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Abstract

De novo protein design aims to create novel pro-
tein structures and sequences unseen in nature.
Recent structure-oriented design methods typi-
cally employ a two-stage strategy, where struc-
ture design and sequence design modules are
trained separately, and the backbone structures
and sequences are generated sequentially in infer-
ence. While diffusion-based generative models
like RFdiffusion show great promise in structure
design, they face inherent limitations within the
two-stage framework. First, the sequence design
module risks overfitting as the accuracy of the gen-
erated structures may not align with that of the
crystal structures used for training. Second, the
sequence design module lacks interaction with the
structure design module to further optimize the
generated structures. To address these challenges,
we propose CarbonNovo, a unified energy-based
model for jointly generating protein structure and
sequence. Specifically, we leverage a score-based
generative model and Markov Random Fields for
describing the energy landscape of protein struc-
ture and sequence. In CarbonNovo, the structure
and sequence design module communicates at
each diffusion step, encouraging the generation
of more coherent structure-sequence pairs. More-
over, the unified framework allows for incorporat-
ing the protein language models as evolutionary
constraints for generated proteins. The rigorous
evaluation demonstrates that CarbonNovo outper-
forms two-stage methods across various metrics,
including designability, novelty, sequence plausi-
bility, and Rosetta energy.
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1. Introduction
Proteins perform most of the biological functions fundamen-
tal for life. The task of de novo protein design is to create
new proteins and has broad applications in drug develop-
ment (Khoury et al., 2014; Cao et al., 2020; Vorobieva et al.,
2021) and enzyme engineering (Dou et al., 2018). Compu-
tational methods traditionally focus on directed evolution
(Dougherty & Arnold, 2009; Arnold, 2015) and rational
design of novel proteins guided by geometric principles
(Polizzi & DeGrado, 2020) and existing energy function
(O’Meara et al., 2015; Park et al., 2016).

Recent diffusion-based methods for de novo protein design
methods have made great progress in generating novel and
functional proteins (Trippe et al., 2022; Shi et al., 2022;
Watson et al., 2023; Yim et al., 2023b; Ingraham et al.,
2023; Lin & Alquraishi, 2023). For example, RFdiffusion
(Watson et al., 2023) employs a Denoising Diffusion Prob-
abilistic Model (DDPM) in structure space, while Chroma
and FrameDiff apply a score-based diffusion model. Addi-
tionally, flow-based generative models have been proposed
for protein structure design (Bose et al., 2023). All these
methods follow a two-stage framework where protein struc-
tures are generated first, and optimal sequences are sub-
sequently generated through sequence design models like
ProteinMPNN (Dauparas et al., 2022) and ESM-IF (Hsu
et al., 2022).

There are two primary issues in the two-stage framework.
First, the structures generated by the structure design mod-
els, such as RFDiffusion, contain inherent noise and are not
as accurate as the experimentally solved crystal structures
on which the sequence design models are trained. Con-
sequently, the sequence design models are susceptible to
overfitting. Second, as the structure and sequence modules
are trained separately and the two modules interact only af-
ter the structure is generated from the last diffusion step, the
errors in the sequence design stage cannot provide feedback
to further optimize the generated structures. While struc-
ture and sequence co-design methods have been proposed,
primarily focusing on some special protein families like anti-
body design (Luo et al., 2022; Martinkus et al., 2023), these
methods (Lisanza et al., 2023) have not yet outperformed
the two-stage methods in designing general proteins (Ingra-
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ham et al., 2023; Watson et al., 2023). Efficient training and
inference of a joint model in discrete sequence space and
SE(3) invariant structure space pose challenges.

We introduce CarbonNovo, a novel approach that simulta-
neously generates protein structure and sequence using a
unified energy-based model applicable across all protein
families. Specifically, we utilize a score-based diffusion
model and Markov Random Fields (MRF) to characterize
the energy landscape of protein structure and sequence. Car-
bonNovo addresses the main limitations of the two-stage ap-
proaches. First, the structure and sequence design modules
are jointly trained, with sequence design modules directly
leveraging generated structures instead of crystal structures.
Second, in both the training and inference stages, the two
modules communicate at each diffusion step, enabling gen-
erated sequences and structures to have chances to refine
each other. Notably, our framework allows the integration of
large-scale pre-trained language models like ESM-2 using
the network recycling technique. The language models act
as evolutionary constraints for the generated proteins, which
have proven useful in protein-related tasks such as protein
structure prediction (Lin et al.) and variant interpretation
(Meier et al., 2021).

Our main contributions are summarized as follows:

• We develop CarbonNovo, a unified framework capable
of simultaneously generating sequences and structures
for general protein families.

• We are the first to integrate a protein language model
to enhance the generation of both protein structure and
sequences.

• We explore various techniques for efficient training and
inference of the joint model, such as a multi-stage train-
ing strategy and the discrete version of M-H Langevin
algorithm for sequence sampling.

• CarbonNovo demonstrates superior performance com-
pared to two-stage approaches across various metrics,
including designability, novelty, Rosetta energy, and
sequence plausibility.

2. Related work
2.1. Diffusion-based Models for Protein Design

Diffusion-based generative models have demonstrated re-
markable success in generating various data types, including
images (Song et al., 2020b) and videos (Ho et al.; Harvey
et al., 2022), and discrete data like text (Li et al., 2022).
In the case of de novo protein structure design, diffusion-
based models have been effectively applied to model the
generative process of structures in R3 space or SE(3) space.

Subsequently, these structures are employed in sequence de-
sign to generate the final complete proteins (Dauparas et al.,
2022; Ingraham et al., 2023). Co-design methods for struc-
ture and sequence have also emerged, utilizing two diffusion
processes to model the structure and sequence, respectively
(Luo et al., 2022; Martinkus et al., 2023; Lisanza et al.,
2023). While these methods have demonstrated outstand-
ing results in designing specific families such as antibodies
(Luo et al., 2022; Martinkus et al., 2023), their performance
across all general protein families falls short of the current
gold standard methods like RFdiffusion and Chroma in the
two-stage approach.

The most related to our work is ProteinGenerator (Lisanza
et al., 2023), Chroma (Ingraham et al., 2023), and Carbon-
Design (Ren et al., 2024). In PtoteinGenerator, they only
train a DDPM for sequence design and utilize RosettaFold
to predict the structures of these sequences. While both Car-
bonNovo and Chroma utilize MRF for sequence design, the
two methods differ in terms of model architecture, training,
and inference strategies. The key difference is that Chroma
falls into the category of a two-stage approach, whereas Car-
bonNovo jointly generates sequences and structures both
during training and inference. Moreover, CarbonNovo con-
structs the diffusion process in SE(3) space, while Chroma
models in coordinate R3 space. An additional feature of Car-
bonNovo is the integration of a pre-trained language model
as prior knowledge. CarbonDesign focuses solely on protein
sequence generation, using an Inverseformer for encoding
backbone structures and an MRF module for decoding the
sequence.

2.2. Energy-based Models

Energy-based models (EBMs) are a broad class of gener-
ative models that are grounded in Gibbs distributions and
become more powerful with modern neural networks (Le-
Cun et al., 2006; Song & Kingma, 2021). EBMs have
been widely used in various domains, including image gen-
eration(Xie et al., 2016; Du & Mordatch, 2019), video
generation (Xie et al., 2017), voxel generation (Xie et al.,
2018), point cloud generation (Xie et al., 2021), text gen-
eration(Deng et al., 2019), and protein structure predic-
tion (Levada et al., 2008; Ren et al., 2024). The utility of
EBMs relies on various efficient learning and sampling al-
gorithms (Song & Kingma, 2021), such as gradient-based
MCMC sampling, score matching (Hyvärinen & Dayan,
2005; Song & Ermon, 2019; Song et al., 2020a;b), noise
contrastive learning (Gutmann & Hyvärinen, 2010), and
pseudo-likelihood (Levada et al., 2008) and composite like-
lihood approximations (Zhang et al., 2019).

