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Abstract

We theoretically study the common continual learning setup where an overparame-1

terized model is sequentially fitted to a set of jointly realizable tasks. We analyze2

the forgetting—loss on previously seen tasks—after k iterations. For continual3

linear models, we prove that fitting a task is equivalent to a single stochastic gra-4

dient descent (SGD) step on a modified objective. We develop novel last-iterate5

SGD upper bounds in the realizable least squares setup, which we then leverage6

to derive new results for continual learning. Focusing on random orderings over7

T tasks, we establish universal forgetting rates, whereas existing rates depend8

on the problem dimensionality or complexity. Specifically, in continual regres-9

sion with replacement, we improve the best existing rate from O((d − r̄)/k) to10

O(min(1/ 4
√
k,
√
d− r̄/k,

√
T r̄/k)), where d is the dimensionality and r̄ the aver-11

age task rank. Furthermore, we establish the first rate for random task orderings12

without replacement. The obtained rate of O(min(1/ 4
√
T , (d− r)/T )) proves for13

the first time that randomization alone—with no task repetition—can prevent catas-14

trophic forgetting in sufficiently long task sequences. Finally, we prove a match-15

ing O(1/ 4
√
k) forgetting rate for continual linear classification on separable data.16

Our universal rates apply for broader projection methods, such as block Kaczmarz17

and POCS, illuminating their loss convergence under i.i.d. and one-pass orderings.18

1 Introduction19

In continual learning (CL), tasks are presented sequentially, one at a time. The goal is for the learner20

to adapt to the current task—e.g., by fine-tuning using gradient-based algorithms—while retaining21

knowledge from previous tasks. A central challenge in this setting is termed catastrophic forgetting,22

where expertise from earlier tasks is lost when adapting to newer ones. Forgetting is influenced by23

factors such as task similarity and overparameterization [20], and is also related to trade-offs like the24

plasticity-stability dilemma [46]. CL is becoming increasingly important with the rise of foundation25

models, where retraining is prohibitively expensive and data from prior tasks is often unavailable,26

e.g., due to privacy or data retention constraints.27

Previous work has shown, both analytically [9, 15, 16, 31, 34] and empirically [26, 39], that forgetting28

diminishes over time when task ordering is cyclic or random. Different orderings can be explored29

from multiple perspectives: as a strategy to mitigate forgetting (e.g., by actively ordering an agent’s30

learning environments); as a naturally occurring phenomenon, such as periodic trends in e-commerce;31

or as a means to model and analyze popular CL benchmarks, such as randomly split datasets.32
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Our work focuses on a widely studied analytical setting—realizable continual linear regression,133

where T tasks are learned sequentially over k iterations in a uniform random ordering. Evron et al.34

[15] established that the worst-case expected forgetting lies between Ω (1/k) and O ((d− r̄)/k),35

where d is the problem dimensionality, and r̄ the average rank of individual data matrices. This raises36

a fundamental question, critical in highly overparameterized regimes: Does worst-case forgetting37

necessarily scale with dimensionality, and if so, is the dependence indeed linear?38

To this end, we bridge continual learning and the literature on last-iterate stochastic gradient descent39

(SGD) analysis. We revisit an established connection between continual linear regression and the40

Kaczmarz method for solving systems of linear equations [15, 32]. Given rank-1 tasks, this method41

is known to perform a normalized stochastic gradient step on the least squares objective, fully42

minimizing the current task’s loss and implying a “stepwise-optimal” step size. Deepening this43

connection, we prove that even for general data ranks, learning a task in continual linear regression44

and performing an update in the Kaczmarz method, are both equivalent to a single SGD step on a45

modified objective with a constant, stepwise-optimal step size.46

Motivated by this, we prove convergence rates for the last iterate of fixed-step size SGD that, crucially,47

hold for a broad range of step sizes not covered by prior work [e.g., 4, 18, 62, 67, 69, 73]. Curiously,48

prior results either hold only for the average iterate [e.g., 1], or for small step sizes, bounded away from49

the stepwise-optimal step size crucial for the continual learning setup [e.g., 67]. We overcome this50

challenge through a careful combination of analysis techniques for SGD [62, 65], further tightening51

the analysis to accommodate a wider range of step sizes, including the stepwise-optimal one.52

Applying our last-iterate analysis to continual regression, we tighten the existing forgetting rate53

and establish the first dimension-independent rate (see Table 1). Furthermore, we provide the first54

rate for random task orderings without replacement, proving that task repetition is not obligatory to55

guarantee convergence when k = T →∞, thus highlighting the effect of randomization as compared56

to repetition. Our results also yield novel rates for the closely related Kaczmarz and NLMS methods.57

Finally, we prove a matching rate for the squared loss of the broader Projection Onto Convex58

Sets framework [22]. This extends our results to continual linear classification on separable data—59

previously linked to projection algorithms [16]—and provides this setting’s first universal rate,60

independent of the problem’s “complexity”.61

Summary of Contributions. To summarize, our main contributions in this paper are:62

• We establish a new reduction from continual linear regression to SGD with a particular choice63

of a “stepwise-optimal” step size, generalizing ideas from prior work that only applied to rank-164

tasks, to tasks of arbitrary rank. This facilitates last-iterate analysis for studying forgetting.65

• We provide novel last-iterate convergence analysis for SGD in a realizable least squares setup.66

To the best of our knowledge, this is the first analysis that provides nontrivial rates for large step67

sizes, which are crucial to the reduction to continual learning scenarios.68

• Our main contribution, building on these techniques, is a set of improved rates of forgetting in69

continual linear regression, including the first universal rates, independent of the problem dimen-70

sionality or complexity, as well as the first rates for without-replacement orderings, indicating71

task repetition is not mandatory to diminish forgetting. See Table 1 for a summary.72

• We further relate and extend our results to other settings, including continual linear classification,73

the block Kaczmarz method, and the Projection Onto Convex Sets framework (POCS).74

2 Main Setting: Continual Linear Regression75

We mainly investigate the fundamental continual linear regression setting, as studied in many theoret-76

ical papers. This setting is easy-to-analyze, yet often sheds light on important CL phenomena.177

Notation. Vectors and matrices are in boldface. ∥·∥ denotes Euclidean, spectral, or operator norms of78

vectors, matrices, or linear operators. X+ denotes the Moore-Penrose inverse. Finally, [n]≜1, ..., n.79

1 Despite its simplicity, the continual linear regression setting is insightful enough to investigate different
factors and aspects in continual settings, e.g., task similarity [15, 27, 42], task recurrence [15, 34], overparame-
terization [20], and algorithms [13, 55]. We follow prior theoretical work assuming tasks are jointly realizable
[e.g., 15, 20, 34]. Other notable work alternatively allow label noise, at the cost of assuming either i.i.d. features
[2, 19, 42] or commutative data matrices [40, 41, 72]—while our analysis facilitates any data matrices.
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Formally, the learner is given a collection of T linear regression tasks, (X1,y1), . . . , (XT ,yT ), where80

Xm∈Rnm×d,ym∈Rnm . For k iterations, tasks are learned according to a task ordering τ : [k]→ [T ].81

We analyze random orderings, previously studied in continual linear models [e.g., 15, 16, 31].82

Definition 2.1 (Random Task Ordering). A random ordering selects tasks uniformly at random from83

the task collection [T ], i.e., τ(1), . . . , τ(k) ∼ Unif ([T ]), with or without replacement.84

We are now ready to define the learning scheme we study, which, at each iteration, naively minimizes85

the sum of squared errors for the current regression task.286

Scheme 1 Continual Linear Regression (to Convergence)

Initialize w0 = 0d

For each iteration t = 1, . . . , k:
wt ← Start from wt−1 and minimize the current task’s loss Lτ(t)(w) ≜ 1

2

∥∥Xτ(t)w − yτ(t)

∥∥2
with (S)GD to convergence

Output wk

This scheme was previously linked to the Kaczmarz method and, in a special case, to normalized87

SGD [15]. In Section 3, we explain and develop these connections to enable novel analysis.88

Our main assumption is the existence of offline solutions that perfectly solve all T tasks jointly, as89

assumed in much of the theoretical CL literature [e.g., 15, 16, 20, 31]. This assumption simplifies the90

analysis1 and rules out cases where forgetting previous tasks is beneficial, as new tasks may directly91

contradict them. Finally, this assumption is reasonable in highly overparameterized models and is92

thus linked to the linear dynamics of deep networks in the neural tangent kernel (NTK) regime [29].93

Assumption 2.2 (Joint Linear Realizability). We assume the set of offline solutions that solve all94

tasks is nonempty. That is,W⋆ ≜
{
w ∈ Rd

∣∣∣Xmw = ym, ∀m ∈ [T ]
}
̸= ∅ .95

To facilitate the results and discussions in our paper, we focus on the offline solution with minimal96

norm, often associated with good generalization capabilities.97

Definition 2.3 (Minimum-Norm Offline Solution). We denote, w⋆ ≜ argminw∈W⋆
∥w∥.98

Commonly in continual learning setups, the model performance on past tasks degrades, sometimes99

significantly, even in linear models [15]. Our goal is to bound this degradation, i.e., “forgetting".100

Following common definitions [e.g., 13, 16], we define forgetting as the average increase in the loss101

of the last iterate on previous tasks.102

Definition 2.4 (Forgetting). Let w1, . . . ,wk be the iterates of Scheme 1 under a task ordering τ . The
forgetting at iteration k is the average increase in the loss of previously seen tasks. In our realizable
setting, the forgetting becomes an in-sample loss. Formally,

Fτ (k) =
1

k

k∑
t=1

(
Lτ(t)(wk)− Lτ(t)(wt)︸ ︷︷ ︸

=0

)
=

1

2k

k∑
t=1

∥∥Xτ(t)wk − yτ(t)

∥∥2 .

Under arbitrary orderings, Evron et al. [15] showed forgetting can be “catastrophic” in the sense that103

lim
k→∞

E [Fτ (k)] > 0. However, as we show, this cannot happen under the random ordering.104

Remark 2.5 (Forgetting vs. Regret). While regret and forgetting are related, they can differ signifi-105

cantly [15]. Regret is a key quantity in online learning, defined as 1
2k

∑k
t=1∥Xτ(t)wt−1 − yτ(t)∥2 in106

our setting. That is, it measures the suboptimality of each iterate on the consecutive task. In contrast,107

forgetting evaluates an iterate’s performance across earlier tasks.108

We further define the training loss to easily discuss links to other fields, such as Kaczmarz.109

Definition 2.6 (Training Loss). The training loss of any vector w ∈ Rd is given by,110

L(w) =
1

T

T∑
m=1

Lm(w) =
1

2T

T∑
m=1

∥Xmw − ym∥2 .

2This objective is natural for regression; our analysis also extends to the mean squared error (refining our R).
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We bound both the forgetting and the loss, leveraging a key property—expected (in-sample) forgetting111

can be upper bounded using expected training loss across all tasks. Specifically, Lemma B.1 (in112

App. B) states that Eτ [Fτ (k)] ≤ 2Eτ [L (wk−1)] +
∥w⋆∥2R2

k in orderings with replacement, where113

R ≜ maxm∈[T ] ∥Xm∥ is the data “radius” and the dependence of wk−1 on τ1, . . . , τk−1 is implicit.114

Without-replacement orderings yield a related but more refined bound. The additive ∥w⋆∥2R2

k term is115

negligible compared to other terms in our bounds.116

3 Reductions: From Continual Linear Regression to Kaczmarz to SGD117

Previous work established connections between continual linear regression and the Kaczmarz method118

[15]. We revisit these connections pedagogically to ensure our paper is self-contained. Impor-119

tantly, this leads to novel links between CL, the Kaczmarz method, and SGD on special functions120

(Schemes 1,2,3), allowing us to improve the rates for continual and Kaczmarz methods by analyzing121

the last iterate of SGD instead.122

Scheme 2 The Block Kaczmarz Method

Input: Jointly realizable (Xm,ym),∀m∈ [T ]
Initialize w0 = 0d

For each iteration t = 1, . . . , k:
wt ← wt−1 −X+

τ(t)(Xτ(t)wt−1 − yτ(t))

Scheme 3 SGD with η = 1 on special {fm}m

Input: fm(w)= 1
2∥X

+
m (Xmw−ym)∥2,∀m∈ [T ]

Initialize w0 = 0d

For each iteration t = 1, . . . , k:
wt ← wt−1 −∇wfτ(t)

(
wt−1

)
123

3.1 Revisit: Continual Linear Regression and the Kaczmarz Method124

The (block) Kaczmarz method in Scheme 2 [14, 32] is a classical iterative method for solving a linear
system Xw = y, easily mapped to our learning problem by stacking tasks in blocks, i.e.,

X =

X1...
XT

 ∈ RN×d, y =

y1...
yT

 ∈ RN , where N =

T∑
m=1

nm.

