parallel corpora.

These code-mixed generation models consider monolingual reference data for generating code-mixed texts
and generate code-mixed texts at a corpus level. Therefore, we compare these baselines only in intrinsic

5Can be calculated and validated using https://www.nltk.org/api/nltk.translate.bleu_score.html
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Model Training Curriculum Training Step Optimizer Learning rate β1 β2

PARADOX Vanilla - Adam 4e-4 0.9 0.98
PARADOX Distillation - Adam 4e-4 0.9 0.98

PARADOX:Student
Meta Distillation

Student evaluation SGD 4e-4 - -
PARADOX:Teacher Teacher alignment SGD 4e-5 - -
PARADOX:Student Student relearning Adam 4e-4 0.9 0.98

Table 2: Optimizers for different models used for training.

[INST]
<<SYS>> 
You are a helpful assistant that generate a Hindi-English text based on a user’s previous message and a seed 
word. Make sure that you understand the user’s linguistic pattern from the previous message and generate a 
text that starts with the seed word.
<</SYS>>

User Previous Message: {user_message}
Seed Word: {seed_word}
[/INST]

Figure 5: Prompt used with the Llama 2 model for Hindi-English code-mixed text generation.

evaluation. We also utilize several self-attention-based encoder-decoder and pre-trained language models to
evaluate the personification aspects of generative models.

� Transformer (Vaswani et al., 2017) is an encoder-decoder architecture utilizing self-attention mechanism
that has shown superior performances in generation tasks like machine translation.

� MuRIL (Khanuja et al., 2021) is an encoder-based language model pre-trained on 17 Indian languages
with a masked language modeling objective.

� BLOOMZ (Muennighoff et al., 2022) is a family of large language model based on multilingual
BLOOM (Workshop et al., 2023) that was fine-tuned with multitask prompting. We use the 3B param-
eter BLOOMZ model as our baseline.

� Llama 2 (Touvron et al., 2023) is a family of auto-regressive large language models trained with rein-
forcement learning with human feedback (RLHF). We adopt the 13B parameter instruction-tuned model as
one of our baselines.

� GPT-4 (Achiam et al., 2023) is a large multimodal model, accepting image and textual data and generating
text outputs through auto-regressive generation.

These pre-trained language models are only utilized in the extrinsic evaluation.

4.4 Training Details

For all the models across all the experiments, we use a maximum text length of 40. PARADOX consists of
six encoder and decoder layers, with hidden sizes of 768 in all the layers. For multi-headed FAME and
masked multi-headed FAME blocks, we use a total of eight heads with Dropout probabilities set as 0.1. The
total number of parameters is 296M. We use six encoder and six decoder layers in the Transformer model,
with eight heads in each multi-headed attention block. For training PARADOX, We set the persona encoding
variational weight λ = 0.5. All the models are trained for 50 epochs with an early stopping condition on
validation loss with the patience of 10. We set batch_size = 4 in all experiments during training and
validation. We fine-tune the MuRIL and BLOOMZ models on auto-regressive language modeling tasks for
10 epochs with learning rates 3e− 5 and 3e− 6, respectively. The Llama-2 baseline is used in zero-shot and
1-shot settings with the prompt shown in Figure 5.
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We report all the different optimizers used for PARADOX in Table 2. We use the pre-trained MuRIL model as
a teacher in the distillation and meta distillation. We use one Tesla P100 and one Tesla V100 GPU to run
all our experiments. For PARADOX, each training and validation iteration takes ∼ 0.18 and ∼ 0.12 seconds,
respectively. Strubell et al. (2019) proposed estimation of power usage and carbon emission behind running
deep learning experiments. Following those guidelines, we estimate a total power usage of 23.56 kWh and an
equivalent CO2 emission of 22.46 pounds.

5 Comparative Analysis

Model Perplexity ↓

Twitter YouTube

GCM* 4331.85 4323.15
CM-XLM* 5413.22 1603.59
VACS 361.05 552.35
Transformer 680.07 473.84
(+) Distillation 445.41 375.24
(+) Meta Distillation 797.84 506.82
PARADOX 297.43 292.44
(+) Distillation 377.64 294.87
(+) Meta Distillation 567.90 414.42
(-) Contextual Persona 320.79 295.26
(-) Alignment 337.07 363.77
(-) FAME 839.52 382.00

Table 3: Intrinsic evaluation of the competing mod-
els based on perplexity (↓: lower value indicates better
performance). For models highlighted with *, perplex-
ity is calculated with word-level generation.