Recent works unify diffusion-based generative models in
the framework of EBMs in terms of both training objectives
and inference strategies. Building on these perspectives

2



CarbonNovo: Joint Design of Protein Structure and Sequence Using a Unified Energy-based Model

(Salimans & Ho, 2021; Liu et al., 2022a; Du et al., 2023), we
integrate the structure design and sequence design modules
into a unified energy-based framework, utilizing a score-
based diffusion model for continuous structure space and a
MRF model for discrete sequence space.

3. Methods
In Section 3.1, we present the preliminary concepts for
protein design. In Section 3.2, we develop the generative
process for protein sequence and structure using a unified
EBM. In Section 3.3, we describe the model architecture of
CarbonNovo. Sections 3.4 and 3.5 details the sampling and
training algorithms, respectively.

3.1. Preliminaries on de novo Protein Struture and
Sequence Design

CarbonNovo aims to jointly design protein backbone struc-
ture and sequence. We use s ∈ RN×20 to represent the
amino acid sequence, where N is the number of amino
acids in the protein, and each amino acid has 20 types.
x ∈ RN×4×3 is used to denote the 3D coordinates of the
protein backbone atoms, emphasizing that the backbone is
composed of four atoms {C,Cα, N,O}.

We adopt the backbone frame parameterization used in Al-
phaFold2 (Jumper et al., 2021) and FrameDiff (Yim et al.,
2023b). Each frame T = (R, t) comprises a rotation
R ∈ SO(3) and a translation t ∈ R3. The rotation R
is determined by the relative positions of the Cα, N , and C
atoms, while the translation t corresponds to the coordinate
of the Cα atom. The backbone oxygen atom is parameter-
ized by an additional torsion angle ϕ, describing the rotation
around the bond between Cα and C.

3.2. Jointly Modeling Structure and Sequence on EBMs

The density given by an EBM can be written as (Song &
Kingma, 2021):

pθ(a) =
1

Zθ
exp[−Eθ(a)]. (1)

Here, a,−Eθ(a), Zθ represent a single variable, a learnable
neural network, and a normalization factor, respectively.

To generate more coherent structure-sequence pairs, we
construct a joint energy framework for protein structure and
sequence. The joint distribution of protein structure T(0)

and sequence s is defined as:

pθ(T
(0), s) = pθ(s|T(0)) pθ(T

(0)) (2)

Consequently, the joint energy of structure and sequence is
represented as:

E(T(0), s) = Estr(T
(0)) + Eseq(s;T

(0)) (3)

Structure energy The score-based diffusion model has
been recognized as an energy-based model (Du et al., 2023).
We utilize the SE(3) score-based diffusion model to charac-
terize the energy of the structure Estr(T

(0)). The structure
energy can be expressed as (Salimans & Ho, 2021; Liu et al.,
2022a; Du et al., 2023):

Estr(T
(0)) = −

∫
SSE(3)
θ (T, t)dt (4)

Here, SSE(3)
θ (T, t) = {SRθ (R, t),Stθ(t, t)} denotes the

score of the corresponding distribution.

Sequence energy For the sequence energy Eseq(s), we
employ an MRF model, a widely used energy-based model
in both protein structure prediction (Ekeberg et al., 2013;
Zhang et al., 2019) and protein design (Ingraham et al.,
2023; Ren et al., 2024).

The sequence energy under an MRF model is defined as:

Eseq(s;T
(0)) = −

[∑
i

ψs(si|T(0))+
∑
i,j

ψp(si, sj |T(0))
]
.

(5)
Here, ψs and ψp represent the conservation bias and pair-
wise coupling terms from the MRF model, respectively.
T

(0)
θ is the final structure predicted by score network.

3.3. Model Architecture
The CarbonNovo network consists of two main components:
the structure design module and the sequence design mod-
ule (Figure 1). At each time step t, the network takes the
noisy backbone structure T(t) as inputs and outputs the re-
fined backbone structure T(t−∆t) along with the optimal
sequence for this step.

Structure design module Unlike previous work such
as FrameDiff (Yim et al., 2023b), which relies solely on
an Invariant Point Attention (IPA) network for the structure
module, CarbonNovo additionally incorporates Triangle
Attention Networks from Evoformer (Jumper et al., 2021)
into the structure design module. More details can be found
in Appendix algorithm 1.

The input features of the structure design module include
the timestep embedding, the distogram and frame represen-
tation (R(t), t(t)) of the noisy structure T(t), and recycling
features.

Instead of directly predicting the score and the refined struc-
ture T(t−∆t), we predict the final structure T̂(0) from which
both the score and T(t−∆t) can be derived (Appendix B).
This approach has two advantages: First, it allows us to
impose more constraints on the final structure using auxil-
iary losses during training (Yim et al., 2023b; Watson et al.,
2023). Second, it enables the prediction of the optimal
sequence from the final structure at this step.

3



CarbonNovo: Joint Design of Protein Structure and Sequence Using a Unified Energy-based Model

Figure 1. CarbonNovo architecture which jointly generates protein backbone structure and sequence.

Sequence design module For the sequence design mod-
ule, we also adopt a Triangle Attention Network (Appendix
Algorithm 2) which is adapted from Evoformer (Ren et al.,
2024; Jumper et al., 2021).

The input features of the sequence design module include
single and pair representations from the structure design
module, the histogram of the predicted backbone structure
T̂(0), and the recycling features.

The conservation bias terms and pairwise coupling terms
in the MRF model (Equation 5) are then parameterized us-
ing the updated single and pair representations from the
sequence design module. During training, we adopt a com-
posite likelihood approximation to optimize the MRF model
(Ren et al., 2024; Zhang et al., 2019; Ingraham et al., 2023).
During inference, we use a discrete Langevin sampling
method to generate sequences from the MRF model (Zhang
et al., 2022).

Network recycling and the pre-trained language model

Drawing inspiration from the network recycling mechanism
employed in AlphaFold for structure prediction (Jumper
et al., 2021) and CarbonDesign for protein sequence de-
sign (Ren et al., 2024), we applied the network recycling
mechanism for protein structure and sequence co-design.
This approach has two main advantages: First, it enhances
model capacity without increasing model size. Second, it
allows for the extraction of additional features from interme-
diate predictions and provides error feedback for subsequent
iterations.

In CarbonNovo, we extract additional features from the
intermediate predictions of both the structure design and
sequence design modules. Specifically, for the structure
design module, we extract the distogram of the predicted
T̂(0) and updated pair representations as additional features
for the subsequent recycling stage. For the sequence design

module, we extract the language model embeddings for the
intermediate sequence sampled from the MRF model. These
recycling features are utilized to update the input single and
pair representations of the structure design and sequence
design modules as follows:

rs = rs + Linear
(
pLMEmbedding(s)

)
+ rsprev,

rp = rp + Linear
(
DistanceMap(T

(0)
θ )

)
+ rpprev.

(6)

3.4. Sampling

In structure sampling, we employ the standard Langevin
sampling algorithm, a widely utilized method in score-based
diffusion models (Song et al., 2020b; Yim et al., 2023b). For
sequence sampling, we investigate the Discrete Metropolis-
Hastings Langevin algorithm (Zhang et al., 2022).

3.4.1. STRUCTURE SAMPLING

Following FrameDiff (Yim et al., 2023b), we employ the
Langevin dynamic to sample the backbone structures.

First, the initial structure T(TF ) = (R(TF ), t(TF )) is sam-
pled as follows:

p
SE(3)
inv (T(TF )) = P#(N (0, Id3)

⊗N )⊗ (IGSO(3)(0, Id))
⊗N .