In each iteration, the Kaczmarz method (Scheme 2) perfectly solves the current block, i.e.,125

Xτ(t)wt = yτ(t) (to see that, recall that X+
τ(t) denotes the Moore-Penrose pseudo-inverse of X+

τ(t)).126

The continual Scheme 1 also minimizes the current loss to convergence, i.e., until it is perfectly127

solved (in the realizable case). In fact, Evron et al. [15] identified the following reduction.128

Reduction 1 (Continual Regression⇒ Block Kaczmarz). In the realizable case (Assumption 2.2)129

under any ordering τ , continual linear regression learned to convergence3 is equivalent to the block130

Kaczmarz method. That is, the iterates w0, . . . ,wk of Schemes 1 and 2 coincide.131

3.2 New Reduction: Kaczmarz Method and Stepwise-Optimal Stochastic Gradient Descent132

Rank-1 data. It is known that when each task contains just one row, each update in the Kaczmarz133

method corresponds to a gradient step on with a specific “normalizing” step size [51]. That is, since134

in rank-1 we have Lτ(t)(w) = 1
2

∥∥x⊤
τ(t)w − yτ(t)

∥∥2, the Kaczmarz updates hold135

wt = wt−1 −
1

∥xτ(t)∥2
(
x⊤
τ(t)wt−1 − yτ(t)

)
xτ(t) = wt−1 −

1

∥xτ(t)∥2
∇wLτ(t)(wt−1) . (1)

What about higher data ranks? We now establish a more general reduction from the block136

Kaczmarz method—at any rank—to SGD (in Section 6, we similarly connect SGD and the broader137

Projection Onto Convex Sets framework, extending our results to continual linear classification).138

Reduction 2 (Block Kaczmarz⇒ SGD). In the realizable case (Assumption 2.2) under any ordering139

τ , the block Kaczmarz method is equivalent to SGD with a step size of η = 1, applied w.r.t. a convex,140

1-smooth least squares objective:
{
fm(w) ≜ 1

2 ∥X
+
m (Xmw − ym)∥2

}T
m=1

. That is, the iterates141

w0, . . . ,wk of Schemes 2 and 3 coincide.142

3The learner minimizes Lτ(t) with (S)GD to convergence; the pseudo-inverse is not computed explicitly.
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The reduction follows from the next lemma, which states the convexity and smoothness of fm and143

expresses the gradient∇wfτ(t), subsequently substituted into
(
wt−1 −∇wfτ(t)(wt−1)

)
to complete144

the proof. The proof for the lemma is given in App. B.145

Lemma 3.1 (Properties of the Modified Objective). Consider any realizable task collection such that146

Xmw⋆ = ym,∀m ∈ [T ]. Define fm(w) = 1
2 ∥X

+
m (Xmw − ym)∥2. Then, ∀m ∈ [T ] ,w ∈ Rd147

(i) Upper bound: Lm(w) ≤ R2fm(w) ≜ maxm′∈[T ] ∥Xm′∥2 fm(w) .148

(ii) Gradient: ∇wfm(w) = X+
mXmw −X+

mym .149

(iii) Convexity and Smoothness: fm is convex and 1-smooth.150

4 Rates for Random-Order Continual Linear Regression and Kaczmarz151

This section focuses on improving the best upper bound known in prior continual learning literature152

on random orderings, summarized in Table 1. Specifically, for with-replacement random orderings,153

Evron et al. [15] proved a forgetting rate of Eτ [Fτ (k)] = O
(
d−r̄
k

)
where r̄ ≜ 1

T

∑
m rank(Xm).154

Notably, this rate depends on the problem dimensionality d, raising concerns when generalizing155

insights from linear models to deep networks, which are often heavily overparameterized (e.g., in156

the NTK regime). Encouragingly, that paper only provided (implicitly) a 1/k lower bound for the157

worst-case forgetting, calling for further research into narrowing this gap.158

We tighten the existing rate’s problem-dependent term from
(
d− r̄

)
to min

(√
d− r̄,

√
T r̄
)

and also159

prove a problem-independent rate of 1/ 4
√
k. Finally, we provide the first rates for without-replacement160

orderings, isolating the effect of randomness versus repetition.161

Table 1: Forgetting and Loss Rates in Continual Linear Regression (and Block Kaczmarz). Upper bounds
apply to any T realizable tasks (or blocks). Lower bounds indicate worst cases, i.e., specific constructions.
Random ordering bounds apply to the expected forgetting (or loss).
We omit mild constant multiplicative factors and an unavoidable ∥w⋆∥2R2 term. Finally, a ∧ b ≜ min(a, b).
Recall: k = iterations; d = dimensionality; r̄, rmax = average and maximum data matrix ranks.

Paper / Ordering Bound Random
with Replacement

Random
w/o Replacement Cyclic

Evron et al. [15] Upper d−r̄
k

— T 2
√
k
∧ T 2(d−rmax)

k

Kong et al. [34] Upper — — T 3

k

Ours (2025) Upper 1
4√
k
∧

√
d−r̄
k ∧

√
T r̄
k

1
4√
T
∧ d−r̄

T
—

Evron et al. [15] Lower 1
k (*) 1

T (*) T 2

k

(*) They did not explicitly provide such lower bounds, but the T =2 tasks construction from their proof of
Theorem 10, can yield a Θ(1/k) random behavior by cloning those 2 tasks ⌊T/2⌋ times for any general T .

4.1 A Parameter-Dependent O(1/k) Rate162

Here, we present a tighter
√
d− r̄ term and a term depending only on the rank and number of tasks.163

Theorem 4.1 (Parameter-Dependent Forgetting Rate for Random With Replacement). Under a164

random ordering with replacement over T jointly realizable tasks, the expected loss and forgetting of165

Schemes 1, 2 after k ≥ 3 iterations are bounded as,166

Eτ [L (wk)] ≤
min

(√
d− r̄,

√
T r̄
)
∥w⋆∥2R2

2e(k − 1)
, Eτ [Fτ (k)] ≤

3min
(√

d− r̄,
√
T r̄
)
∥w⋆∥2R2

2 (k − 2)
,

where r̄ ≜ 1
T

∑
m∈[T ] rank(Xm). (Recall that R ≜ maxm∈[T ] ∥Xm∥.)167
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The ∥w⋆∥2R2 scaling term is generally unavoidable. Our proof, given in App. C, is related to a recent168

work [23] that characterized the weak error (resembling our loss) by analyzing a linear map. Unlike169

ours, the polynomial rates they derive involve matrix properties related to the condition number.170

4.2 A Universal O(1/ 4
√
k) Rate171

Next, we present a forgetting rate independent on the dimensionality, rank, and number of tasks. This172

is crucial in highly overparameterized regimes which are connected to deep neural networks.173

Theorem 4.2 (Universal Forgetting Rate for With-Replacement Random Ordering). Under a ran-174

dom ordering with replacement over T jointly realizable tasks, the expected loss and forgetting of175

Schemes 1, 2 after k ≥ 2 iterations are bounded as,176

Eτ [L (wk)] ≤
2 ∥w⋆∥2 R2

4
√
k

, Eτ [Fτ (k)] ≤
5 ∥w⋆∥2 R2

4
√
k − 1

.

We prove this result in App. D.1 by leveraging the connections between CL and SGD. Specifically, in177

Section 3 we showed that continual linear regression is equivalent to SGD with a step size of exactly 1178

on a related least squares objective that bounds the original continual learning loss. Our result then179

follows from our novel last-iterate SGD bounds that, crucially, apply even to that specific step size.180

To ease readability, here we focused on a CL perspective, deferring last-iterate analysis to Section 5.181

4.3 Random Task Orderings Without Replacement182

Evron et al. [15] suggested defining forgetting as “catastrophic” only when limk→∞ E [Fτ (k)] > 0.183

They presented such an adversarial case with a deterministic task ordering where k = T → ∞,184

and showed that task recurrence, under cyclic or random orderings, mitigates forgetting. So far, in185

random orderings, it was hard to isolate the effect of randomness from that of repetitions. It was thus186

unclear whether catastrophic forgetting can be alleviated by randomly permuting the tasks. Below,187

we provide the first result demonstrating that no recurrence is needed under random orderings.188

Theorem 4.3 (Forgetting Rates for Without-Replacement Random Ordering). Under a random189

ordering without replacement over T jointly realizable tasks, the expected loss and forgetting of190

Schemes 1, 2 after k ∈ {2, . . . , T} iterations are both bounded as,191

Eτ [L (wk)] , Eτ [Fτ (k)] ≤ min

(
7

4
√
k − 1

,
d− r̄ + 1

k − 1

)
∥w⋆∥2 R2.

The proof of the dimensionality-dependent term is similar to the one of the with-replacement case,192

given in Section D.1.2 of Evron et al. [15], but requires a more careful upper bound on the (in-sample)193

forgetting. The proof of the dimensionality-independent term again relies on last-iterate analysis, as194

presented in App. E.2. Both proofs are given in App. D.2.195

App. A discusses connections between our result above and related areas like shuffle SGD.196

5 Last-Iterate SGD Bounds for Linear Regression197

In this self-contained section, we derive last-iterate guarantees for SGD in the realizable stochastic198

least squares setup. Motivated by the connection with continual regression discussed in Section 3,199

we focus on regression problems that are β-smooth individually, and obtain upper bounds for the200

last SGD iterate that apply for a significantly wider range of step sizes compared to prior art [67].201

Notably, this is the first time convergence of SGD in this setup is established for a range of step sizes202

completely independent of the optimization horizon. Table 2 in App. A compares our bounds with203

related work and classical results in the field.204

Recent work has analyzed SGD in the realizable least squares setting, with most assuming a somewhat205

more general noise model [4, 18, 67, 68, 69, 73]. These studies are primarily motivated by connections206

to deep networks in the overparameterized regime [45], where models are expressive enough to207

perfectly fit the training data. With the exception of Varre et al. [67], most of these works focus208

on non-fixed step sizes and/or provide guarantees for the average iterate. See App. A for further209

discussion. Here, we study a stochastic, jointly realizable least squares problem, as defined next.210
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Setup 1. Let I be an index set, and D a distribution over I. We consider the optimization objective:211

minw∈Rd

{
f̄(w) ≜ Ei∼Df(w; i) ≜ Ei∼D

[
1
2 ∥Aiw − bi∥2

]}
,

where Ai ∈ Rni×d,bi ∈ Rni , ∀i ∈ I. We specifically focus on β-smooth functions, i.e.,212 ∥∥A⊤
i Ai

∥∥ ≤ β,∀i ∈ I, under a realizable assumption, i.e., ∃w⋆ ∈ Rd : f̄(w⋆) = 0.213

Our main result establishes last-iterate guarantees for with-replacement SGD, defined next. Given an214

initialization w0 ∈ Rd and step-size η > 0:215

wt+1 ← wt − η∇f(wt; it), it ∼ D. (2)

Below, we state our theorem and then provide an overview of the analysis.216

Theorem 5.1 (Last-Iterate Bound for Realizable Regression With Replacement). Consider the
β-smooth, realizable Setup 1. Then, for any initialization w0 ∈ Rd, with-replacement SGD (Eq. (2))
with step size η < 2/β, holds:

Ef̄(wT ) ≤
eD2

2η(2− ηβ)T 1−ηβ(1−ηβ/4)
, ∀T ≥ 1 ,

where D ≜ ∥w0 −w⋆∥. In particular, for η = 1
β , Ef̄(wT ) ≤ eβD2

2
4√
T

.217

The important feature of Theorem 5.1 is the (2−ηβ) factor in the denominator, replacing the common218

(1 − ηβ) of the standard analysis. This difference makes our theorem applicable to the continual219

regression setting which requires setting η = 1/β (Reduction 2). In addition, for η = 1/(β log T ),220

we recover the near-optimal rate obtained by Varre et al. [67], i.e., Ef̄(wT ) = O
(

βD2 log T
T

)
.221

Extension to Without-Replacement SGD. In App. E.2, we extend Theorem 5.1 to the setting of222

SGD without replacement. The proof leverages algorithmic stability for SGD [6, 25, 61], focusing on223

a variant tailored to without-replacement sampling [35, 63]. In particular, we establish a new bound224

for this variant in the smooth and realizable regime, which has not appeared in prior work.225

Analysis Overview. Here, we briefly outline the proof of Theorem 5.1, which follows immediately226

by combining the two lemmas below (while noting that η < 2/β ⇒ eηβ(1−ηβ/4) ≤ e). The first step227

of the proof is to establish a regret bound for SGD when applied to f(w; i1) . . . f(w; iT ), holding228

for any step size η < 2/β. This already departs from the standard η < 1/β mandated by standard229

analysis. All proofs for this section are given in App. E.1.230

Lemma 5.2 (Gradient Descent Regret Bound for Smooth Optimization). Consider the β-smooth,231

realizable Setup 1, and let T ≥ 1, (i0, . . . , iT ) ∈ IT+1 be an arbitrary sequence of indices232

in I, and w0 ∈ Rd be an arbitrary initialization. Then, the gradient descent iterates given by233

wt+1 ← wt − η∇f(wt; it) for a step size η < 2/β, hold:234

T∑
t=0

f (wt; it) ≤
∥w0 −w⋆∥2

2η(2− ηβ)
.

The second and main step of the analysis is to relate the loss of the last SGD iterate to the regret235

of the algorithm. For this, we carefully adapt an existing approach for last-iterate convergence236

in the non-smooth case [62]. The result, given below, is slightly more general to accommodate237

without-replacement sampling, addressed in the next section.238

Lemma 5.3. Consider the β-smooth, realizable Setup 1. Let T ≥ 1. Assume P is a distribution over239

IT+1 such that for every 0 ≤ t ≤ τ1 ≤ τ2 ≤ T , the following holds: For any i0, . . . it−1 ∈ It, i ∈ I ,240

Pr(iτ1 = i|i0, . . . , it−1) = Pr(iτ2 = i|i0, . . . , it−1). Then, for any initialization w0 ∈ Rd, with-241

replacement SGD (Eq. (2)) with step-size η < 2/β, holds:242

Ef(wT , iT ) ≤ (eT )ηβ(1−ηβ/4)E
[

1
T+1

∑T

t=0
f(wt; it)

]
,

where the expectation is taken with respect to i0, . . . , iT sampled from P .243
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6 Extensions244

6.1 A Universal O(1/ 4
√
k) Rate for General Projections Onto Convex Sets245

Projections Onto Convex Sets (POCS) is a classical method that iteratively projects onto closed246

convex sets to find a point in their intersection [7, 22]. Formally,247

Scheme 4 Projections onto Convex Sets (POCS)

Input: A set of T closed convex sets C1, . . . , CT ; an initial w0 ∈ Rd; an ordering τ : [k]→ [T ]
For each iteration t = 1, . . . , k:

wt ← Πτ(t)(wt−1) ≜ argminw∈Cτ(t)
∥w −wt−1∥

Generalizing Reduction 2 (Kazcmarz⇒SGD), we note that POCS algorithms also implicitly perform248

stepwise-optimal SGD w.r.t. a convex, 1-smooth least squares objective. This has been partially249

observed in the POCS literature [e.g., 49]. All proofs for this section are given in App. F.250

Reduction 3 (POCS ⇒ SGD). Consider T arbitrary (nonempty) closed convex sets C1, . . . , CT ,251

initial point w0 ∈ Rd, and ordering τ . Define fm(w) = 1
2 ∥w −Πm(w)∥2 ,∀m ∈ [T ]. Then,252

(i) fm is convex and 1-smooth.253

(ii) The POCS update is equivalent to an SGD step: wt = Πτ(t)(wt−1) = wt−1−∇wfτ(t)(wt−1).254

We can now employ our analysis from Section 5 to yield a universal rate.255

Theorem 6.1 (Universal POCS Rate). Consider the conditions of Reduction 3 and assume a nonempty256

intersection C⋆ =
⋂T

m=1 Cm ̸= ∅. Then, under a random ordering with or without replacement,257

the expected “residual” of Scheme 4 after ∀k ≥ 1 iterations (k ∈ [T ] without replacement) is,258

Eτ

[ 1

2T

∑T

m=1
∥wk −Πm(wk)∥2

]
= Eτ

[ 1

2T

∑T

m=1
dist2(wk, Cm)

]
≤ 7

4
√
k

min
w∈C⋆

∥w0 −w∥2 .