In this section, we report the performances of
PARADOX and the non-persona-based code-mixed
generation models in terms of the intrinsic and ex-
trinsic evaluation measures. We report the intrinsic
evaluation results in Table 3. PARADOX achieves 43%
better perplexity on the Twitter dataset than the
vanilla Transformer. On the YouTube dataset, the
margin is even higher (45%). A lower validation per-
plexity shows PARADOX’s strong ability to understand
code-mixing semantics and generate texts of differ-
ent linguistic variations. PARADOX achieves 18% bet-
ter perplexity on the Twitter dataset than the best
non-transformer baseline VACS. On the YouTube
dataset, the margin is even higher (47%).

Table 4 highlights the extrinsic measures across
all the generative models. On the Twitter dataset,
PARADOX achieves 1.43 points better CM BLEU than
the Transformer model. On the YouTube dataset,
however, PARADOX without a contextual persona per-
forms the best and outperforms the Transformer
model with a margin of 1.31. In terms of the
Rouge measures, PARADOX performs consistently bet-
ter than the non-persona counterpart with an average margin of 0.8 points. In terms of distance-based mea-
sures, PARADOX performs significantly better than the Transformer model on both datasets. Overall, PARADOX
achieves 4% lower CM KS distance than Transformer. Lower KS distance indicates the importance of utilizing
user persona in generating user-specific code-mixed texts.

It is interesting to notice the positive impact of distillation on extrinsic metrics. PARADOX meta-distilled
with MuRIL achieves 0.88 points better CM BLEU score, on average. Similar improvements are observed
with other extrinsic measures. Even Transformer meta-distilled with MuRIL achieves better CM BLEU, CM
Rouge-1 and CM Rouge-L scores than the non-distilled ablation. Among the pre-trained language models,
fine-tuned Llama 2 and GPT-4 are most competitive. Interestingly, even with a single example in the prompt
(1-shot), CM BLEU increases by 9.8 points for Llama 2. Similar performance improvements are also observed
with other extrinsic metrics. However, both Transformer and PARADOX perform significantly better than the
pre-trained language models in terms of personalized code-mixed text generation. On average, PARADOX
achieves 4.2 points better CM BLEU, 11 points better CM Rouge-1 and 9.6 points better CM Rouge-L than
Llama 2. PARADOX achieves 13% better CM BLEU than the fine-tuned Llama model. Similar performance
improvements are observed with CM Rouge-1 and CM Rouge-L metrics. In terms of the CM KS metric, the
fine-tuned Llama model performs better than PARADOX. This highlights that the fine-tuned Llama model
can preserve the population-level code-mixing patterns but fails to capture the personification aspect of it.
PARADOX achieves 6.8% better CM Rouge-1 and 6.9% better CM Rouge-L than the GPT-4 model. Even
with CM KS, our model outperforms GPT-4 with a wide margin of 18%.

Our ablation study shows the effectiveness of fused attention, contextual persona module, and the alignment
module in PARADOX. Adding FAME improves validation perplexity by 57%. Similarly, the contextual user
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Model CM BLEU ↑ CM Rouge-1 ↑ CM Rouge-L ↑ CM KS ↓

Twitter YouTube Twitter YouTube Twitter YouTube Twitter YouTube

MuRIL 9.92 9.85 26.93 21.10 23.65 19.63 0.42 0.23
BLOOMZ 14.20 23.87 49.22 56.61 45.93 55.09 0.40 0.30
Llama 2 (zero-shot) 19.97 7.25 48.91 30.86 43.74 28.72 0.56 0.43
Llama 2 (1-shot) 26.69 20.03 55.17 46.08 49.57 43.17 0.50 0.39
Llama 2 (fine-tuned) 21.97 26.09 55.89 58.24 51.07 55.17 0.30 0.14
GPT-4 (zero-shot) 30.94 30.33 57.46 57.88 50.89 53.69 0.42 0.39
Transformer 22.21 29.36 58.69 61.02 51.10 57.27 0.42 0.37
(+) Distillation 22.52 29.68 59.35 61.30 51.91 57.45 0.38 0.39
(+) Meta Distillation 20.94 30.62 56.40 61.73 49.79 58.14 0.37 0.42
PARADOX 23.64 29.02 59.71 61.62 52.24 57.83 0.36 0.34
(+) Distillation 21.63 30.64 58.54 62.10 51.26 58.44 0.34 0.41
(+) Meta Distillation 24.38 30.04 60.79 61.90 53.18 58.52 0.32 0.48
(-) Contextual Persona 24.06 30.67 60.03 62.44 52.52 58.71 0.35 0.34
(-) Alignment 23.56 30.67 59.84 62.12 52.22 58.43 0.32 0.37
(-) FAME 20.37 29.36 55.78 60.80 49.16 57.37 0.36 0.37

Table 4: Extrinsic evaluation of pre-trained language models, Transformer and PARADOX in terms of preserving
user-level switching patterns (↑ (resp. ↓): higher (resp. lower) value indicates better performance).

persona and alignment modules improve validation perplexity by 29% and 40%, respectively, justifying their
contributions to modelling low-resource language. Therefore, having only the persona module is not sufficient
for understanding the language of personalized code-mixing. However, we observe that having a contextual
persona could hurt the ability of the model to preserve the switching patterns for different users. This could be
attributed to users demonstrating minimal variability in their linguistic pattern, the trend we highlighted in
Figure 1. Therefore, a random exploration with the contextual persona module could change the switching
patterns observed for different users. In this case, reusing the static persona to generate texts could be
semantically and linguistically more meaningful.