(7)

Then, during the Langevin sampling process, we utilize the
structure module SSE(3)

θ (T, t) = {SRθ (R, t),Stθ(t, t)} to
compute∇Estr. The structure proposal distribution can be
defined as:

qstr(T
(t−∆t)|T(t)) = qstr(R

(t−∆t)|R(t))qstr(t
(t−∆t)|t(t)),

qstr(R
(t−∆t)|R(t)) ∼ IGSO(3)(∆tSRθ (R(t)),∆tId)⊗N ,

qstr(t
(t−∆t)|t(t)) ∼ PN (µθ,∆tId3)

⊗N , (8)

µθ =
1

2
∆t · t(t) +∆t · Stθ(t(t)).
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Here, P ∈ R3N×3N is the projection matrix removing the
center of mass 1

N

∑N
i=1 ti, and N is the length of designed

proteins.

3.4.2. SEQUENCE SAMPLING

We employ a discrete Metropolis-Hastings Langevin sam-
pling method for sequence sampling (Zhang et al., 2022).
Here, we use a superscript t to denote the step of the dif-
fusion iterations and a subscript k to denote the number of
steps in the M-H sampling process.

We obtain the initial sequence s
(t)
(0) only from the sin-

gle representation rs. The sequence proposal distribution
qseq(s

(t)
(k+1)|s

(t)
(k),T

(0)
θ ) is as follows:

qseq(s
(t)
(k+1)|s

(t)
(k),T

(0)
θ ) ∼ Categorical

(
Mseq

)
,

Mseq = Softmax
(1
2
∇Eseq(s

(t)
(k),T

(0)
θ )∆s− ∆s2

2γ

)
,

∆s = s
(t)
(k+1) − s

(t)
(k).

(9)

3.5. Training

One of key distinctions of CarbonNovo from previous two-
stage approaches like RFDiffusion and FrameDiff is the
joint training of structure and sequence design modules.
This joint training enables error feedback from the sequence
design module to the structure design module, enhancing
the overall design process.

3.5.1. TRAINING LOSSES

Loss for structure design During the training of the
structure design module, we adopted FrameDiff’s method
(Yim et al., 2023b) to obtain the noisy structure:

dT(t) =

[
0

− 1
2P t

(t)

]
dt+

[
dB

(t)

SO(3)N

PdB
(t)

R3N

]
. (10)

Here, B(t)

SO(3)N
and B

(t)

R3N denotethe Brownian motion on
SO(3)N and R3N space, respectively.

The primary training objective for structure design module
is the denoising score matching (DSM) loss (Song et al.,
2020b; Yim et al., 2023b). The DSM loss, Ldsm (Equation
19), is divided into two components: the rotation loss Lrot

in SO(3) space and the translation loss Ltrans in R3 space.
We also employ the auxiliary losses in FrameDiff, including
the backbone error loss, Lbb (Equation 24), and the loss for
pairwise atomic distance within a local environment of 6Å,
denoted as L2D (Equation 23).

Additionally, we utilize the FAPE loss, LFAPE (Equation
22), to directly supervise the frames of backbone structures,
a loss proven effective in the protein structure prediction

task (Jumper et al., 2021) . We also incorporate a distogram
loss, Ldist (Equation 21), to directly supervise the pair repre-
sentation rpij . Further details of training losses can be found
in Appendix D.2.

Loss for sequence design We use single cross-entropy
loss Lsingle and pair cross-entropy loss Lpair to supervise
the conservation bias term ψs(si|rsi ) and pairwise coupling
term ψp(si, sj |rpij) in the MRF model (Equation 5), respec-
tively.

Specifically, for Lsingle, we first compute the logits from the
single representation rsi and then compute the cross-entropy
loss with the native sequence as labels.

For Lpair, we use a composite likelihood to approximate
the full likelihood of the sequence under the MRF model
(Zhang et al., 2019; Ren et al., 2024). For each amino
acid pair (si, sj) in the sequence, the composite likelihood
conditioned on all other amino acids is defined as:

P(si, sj |sij ; rsi , r
p
ij) (11)

= logP (Si = si, Si = sj |S⌝{i,j} = s⌝{i,j}; r
s
i , r

p
ij)

= log
{ 1

Zij
exp

[
ψs(si|rsi ) + ψs(sj |rsj) + ψp(si, sj |rpij)

+
∑

k/∈{i,j}

[ψp(si, sk|rpik) + ψp(sj , sk|rpjk)]
]}
. (12)

Here, Zij represents the normalization factor. We compute
the distribution of amino acid pairs with the composite like-
lihood from the pair representations rpjk and then compute
the cross entropy loss with native amino acid pairs as labels.

3.5.2. TRAINING STRATEGIES

To improve training efficiency, we first pre-train the structure
and sequence design modules separately. Subsequently, the
two modules are jointly trained in an end-to-end manner
within the CarbonDesign framework.

Pre-training stage We train the structure design module
using the following loss functions:
Lstr = Ldsm + LauxI(t < 0.25),

Laux1 = 0.5Ldist + 1.0Lbb + 1.0L2D + 2.0LFAPE,

Ldsm = 1.0Ltrans + 0.5Lrot.

We employ the auxiliary loss function only for samples
where t is less than 0.25 (Yim et al., 2023b).

We train the sequence design module using the following
loss functions:

Lseq = 1.0Lsingle + 1.0Lpair + 0.01L1 + 0.02L2.

Here, L1 and L2 denote L1 and L2 regularization terms
for both single and pair representations, which are used to
parameterize the MRF model (Equation 5).
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During training for the sequence design module, we add
noises to crystal structures to mitigate overfitting. Specif-
ically, we employ the forward process of diffusion on the
crystal backbone structures, where the time step t for adding
noises follows a uniform distribution t ∼ Uniform([0, 0.1])
(Equation 10).

This stage involves 10k training steps for the structure de-
sign module and 9k training steps for the sequence design
module.

Co-training stage For this stage, we initialize the model
weights from the pre-training stage. We note that, during the
pre-training of the sequence design module, the input single
representations are set 0, while in the co-training stage, they
are set as the output single representations of the structure
design module.

There are two sub-stages for the co-training stage. In the
first stage, we add a side chain prediction objective as an
auxiliary loss to optimize both the protein sequences and the
backbone structures (Jumper et al., 2021; Ren et al., 2024).
This loss is only applied for training samples with t < 0.05.
In the second stage, we incorporate a clash loss to remove
steric clashes in local structure conformations. Additionally,
we enlarge the crop size in the second stage from 256 to
320.


Lstage1 = Ldsm + LauxI(t < 0.25) + 0.01LseqI(t < 0.1)

+ 0.1LsideI(t < 0.05),

Lstage2 = Ldsm + LauxI(t < 0.25) + 0.1LseqI(t < 0.1)

+ 0.1LsideI(t < 0.05) + 0.1LviolI(t < 0.05).

The first and second sub-stages involves 100k and 10k train-
ing steps.

3.6. Datasets

For the co-training stage and pre-training of the structure
design module, CarbonNovo utilizes the same structure
dataset as FrameDiff (Yim et al., 2023b). For pre-training
the sequence design module, we utilize PDB data collected
before August 1, 2021, aligning with the dataset used for
ProteinMPNN (Dauparas et al., 2022). We also filter out the
low-quality samples from the training dataset (see Appendix
D.3).

We set a crop size of 256. Instead of random cropping,
we employ the Protein Domain Parser (Alexandrov &
Shindyalov, 2003) to bias sampling towards regions within
protein domains (see Appendix D.4).

4. Experiments
In Section 4.1, we evaluate CarbonNovo in protein structure
and sequence co-design using various metrics. In Section
4.2, we conducted ablation experiments to evaluate the con-
tribution of CarbonNovo’s key components. Then in Section
4.3, we perform a case study to illustrate protein interpola-
tion in latent space.

4.1. De novo Protein Design

4.1.1. BASELINE MODELS

We compare CarbonNovo to the representative de novo
methods including RFdiffusion (Watson et al., 2023),
Chroma (Ingraham et al., 2023), FrameDiff (FrameDiff-
ICML) and its improved version (FrameDiff-Improved),
FrameFlow (Yim et al., 2023a), and Genie (Lin &
Alquraishi, 2023). More running details are in Appendix
J.5.