To the best of our knowledge, this is the first universal rate in the POCS literature, independent of259

problem parameters such as its regularity or complexity, as demonstrated next in Section 6.2. Uni-260

versal rates are only achievable when analyzing individual distances, i.e., fm(w) = dist2(w, Cm) =261

∥w −Πm(w)∥2, rather than the distance to the intersection, i.e., dist2(w, C⋆). In machine learning,262

the squared distance from individual sets is linked to important losses like MSE in regression or263

squared hinge loss in classification [15, 16], naturally leading to our next continual model.264

6.2 A Universal O(1/ 4
√
k) Rate for Random Orderings in Continual Linear Classification265

Regularization methods are commonly used to prevent forgetting in CL [see 33]. Evron et al. [16]266

studied a regularized linear model for continual classification. They considered T ≥ 2 jointly separa-267

ble, binary classification tasks, defined by datasets S1, . . . , ST consisting of vectors x ∈ Rd and their268

labels y ∈ {−1,+1}. They proved that a weakly-regularized scheme implicitly applies sequential269

max-margin projections. That is, in the limit as λ → 0, the iterates of the two following schemes270

align in direction, enabling the study of continual classification through projection algorithms.271

Scheme 5 Regularized Continual Classification

Initialize w
(λ)
0 = 0d

For each iteration t = 1, . . . , k:
w

(λ)
t ← argminw∈Rd

∑
(x,y)∈St

e−yw⊤x + λ
2

∥∥w −w
(λ)
t−1

∥∥2
Scheme 6 Sequential Max-Margin Projections

Initialize w0 = 0d

For each iteration t = 1, . . . , k:
wt ← Πτ(t)(wt−1) ≜ argmin

w∈Cτ(t)

∥w −wt−1∥ where Cm≜
{
w∈Rd | yw⊤x ≥ 1, ∀(x, y)∈Sm

}
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They studied forgetting under several orderings, using an equivalent of our Definition 2.4:

Fτ (k) =
1

k

∑k

t=1

(
Lτ(t)(wk)− Lτ(t)(wt)

)
≤ R2

2k

∑k

t=1

∥∥wk−1 −Πτ(t)(wk−1)
∥∥2 .

Our POCS rate (Theorem 6.1) combined with SGD stability arguments gives the following.272

Theorem 6.2. Under a random ordering, with or without replacement, over T jointly separable tasks,273

the expected forgetting of the weakly-regularized Scheme 5 (at λ→ 0) after k ≥ 1 iterations is,274

Eτ

[
Fτ (k)

]
≤ 7 ∥w⋆∥2 R2

4
√
k

, where w⋆ ∈ argminw∈C1∩···∩CT
∥w0 −w∥2 .

As shown in Table 3 of App. F, our rate is universal while the previous one depends on ∥w⋆∥2 R2,275

often seen as the “complexity” of classification problems. For example, after k = 4T ∥w⋆∥2 R2276

iterations, the existing (normalized) rate is e−1, while ours is potentially much smaller: 5

T 1/4
√

∥w⋆∥R
.277

7 Discussion278

Our work established a reduction from continual linear regression to the (block) Kaczmarz method279

and then to “stepwise-optimal” SGD. This enabled the development of analytic tools for last-iterate280

SGD schemes, leading to significantly improved and even universal rates for random orderings in281

continual learning and the Kaczmarz method. Our main results are summarized in Tables 1 and 2.282

Much of the related work has been covered throughout the paper. A further discussion of related283

work can be found in App. A. Here, we briefly highlight additional aspects of our work.284

Random Continual Benchmarks. Many popular continual benchmarks in deep learning implicitly285

assume a random ordering, such as the permuted MNIST benchmark [33]. Our paper shows that in286

sufficiently long task sequences, random ordering is enough to prevent catastrophic forgetting, and287

the training loss goes to zero, even in the worst case. In accordance with our results, Lesort et al.288

[39] examined a random CL benchmark—in which a subset of classes is randomly sampled in each289

task—and observed that forgetting diminishes as more tasks are sampled, even while training with290

standard SGD (without any modifications to mitigate forgetting). This suggests that random orderings291

may contaminate continual learning benchmarks, making it harder to isolate the algorithmic effects292

being tested. Furthermore, real-world tasks often change gradually, not adhering to random orderings.293

Such “gradually evolving” datasets might be more challenging and relevant as continual benchmarks.294

Connections to the Kaczmarz Method. In Section 3.1 we revisited known connections between295

continual regression and the Kaczmarz method [15]. We broadened this connection in Section 3.2,296

bridging the block Kaczmarz method and “stepwise-optimal” SGD, thus applying our novel SGD297

bounds to the Kaczmarz method. Using Kaczmarz terminology, given a system Ax = b consisting298

of T blocks of an average rank r̄ where Am ∈ Rnm×d,bm ∈ Rnm , our rates from Section 4299

can be summarized as Eτ

[
1
2T

∑T
m=1

∥∥Amxk − bm

∥∥2] = O(min
(
k−1/4, 1

k

√
d− r̄, 1

k

√
T r̄
))

for300

random orderings with replacement and O
(
min

(
k−1/4, 1

k (d− r̄)
))

without replacement. Note301

that we bounded the loss, rather than the “error” ∥wk −w⋆∥2, thus enabling the derivation of rates302

independent of quantities like the condition number that can make convergence arbitrarily slow.303

Non-uniform Sampling. The seminal work of Strohmer and Vershynin [66] proposed a Kacz-304

marz variant that samples rows with probability proportional to their squared norm. Our approach305

accommodates non-uniform sampling, including norm based ones. This may tighten Theorem 4.2,306

replacing the dependence on the maximum row norm R with the average one. In the block version,307

both uniform and non-uniform variants exist [21, 50]. There also, our approach should yield better308

bounds when weighting blocks by to their norms, alleviating the dependence on the maximum norm.309

Future Work. We narrowed the gap between existing lower and upper worst-case bounds for310

random orderings in continual linear regression (see Table 1). However, a considerable gap remains311

between Ω(1/k) and O(1/k1/4). Generally, we conjecture that the last-iterate SGD rates can be312

improved beyond those in Theorem 5.1, and that Theorem E.4 can be extended to the multi-epoch313

setup. Following our reductions (Section 3), improved rates for “stepwise-optimal” SGD rates would314

immediately refine the bounds for continual linear regression and classification.315
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A Related Work497

Most of the related work is already discussed in the main body of the paper. Here, we elaborate on498

several interesting connections that remain open.499

Last-iterate Guarantees for SGD. For the general (non-realizable) smooth stochastic setup, the500

recent work of Liu and Zhou [43] was the first (and only, to our knowledge) to provide upper bounds501

on the convergence rate of the last SGD iterate. While their bounds are applicable in the realizable502

setting, they require non-constant step sizes to obtain non-trivial convergence, and are therefore not503

useful for our purposes (see Table 2). Our analysis technique in Section 5 borrows from the work of504

Shamir and Zhang [62, also mentioned in Table 2] which, in fact, belongs to the comparatively-richer505

line of work on the non-smooth setting [30, 43, 62, 71]. Notably, SGD in a stochastic non-realizable506

(either smooth or non-smooth) setup requires uniformly bounded noise assumptions, and generally507

cannot accommodate a constant step size independent of the optimization horizon.508

Table 2: State-of-the-art Loss Bounds for Fixed-Step-Size SGD. We consider stochastic convex optimization
with an objective f̄(w)≜Eξf(w; ξ), where f(·; ξ) is β-smooth almost surely, σ2 ≥ E∥∇f(w; ξ)−∇f̄(w)∥2,
σ2
⋆ ≜ E∥∇f(w⋆; ξ)−∇f̄(w⋆)∥2, and G > 0 is such that ∥∇f(w; ξ)∥ ≤ G for any w and ξ. Dependence on

constant numerical factors and the distance to an optimal solution is suppressed.

Setting Reference Bound
at Iteration T

Last Iterate
Guarantee

Convergence
for η = 1/β

Stochastic (*) Shamir and Zhang [62]
1

ηT
+ ηG2 log T ✓ ✗

Deterministic
Smooth (σ = 0)

Nesterov [52]
1

(2− ηβ)ηT
✓ ✓

Stochastic Smooth
Lan [37]

1

ηT
+ ησ2 ✗ ✗

Liu and Zhou [43]
1

ηT
+ ησ2 log T ✓ ✗

Stochastic Smooth
Realizable (σ⋆ = 0)

Srebro et al. [65]
1

(1− ηβ)ηT
✗ ✗

Stochastic
Regression
Realizable
(σ⋆ = 0)

Bach and Moulines [1]
1

ηT
✗ ✓

Varre et al. [67]
1

(1− 2ηβ log T )ηT
✓ ✗

Ours (2025)
1

(2− ηβ)ηT 1−ηβ(1−ηβ/4)
✓ ✓

(*) Shamir and Zhang [62] consider bounded domains; Liu and Zhou [43], Orabona [53] obtain similar bounds
for the unconstrained case. For non-fixed step sizes Jain et al. [30] obtain minimax optimal bounds without log
factors.

Our analysis for SGD without-replacement is related to a long line of work primarily focused on509

the average iterate convergence rates [e.g., 10, 11, 47, 48, 56, 58, 59]. For the non-strongly convex510

case, near-optimal bounds (for the average iterate) have been established for the general smooth case511

[47, 48]. In a subsequent work, Cai et al. [10] refined the dependence on problem parameters for the512

smooth realizable case (among others). Guarantees for the last iterate have only been established513

recently by Liu and Zhou [44] and Cai and Diakonikolas [9]. However, their bounds decay with514

the number of epochs rather than the number of iterations and apply only to non-constant step515

sizes, making them inapplicable to our setting. Specifically, in a realizable β-smooth setup, after516

J without-replacement SGD epochs over a finite sum of size n, Cai et al. [10], Mishchenko et al.517

[47] obtained an O(β/J) bound for the average iterate with step size η = 1/(βn); and Cai and518

14



Diakonikolas [9], Liu and Zhou [44] derived similar bounds for the last iterate up to logarithmic519

factors.520

Another line of work related to ours studies algorithmic stability [6, 61] of gradient methods, which521

is the main technique we use in the proof of Theorem E.4. Our approach is similar in nature to522

that of Koren et al. [35], Nagaraj et al. [48], Sherman et al. [63] and primarily builds on Sherman523

et al. [63], who were the first to formally introduce the notion of without-replacement stability. For524

with-replacement SGD, [25] discussed its algorithmic stability under smooth loss functions. Later,525

[38], improved this bound in the realizable loss case. The case we consider—i.e., the stability of526

without-replacement SGD under smooth and realizable loss functions—is not covered in the existing527

literature.528

With versus Without Replacement in Kaczmarz Methods. Our results in Section 4 establish529

universal bounds for random orderings, both with and without replacement. Both the with- and530

without-replacement variants converge linearly towards the minimum-norm solution w⋆ [21, 24],531

but as we explained in Section 7, the rates can be arbitrarily slow. Recht and Ré [57] formulated532

a noncommutative analog of the arithmetic-geometric mean inequality that, if true, could have533

shown that without-replacement orderings lead to faster loss convergence than with-replacement534

orderings in Kaczmarz methods, and consequently in continual linear regression. Years later, Lai535

and Lim [36] proved that this inequality does not hold in general [see also 12]. Moreover, as in other536

areas, empirical studies found that row shuffling followed by cyclic orderings performs as well as537

i.i.d. orderings [54]. This naturally connects to interesting observations and open questions regarding538

various forms of shuffled SGD [5, 70]. Our rates are similar for both with- and without-replacement539

orderings (up to small constants), meaning they do not indicate a clear advantage for either. However,540

we believe they are far from tight, leaving interesting open questions in this direction.541

Connections to Normalized Least Mean Squares. The NLMS algorithm is a classical adaptive542

filtering method. In its simplest version [64], the method perfectly fits a single—usually noisy—543

random sample at a time, using the same update rule as the Kaczmarz method (and thus, as our544

continual Scheme 1 in a rank-1 case). There also exists a more complex version of this method,545

which uses more samples per update [60]. Both papers give strongO(1/k) MSE rates in the noiseless546

setting (matching our realizable setting). However, they assume a very limited data model, where the547

sampled vectors are either orthogonal or identical up-to-scaling. Under such conditions, Evron et al.548

[15] showed that there is no forgetting (of previously learned tasks), implying that the MSE decays549

as the number of tasks still unseen at time k.550
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B Auxiliary Proofs551

Lemma B.1 (Bounding Forgetting Using the Training Loss). In a realizable setting (Assumption 2.2),552

the iterates of Scheme 1 under a random task ordering τ (with or without replacement) hold ∀k ≥ 1,553

Eτ [Fτ (k)] = Eτ

[
1

2k

k∑
t=1

∥∥Xτ(t)wk − yτ(t)

∥∥2 ] ≤ Eτ

∥∥Xτ(k)wk−1 − yτ(k)

∥∥2 + ∥w⋆∥2 R2

k
,

where R ≜ maxm∈[T ] ∥Xm∥ is the “radius” of the data. Notice that the dependence of wk−1 on554

τ1, . . . , τk−1 is implicit. Particularly, in an ordering with replacement, we get,555

Eτ [Fτ (k)] ≤ Eτ

[
1

T

T∑
m=1

∥Xmwk−1 − ym∥2
]
+
∥w⋆∥2 R2

k
= 2Eτ [L (wk−1)] +

∥w⋆∥2 R2

k
.