5.1 Human Evaluation

Model Semantic Coherence ↑ Linguistic Quality ↑

Transformer 2.34 2.32
PARADOX 3.08 3.00

Table 5: Human evaluation of the models.

We perform a human evaluation study to
evaluate the code-mixed texts generated by
PARADOX and the vanilla Transformer. We ran-
domly sample 24 examples from each of these
models and ask 30 human evaluators6 to rate
these examples based on Semantic coherence
and Linguistic quality. Semantic coherence
measures the meaningfulness of the code-mixed texts, whereas, with linguistic quality, we measure their
structural validity. Both the scores ranged between 1-5, 1 being the lowest, and 5 being the highest.

Table 5 presents the average semantic coherence and linguistic quality scores, along with Fleiss’s
Kappa (Fleiss, 1971) scores among the annotators. We observe that PARADOX displays a better semantic
coherence (32% better), as well as better linguistic quality (29% better) than the Transformer model. We
observe fair agreement (Kappa 0.13 for semantic coherence and Kappa 0.14 for linguistic quality) among the
annotators for both models.

6 Analysis of Code-Mixed Generation

We further study the quality of code-mixed generation and compare them against other baselines. We analyze
the distribution of length and CMI of texts generated by different generative models and report in Figure 6.
Trained on the Twitter dataset, PARADOX with distillation generates texts with a median length of 20, 54%
higher than the other generative baselines, and 17% higher than the actual. A similar trend can also be
observed in the YouTube dataset. Similarly, the median value of CMI on texts generated by PARADOX is 25

6Evaluators are proficient with Hindi-English code-mixed language and their age ranges in 21 − 35.
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and 17, respectively, for the Twitter and YouTube datasets, which are significantly lower than the median
CMI achieved by other baselines (30 and 28, respectively). Texts generated by PARADOX are even more
monolingual than the actual dataset.

Figure 7(a) shows the distribution of top Hindi verbs and nouns from the Twitter dataset. Being more inclined
towards monolingual, PARADOX assigns more probability to these Hindi words, irrespective of the parts of
speech. Figure 7(b) shows the distribution of top Hindi verbs and nouns from the Twitter dataset for different
ablations of PARADOX. Interestingly, PARADOX with the alignment module, can replicate the word distribution
observed in the real dataset. On the other hand, without the alignment module, the generative model could
hallucinate and unrealistically use common phrases in incorrect contexts. This highlights the effectiveness of
the alignment module in recalibrating output tokens and generating semantically meaningful texts. Although
the dimension of the alignment matrix is |V |× |V |, with |V | being the decoder vocabulary size, the learnable
parameters are of order O(d2), where d is the hidden dimension. The total number of additional parameters
introduced by the alignment module is 0.025% of the entire network, which is insignificant compared to other
modules.
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Figure 6: Comparison of texts generated by different gener-
ative models.

We further analyze a few sample texts gen-
erated by the generative models. We report
examples of texts generated by PARADOX and
the Transformer, along with the average
semantic coherence and linguistic quality
scores annotated by the annotators in Ta-
ble 6. Transformer usually picks top nouns
in the corpus and generates texts around
them without considering the syntax of
the code-mixed language, resulting in inco-
herent texts in many cases. On the other
hand, PARADOX preserves the grammar of
code-mixed texts with a more human-like
switching pattern. It shows that PARADOX
maintains the grammar of the base lan-
guage (Hindi in this case), attributing to a
more coherent and reliable generation. The
examples highlight the key differences be-
tween the texts generated by persona-based
PARADOX and non-persona-based Transformer
models regarding text quality. Table 7 fur-
ther shows the personalized generation by
our model. With the same prompt (e.g.,
‘salman’ in the first example), PARADOX can
understand different personas of users and
can generate texts suited for different users.
The high similarity between the historical
average of the user CMIs and the gener-
ated CMIs indicates the model’s ability
to understand the linguistic preferences of
users.