4.1.2. EVALUATION METRICS

Following previous work (Lin & Alquraishi, 2023; Yim
et al., 2023b;a; Watson et al., 2023), we evaluate designed
proteins using various metrics including designability, nov-
elty, and diversity. Furthermore, we introduce two additional
evaluation metrics: Rosetta energy and sequence plausibil-
ity. Here, for each method, we generated 64 sequences of
lengths {100, 200, 300, 400, 500} for assessment.

Designability To assess the designability of the generated
proteins, we perform the self-consistency evaluation pipeline
(Yim et al., 2023b; Bose et al., 2023), where the structures
of generated sequences are predicted using both ESMFold
(Lin et al.) and OmegaFold (Wu et al., 2022b). The evalu-
ation involves three metrics: average scTMscore, average
scRMSD, and Fraction, the proportion of scRMSD less than
2Å, and scTMscore greater than 0.5. Further details can be
found in Appendix I.1.

Novelty To assess the novelty of designed proteins, we
utilize Foldseek (van Kempen et al., 2023) to measure the
similarity of our designed proteins to known proteins in
the Protein Data Bank (PDB), using a threshold TM-score
of less than 0.5. Undesignable proteins often exhibit high
randomness in their structure, such as collapsing or hav-
ing clashes (Appendix 5), resulting in very low similarity
with natural proteins in the PDB. Following previous works
(Lin & Alquraishi, 2023; Bose et al., 2023), we filter out
these undesignable proteins. Further details can be found in
Appendix I.3.

Diversity To quantify the diversity of the designed pro-
teins, we calculated the average pairwise TM-score among
the generated structures. A lower TM-score indicates higher
diversity. Following previous work (Bose et al., 2023), we
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Table 1. Evaluation of Designability, Diversity, and Novelty. As for the designability and novelty metrics, the results are presented with
structures predicted by ESMFold on the left and OmegaFold on the right of the slash line.

Designability Diversity (↓) Novelty (↑)scRMSD (↓) scTMscore (↑) Fraction (↑)

RFdiffusion 3.494 / 3.891 0.897 / 0.753 69.81% / 60.00% 0.221 36.50% / 32.65%
Genie 7.581 / 8.929 0.672 / 0.589 31.43% / 28.75% 0.229 16.50% / 13.35%
FrameDiff-ICML 8.197 / 9.768 0.656 / 0.498 19.96% / 15.63% 0.239 5.31% / 4.65%
FrameDiff-Improve 6.524 / 6.793 0.755 / 0.629 27.81% / 28.75% 0.279 6.31% / 5.60%
FrameFlow 18.827 / 26.02 0.320 / 0.285 11.88% / 11.25% 0.275 5.60% / 4.65%
Chroma v1 (GitHub) 3.209 / 3.620 0.868 / 0.742 45.70% / 40.10% 0.204 25.62% / 23.92%
CarbonNovo+MPNN 2.431 / 2.541 0.917 / 0.834 73.16% / 70.15% 0.217 39.75% / 36.94%
CarbonNovo (default) 1.943 / 1.990 0.924 / 0.859 81.38% / 77.38% 0.217 43.15% / 40.92%

Figure 2. Comparison between sequences and structures jointly produced by CarbonNovo (right) and those designed using ProteinMPNN
(left) at various lengths. The structures generated by CarbonNovo are in blue, while the structures predicted by ESMFold are in orange.

only evaluate the diversity for these designable proteins.

Rosetta energy Following previous works for sequence
design (Anand et al., 2022; Liu et al., 2022b), we employ
Rosetta energy (Alford et al., 2017) to measure the stability
of designed proteins and the compatibility between their
sequences and structures. More details on this metric can
be found in Appendix I.4. Further details can be found in
Appendix I.2.

Sequence plausibility Experimental validation in wet-lab
settings demonstrates that designed sequences with lower
likelihood exhibit higher solubility and foldability (Nijkamp
et al., 2023). In this context, we evaluate sequence plau-
sibility based on log-likelihood using another independent
protein language model, ProGen2 (Nijkamp et al., 2023).

4.1.3. EVALUATION RESULTS

As shown in Table 1, CarbonNovo demonstrates superior
performance compared to all two-stage methods in both
designability and novelty. Regarding the diversity metric,
CarbonNovo achieves performance comparable to Chroma
and RFDiffusion, outperforming other methods.

To investigate the contribution of the co-design strategy in
CarbonNovo compared to the two-stage strategy, we con-
ducted an ablation study utilizing ProteinMPNN to design
sequences for the generated backbone structures by Carbon-
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Figure 3. scRMSD of designed proteins vs. predicted proteins
under various length.

Novo (referred to as CarbonNovo-MPNN). We observe that
sequences and structures jointly generated by CarbonNovo
are more compatible than those designed using CarbonNovo-
MPNN (Table 1), highlighting the superiority of the co-
design strategy over the two-stage strategy. We also present
several designed proteins across different lengths in Figure
2 and in Appendix J.3.

We next evaluate the performance in designing proteins of
varying lengths (Figure 3). First, the performance of all
methods in designability drops as the length increases, con-
sistent with previous studies (Watson et al., 2023; Lin &
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Alquraishi, 2023; Bose et al., 2023). Second, CarbonNovo
exhibits strong robustness to the designed length, signifi-
cantly outperforming all other methods in designing long
proteins.

Additionally, we evaluate CarbonNovo in terms of Rossta
energy and sequence plausibility (Table 2). We observe that
CarbonNovo outperforms all other methods in these two
metrics.

Table 2. Comparison of Rosetta energy function and sequence log
likelihood.

Methods Rosetta
energy (↓)

Log-
likelihood (↓)

RFdiffusion -2.64 -2.51
Genie - -2.60

FrameDiff-ICML -2.41 -2.56
FrameDiff-Improve -2.50 -2.55

FrameFlow 1.75 -2.95
Chroma -2.79 -2.49

CarbonNovo -2.83 -2.44

4.2. Ablation Studies

We trained several ablation models to evaluate the rela-
tive contributions of the key components to CarbonNovo’s
performance. Detailed model settings can be found in Ap-
pendix E.

As shown in Table 3, the language model, sequence design
module, and auxiliary training loss all contribute to Car-
bonNovo’s performance. Among these, the incorporation
of language models demonstrates the most substantial con-
tribution. Moreover, utilizing an energy-based sequence
design module enhances the quality of designed sequences
compared to the auto-regressive model.

Table 3. Ablation studies evaluating the contribution of the key
CarbonNovo components to designability.

designability in
Fraction (↑) PLM MRF Pre-train

Seq-model
Aux
Loss

81.38% ✓ ✓ ✓ ✓
51.75% ✗ ✓ ✓ ✓
74.55% ✓ ✗ ✓ ✓
74.68% ✓ ✓ ✗ ✓
45.16% ✗ ✗ ✗ ✓
35.55% ✗ ✗ ✗ ✗

4.3. Structure Interpolation

We present an illustrative case of protein structure interpo-
lation in latent representation space. We take the initially
sampled structure as the latent representation (Equation 7).

Figure 4. An example of structure morphing: starting from the top
left, a protein consisting solely of beta sheet secondary structures
gradually transitions to a protein with only alpha-helices in the
bottom right.

For a pair of latent points, we perform a linear interpolation
and map the interpolation points to the protein structure
space through the generative process of CarbonNovo. Here,
we denote the interpolation ratio of the starting and end
points as 1− α and α, respectively.