Proof. As discussed in Section 3.1, Scheme 2 governs the updates of the iterates wt ∈ Rd. Under556

Assumption 2.2, we define the orthogonal projection as Pτ(t) ≜ Id − X+
τ(t)Xτ(t), revealing a557

recursive form:558

wt = X+
τ(t)yτ(t) +

(
Id −X+

τ(t)Xτ(t)

)
wt−1

[Assumption 2.2] = X+
τ(t)Xτ(t)w⋆ +

(
Id −X+

τ(t)Xτ(t)

)
wt−1 = (Id −Pτ(t))w⋆ +Pτ(t)wt−1

wt −w⋆ = Pτ(t) (wt−1 −w⋆) (3)

wt −w⋆ = Pτ(t) · · ·Pτ(1) (w0 −w⋆) . (4)

We show that,559

Eτ [Fτ (k)] =
1

2k

k∑
t=1

Eτ

∥∥Xτ(t)wk − yτ(t)

∥∥2 =
1

2k

k∑
t=1

Eτ

∥∥Xτ(t) (wk −w⋆)
∥∥2

=
1

2k

k∑
t=1

Eτ

∥∥Xτ(t)Pτ(k) · · ·Pτ(t+1)Pτ(t) (wt−1 −w⋆)
∥∥2

=
1

2k

k∑
t=1

Eτ

∥∥Xτ(t)Pτ(k) · · ·Pτ(t+1)

(
I−Pτ(t) − I

)
(wt−1 −w⋆)

∥∥2
[Jensen] ≤ 1

k

k∑
t=1

(
Eτ

∥∥Xτ(t)Pτ(k) · · ·Pτ(t+1)

(
I−Pτ(t)

)
(wt−1 −w⋆)

∥∥2︸ ︷︷ ︸
≤R2∥(I−Pτ(t))(wt−1−w⋆)∥2, since projections contract

+

Eτ

∥∥Xτ(t)Pτ(k) · · ·Pτ(t+1) (wt−1 −w⋆)
∥∥2 )

≤ 1

k

k∑
t=1

(
R2Eτ

∥∥(I−Pτ(t)

)
(wt−1 −w⋆)

∥∥2 +
Eτ

∥∥Xτ(t)Pτ(k) · · ·Pτ(t+1)Pτ(t−1) · · ·Pτ(1) (w0 −w⋆)
∥∥2 ) .
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For the first term, we employ the Pythagorean theorem for orthogonal projections to get a telescoping560

sum and show that561

R2

k

k∑
t=1

Eτ

∥∥(I−Pτ(t)

)
(wt−1 −w⋆)

∥∥2
=

R2

k

k∑
t=1

(
Eτ ∥wt−1 −w⋆∥2 − Eτ

∥∥Pτ(t) (wt−1 −w⋆)
∥∥2)

=
R2

k

k∑
t=1

(
Eτ ∥wt−1 −w⋆∥2 − Eτ ∥wt −w⋆∥2

)
=

R2

k

(
Eτ ∥w0 −w⋆∥2︸ ︷︷ ︸

=∥w⋆∥2

−Eτ ∥wk −w⋆∥2︸ ︷︷ ︸
≥0

)
≤ ∥w⋆∥2 R2

k
.

For the second term, we use the exchangeability of τ which applies with or without replacement,562

Eτ

∥∥Xτ(t)Pτ(k) · · ·Pτ(t+1)Pτ(t−1) · · ·Pτ(1) (w0 −w⋆)
∥∥2

= Eτ

∥∥Xτ(k)Pτ(k−1) · · ·Pτ(1) (w0 −w⋆)
∥∥2 = Eτ

∥∥Xτ(k) (wk−1 −w⋆)
∥∥2 .

Combining the two, we get563

Eτ [Fτ (k)] ≤ Eτ

∥∥Xτ(k)wk−1 − yτ(k)

∥∥2 + ∥w⋆∥2 R2

k
,

which completes the first part of the proof.564

For the second part, simply notice that in an i.i.d. setting, the index τ(k) ∼ Unif ([T ]) is independent
of earlier indices (which yielded wk−1), and thus

Eτ

∥∥Xτ(k)wk−1 − yτ(k)

∥∥2 = Eτ

[
1

T

T∑
m=1

∥Xmwk−1 − ym∥2
]
.

■565

Proposition B.2 (Bounding The Training Loss Using Forgetting in Without-Replacement Orderings).566

Under a random ordering τ without replacement, the iterates of Scheme 1 (continual regression)567

satisfy ∀k ∈ [T ]:568

Eτ [L (wk)] =
k

T
Eτ [Fτ (k)] +

T − k

2T
Eτ

∥∥Xτ(k+1)wk − yτ(k+1)

∥∥2 .

Similarly, the iterates of Scheme 4 (POCS) satisfy:569

Eτ [L (wk)] =
k

T
Eτ [Fτ (k)] +

T − k

2T
Eτ

∥∥wk −Πτ(k+1) (wk)
∥∥2 ,

where in such a POCS setting, the loss and forgetting are defined as:570

L (wk) =
1

2T

T∑
m=1

∥wk −Πm (wk)∥2 , Fτ (k) =
1

2k

k∑
t=1

∥∥wk −Πτ(t) (wk)
∥∥2 .
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Proof. We first prove the claim in the continual regression setting. If k = T then Eτ [L (wk)] =571

Eτ [Fτ (k)], and the claim follows. For k < T , we have:572

Eτ [L (wk)] =
1

2T

T∑
m=1

Eτ ∥Xmwk − ym∥2

[without replacement] =
1

2T

T∑
t=1

Eτ

∥∥Xτ(t)wk − yτ(t)

∥∥2
=

1

2T

k∑
t=1

Eτ

∥∥Xτ(t)wk − yτ(t)

∥∥2 + 1

2T

T∑
t=k+1

Eτ

∥∥Xτ(t)wk − yτ(t)

∥∥2
=

k

T
Eτ [Fτ (k)] +

1

2T

T∑
t=k+1

Eτ

∥∥Xτ(t)wk − yτ(t)

∥∥2
[exchangeability] =

k

T
Eτ [Fτ (k)] +

T − k

2T
Eτ

∥∥Xτ(k+1)wk − yτ(k+1)

∥∥2 .

For the POCS case, simply replace ∥Xmwk − ym∥2 with ∥wk −Πm (wk)∥2. ■573

Recall Lemma 3.1. Consider any realizable task collection such that Xmw⋆ = ym,∀m ∈ [T ].574

Define fm(w) = 1
2 ∥X

+
mXm (w −w⋆)∥

2. Then, ∀m ∈ [T ] ,w ∈ Rd575

(i) Upper bound: Lm(w) ≤ R2fm(w) ≜ maxm′∈[T ] ∥Xm′∥2 fm .576

(ii) Gradient: ∇wfm(w) = X+
mXm (w −w⋆) = X+

mXmw −X+
mym .577

(iii) Convexity and Smoothness: fm is convex and 1-smooth.578

Proof. First, we use the realizability and simple norm inequalities to obtain,

Lm(w) = 1
2 ∥Xmw − ym∥2 = 1

2 ∥Xm(w −w⋆)∥2 ≤ ∥Xm∥2

2

∥∥X+
mXm(w −w⋆)

∥∥2 ≤ R2f(w) .

Since X+
mXm is an orthogonal projection operator—and thus symmetric and idempotent—we get,579

∇wfm(w) =
(
X+

mXm

)⊤
X+

mXm(w −w⋆) = X+
mXm(w −w⋆) = X+

mXmw −X+
mym .

Then, the above and the fact that projection operators are non-expansive imply that ∀w, z ∈ Rd,

∥∇wfm(w)−∇zfm(z)∥ =
∥∥X+

mXm(w −w⋆ − z+w⋆)
∥∥ =

∥∥X+
mXm(w − z)

∥∥ ≤ ∥w − z∥ .

Finally, the convexity of fm is immediate since∇2
wfm(w) = X+

mXm ⪰ 0. ■580
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C Proofs for Section 4.1: A Parameter-Dependent O(1/k) Rate581

Recall Theorem 4.1. Under a random ordering with replacement over T jointly realizable tasks, the582

expected loss and forgetting of Schemes 1, 2 after k ≥ 3 iterations are upper bounded as,583

Eτ [L (wk)] = Eτ

[
1

2T

T∑
m=1

∥Xmwk − ym∥2
]
≤

min
(√

d− r̄,
√
T r̄
)

2e(k − 1)
∥w⋆∥2R2

Eτ [Fτ (k)] = Eτ

[
1

2k

k∑
t=1

∥∥Xτ(t)wt − yτ(t)

∥∥2 ] ≤ 3min
(√

d− r̄,
√
T r̄
)

2 (k − 2)
∥w⋆∥2R2 ,

where r̄ ≜ 1
T

∑
m∈[T ] rank(Xm). (Recall that R ≜ maxm∈[T ] ∥Xm∥.)584

Here, we prove the main result, followed by the necessary auxiliary corollaries and lemmas in585

App. C.1.586

Proof Idea. We rewrite the Kaczmarz update (Scheme 2) in a recursive form of the differences, i.e.,587

wt −w⋆ = Pτ(t) (wt−1 −w⋆), with a suitable projection matrix Pτ(t). We define the linear map588

Q [A] = 1
T

∑T
m=1 PmAPm to capture the evolution of the difference’s second moments, enabling589

sharp analysis of the expected loss in terms of Q. Using properties of Q, norm inequalities, and the590

spectral mapping theorem, we establish a fast O (1/k) rate with explicit dependence on T , d, and r̄.591

Proof. We analyze the randomized block Kaczmarz algorithm for solving the linear system Xw = y,592

where the matrix and vector are partitioned into blocks as follows:593

X =

X1

...
XT

 , y =

y1

...
yT

 .

By defining zt = wt−w⋆ and exploiting the recursive form of Eq. (3) from the proof of Lemma B.1,594

we obtain zt = Pτ(t)zt−1. Note that z0 = 0d −w⋆ = −w⋆.595

Now, define the linear map Q : Rd×d → Rd×d as596

Q [A] = E
m∼Unif([T ])

[PmAPm] =
1

T

T∑
m=1

PmAPm. (5)

This map plays a central role in our analysis and has been studied in similar forms in prior work [23].597

Note that Pm is an orthogonal projection, which implies that it is symmetric and idempotent. Thus,598

E
τ

[
zt+1z

⊤
t+1

]
= E

m,τ

[
Pmztz

⊤
t P

⊤
m

]
= E

m,τ

[
Pmztz

⊤
t Pm

]
= E

m

[
Pm E

τ

[
ztz

⊤
t

]
Pm

]
= Q

[
E
τ

[
ztz

⊤
t

]]
.

It follows that

E
τ

[
ztz

⊤
t

]
= Qt

[
E
τ

[
z0z

⊤
0

]]
= Qt

[
z0z

⊤
0

]
= Qt

[
(w0 −w⋆) (w0 −w⋆)

⊤
]
= Qt

[
w⋆w

⊤
⋆

]
,

where Qt denotes t applications of Q. The map Q captures the evolution of the error’s second-moment599

under Kaczmarz updates, offering a tractable approach to analyzing the algorithm’s convergence.600

The expected loss at step t is given by601

Eτ [L (wt)] = E
τ

[
1

2T

T∑
i=1

∥Xiwt − yi∥2
]
= E

τ

[
1

2T

T∑
i=1

∥Xi (wt −w⋆)∥2
]

= E
τ

[
1

2T

T∑
i=1

∥Xizt∥2
]
= E

τ

[
1

2T
∥Xzt∥2

]
= E

τ

[
1

2T
z⊤t X

⊤Xzt

]
= E

τ

[
tr

(
1

2T
X⊤Xztz

⊤
t

)]
= tr

(
1

2T
X⊤XE

τ

[
ztz

⊤
t

])
= tr

(
1

2T
X⊤XQt

[
w⋆w

⊤
⋆

])
.
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We are now ready to derive the final bound. From Lemma C.7, we have602

1

R2T
X⊤X ≼ X+X−Q

[
X+X

]
.