Table 8 highlights code-mixed texts generated by the Llama 2 model with zero-shot and 1-shot. PARADOX
exhibits better capability in mimicking the code-mixing linguistic traits than Llama. For user ID 2226, who
has had more monolingual usage in the past (average CMI 0.04), the text generated by Llama is more
code-mixed than monolingual. Similarly, for user ID 3, the Llama model reverses the linguistic preference of
the user while generating the code-mixed texts. Albeit demonstrating superior performance across various
natural language understanding and reasoning tasks with zero and few-shot in-context learning, pre-trained
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Model Generated Text Semantic Coherence Linguistic Quality

PARADOX

CM: are bhai apne! 3.70 3.60
Eng: Hey my brother!
CM: bhai bahut thik ho gaya 4.27 4.27
Eng: brother is very well

Transformer

CM: rockstar walo se samjha me-
dia........

3.07 3.57

Eng: Media understood by rockstars
CM: boy likha hai thanks bhai 3.57 3.53
Eng: Boy has written thanks brother

Table 6: Examples of code-mixed texts generated by PARADOX and Transformer with human annotated average
Semantic coherence and linguistic quality scores.

large language models such as Llama fail to understand the linguistic complexities of informal languages
such as code-mixed Hinglish. It is imperative to notice that the Llama model not only fails to capture the
historical linguistic preferences of users but also fails to impersonate the semantic structure of code-mixed
texts. On the other hand, PARADOX demonstrates better code-mixed language understanding capabilities,
captures the linguistic preferences of the user from their historical utterances and preserves the information
for future generations. This highlights the effectiveness of personification in code-mixed text generation and
the importance of building more robust language understanding models for understanding the linguistic
nitty-gritty of low-resource languages.

7 Conclusion

This paper described a personalized code-mixed generation model for generating human-alike code-mixed
texts. We highlighted the need for a personalized generation under the pretext of code-mixing. Toward
this, we devised a novel persona-aware encoder-decoder model coupled with a novel alignment module for
generating more realistic and coherent Hindi-English code-mixed texts, the first attempt toward personalized
code-mixed generation. Empirical analyses would benefit the research community in developing robust and
reliable language models for low-resource languages. Although our empirical study has shown the effectiveness
of persona-attributed text generation, currently PARADOX captures only contextual persona, ignoring other
explicit factors. Not only does this restrict our model in cold-start generation (text generation for new users
without any history), but it also fails to consider the co-association among users. In conversational settings,
particularly, this can be deemed essential. Another limitation of PARADOX is the inability to determine the
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User ID Generated Text Historical Avg. CMI Generated CMI

3 CM: salman ji please aapse milna hai 0.28 0.33
Eng: Salman, I want to meet you, please

264 CM: salman ka fan ho na. 0.50 0.40
Eng: You are Salman’s fan, right?

762 CM: ye politics kr raha kya kr rahi h or truth
show 0.15 0.30

Eng: Is this politics, or truth show

2226 CM: ye fb ho jaye bhaijaan 0.04 0.00
Eng: This has became fb, brother

Table 7: Example of different prompted (prompts highlighted with blue) generation for different users.
Different CMI indicates the difference in prompted generation based on the user persona.

User ID Model Generated Text Historical Avg. CMI Generated CMI

3

PARADOX
CM: salman ji please aapse milna hai 0.28 0.33
Eng: Salman, I want to meet you, please

Llama zero-shot CM: Salman ne kaha tha flash me jeetega apka
siddhant 0.28 0.22

Eng: Salman had said flushme jeetega apna prin-
ciple

Llama 1-shot CM: Salman bhai ne kaha, Flush mein jitega apna
side, main toh bus se nikal raha hoon! 0.28 0.11

Eng: Salman had said flushme jeetega apna side, I
am just leaving in a bus

2226

PARADOX
CM: ye fb ho jaye bhaijaan 0.04 0.00
Eng: This has became fb, brother

Llama zero-shot CM: ye superb jabardast bahut khub, bhadaai ho 0.04 0.37
Eng: This is superb, amazing, and congratulations

Llama 1-shot CM: ye superb jabardast bahut khub, bhadaai ho 0.04 0.37
Eng: This is superb, amazing, and congratulations

Table 8: Example of texts generated by PARADOX and Llama 2 models.

temporal evolution of a user’s persona driven by external factors. PARADOX captures the user persona and
its evolution solely from contextual information. At the same time, a user’s linguistic preferences can also
be driven by other external socio-demographic and economic factors varying over time, which our model
currently undermines.

Broader Impact Statement

Our work highlights the need for personalized generation models for conversational languages like code-
mixing. We release our curated dataset to encourage research on personalized code-mixed text generation.
Persona-aware code-mixed generation models can aid in building data-driven solutions in low-resource lan-
guages and can be expanded to broader demographics. Although we do not anticipate any immediate negative
impact of our work, over-personalization can lead to targeted spamming and misusing user persona nega-
tively. We ask the researchers to be aware of the potential misuse and use the shared artefacts judiciously
to prevent unwarranted events.
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