We select two latent points that evolve into protein struc-
tures of All-Beta and All-Alpha topologies of secondary
structures, respectively. Protein secondary structure refers
to the local three-dimensional arrangement of the backbone
structures, primarily characterized by alpha-helices and beta-
sheets. Our key observations include: First, the structure
latent space is smooth, and almost all intermediate samples
look like realistic protein structures (Figure 4). Second, as
expected, secondary structures of interpolated structures
exhibit a higher proportion of alpha-helices as α increases.
Third, interpolated structures demonstrate greater similarity
with the endpoint structure as α increases (refer to Figure 7
in the Appendix).

5. Conclusions
We present CarbonNovo, a novel approach for the joint gen-
eration of protein structure and sequence within a unified
energy-based framework. Our methods also leverage a lan-
guage model to improve the quality of the designed proteins.
Our experiments demonstrate that CarbonNovo achieves
state-of-the-art performance in various metrics compared to
the two-stage methods.

While CarbonNovo primarily focuses on protein monomer
design, it can be readily extended to protein complex design
and conditional design like binder design (Ingraham et al.,
2023; Watson et al., 2023). Our work is limited in focusing
solely on the in silico metrics. Wet-lab experimental valida-
tion is crucial for a comprehensive evaluation and is left as
our future work.
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6. Code Avilibility
The CarbonNovo software is available on Github
(https://github.com/zhanghaicang/
carbonmatrix_public)
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novel pseudo-likelihood equation for Potts MRF model
parameter estimation in image analysis. In 2008 15th
IEEE International Conference on Image Processing, pp.
1828–1831. IEEE, 2008.

Li, X., Thickstun, J., Gulrajani, I., Liang, P. S., and
Hashimoto, T. B. Diffusion-lm improves controllable
text generation. Advances in Neural Information Process-
ing Systems, 35:4328–4343, 2022.

Lin, Y. and Alquraishi, M. Generating novel, designable,
and diverse protein structures by equivariantly diffusing
oriented residue clouds. In International Conference on
Machine Learning, pp. 20978–21002. PMLR, 2023.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., dos
Santos, A., Costa, M. F.-Z., Sercu, T., Candido, S., et al.
Language models of protein sequences at the scale of
evolution enable accurate structure prediction.

Lisanza, S., Gershon, J., Tipps, S., Arnoldt, L., Hendel, S.,
Sims, J., Li, X., and Baker, D. Joint generation of protein
sequence and structure with rosettafold sequence space
diffusion. 2023.

Liu, N., Li, S., Du, Y., Torralba, A., and Tenenbaum, J. B.
Compositional visual generation with composable dif-
fusion models. In European Conference on Computer
Vision, pp. 423–439. Springer, 2022a.

Liu, Y., Zhang, L., Wang, W., Zhu, M., Wang, C., Li, F.,
Zhang, J., Li, H., Chen, Q., and Liu, H. Rotamer-free
protein sequence design based on deep learning and self-
consistency. Nature Computational Science, 2(7):451–
462, 2022b.

Luo, S., Su, Y., Peng, X., Wang, S., Peng, J., and Ma, J.
Antigen-specific antibody design and optimization with
diffusion-based generative models for protein structures.
Advances in Neural Information Processing Systems, 35:
9754–9767, 2022.

10



CarbonNovo: Joint Design of Protein Structure and Sequence Using a Unified Energy-based Model

Marchand, A., Van Hall-Beauvais, A. K., and Correia,
B. E. Computational design of novel protein–protein
interactions–an overview on methodological approaches
and applications. Current Opinion in Structural Biology,
74:102370, 2022.

Martinkus, K., Ludwiczak, J., LIANG, W.-C., Lafrance-
Vanasse, J., Hotzel, I., Rajpal, A., Wu, Y., Cho, K., Bon-
neau, R., Gligorijevic, V., et al. Abdiffuser: full-atom
generation of in-vitro functioning antibodies. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., and Rives,
A. Language models enable zero-shot prediction of the
effects of mutations on protein function. Advances in Neu-
ral Information Processing Systems, 34:29287–29303,
2021.

Nijkamp, E., Ruffolo, J. A., Weinstein, E. N., Naik, N., and
Madani, A. Progen2: exploring the boundaries of protein
language models. Cell Systems, 14(11):968–978, 2023.

O’Meara, M. J., Leaver-Fay, A., Tyka, M. D., Stein, A.,
Houlihan, K., DiMaio, F., Bradley, P., Kortemme, T.,
Baker, D., Snoeyink, J., et al. Combined covalent-
electrostatic model of hydrogen bonding improves struc-
ture prediction with rosetta. Journal of chemical theory
and computation, 11(2):609–622, 2015.

Park, H., Bradley, P., Greisen Jr, P., Liu, Y., Mulligan, V. K.,
Kim, D. E., Baker, D., and DiMaio, F. Simultaneous
optimization of biomolecular energy functions on features
from small molecules and macromolecules. Journal of
chemical theory and computation, 12(12):6201–6212,
2016.

Polizzi, N. F. and DeGrado, W. F. A defined structural
unit enables de novo design of small-molecule–binding
proteins. Science, 369(6508):1227–1233, 2020.

Ren, M., Yu, C., Bu, D., and Zhang, H. Accurate and
robust protein sequence design with carbondesign. Nature
Machine Intelligence, 6(5):536–547, 2024.

Salimans, T. and Ho, J. Should ebms model the energy
or the score? In Energy Based Models Workshop-ICLR
2021, 2021.

Shi, C., Wang, C., Lu, J., Zhong, B., and Tang, J. Pro-
tein sequence and structure co-design with equivariant
translation. In The Eleventh International Conference on
Learning Representations, 2022.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in neural
information processing systems, 32, 2019.

Song, Y. and Kingma, D. P. How to train your energy-based
models. arXiv preprint arXiv:2101.03288, 2021.

Song, Y., Garg, S., Shi, J., and Ermon, S. Sliced score
matching: A scalable approach to density and score es-
timation. In Uncertainty in Artificial Intelligence, pp.
574–584. PMLR, 2020a.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
Conference on Learning Representations, 2020b.
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A. The Relation between Diffusion Model and EBM
EBMs are a class of probabilistic models that parameterize a distribution as pθ(x) = exp(−E(x))/Zθ. Here, Zθ is the
normalizing factor. Due to the complexity of calculating the normalization factor, it is difficult to compute likelihood or draw
samples from the model. One popular method for EBM training is denoising score matching (Song & Kingma, 2021). The
training objective is to minimize the Fisher Divergence DF between the model and the approximate data distribution pdata:

DF = Epdata
Ez∼N (0,I)

[1
2
|| z
σ
−∇xE(x+ σz)||22

]
. (13)

Here, {x(i)}Ni=1 ∼ pdata(x) and {z(i)}Ni=1 ∼ N (0, I). When minimizing the Fisher Divergence, this ensures that
exp(−E(x)) ∝ pdata(x) and therefore ∇xE(x) = ∇x log pdata(x). As for the diffusion model, the training objective
(Ldsm) is identical to the denoising score matching (DSM) objective when training EBMs (Du et al., 2023):

σ2
tDF = Epdata

Ez∼N (0,I)

[1
2
||z− σt∇xE(x+ σz)||22

]
= Ldsm. (14)

For diffusion model, Sθ(x, t) is used to predict the −σt∇xE(x + σz). By training score network, the diffused data
distribution could be recovered by the∇x log pdata(x) ≈ −Sθ(x,t)

σt
. Since diffusion and EBM share the same optimization

objectives and sampling strategies, diffusion can be interpreted as an energy model. Therefore, in CarbonNovo, the structure
design module and the sequence design module are jointly modeled as an energy model, allowing for joint optimization.

B. Calculate the Score Function
In CarbonNovo, we follow the approach outlined by FrameDiff (Yim et al., 2023b) to calculate the score function as energy
on SE(3) space at each timestep t, using the final structure T

(0)
θ = (R

(0)
θ , t

(0)
θ ).