Additionally, by Corollary C.5, Qk
[
w⋆w

⊤
⋆

]
is symmetric and positive semidefinite (PSD). We also603

note that 1
T X

⊤X is symmetric PSD. The key insight from Lemma C.7, combined with the trace604

product inequality (Lemma C.6), is that it allows the expected loss to be expressed using a polynomial605

in Q. This reformulation simplifies the convergence analysis by reducing it to examining the spectral606

properties of Q. Invoking the trace product inequality, we obtain:607

Eτ [L (wk)] = tr

(
1

2T
X⊤XQt

[
w⋆w

⊤
⋆

])
≤ R2

2
tr
((
X+X−Q

[
X+X

])
Qk
[
w⋆w

⊤
⋆

])
[Lemma C.8] =

R2

2
tr
(
Qk
[
X+X−Q

[
X+X

]]
w⋆w

⊤
⋆

)
=

R2

2
w⊤

⋆ Q
k
[
X+X−Q

[
X+X

]]
w⋆

≤ ∥w⋆∥2 R2

2

∥∥Qk
[
X+X−Q

[
X+X

]]∥∥
2
=
∥w⋆∥2 R2

2

∥∥(Qk (I −Q)
) [

X+X
]∥∥

2

=
∥w⋆∥2 R2

2

∥∥(Qk−1 (I −Q)
)
Q
[
X+X

]∥∥
2

≤ ∥w⋆∥2 R2

2

∥∥(Qk−1 (I −Q)
)
Q
[
X+X

]∥∥
F

[operator norm] ≤ ∥w⋆∥2 R2

2

∥∥Qk−1 (I −Q)
∥∥ · ∥∥Q [X+X

]∥∥
F[

Lemmas
C.11, C.12

]
≤ ∥w⋆∥2 R2

2e (k − 1)
min

(√
T r̄,
√
d− r̄

)
.

To clarify, the operator norm of a linear map H is defined as ∥H∥ = supA∈Rd×d,∥A∥F=1 ∥H [A]∥F .608

The reason for switching from the spectral norm to the Frobenius norm is to enable the use of609

the spectral mapping theorem to bound the operator norm of Qk−1 (I −Q), applicable only for610

inner-product-based norms. We complete the proof by bounding the forgetting using the training loss611

(Lemma B.1). That is,612

Eτ [Fτ (k)] = Eτ

[
1

2k

k∑
t=1

∥∥Xτ(t)wt − yτ(t)

∥∥2 ] ≤ 2Eτ [L (wk−1)] +
∥w⋆∥2 R2

k

≤ 3 ∥w⋆∥2 R2

2 (k − 2)
min

(√
T r̄,
√
d− r̄

)
.

■613
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C.1 Key Properties and Auxiliary Lemmas614

Definition C.1 (Positive Map). A positive map H : Rd×d → Rd×d is a linear map that maps PSD615

matrices to PSD matrices. Formally, if 0 ≼ A ∈ Rd×d, then 0 ≼ H [A].616

Definition C.2 (Symmetric Map). A symmetric map H : Rd×d → Rd×d is a linear map that maps617

symmetric matrices to symmetric matrices. Formally, if A = A⊤ ∈ Rd×d, then H [A] = H [A]
⊤.618

Corollary C.3. Q, defined in Eq. (5), is a positive map.619

Proof. Let 0 ≼ A ∈ Rd×d. Then, for all i ∈ [T ], 0 ≼ PiAPi. Meaning Q [A] is PSD as a convex620

combination of PSD matrices. ■621

Corollary C.4. Q is a symmetric map. Moreover, for all A ∈ Rd×d, it satisfies Q [A]
⊤
= Q

[
A⊤].622

Proof. Let A ∈ Rd×d. Then,623

Q [A]
⊤
=

1

T

T∑
i=1

(PiAPi)
⊤
=

1

T

T∑
i=1

P⊤
i A

⊤P⊤
i =

1

T

T∑
i=1

PiA
⊤Pi = Q

[
A⊤] .

■624

Corollary C.5. For n ∈ N+, the iterated application of the map Q, denoted Qn, is a positive625

symmetric map.626

Proof. For n = 1, given by Corollaries C.3 and C.4. For n > 1, this follows trivially by induction.627

■628

Lemma C.6 (Trace Product Inequality). Let A,B,C ∈ Rd×d be symmetric PSD matrices such that629

A ≼ B. Then, tr (AC) ≤ tr (BC).630

Proof. Since 0 ≼ C = C⊤, it has a square symmetric PSD root C1/2. Given that A,B are631

symmetric and A ≼ B, it follows that C1/2AC1/2 ≼ C1/2BC1/2 [from 28, Theorem 7.7.2.a].632

Applying the cyclic property of the trace and using the fact that for symmetric matrices ordered in the633

Löwner sense, their traces are also ordered [28, Corollary 7.7.4.d], we obtain634

tr (AC) = tr
(
AC1/2C1/2

)
= tr

(
C1/2AC1/2

)
≤ tr

(
C1/2BC1/2

)
= tr (BC) .

■635

Lemma C.7. Let R = maxi∈[T ] ∥Xi∥. Then, 1
R2T X

⊤X ≼ X+X−Q [X+X]636

Proof. We perform SVD on each Xi = UiΣiV
⊤
i . Then,637

1

R2T
X⊤X =

1

R2T

T∑
i=1

X⊤
i Xi =

1

R2T

T∑
i=1

ViΣ
2
iV

⊤
i

On the other hand:638

X+X−Q
[
X+X

]
= X+X− 1

T

T∑
i=1

(
I−X+

i Xi

)
X+X

(
I−X+

i Xi

)
= X+X− 1

T

T∑
i=1

X+X−X+
i XiX

+X−X+XX+
i Xi +X+

i XiX
+XX+

i Xi

[
Im(X+

i Xi)
⊆Im(X+X)

]
= − 1

T

T∑
i=1

−X+
i Xi −X+

i Xi +X+
i Xi =

1

T

T∑
i=1

X+
i Xi =

1

T

T∑
i=1

ViΣ
+
i ΣiV

⊤
i .

Now consider the difference:639 (
X+X−Q

[
X+X

])
− 1

R2T
X⊤X =

1

T

T∑
i=1

Vi

(
Σ+

i Σi −
1

R2
Σ2

i

)
V⊤

i .

We know that 1
R (Σi)j,j ∈ [0, 1]. We analyze two cases for each diagonal entry:640

21



• If (Σi)j,j = 0, then
(
Σ+

i Σi − 1
R2Σ

2
i

)
j,j

= 0.641

• Otherwise,
(
Σ+

i Σi

)
j,j

= 1, and 1
R2

(
Σ2

i

)
j,j
≤ 1, which gives

(
Σ+

i Σi − 1
R2Σ

2
i

)
j,j
≥ 0.642

Thus,643

0 ≼ Vi

(
Σ+

i Σi −
1

R2
Σ2

i

)
V⊤

i .

Averaging over all i, we get:644

0 =
1

T

T∑
i=1

0 ≼
1

T

T∑
i=1

Vi

(
Σ+

i Σi −
1

R2
Σ2

i

)
V⊤

i =
(
X+X−Q

[
X+X

])
− 1

R2T
X⊤X

1

R2T
X⊤X ≼ X+X−Q

[
X+X

]
.

■645

Lemma C.8. Let A,B ∈ Rd×d and n ∈ N+. Then, tr (AQn [B]) = tr (Qn [A]B).646

Proof. From the definition of Q (Eq. (5)),647

tr (AQn [B]) = tr

A
1

Tn

T∑
j1,...,jn=1

Pj1 · · ·PjnBPjn · · ·Pj1


[linearity] =

1

Tn

T∑
j1,...,jn=1

tr (APj1 · · ·PjnBPjn · · ·Pj1)

[cyclic property] =
1

Tn

T∑
j1,...,jn=1

tr (Pjn · · ·Pj1APj1 · · ·PjnB)

[linearity] = tr

 1

Tn

T∑
j1...,jn=1

Pjn · · ·Pj1APj1 · · ·Pjn

B


= tr (Qn [A]B) .

■648

Proposition C.9. Q is self adjoint.649

Proof. Let A,B ∈ Rd×d. Then,650

⟨Q [A] ,B⟩ = tr
(
Q [A]

⊤
B
)
= tr

(
B⊤Q [A]

)
[Lemma C.8] = tr

(
Q
[
B⊤]A)

[Corollary C.4] = tr
(
Q [B]

⊤
A
)
= tr

(
A⊤Q [B]

)
= ⟨A, Q [B]⟩ .

■651

Proposition C.10. The spectrum of Q is contained in the interval [0, 1].652

Proof. Let A ∈ Rd×d. Then, by definition,653

⟨Q [A] ,A⟩ = tr
(
Q [A]

⊤
A
)
=

1

T

T∑
i=1

tr
(
PiA

⊤PiA
)

[
idempotence,

cyclic property

]
=

1

T

T∑
i=1

tr
(
PiA

⊤PiPiAPi

)
=

1

T

T∑
i=1

∥PiAPi∥2F ≥ 0 .
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Since each Pi is an orthogonal projection, its spectral norm satisfies ∥Pi∥2 = 1. Applying the654

operator inequality ∥XY∥F ≤ ∥X∥2 ∥Y∥F twice, we obtain655

1

T

T∑
i=1

∥PiAPi∥2F ≤ ∥Pi∥42 ∥A∥
2
F = ∥A∥2F .

Thus, for any A ∈ Rd×d,656

0 ≤ ⟨Q [A] ,A⟩ ≤ ∥A∥2F .

From the Rayleigh quotient characterization of eigenvalues, this implies that every eigenvalue λ of Q657

satisfies 0 ≤ λ ≤ 1, i.e., σ(Q) ⊂ [0, 1] . ■658

Lemma C.11. ∥Qn (I −Q)∥ ≤ 1
en , for n ∈ N+.659

Proof. By Proposition C.9, Q is self adjoint. Thus, we can apply the spectral mapping theorem to the660

polynomial x 7→ xn (1− x). The eigenvalues of Qn (I −Q) are of the form λn (1− λ), where λ is661

an eigenvalue of Q. From Proposition C.10, we know that λ ∈ [0, 1]. Using an algebraic property of662

λn (1− λ) for λ ∈ [0, 1], we conclude that λn (1− λ) ∈
[
0, 1

en

]
.663

Therefore, ∥Qn (I −Q)∥ ≤ 1
en . ■664

Lemma C.12. ∥Q [X+X]∥F ≤ min
(√

T r̄,
√
d− r̄

)
.665

Proof. We first bound ∥Q [X+X]∥F using the operator norm bound on Q (Proposition C.10):666 ∥∥Q [X+X
]∥∥

F
≤ ∥Q∥︸︷︷︸

≤1

·
∥∥X+X

∥∥
F
≤
∥∥X+X

∥∥
F
=
√
rank (X+X) =

√
T r̄ .

Next, we use a pseudo-inverse property—that X+X ≼ I—and the positivity of Q to show,667

0 ≼ Q
[
I−X+X

]
Q
[
X+X

]
≼ Q [I]∥∥Q [X+X

]∥∥
F
≤ ∥Q [I]∥F =

∥∥∥ 1
T

T∑
i=1

Pi

∥∥∥
F
≤ 1

T

T∑
i=1

∥Pi∥F

=
1

T

T∑
i=1

√
rank (Pi) =

1

T

T∑
i=1

√
d− rank (Xi)

[Jensen (concave)] ≤
√
d− r̄ .

■668
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D Proofs of Universal Continual Regression Rates (Sections 4.2 and 4.3)669

The proofs in this appendix focus on the properties of forgetting and loss, “translating” them into the670

language of last-iterate SGD. We then apply our last-iterate results, proved in App. E.671

D.1 Proof of Theorem 4.2: A Universal O(1/ 4
√
k) Rate672

Recall Theorem 4.2. Under a random ordering with replacement over T jointly realizable tasks, the673

expected loss and forgetting of Schemes 1, 2 after k ≥ 2 iterations are bounded as,674

Eτ [L (wk)] = Eτ

[
1

2T

T∑
m=1

∥∥Xmwk − ym

∥∥2] ≤ 2
4
√
k

∥∥w⋆

∥∥2R2 ,

Eτ [Fτ (k)] = Eτ

[
1

2k

k∑
t=1

∥∥Xτ(t)wk − yτ(t)

∥∥2 ] ≤ 5
4
√
k − 1

∥w⋆∥2 R2 .

Proof. Let τ be a random with-replacement ordering, and w0, . . . ,wk be the corresponding iterates675

produced by the continual Scheme 1 (or the equivalent Kaczmarz Scheme 2). By Reduction 2, these676

are exactly the (stochastic) gradient descent iterates produced given an initialization w0 and a step677

size of η = 1, on the loss sequence fτ(1), . . . , fτ(k), where we defined:678

fm(w) ≜
1

2

∥∥X+
mXm(w −w⋆)

∥∥2 .
Furthermore, Lemma 3.1 states that for all w ∈ Rd,679

L(w) =
1

2T

T∑
m=1

∥Xmw − ym∥2 = Em∼Unif([T ])Lm(w) ≤ R2Em∼Unif([T ])fm(w) .

Therefore, establishing last iterate convergence of with-replacement SGD (Eq. (2)) on the objective680

function681

f̄(w) ≜ Em∼[T ]fm(w) ,

will imply the desired result. Indeed, again by Lemma 3.1, fm(·) is 1-smooth for all m ∈ [T ]. Hence,682

plugging in A = X+
mXm ⇒ ∥A∥ = 1 = β into Theorem 5.1, SGD with η = 1 guarantees that after683

k ≥ 1 gradient steps:684

Ef̄(wk) ≤
e ∥w0 −w⋆∥2

2 4
√
k

≤ 2 ∥w0 −w⋆∥2
4
√
k

,

and therefore EL(wk) ≤ 2R2∥w0−w⋆∥2

4√
k

, which proves the first claim. The second claim follows685

immediately from Lemma B.1, and we are done. ■686
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D.2 Proving Theorem 4.3: Main Result for Without Replacement Orderings687

Recall Theorem 4.3. Under a random ordering without replacement over T jointly realizable tasks,688

the expected loss and forgetting of Schemes 1, 2 after k ∈ {2, . . . , T} iterations are both bounded as,689

E [L (wk)] , E [Fτ (k)] ≤ min

(
7

4
√
k − 1

,
d− r̄ + 1

k − 1

)
∥w⋆∥2 R2 .

Proof. From Lemmas 3.1 and B.1, we have

E
τ
[Fτ (k)] ≤ E

τ

∥∥Xτ(k)wk−1 − yτ(k)

∥∥2 + ∥w⋆∥2 R2

k
≤ 2R2 E

τ
fτ(k)(wk−1) +

∥w⋆∥2 R2

k
.

Combining with Proposition B.2, we get,690

Eτ [L (wk)] =
k

T
Eτ [Fτ (k)] +

T − k

2T
Eτ

∥∥Xτ(k+1)wk − yτ(t)

∥∥2
≤ k

T

(
2R2 E

τ
fτ(k)(wk−1) +

∥w⋆∥2 R2

k

)
+

T − k

2T
E
τ
fτ(k+1)(wk)

[k≤T ] ≤ R2

(
2k

T
E
τ
fτ(k)(wk−1) +

T − k

T
E
τ
fτ(k+1)(wk)

)
+
∥w⋆∥2 R2

k
.

Thus, to bound both the expected forgetting and loss, we need to bound expressions like691

Eτfτ(k+1)(wk).692

We first prove the dimension dependent term. Note that,693

2E
τ
fτ(k)(wk−1) = E

τ

∥∥∥X+
τ(k)Xτ(k) (wk−1 −w⋆)

∥∥∥2 ≜ E
τ

∥∥(I−Pτ(k)

)
(wk−1 −w⋆)

∥∥2 .
Recall that from Eq. (4) in the proof of Lemma B.1, we have694

(wk−1 −w⋆) = Pτ(k−1) · · ·Pτ(1) (w0 −w⋆) = −Pτ(k−1) · · ·Pτ(1)w⋆.

Thus, we obtain695

E
τ

∥∥(I−Pτ(k)

)
(wk−1 −w⋆)

∥∥2 = E
τ

∥∥(I−Pτ(k)

)
Pτ(k−1) · · ·Pτ(1)w⋆

∥∥2
≤ E

τ

∥∥(I−Pτ(k)

)
Pτ(k−1) · · ·Pτ(1)

∥∥2
2
· ∥w⋆∥2 ≤ ∥w⋆∥2 E

τ

∥∥(I−Pτ(k)

)
Pτ(k−1) · · ·Pτ(1)

∥∥2
F

= ∥w⋆∥2 E
τ
tr
(
Pτ(1) · · ·Pτ(k−1)

(
I−Pτ(k)

)
Pτ(k−1) · · ·Pτ(1)

)
.

By exchangeability,696

tr
(
Pτ(1) · · ·Pτ(t−1)

(
I−Pτ(t)

)
Pτ(t−1) · · ·Pτ(1)

)
= tr

(
Pτ(t) · · ·Pτ(2)

(
I−Pτ(1)

)
Pτ(2) · · ·Pτ(t)

)
.

Let us define at = tr
(
Pτ(t) · · ·Pτ(2)

(
I−Pτ(1)

)
Pτ(2) · · ·Pτ(t)

)
. Then, we have697

at+1 = tr
(
Pτ(t+1) · · ·Pτ(2)

(
I−Pτ(1)

)
Pτ(2) · · ·Pτ(t+1)

)
[cyclic property of trace] = tr

(
P2

τ(t+1)Pτ(t) · · ·Pτ(2)

(
I−Pτ(1)

)
Pτ(2) · · ·Pτ(t)

)
[Von Neumann’s trace inequality] ≤

∥∥P2
τ(t+1)

∥∥
2︸ ︷︷ ︸

=1

tr
(
Pτ(t) · · ·Pτ(2)

(
I−Pτ(1)

)
Pτ(2) · · ·Pτ(t)

)
= at ,

showing (at)t is a non-increasing sequence. Thus, for all k ≥ 2,698

2E
τ
fτ(k)(wk−1) = E

τ

∥∥(I−Pτ(k)

)
wk−1

∥∥2 ≤ ∥w⋆∥2 E
τ
ak ≤ ∥w⋆∥2

k−1

k∑
t=2

E
τ
at
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= ∥w⋆∥2

k−1

k∑
t=2

E
τ

[
tr
(
Pτ(t) · · ·Pτ(2) · · ·Pτ(t)

)
− tr

(
Pτ(t) · · ·Pτ(1) · · ·Pτ(t)

)]
[exchangeability] = ∥w⋆∥2

k−1

k∑
t=2

E
τ

[
tr
(
Pτ(t−1) · · ·Pτ(1) · · ·Pτ(t−1)

)
− tr

(
Pτ(t) · · ·Pτ(1) · · ·Pτ(t)

)]
[telescoping] = ∥w⋆∥2

k−1 E
τ

[
tr
(
Pτ(1)

)
− tr

(
Pτ(k) · · ·Pτ(1) · · ·Pτ(k)

)]
≤ ∥w⋆∥2

k−1 E
τ

[
tr
(
Pτ(1)

)]
=
∥w⋆∥2 (d− r̄)

k − 1
.

For the second, parameter independent term, note that from Lemma 3.1, fm(·) is 1-smooth for all699

m ∈ [T ], and recall that the iterates wt follow the SGD dynamics with η = 1 (Reduction 2). Hence,700

by Lemma E.5, without-replacement SGD with β = η = 1 guarantees that after k ≥ 1 gradient steps:701

E
τ
fτ(k)(wk−1) ≤

e · ∥w⋆∥2
4
√
k − 1

.

Plugging in the (monotonic decreasing) bounds that we just derived in the inequalities from the702

beginning of this proof, we get703

E
τ
[Fτ (k)] ≤ 2R2 E

τ
fτ(k)(wk−1) +

∥w⋆∥2 R2

k

≤ R2 min

(
2e ∥w⋆∥2

4
√
k − 1

,
∥w⋆∥2 (d− r̄)

k − 1

)
+
∥w⋆∥2 R2

k

≤ min

(
7

4
√
k − 1

,
d− r̄ + 1

k − 1

)
∥w⋆∥2 R2 ,

Eτ [L (wk)] ≤ R2

(
k

T
2E

τ
fτ(k)(wk−1) +

T − k

2T
2E

τ
fτ(k+1)(wk)

)
+
∥w⋆∥2 R2

k

≤
(
k

T
+

T − k

2T

)
min

(
2e

4
√
k − 1

,
d− r̄

k − 1

)
∥w⋆∥2 R2 +

∥w⋆∥2 R2

k

=
T + k

2T
min

(
2e

4
√
k − 1

,
d− r̄

k − 1

)
∥w⋆∥2 R2 +

∥w⋆∥2 R2

k

[k≤T ] ≤ min

(
7

4
√
k − 1

,
d− r̄ + 1

k − 1

)
∥w⋆∥2 R2 .

■704
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E Proofs of Last-Iterate SGD Bounds (Section 5)705

In this section we provide proofs and full technical details of our upper bounds for least squares SGD.706

We begin by recording a few elementary well-known facts, which can be found in e.g., Bubeck [8].707

We provide proof for completeness.708

Lemma E.1 (Fundamental regret inequality for gradient descent). Let w0 ∈ Rd, η > 0, and suppose709

wt+1 = wt − ηgt for all t, where g0, . . . ,gT ∈ Rd are arbitrary vectors. Then for any w̃ ∈ Rd it710

holds that:711

T∑
t=0

g⊤
t (wt − w̃) ≤ ∥w0 − w̃∥2

2η
+

η

2

T∑
t=0

∥gt∥2.

Proof. Observe,712

∥wt+1 − w̃∥2 = ∥wt − w̃∥2 − 2ηg⊤
t (wt − w̃) + η2 ∥gt∥2

⇐⇒ g⊤
t (wt − w̃) =

1

2η

(
∥wt − w̃∥2 − ∥wt+1 − w̃∥2

)
+

η

2
∥gt∥2 .

Summing the above over t = 0, . . . , T and telescoping the sum leads to,713

T∑
t=0

g⊤
t (wt − w̃) =

1

2η

(
∥w0 − w̃∥2 − ∥wT+1 − w̃∥2

)
+

η

2

T∑
t=0

∥gt∥2

≤ ∥w0 − w̃∥2

2η
+

η

2

T∑
t=0

∥gt∥2 ,

which completes the proof. ■714

Lemma E.2 (Descent lemma). Let f : Rd → R be β-smooth for β > 0, and suppose minw f(w) ∈715

R is attained. Then, for any η > 0, w ∈ Rd, we have for w+ = w − η∇f(w):716

f(w+) ≤ f(w)− η

(
1− ηβ

2

)
∥∇f(w)∥2.

Furthermore, for any w⋆ ∈ argminw f(w), it holds that:717

∥∇f(w)∥2 ≤ 2β (f(w)− f(w⋆)) .

Proof. Observe, by β-smoothness:718

f(w+) ≤ f(w) +∇f(w) · (w+ −w) +
β

2
∥w+ −w∥2

= f(w)− η∇f(w) · ∇f(w) +
β

2
η2∥∇f(w)∥2

= f(w)− η

(
1− ηβ

2

)
∥∇f(w)∥2,

which proves the first claim. For the second claim, apply the above inequality with η = 1/β, which719

gives720

f(w+) ≤ f(w)− 1

2β
∥∇f(w)∥2

⇐⇒ ∥∇f(w)∥2 ≤ 2β
(
f(w)− f(w+)

)
.

The second claim now follows by using the fact that f(w⋆) ≤ f(w+). ■721
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E.1 Proofs for With Replacement Orderings722

As discussed in the main text, our results hold for a wider range of step sizes compared to the classical723

SGD bounds in the smooth realizable setting. This is enabled due to the following lemma.724

Lemma E.3. Assume that f(w) = 1
2 ∥Aw − b∥2 for some matrix A and vector b, and let w⋆ ∈ Rd725

be such that f(w⋆) = 0. Then, we have:726

2f(w) = ∇f(w)⊤(w −w⋆) ,

and for any z ∈ Rd and γ > 0:727

(2− γ)f(w)− 1

γ
f(z) ≤ ∇f(w)⊤(w − z) .

Proof. For any w ∈ Rd, since Aw⋆ = b and f(w) = 1
2∥A(w −w⋆)∥2, we have:728

∇f(w)⊤(w − z) =
〈
A⊤A(w −w⋆),w − z

〉
=
〈
A⊤A(w −w⋆),w −w⋆

〉
−
〈
A⊤A(w −w⋆), z−w⋆

〉
=
〈
Aw − b,Aw − b

〉
−
〈
Aw − b,Az− b

〉
= 2f(w)−

〈
Aw − b,Az− b

〉
.

Plugging in z = w⋆, the second term vanishes (since Aw⋆ − b = b− b = 0) and the first claim729

follows. For the second claim, note that by Young’s inequality:730

∇f(w)⊤(w − z) = 2f(w)−
〈
Aw − b,Az− b

〉
≥ 2f(w)− γ

2
∥Aw − b∥2 − 1

2γ
∥Az− b∥2 = (2− γ)f(w)− 1

γ
f(z) .

■731

Recall Lemma 5.2. Consider the β-smooth, realizable Setup 1, and let T ≥ 1, (i0, . . . , iT ) ∈ IT+1732

be an arbitrary sequence of indices in I , and w0 ∈ Rd be an arbitrary initialization. Then, the gradient733

descent iterates given by wt+1 ← wt − η∇f(wt; it) for a step size η < 2/β, hold:734

T∑
t=0

f (wt; it) ≤
∥w0 −w⋆∥2

2η(2− ηβ)
.

Proof. Denote ft(w) ≜ f(w; it), and observe by Lemma E.1;735

T∑
t=0

⟨∇ft(wt),wt −w⋆⟩ ≤
∥w0 −w⋆∥2

2η
+

η

2

T∑
t=0

∥∇ft(wt)∥2

≤ ∥w0 −w⋆∥2

2η
+ ηβ

T∑
t=0

ft(wt)− ft(w⋆) =
∥w0 −w⋆∥2

2η
+ ηβ

T∑
t=0

ft(wt) ,

where the second inequality follows from Lemma E.2. On the other hand, by Lemma E.3,736

T∑
t=0

⟨∇ft(wt),wt −w⋆⟩ =
T∑

t=0

2ft(wt) .

Combining the two displays above, it follows that737

(2− ηβ)

T∑
t=0

ft(wt) ≤
∥w0 −w⋆∥2

2η
,

and the result follows after dividing by (2− ηβ). ■738
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Recall Lemma 5.3. Consider the β-smooth, realizable Setup 1. Let T ≥ 1. Assume P is a739

distribution over IT+1 such that for every 0 ≤ t ≤ τ1 ≤ τ2 ≤ T , the following holds: For740

any i0, . . . it−1 ∈ It, i ∈ I, Pr(iτ1 = i|i0, . . . , it−1) = Pr(iτ2 = i|i0, . . . , it−1). Then, for any741

initialization w0 ∈ Rd, with-replacement SGD (Eq. (2)) with step-size η < 2/β, holds:742

Ef(wT , iT ) ≤ (eT )ηβ(1−ηβ/4)E
[

1
T+1

∑T

t=0
f(wt; it)

]
,

where the expectation is taken with respect to i0, . . . , iT sampled from P .743

Proof. Denote ft(w)≜f(w; it), gt≜∇ft(wt), and observe that by Lemma E.1, ∀z ∈ Rd, t ≤ T744

(w.p. 1):745

T∑
t=T−k

⟨gt,wt − z⟩ ≤ ∥wT−k − z∥2

2η
+

η

2

T∑
t=T−k

∥gt∥2

[Descent Lemma E.2] ≤ ∥wT−k − z∥2

2η
+ ηβ

T∑
t=T−k

ft(wt)− ft(w⋆)

=
∥wT−k − z∥2

2η
+ ηβ

T∑
t=T−k

ft(wt)− ft(z) + ft(z)− ft(w⋆) .