∇R log pt|0(R
t|R0

θ) =
Rt

Wt
log{R(0,t)

θ }∂Wf(Wt, t)

f(Wt, t)
, (15)

∇t log pt|0(t
(t)|t(0)θ ) = (1− e−t)−1(e−

t
2 t

(0)
θ − t(t)), (16)

where f represents the Brownian motion on SO(3), W(R) denotes the rotation angle in radians for any R ∈ SO(3),
R(0,t)is defined as (R0)TRt, and Wt = W(R(0,t)). Here, log is the inverse of the exponential map on SO(3).

C. Model Architectures
In our structure design module, we adopt the revised evoformer (Jumper et al., 2021) network architecture, similar to the
main trunk used in ESMFold (Lin et al.). The method of triangular updates in our score network is demonstrated as shown
in Algorithm 1. Additionally, we have implemented triangular update modules in the sequence design module as well. The
process of these updates is illustrated in Algorithm 2.

Algorithm 1 Triangular update in structure design module.
1: Input: rsi , r

p
ij

2: rsi ← rsi + Dropout(SelfAttention(rsi ))
3: rsi ← rsi + Dropout(SingleTransition(rsi ))
4: rpij ← rpij + OuterProductMean(rsi )
5: rpij ← rpij + Dropout(TriangularMultiplicativeOutgoing(rpij))
6: rpij ← rpij + Dropout(TriangularMultiplicativeIncoming(rpij))
7: rpij ← rpij + Dropout(TriangleAttentionStartingNode(rpij))
8: rpij ← rpij + Dropout(TriangleAttentionEndingNode(rpij))
9: rpij ← rpij + Dropout(PairTransition(rpij))

10: Output: rsi , r
p
ij
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Algorithm 2 Triangular update in sequence design module.
1: Input: rsi , r

p
ij

2: rsi ← rsi + Dropout(RowSum(rpij))
3: rsi ← rsi + Dropout(ColumnSum(rpij))
4: rpij ← rpij + OuterProductMean(rsi )
5: rpij ← rpij + Dropout(TriangularMultiplicativeOutgoing(rpij))
6: rpij ← rpij + Dropout(TriangularMultiplicativeIncoming(rpij))
7: rpij ← rpij + Dropout(TriangleAttentionStartingNode(rpij))
8: rpij ← rpij + Dropout(TriangleAttentionEndingNode(rpij))
9: rpij ← rpij + Dropout(PairTransition(rpij))

10: Output: rsi , r
p
ij

D. Training Details
D.1. Pre-training

To train CarbonNovo, we pre-trained a structure design module and a sequence design module for structure design and
sequence design, respectively.

For the structure design module, we opted for a modified version of Evoformer as the network. The input for the network’s
single representation is the encoding information at time t, encoded in the same way as FrameDiff (Yim et al., 2023b). For
the initialization of pair features, we calculated the protein’s residue-residue map using a frame structure and divided the
continuous values into 32 bins.

We utilized DSM loss function and auxiliary loss function to train the diffusion-based structure design module. The form of
the DSM loss is as follows (Song et al., 2020b):

L(θ) = E[λ||∇T log pt|0(T
(t)|T(0))− SSE(3)

θ (T(t), t)||2]. (17)

Additionally, we employed auxiliary loss functions to further optimize the generated protein’s backbone and prevent physical
violations. We trained our network using four loss functions: the FAPE loss function, distogram loss function (Jumper
et al., 2021), MSE on backbone loss function, and a 2D pair (Yim et al., 2023b) loss function for optimization. Compared
to FrameDiff, we additionally employed Ldist to supervise the coordinates of the pseudo−Cβ atoms. The pseudo−Cβ

coordinates can be calculated using ideal angle and bond length definations: b = Cα −N , c = C − Cα, a = cross(b, c),
pseudo−Cβ = −0.58273431× a+ 0.56802827× b− 0.54067466× c+ Cα (Dauparas et al., 2022). Similarly, we used
the LFAPE function specific to the backbone to supervise the frame. The total loss is:

Lstr = 1.0Lt
dsm + 0.5Lr

dsm + (0.5Ldist + 1.0Lbb + 1.0L2D + 2.0LFAPE)I(t < 0.25). (18)

For the training of the structure design module, we chose the same training set as FrameDiff (https://github.com/
jasonkyuyim/se3_diffusion/tree/master). Here, we used MMseq2 (Steinegger & Söding, 2017) to cluster
all structures in the training set with a similarity of 40%. During training, we selected a batch size of 48.

D.2. Loss Function

The loss functions we employed primarily comprise three parts: (1) loss function for backbone generation (Ltrans, Lrot), (2)
loss function for sequence design (Lseq, Lpair), and (3) auxiliary loss functions (Ldist, LFAPE, Lbb, L2D, Lside, Lclash).

D.2.1. BACKBONE GENERATION LOSS

Following the loss used in FrameDiff-Improve, we use the DSM loss when training CarbonNovo. The total SE(3) loss is:

Ldsm = 0.5Lr
rot + Lt

trans.

Here, the DSM rotation loss in SO(3) is defined as:

Lr
dsm =

1

N

N∑
n=0

1

E[||∇R log pt|0(R
(t)
n |R(0))||2SO(3)]

||∇R log pt|0(R
(t)
n |R(0))− Srθ (t,R(t))||2. (19)
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The DSM translation loss in R3 space is:

Lt
dsm =

1

N

N∑
n=0

||t̂(0) − t(0)||2. (20)

D.2.2. AUXILIARY LOSS

Distogram loss Similar to AlphaFold2 (Jumper et al., 2021), we used distogram prediction head and distogram loss to
supervise the pair representation. We linearly project the symmertrized pair representations (rpij + rpji) into 64 distance bins
and obtain the bin probabilities pbij with a softmax. The label ybij is a one-hot computed from the ground truth position of
Cβ for all amino acids. The cross-entropy loss averaged over all residue pairs:

Ldist = −
1

N

∑
i,j

64∑
b=1

ybij log p
b
ij . (21)

FAPE loss We employed the FAPE loss function, firstly designed for structure prediction, to supervise the distances
between frames in proteins. We use xj and xGT

j to represent the predicted atomic coordinates and the actual coordinates,
while Ti and TGT

i denotes the predicted local frame and the ground truth local frame, respectively. The FAPE loss is defined
as:

LFAPE =
1

Z

1

N2
min

(√
||T−1

i ◦ xj − TGT
i

−1 ◦ xGT
j ||2 + ϵ, dclamp

)
. (22)

Here, Z is the length scale, dclamp is the clamp size, and ϵ is a small constant.

2D loss We supervised the pairwise distances of all atoms in the backbone Ω ∈ {Cα, C,N,O}. The predicted distance
dabij is from the atom a of the i-th amino acid to the atom b of the j-th amino acid, whereas the ground truth distance d̂abij is
also from the atom a of the i-th amino acid to the atom b of the j-th amino acid. The 2D loss is:

L2D = min
( 1

N∑
i,j=1

∑
a,b∈Ω

I(dabij < 6Å)−N
(

N∑
i,j=1

∑
a,b∈Ω

I(dabij < 6Å))||dabij − d̂abij ||
2), dclamp

)
. (23)

We clamp values greater than dclamp to stabilize training.

Backbone loss In order to avoid chain breaks or steric clashes, we introduced an auxiliary loss function from FrameDiff
(Yim et al., 2023b). We use the MSE function to supervise the distance of the generated structure for the four atoms:
Ω ∈ {Cα, C,N,O}. The form of the backbone loss can be represented as follows:

Lbb =
1

4N
min

( N∑
i=1

∑
a∈Ω

||xa
i − x̂a

i ||2, dclamp

)
. (24)

We clamp values greater than dclamp to stabilize training.

D.3. Datasets

For the training set, we filtered out low-quality data according to the following criteria: (1) Proteins with a length less than
50. (2) Proteins with more than 50% of atoms missing, and (3) Proteins with a resolution better than 5.0Å.