By Lemma E.3, this implies for any γ > 0:746

T∑
t=T−k

(2− γ − ηβ)ft(wt)−
(
1

γ
− ηβ

)
ft(z)

=

T∑
t=T−k

(
(2− γ)ft(wt)−

1

γ
ft(z)

)
+ ηβ

T∑
t=T−k

ft(z)− ft(wt)

[Lemma E.3] ≤
T∑

t=T−k

⟨gt,wt − z⟩+ ηβ

T∑
t=T−k

ft(z)− ft(wt)

[above] ≤ ∥wT−k − z∥2

2η
+ ηβ

T∑
t=T−k

ft(z)− ft(w⋆)︸ ︷︷ ︸
=0

=⇒ (2− γ − ηβ)

T∑
t=T−k

ft(wt) ≤
∥wT−k − z∥2

2η
+

1

γ

T∑
t=T−k

ft(z) .

Now, set z = wT−k and take expectations to obtain:747

(2− γ − ηβ)

T∑
t=T−k

Eft(wt) ≤ 0 +
1

γ

T∑
t=T−k

Eft(wT−k)

1

k + 1

T∑
t=T−k

Eft(wt) ≤
1(

k + 1
)
γ(2− γ − ηβ)

T∑
t=T−k

Eft(wT−k) .

Defining Sk ≜ 1
k+1

∑T
t=T−k ft(wt), implies that748

(k + 1)Sk − kSk−1 =

T∑
t=T−k

ft(wt)−
T∑

t=T−k+1

ft(wt) = fT−k(wT−k) ,

and by the assumption on the distribution P it follows that EfT−k(wT−k) = Eft(wT−k) for any749

t ≥ T − k.750
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Thus, combined with our previous display,751

ESk ≤
1(

k + 1
)
γ(2− γ − ηβ)

T∑
t=T−k

Eft(wT−k)

=
1(

k + 1
)
γ(2− γ − ηβ)

T∑
t=T−k

(
(k + 1)ESk − kESk−1

)
=

1

γ(2− γ − ηβ)

(
(k + 1)ESk − kESk−1

)
.

Rearranging, denoting c ≜ γ(2− γ − ηβ), and requiring c ∈ (0, 1), we get752

k

c
ESk−1 ≤

(
k + 1

c
− 1

)
ESk

⇐⇒ ESk−1 ≤
k + 1− c

k
ESk

=⇒ EfT (wT ) = ES0 ≤
T∏

k=1

(
1 +

1− c

k

)
EST

[1+x≤ex,∀x≥0] ≤ exp

(
T∑

k=1

1− c

k

)
EST

= exp

(
(1− c)

T∑
k=1

1

k

)
· EST ≤ exp

(
(1− c) (1 + log T )

)
EST

= (eT )
1−c · E

[
1

T + 1

T∑
t=0

ft(wt)

]
. (6)

Now, getting the “best” rate requires maximizing c = γ(2 − γ − ηβ). To this end, we choose753

γ = 1 − ηβ
2 , which implies c =

(
1− ηβ

2

)2
(under the η < 2

β condition, we now have both γ > 0754

and c ∈ (0, 1) as required above). Then, 1− c = ηβ
(
1− ηβ

4

)
, and we finally get the required755

EfT (wT ) = (eT )
ηβ
(
1− ηβ

4

)
· 1

T + 1

T∑
t=0

ft(wt) .
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E.2 Extending the SGD Bounds to Without Replacement Orderings757

Here, we extend Theorem 5.1 to a without-replacement setting. Specifically, we consider gradient758

descent under a random permutation of the T tasks. That is, for some initialization w0 ∈ Rd, step759

size η > 0, and πt ∼ Unif(I) sampled without replacement,760

wt+1 ← wt − η∇f(wt;πt) , (7)

where f(w; i) ≜ 1
2 ∥Aiw − bi∥2 as defined in Setup 1. Our main result is given below.761

Theorem E.4. Last-Iterate Bound for Realizable Regression Without Replacement Consider the
β-smooth, realizable Setup 1. Define for all T ≥2, f̂0:T (w)≜ 1

T+1

∑T
t=0 f(w;πt). Then, without-

replacement SGD (Eq. (7)) with step-size η < 2/β, holds:

Eπ f̂0:T (wT ) ≤
eD2

η(2− ηβ)T 1−ηβ(1−ηβ/4)
+

4β2ηD2

T
, ∀T = 2, . . . , n− 1 ,

where D ≜ ∥w0 −w⋆∥. In particular, for η = 1
β log T yields 14βD2 log T

T and η = 1
β yields 7βD2

4√
T

.762

The proof, given next, is based on the algorithmic stability of SGD [6, 25, 61], and more specifically,763

on a variant of stability, suitable for without replacement sampling [35, 63].764

The proof of our theorem follows by a combination of two lemmas. The first, stated below, establishes765

a bound on the expected “next sample” loss and follows immediately by combining Lemmas 5.2766

and 5.3 (notice that η < 2
β =⇒ exp

(
ηβ
(
1− ηβ

4

))
7→ exp

(
z
(
1− z

4

))
for z ∈ (0, 2), which is767

monotonic increasing and upper bounded by e).768

Lemma E.5. For any step-size η < 2/β and initialization w0 ∈ Rd, without-replacement SGD769

Eq. (7) satisfies, for all 1 ≤ T ≤ n− 1:770

Eπf(wT ;πT ) ≤ eηβ(1−
ηβ
4 )T ηβ(1− ηβ

4 )Eπ

[
1

T + 1

T∑
t=0

f(wt;πt)

]
≤ e · ∥w0 −w⋆∥2

2η(2− ηβ)T 1−ηβ(1− ηβ
4 )

.

Next, we consider the “empirical loss” objective. Given any permutation π ∈ I ↔ I, define:771

f̂0:t(w) ≜
1

t+ 1

t∑
i=0

f(w;πi).

In the without-replacement setup, our optimization objective is the expected empirical loss Eπ f̂0:t(w),772

which, when t = n, satisfies Eπ f̂0:t(w) = Eπ f̄(w). Our second lemma (given next) bounds the773

expected empirical loss w.r.t. the next sample loss. This is the crux of extending our with-replacement774

upper bound to the without-replacement setup.775

Lemma E.6. For without-replacement SGD Eq. (7) with step size η ≤ 2/β, for all 1 ≤ T ≤ n, we776

have that the following holds:777

Eπ f̂0:T (wT ) ≤ 2Eπf(wT ;πT ) +
4β2η ∥w0 −w⋆∥2

T + 1
.

The proof of Lemma E.6 builds on an algorithmic stability argument similar to that given in Lei and778

Ying [38], combined with the without-replacement stability framework proposed by Sherman et al.779

[63]. Before turning to the proof given in the next subsection, we quickly prove Theorem E.4.780

Proof of Theorem E.4. By Lemmas E.5 and E.6,781

Eπ f̂0:T (wT ) ≤ 2Eπf(wT ;πT ) +
4β2η∥w0−w⋆∥2

T+1 ≤ e·∥w0−w⋆∥2

η(2−ηβ) T ηβ(1− ηβ
4 )−1 + 4β2η∥w0−w⋆∥2

T+1 .

The result for η = 1
β is straightforward. To see the result for η = 1

β log T , notice that in this case,782

eD2Tηβ(1−ηβ/4)−1

η(2−ηβ) =
eβD2 log T

T (2− 1
log T )

T
1

log T (1−
1

4 log T ) = βD2 log T
T

exp
(
2− 1

4 log T

)
2− 1

log T

≤ 10βD2 log T

T
.

■783
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E.2.1 Proving Lemma E.6784

Notation. We first add a few definitions central to our analysis. Given a permutation π ∈ I ↔ I,785

denote:786

π(j ↔ k) ≜ π after swapping the jth and kth coordinates,

wπ
τ ≜ The iterate of SGD on step τ when run on permutation π.

Most commonly, we will use the following special case of the above:787

wπ(i↔t)
τ ≜ The iterate of SGD on step τ when run on π(i↔ t).

When clear from context, we omit π from the superscript and simply write w(i↔t)
τ . Concretely, these788

definitions imply w
(i↔t)
0 ≜ w0, and ∀i, t, τ ∈ I,789

w
(i↔t)
τ+1 = w(i↔t)

τ − η∇f
(
w(i↔t)

τ ;π(i↔ t)τ

)
.

790

We have the following important relation, to be used later in the proof.791

Lemma E.7. For all i, t, τ ∈ I, i ≤ τ ≤ t, we have:792

Eπf(wτ ;πi) = Eπf(w
(i↔t)
τ ;π(i↔ t)i) .

Proof. The proof follows from observing that the random variables f(wτ ;πi) and f(w
(i↔t)
τ ;π(i↔793

t)i) are distributed identically (the indices πi, πt are exchangeable). Formally, let Π(I) ≜794

{π ∈ I ↔ I} be the set of all permutations over I, and observe795

Eπf(w
(i↔t)
τ ;π(i↔ t)i) =

1

|Π(I)|
∑

π∈Π(I)

f(wπ(i↔t)
τ ;π(i↔ t)i) .

On the other hand,796

Eπf(wτ , πi) =
1

|Π(I)|
∑

π∈Π(I)

f(wπ
τ ;πi) .

Hence, since there is a one-to-one correspondence between π and π(τ ↔ i), in particular,797

{π | π ∈ Π(I)} = {π(i↔ t) | π ∈ Π(I)} ,

the result follows. ■798
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Our next lemma, originally given in Sherman et al. [63, Lemma 2 therein], can be thought of as799

a without-replacement version of the well known stability ⇐⇒ generalization argument of the800

with-replacement sampling case [25, 61].801

Lemma E.8. The iterates of without-replacement SGD Eq. (7), satisfy for all t:802

Eπ

[
f(wt;πt)− f̂0:t−1(wt)

]
=

1

t

t−1∑
i=0

Eπ

[
f(wt;πt)− f(w

(i↔t)
t ;πt)

]

Proof. We have, by definition of f̂0:t−1 and Lemma E.7:803

Eπ

[
f̂0:t−1(wt)

]
=

1

t

t−1∑
i=0

Eπ [f(wt;πi)]

=
1

t

t−1∑
i=0

Eπ

[
f(w

(i↔t)
t ;π(i↔ t)i)

]
=

1

t

t−1∑
i=0

Eπ

[
f(w

(i↔t)
t ;πt)

]
,

where the last equality is immediate since by definition, π(i↔ t)i = πt. The claim now follows by804

linearity of expectation. ■805

We are now ready to prove our main lemma. We note that the proof shares some features with that of806

the with-replacement case (Lemma F.2).807

Proof of Lemma E.6. We prove the theorem for every t. Any β-smooth realizable function h :808

Rd → R≥0 holds that809

|h(w̃)− h(w)| ≤
∣∣∇h(w)⊤(w̃ −w)

∣∣+ β

2
∥w̃ −w∥2

[Young’s ineq.] ≤ 1

2β
∥∇h(w)∥2 + β

2
∥w̃ −w∥2 + β

2
∥w̃ −w∥2

≤ h(w) + β ∥w̃ −w∥2 . (8)

Hence, by Lemma E.8,810 ∣∣∣Eπ

[
f(wt;πt)− f̂0:t−1(wt)

]∣∣∣ = ∣∣∣∣∣1t
t−1∑
i=0

Eπ

[
f(wt;πt)− f(w

(i↔t)
t ;πt)

]∣∣∣∣∣
[Jensen] ≤ 1

t

t−1∑
i=0

Eπ

∣∣∣f(wt;πt)− f(w
(i↔t)
t ;πt)

∣∣∣
[Eq. (8)] ≤ 1

t

t−1∑
i=0

Eπ

[
f(wt;πt) + β

∥∥∥w(i↔t)
t −wt

∥∥∥2]

= Eπf(wt, πt) +
β

t

t−1∑
i=0

Eπ

∥∥∥w(i↔t)
t −wt

∥∥∥2 . (9)

Next, we bound
∥∥∥w(i↔t)

t −wt

∥∥∥2. For any 0 ≤ τ ≤ t− 1, we denote fτ ≜ f(·;πτ ), and f
(i↔t)
τ ≜811

f(·;π(i ↔ t)τ ). Observe that for any τ such that τ ̸= i, we have fτ = f
(i↔t)
τ , thus, by the non-812

expansiveness of gradient steps in the convex and β-smooth regime when η ≤ 2/β (see Lemma 3.6813

in 25):814

τ ≤ i =⇒
∥∥∥w(i↔t)

τ −wτ

∥∥∥ = 0,

i < τ =⇒
∥∥∥w(i↔t)

τ+1 −wτ+1

∥∥∥2 ≤ ∥∥∥w(i↔t)
i+1 −wi+1

∥∥∥2 .
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Further,815 ∥∥∥w(i↔t)
i+1 −wi+1

∥∥∥2 =
∥∥∥w(i↔t)

i − η∇f (i↔t)
i (w

(i↔t)
i )− (wi − η∇fi(wi))

∥∥∥2
[w(i↔t)

i =wi] = η2
∥∥∥∇f (i↔t)

i (w
(i↔t)
i )−∇fi(wi)

∥∥∥2
[Jensen] ≤ 2η2

∥∥∥∇f (i↔t)
i (w

(i↔t)
i )

∥∥∥2 + 2η2 ∥∇fi(wi)∥2

≤ 4βη2f
(i↔t)
i (w

(i↔t)
i ) + 4βη2fi(wi) ,

and by Lemma E.7 Efi(wi) = Ef (i↔t)
i (w

(i↔t)
i ). Hence,816

E
∥∥∥w(i↔t)

t −wt

∥∥∥2 ≤ E
∥∥∥w(i↔t)

i+1 −wi+1

∥∥∥2 ≤ 8βη2Efi(wi) .

Now,817

β

t

t−1∑
i=0

Eπ

∥∥∥w(i↔t)
t −wt

∥∥∥2 ≤ (8β2η2
)
E

[
1

t

t−1∑
i=0

fi(wi)

]
,

which, when combined with Eq. (9) yields:818 ∣∣∣Eπ

[
f(wt;πt)− f̂0:t−1(wt)

]∣∣∣ ≤ Eπf(wt;πt) +
(
8β2η2

)
E

[
1

t

t−1∑
i=0

fi(wi)

]
.