D.4. Protein Domain Parser

We adopted a domain-based crop strategy for long sequences to make the diffusion training more stable and generate more
reasonable monomers. Random cropping often cuts through the domain splitting point or disordered regions of the cropped
protein, which means the data can be biased compared to the ideal monomer structure. Previous work (Lin & Alquraishi,
2023; Wu et al., 2022a; Yim et al., 2023a) has trained using the CATH dataset or removed protein data that exceeded the
crop size (Yim et al., 2023b). For this reason, we sample training data based on the protein domains. Unlike the random
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cropping method, we use a Boolean value Cij to record whether the distance between amino acid i and amino acid j is less
than 8Å. We select the center point of the domain based on the following defined:

ωk =

k,n∑
i,j=0,k

Cij

(i ∗ (L− i))α
. (25)

Here, we use ωk to denote the probability of position k being the center point of the domain. α is an empirical parameter,
and we set it to 0.43 during training.

E. Ablation Studies
E.1. Protein Language Model

We conducted ablation experiments on these models to validate the benefits of language models. During the co-training
stage, all outputs from the language model were masked. We evaluated this model using the same parameter settings. We
discovered that the use of language models significantly enhanced CarbonNovo, with the designability in Fraction improving
by nearly 30%.

E.2. MRF Decoder vs Auto-regressive Decoder

To test the superiority of MRF, an energy-based sequence design model, over auto-regressive models like ProteinMPNN
(Dauparas et al., 2022). We did an ablation study that eliminated the pair energy and energy loss function. Sequence design
was conducted solely through the single representation using the auto-regressive approach implemented in ProteinMPNN.
During the training of this model, all other settings remained identical, including the number of training steps. We use the
same evaluation pipeline. The designability decreased by 6.83% compared to CarbonNovo (default).

E.3. Pre-training and Co-training

In our ablation study, we initiated training without using a pre-trained sequence design module while keeping all other
parameter settings unchanged and trained for the same number of steps as CarbonNovo (default). We observed that using
pre-trained sequence and structure modules results in a 6.7% higher Designability in Fraction than not using one. Pre-training
can provide a more stable and efficient training process, especially in the early stages, leading to faster convergence and
improved performance metrics like designability.

We explain the superiority of using pre-trained weights as initialization from two perspectives:

Efficiency in training sequence modules Utilizing pre-trained sequence design models can significantly enhance the
efficiency of training sequence modules. During joint training, only samples with a time step t less than 0.1 are used for
training sequence design, and only 10% of samples are utilized for training. This leads to low training efficiency for the
sequence design module, which in turn adversely affects the training efficiency of the structure module.

Stability and convergence in early training Given that the architecture of CarbonNovo integrates sequence and structure
modeling, not using a pre-trained sequence design module can lead to instability in the sequence module during the initial
stages of training.

E.4. Auxiliary Loss

We verified the effectiveness of the auxiliary functions during the training process. In the ablation studies, we set the weights
of all auxiliary losses to 0 while keeping all other parameters unchanged and trained for the same number of steps. We
found that the use of auxiliary losses resulted in a 9.61% improvement in Designability in Fraction.

F. Training Cost and Computational Complexity
We trained our models using only two Nvidia A100 GPUs. The pretraining stage comprised 200k steps and took about 7
days. Subsequently, the co-training stage consisted of approximately 100k additional steps and also took about 7 days.

We would like to highlight that CarbonNovo outperforms the majority of comparative methods in terms of inference speed,
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Methods time inference steps

RFdiffusion+ProteinMPNN 125s + 41s 50
FrameDiff+ProteinMPNN 37s + 41s 500
Chroma + ChromaDesign 16s + 50s 500

Genie+ProteinMPNN 238s + 41s 1000
FrameFlow + ProteinMPNN 26s + 41s 500

CarbonNovo 108s 100

Table 4. Computational Complexity

as demonstrated in Table 4.

G. Hyperparameters
In parameterizing the diffusion process, we followed the configurations established in FrameDiff-Improve (Yim et al.,
2023b). For the structure design network, the parameter settings were aligned with the main trunk of ESMFold (Lin et al.).
Additionally, modifications were made to better tailor these parameters to our network, as detailed in Table 5. We show
critical hyperparameters for training phases, including crop size, learning rate, steps, optimizer, and batch size in Table 6.

Table 5. Hyperparameters about CarbonNovo.

Category Description Value

Structure design module

Layer of blocks 1
Single representation dimension 256
Pair representation dimension 128

Dropout 0.1
Number of bins 15

Sequence design module

Layer of blocks 4
Single representation dimension 384
Pair representation dimension 128

Dropout 0.1
Number of bins 20
Mask threshold 12 Å

Sampling Timestep ∆t 0.01
Initial inference time tF 1

Language model Model ESM-3B

Table 6. Hyperparameters about CarbonNovo.

Stage Crop size Learning rate Optimizer Training steps Batch size Crop strategy

Structure module pre-train 256 1e-4 Adam 100k 48 PDP
Sequence module pre-train 400 1e-3 Adam 90k 64 Random

Co-training stage1 256 1e-4 Adam 100k 48 PDP
Co-training stage2 320 1e-4 Adam 10k 48 PDP
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Table 7. Model size and model details

Model Size Networks

CarbonNovo (Structure Module) 2.1M 1 Block of revised evoformer + IPA
CarbonNovo (Sequence Module) 4.8M 4 Blocks of revised evoformer + 2 layer MLP

pLM 3B Transformer (ESM-3B)
RFdiffusion 59.8M 1,2,3D track
FrameDiff 17.4 MLP +IPA
Chroma 18.5M 16 Blocks GNN
Genie 4.1M Triangular Blocks

H. Model Size and Model Details

I. Evaluation Metrics
I.1. designability

We employed three metrics to evaluate the designability of designed proteins: scTMscore, scRMSD, and Fraction.

scTMscore The scTMscore is calculated as the TMscore between the designed structure and the structure predicted by
structure prediction methods (such as ESMFold and OmegaFold). TMscore is a tool used to assess the similarity between
two protein structures independently of their sequences. The specific formula for calculating TMscore is as follows (Zhang
& Skolnick, 2004):

TMscore(xdesign,xpred) = max
( 1

N

Lalign∑
i=1

1

1 + ( di

d0(N) )
2

)
.

Here, N is the length of the designed protein. Lalign is the length of the aligned protein sequence, di is the distance between
the i-th pair of aligned residues, and d0(N) is a scale factor dependent of N , which is a normalization factor typically based
on the length of the proteins being compared. TMscore is a value ranging between 0 and 1, where a TMscore less than 0.5
generally indicates that the two structures do not share the same topological architecture (Zhang & Skolnick, 2004).

scRMSD The scRMSD is calculated as the root mean square deviation between the designed structure and the structure
predicted by structure prediction methods (such as ESMFold, OmegaFold). scRMSD could be calculated as follows:

RMSD(xdesign,xpred) =

√√√√ N∑
i=1

d2i
N
.

Here, di is the aligned distance between the i-th residues. N is the length of the designed protein. RMSD quantifies the
average distance between the atoms (the backbone atoms {Cα, C,O,N} of the amino acids) of two proteins. A lower
RMSD value indicates a higher similarity between the two structures.

Fraction We followed the thresholds established in previous work (Lin & Alquraishi, 2023; Yim et al., 2023b;a; Bose
et al., 2023) and calculated the proportion of designed proteins with the scRMSD less than 2Å and the scTMscore greater
than 0.5, higher proportion indicates the stronger foldability of the designed proteins.

I.2. Diversity

This metric quantifies the diversity in the structural landscape of the designed proteins. A higher Diversity metric indicates
a greater range of structural variations among the proteins that can be designed, showcasing the method’s capacity to produce
a variety of protein structures. This is vital for numerous applications in protein engineering and functional studies.