Finally, by the regret bound given in Lemma 5.2,
∑t−1

i=0 fi(wi) ≤ ∥w0−w⋆∥2

2η(2−ηβ) , and therefore,819 ∣∣∣Eπ

[
f(wt;πt)− f̂0:t−1(wt)

]∣∣∣ ≤ Eπf(wt;πt) +
4β2η ∥w0 −w⋆∥2

(2− ηβ)t

=⇒ Ef̂0:t−1(wt) ≤ 2Eπf(wt;πt) +
4β2η ∥w0 −w⋆∥2

(2− ηβ)t
.

Finally, since f̂0:t =
t

t+1 f̂0:t−1 +
1

t+1ft, we obtain820

Ef̂0:t(wt) =
t

t+ 1
Ef̂0:t−1(wt) +

1

t+ 1
Eft(wt) ≤

2t+ 1

t+ 1
Eπf(wt;πt) +

4β2η ∥w0 −w⋆∥2

(2− ηβ)(t+ 1)
,

which completes the proof. ■821
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F Supplementary Material for the Extension Section (Section 6)822

Table 3: Forgetting Rates in Weakly-Regularized Continual Linear Classification on Separable Data. In
all cells, we omit mild constant multiplicative factors and normalize by an unavoidable ∥w⋆∥2 R2 term.

Paper / Ordering
Random

with Replacement
Random

w/o Replacement Cyclic

Evron et al. [16] exp
(
− k

4T∥w⋆∥2R2

)
— T 2

√
k
∧ exp

(
− k

16T 2∥w⋆∥2R2

)
Ours (2025)

1
4
√
k

1
4
√
T

—

Recall Reduction 3. Consider T arbitrary (nonempty) closed convex sets C1, . . . , CT , initial point823

w0 ∈ Rd, and ordering τ . Define fm(w) = 1
2 ∥w −Πm(w)∥2 ,∀m ∈ [T ]. Then,824

(i) fm is convex and 1-smooth.825

(ii) The POCS update is equivalent to an SGD step: wt = Πτ(t)(wt−1) = wt−1−∇wfτ(t)(wt−1).826

Proof. First, by Theorem 1.5.5 in Facchinei and Pang [17], fm is continuously differentiable and for
every w ∈ Rd,m ∈ [T ], ∇fm(w) = w −Πm(w). Plugging in ∇fτ(t)(wt−1) into an appropriate
SGD step, we get

wt = wt−1 −∇wfτ(t)(wt−1) = wt−1 −
(
wt−1 −Πτ(t)(wt−1)

)
= Πτ(t)(wt−1) ,

and the second part of the lemma follows. In addition, ∀x,w ∈ Rd, we prove convexity by using a827

projection inequality (also from Theorem 1.5.5 in 17). That is,828

fm(x)− fm(w)− ⟨∇fm(w),x−w⟩

=
1

2
∥x−Πm(x)∥2 − 1

2
∥w −Πm(w)∥2 − ⟨w −Πm(w),x−w⟩

=
1

2
∥x−Πm(x)∥2 − 1

2
∥w −Πm(w)∥2 − ⟨w −Πm(w),x−Πm(x)⟩

+ ⟨w −Πm(w),Πm(w)−Πm(x)⟩+ ⟨w −Πm(w),w −Πm(w)⟩

≥ 1

2
∥x−Πm(x)∥2 − 1

2
∥w −Πm(w)∥2 − ⟨w −Πm(w),x−Πm(x)⟩+ 0 + ∥w −Πm(w)∥2

=
1

2
∥x−Πm(x)−w +Πm(w)∥2 ≥ 0 .

For the 1-smoothness,829

∥∇fm(x)−∇fm(w)∥ = ∥x−Πm(x)− (w −Πm(w))∥
= ∥(I−Πm)(x)− (I−Πm)(w)∥ ≤ ∥x−w∥ ,

where we used the non-expansiveness of I−Πm [Propositions 4.2, 4.8 in 3]. ■830
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Lemma F.1. Let K ⊆ Rd be a nonempty closed and convex set, and f(w) = 1
2 ∥w −ΠK(w)∥2.831

Then, we have for any z ∈ Rd and γ > 0832

(2− γ)f(w)− 1

γ
f(z) ≤ ∇f(w)⊤(w − z) .

In addition, for any u ∈ K we have833

2f(w) ≤ ∇f(w)⊤(w − u) .

Proof. We have ∇f(w) = w −ΠK(w). Hence, by Theorem 1.5.5 in Facchinei and Pang [17],834

⟨∇f(w),w − z⟩ = ⟨w −ΠK(w),w − z⟩
= ⟨w −ΠK(w),w −ΠK(w)⟩+ ⟨w −ΠK(w),ΠK(w)− z⟩
= 2f(w) + ⟨w −ΠK(w),ΠK(w)−ΠK(z)⟩ − ⟨w −ΠK(w), z−ΠK(z)⟩
≥ 2f(w)− ⟨w −ΠK(w), z−ΠK(z)⟩ .

Plugging in z = u, the second term vanishes (since u−ΠK(u) = 0) and the second claim follows.835

For the first claim, note that by Young’s inequality:836

⟨∇f(w),w − z⟩ = 2f(w)− ⟨w −ΠK(w), z−ΠK(z)⟩

≥ 2f(w)− γ

2
∥w −ΠK(w)∥2 − 1

2γ
∥z−ΠK(z)∥2

= 2f(w)− γf(w)− 1

γ
f(z) .

■837
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Recall Theorem 6.1. Consider the same conditions of Reduction 3 and assume a nonempty set838

intersection C⋆ =
⋂T

m=1 Cm ̸= ∅. Then, under a random ordering with or without replacement, the839

expected “residual” of Scheme 4 after ∀k ≥ 1 iterations (without replacement: k ∈ [T ]) is bounded840

as,841

Eτ

[ 1

2T

∑T

m=1
∥wk −Πm(wk)∥2

]
= Eτ

[ 1

2T

∑T

m=1
dist2(wk, Cm)

]
≤ 7

4
√
k

min
w∈C⋆

∥w0 −w∥2 .

Proof. The proof largely follows the same steps of Theorems 4.2 and 4.3. Let τ be any random842

ordering, w0 ∈ Rd an initialization, and w1, . . . ,wk be the corresponding iterates produced by843

Scheme 4. By Reduction 3, these are exactly the (stochastic) gradient descent iterates produced when844

initializing at w0 and using a step size of η = 1, on the 1-smooth loss sequence fτ(1), . . . , fτ(k)845

defined by:846

fm(w) ≜
1

2
∥w −Πm(w))∥2 .

Proceeding, we denote the objective function:847

f̄(w) ≜ Em∼Unif([T ])fm(w) =
1

2T

T∑
m=1

∥w −Πm(w)∥2 .

Now, for a with-replacement ordering τ , invoke Theorem 5.1, except we use Lemma F.1 in the proof848

instead of Lemma E.3, to obtain:849

Eτ f̄(wk) ≤
e

2 4
√
k

min
w∈C⋆

∥w0 −w∥2 , (τ with-replacement)

which completes the proof for the with-replacement case.850

For a without-replacement ordering τ , invoke Theorem E.4 (with η = 1/β), except again we use851

Lemma F.1 in the proof instead of Lemma E.3, to obtain:852

Eτ f̂0:k−1(wk) ≜ Eτ

[1
k

k−1∑
t=0

f(wk)
]
≤ 7

4
√
k

min
w∈C⋆

∥w0 −w∥2 . (τ without-replacement)

Similarly, by Lemma E.5,853

Eτfτ(k+1)(wk) ≜ Eτ
1
2

∥∥wk −Πτ(k+1) (wk)
∥∥2 ≤ e

2 4
√
k

min
w∈C⋆

∥w0 −w∥2 .

(τ without-replacement)

Combining the last two displays with Proposition B.2, we now obtain:854

Eτ f̄(wk) ≜ Eτ

[ 1

2T

T∑
m=1

∥wk −Πm(wk)∥2
]

(τ without-replacement)

=
k

T
Eτ f̂0:k−1(wk) +

T − k

2T
Eτ

∥∥wk −Πτ(k+1) (wk)
∥∥2

≤
(
7k

T
+

e
2 (T − k)

T

)
1
4
√
k

min
w∈C⋆

∥w0 −w∥2 ≤ 7
4
√
k

min
w∈C⋆

∥w0 −w∥2 ,

which proves the without-replacement case and thus completes the proof. ■855
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Recall Theorem 6.2. Under a random ordering, with or without replacement, over T jointly separable856

tasks, the expected forgetting of the weakly-regularized Scheme 5 (at λ→ 0) after k ≥ 1 iterations857

(without replacement: k ∈ [T ]) is bounded as858

Eτ

[
Fτ (k)

]
≤ 7 ∥w⋆∥2 R2

4
√
k

, where w⋆ ≜ minw∈C1∩···∩CT
∥w0 −w∥2 .

Proof. We adopt the same notation as used above:859

fm(w) ≜
1

2
∥w −Πm(w))∥2

f̄(w) ≜ Em∼Unif([T ])fm(w) =
1

2T

T∑
m=1

∥w −Πm(w)∥2 .

For τ sampled with replacement, by Lemma F.2 (given below) and the with-replacement result860

(inside the proof) of Theorem 6.1, we have861

Eτ [Fτ (k)] = Ef̂0:k−1(wk) ≤ 2Ef̄(wk) +
4 ∥w0 −w⋆∥2

k

≤
(

e
4
√
k
+

4

k

)
∥w0 −w⋆∥2 ≤

7 ∥w0 −w⋆∥2
4
√
k

.

For τ sampled without replacement, as argued in Theorem 6.1, by Lemma E.5:862

Eτfτ(k+1)(wk) ≤
e
2 ∥w0 −w⋆∥2

4
√
k

,

and thus by Lemma E.6,863

Eτ [Fτ (k)] = Ef̂0:k−1(wk) ≤
(

e
4
√
k
+

4

k

)
∥w0 −w⋆∥2 ≤

7 ∥w0 −w⋆∥2
4
√
k

.

which completes the proof. ■864

Lemma F.2. Consider with-replacement SGD Eq. (2) with step size η ≤ 2/β, and define, for every865

0 ≤ T , f̂0:T (w) ≜ 1
T+1

∑T
t=0 f(w; it). For all 1 ≤ T , the following holds:866

Ef̂0:T−1(wT ) ≤ 2Ef̄(wT ) +
4β2η ∥w0 −w⋆∥2

T
.

Proof. Our proof here mostly follows the proof of Lemma E.6. Recall that from Eq. (8), any867

β-smooth realizable function h : Rd → R≥0 holds that |h(w̃)− h(w)| ≤ h(w) + β ∥w̃ −w∥2.868

Denote ft ≜ f(·; it) for all t ∈ {0, ..., T}. Now, by the standard stability ⇐⇒ generalization869

argument [25, 61], and denoting by w
(i)
τ the SGD iterate after τ steps on the training set where the870

ith example was resampled as ji:871 ∣∣∣E [f̄(wT )− f̂0:T−1(wT )
]∣∣∣ = ∣∣∣ 1

T

T−1∑
i=0

Eji∼D

[
f(wT ; ji)− f(w

(i)
T ; ji)

]∣∣∣
[Jensen; Eq. (8)] ≤ 1

T

T−1∑
i=0

E
[
f(wT ; ji) + β

∥∥∥w(i)
T −wT

∥∥∥2]

= Ef̄(wT ) +
β

T

T−1∑
i=0

E
∥∥∥w(i)

T −wT

∥∥∥2 .
Next, we bound

∥∥∥w(i)
T −wT

∥∥∥2. By the non-expansiveness of gradient steps in the convex and872

β-smooth regime when η ≤ 2/β [see Lemma 3.6 in 25]:873

τ ≤ i =⇒
∥∥∥w(i)

τ −wτ

∥∥∥ = 0,
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i < τ =⇒
∥∥∥w(i)

τ+1 −wτ+1

∥∥∥2 ≤ ∥∥∥w(i)
i+1 −wi+1

∥∥∥2 .
Further,874 ∥∥∥w(i)

i+1 −wi+1

∥∥∥2 =
∥∥∥w(i)

i − η∇fji(w
(i)
i )− (wi − η∇fi(wi))

∥∥∥2
[w(i)

i =wi] = η2
∥∥∥∇fji(w(i)

i )−∇fi(wi)
∥∥∥2

[Jensen] ≤ 2η2
∥∥∇fji(w(i)

i )
∥∥2 + 2η2

∥∥∇fi(wi)
∥∥2[ smoothness,

non-negativity

]
≤ 4βη2fji(w

(i)
i ) + 4βη2fi(wi) .

Therefore,875

E
∥∥∥w(i)

T −wT

∥∥∥2 ≤ E
∥∥∥w(i)

i+1 −wi+1

∥∥∥2 ≤ 4βη2Efji(w
(i)
i ) + 4βη2Efi(wi) = 8βη2Efi(wi) .

Now,876

β

T

T−1∑
i=0

E
∥∥∥w(i)

T −wT

∥∥∥2 ≤ 12β2η2 E

[
1

T

T−1∑
i=0

fi(wi)

]
.

Summarizing, we have shown that:877 ∣∣∣E [f̄(wT )− f̂0:T−1(wT )
]∣∣∣ ≤ Ef̄(wT ) +

β

T

T−1∑
i=0

E
∥∥∥w(i)

T −wT

∥∥∥2
≤ Ef̄(wT ) + 8β2η2 E

[
1

T

T−1∑
i=0

fi(wi)

]
.

Finally, by the regret bound given in Lemma 5.2, i.e.,
∑T−1

i=0 fi(wi) ≤ ∥w0−w⋆∥2

2η(2−ηβ) , we have878 ∣∣∣E [f̄(wT )− f̂0:T−1(wT )
]∣∣∣ ≤ Ef̄(wT ) +

4β2η ∥w0 −w⋆∥2

(2− ηβ)T
.

and the result follows. ■879
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