I.3. Novelty

Exploring unseen protein conformations in natural proteins can contribute new insights to structural biology (Betz et al.,
1993; Huang et al., 2016). In other real-world applications, such as drug design, the objective is to create drugs that match or
surpass the functions of natural proteins, necessitating the design of novel and designable proteins (Marchand et al., 2022).
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Methods designability

RFdiffusion 64.50%
Chroma 40.50%

CarbonNovo 74.50%

Table 8. Evaluating CarbonNovo with AlphaFold

We employed the novelty metric to assess the novelty of the designed proteins, defined as their similarity to existing natural
proteins. We used Foldseek (van Kempen et al., 2023) to search for similar protein conformations within the PDB100
database for the proteins we designed. Following the threshold set by previous work (Lin & Alquraishi, 2023; Yim et al.,
2023b;a; Bose et al., 2023), we counted all designable proteins (scRMSD less than 2Å and scTMscore greater than 0.5) for
which Foldseek returned a maximum TMscore of less than 0.5.

Figure 5. Undesignable but highly novel proteins. The scRMSD is the Root Mean Square Deviation between structures predicted by
ESMFold and the designed structures. The pdbTM refers to the TMscore with the most similar natural protein found by Foldseek,
compared to the target protein.

I.4. Rosetta Energy

We use the Rosetta energy function (available at https://new.rosettacommons.org/) to evaluate the compatibility
of sequences and structures. For different de novo protein methods, we use the designed structures and sequences as inputs
for Rosetta software. For each protein, we calculate the total energy value returned by Rosetta after 200 steps of relaxation.
Here, we have analyzed 64 proteins each of lengths {100, 200, 300, 400, 500} for comparison. It is noteworthy that Genie,
which only outputs the position of the Cα atoms and lacks information on other atoms’ positions, cannot be evaluated
for Rosetta energy. FrameFlow shows positive energy values due to its poor performance on longer proteins resulting in
numerous clashes and overlaps.

J. Additional Results
J.1. Evaluating CarbonNovo with AlphaFold

To address concerns about potential bias towards the PLM, we also used AlphaFold2 predictions for evaluations.

J.2. Performance with Different Inference Steps

We listed the default inference steps and methods of the approaches we compared and analyzed the impact of different step
lengths in CarbonNovo on designability.

J.3. Compared to CarbonNovo+ProteinMPNN

We utilized ProteinMPNN to design structures that were generated by CarbonNovo, a process we refer to as CarbonNovo-
MPNN, and carried out evaluations accordingly. We utilized the sequences and structures generated by CarbonNovo and
calculated their scRMSD. Subsequently, for the designed structures, we designed sequences using ProteinMPNN and
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Table 9. Performance under different inference steps.

Methods Diffusion types Inference steps designability

RFdiffusion DDPM 50 69.81%
Genie DDPM 1000 31.43%

FrameDiff-ICML SDE 500 19.96%
FrameDiff-Improve SDE 500 27.81%

Chroma SDE 100 45.70%
FrameFlow ODE 500 11.88%

CarbonNovo SDE 50 76.56%
CarbonNovo (default) SDE 100 81.38%

CarbonNovo SDE 200 83.42%

calculated their scRMSD. Figure 6 illustrates that the end-to-end simultaneous generation of sequences and structures by
CarbonNovo outperforms the results obtained from the two-stage process.
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Figure 6. Head-to-head comparisons with CarbonNovo+ProteinMPNN on scRMSD metrics.

J.4. Case Study

We show the TMscore between interpolation structures with different interpolation ratio (α) and the start and endpoints
structures.

J.5. Baseline Methods to Compare

RFdiffusion (Alamdari et al., 2023) We utilize the test script provided in the RFdiffusion GitHub repository (https://
github.com/RosettaCommons/RFdiffusion/tree/main), with the model Base ckpt.pt and all other default
settings.

Chroma (Ingraham et al., 2023) Chroma offers multiple models (Chroma v0 and v1). For a fairer comparison, we use the
best version (Chroma v1 Improved) offered on GitHub (https://github.com/generatebio/chroma/tree/
main). Considering that Chroma can perform sequence design through its module, Chroma Design, we used it to generate
the designed protein sequence eight times and then used these sequences for evaluation. All parameter settings employ the
default options provided by GitHub.

FrameDiff (Yim et al., 2023b) We evaluated two versions provided by FrameDiff: FrameDiff-ICML and FrameDiff-
Improve. These two versions correspond respectively to FrameDiff’s performance as reported in the paper and the model

20

https://github.com/RosettaCommons/RFdiffusion/tree/main
https://github.com/RosettaCommons/RFdiffusion/tree/main
https://github.com/generatebio/chroma/tree/main
https://github.com/generatebio/chroma/tree/main


CarbonNovo: Joint Design of Protein Structure and Sequence Using a Unified Energy-based Model

0 20 40 60 80 100
Ratio of linear interpolation

0.2

0.4

0.6

0.8

1.0

TM
sc

or
e

TMscore to structure1
TMscore to structure2

Figure 7. The TMscore between interpolation structures with different interpolation ratio (α) and start and end points structures.

trained with improved strategies available on GitHub. For these two versions, we utilized the test script provided in GitHub
(https://github.com/jasonkyuyim/se3_diffusion) with paper weights.pth and best weights.pth models.
All parameters were selected from the default options provided in the config file.

FrameFlow (Yim et al., 2023a) We used the test script provided in the GitHub repository (https://github.com/
microsoft/protein-frame-flow). All the hyper-parameters are default.

Genie (Lin & Alquraishi, 2023) Genie offers multiple models based on different training dataset. Using a larger training
dataset is one of its core contributions, for a fairer comparison, we used the best performance model (swissprot l 256)
reported in the Genie manuscript. All parameters were selected according to the default options provided in the config file in
GitHub (https://github.com/aqlaboratory/genie/tree/main).

J.6. Tools used in calculating evaluation metrics

ProteinMPNN (Dauparas et al., 2022) We use ProteinMPNN for sequence design. Following previous works (Yim et al.,
2023a;b; Lin & Alquraishi, 2023; Watson et al., 2023), we use the evaluated script in the ProteinMPNN GitHub repository
with default model and parameters.

ESMFold (Lin et al.) We use ESMFold to predict the structures of designed sequences. We use the evaluated script in the
esm GitHub repository (https://github.com/facebookresearch/esm/tree/main). We use ESMFold-v1
provided in GitHub. All parameters were selected from the default options.

OmegaFold (Wu et al., 2022b) We use OmegaFold to predict the structures of designed sequences. We utilize the test
script provided in the OmegaFold GitHub repository (https://github.com/HeliXonProtein/OmegaFold/
tree/main). We employed OmegaFold’s Model 1 for the evaluation process. All parameter settings employ the default
options provided in GitHub.

Foldseek (van Kempen et al., 2023) We used Foldseek to evaluate the novelty of the designed proteins. The input for
Foldseek is the protein structure, and its output is the similarity rank between the input target protein and existing natural
proteins in the PDB database. Here, we used the TMscore of the protein with the highest similarity returned by Foldseek for
our evaluation. Considering that the amino acids in the PDB file of the designed proteins are filled with either glycine or
alanine, we employed the TMalign mode provided by Foldseek (alignment-type 1). Unlike previous work (Lin & Alquraishi,
2023; Bose et al., 2023), our objective with de novo protein design is to create proteins that are different from natural
proteins. Therefore, we searched across all proteins in the PDB database rather than limiting it to a train set.

Rosetta(Alford et al., 2017) We employed the Rosetta software for energy calculations. Rosetta evaluates the total
energy of a structure by computing interactions such as van der Waals forces and hydrogen bonds. Its input is the
designed protein structure and sequence, with the output being the calculated energy. We used Rosetta’s official tools
(https://www.rosettacommons.org/software) for these calculations. We selected the ref2015 energy function
during the calculation process and performed a relaxation step.

ProGen2 (Nijkamp et al., 2023) We use the test scripts provided in the ProGen2 GitHub repository (https://github.
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com/salesforce/progen). All the hyper-parameters are default.
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