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Abstract. Interactive segmentation plays a vital role in medical image
analysis, facilitating accurate diagnosis and treatment planning through
real-time interaction and rapid annotations. Scribble-based methods,
where users draw over target structures, are particularly effective for de-
lineating thin structures like vessels, providing precise pixel-level detail
compared to bounding boxes. MedSAM, introduced in 2023, is optimized
for bounding box inputs, which limits its effectiveness for precise inter-
action types such as scribbles. Additionally, it exhibits a slower inference
due to its large size. To address these limitations, we evaluated simpler
models such as thresholding, Meijering filters, and Geodesic Distance
Transforms. These models outperformed MedSAM in segmentation accu-
racy and efficiency across fundus, microscopy, PET, and OCT, achieving
a Dice Score of 62.31 and a Normalized Surface Dice of 67.01 on the vali-
dation set. Our findings highlight the effectiveness of traditional methods
and reveal the current limitations of emerging foundation models. This
comparative analysis aims to improve MedSAM’s robustness and effi-
ciency, contributing to the development of a more reliable general model
for medical image segmentation.

1 Introduction

Background. Deep learning advancements have significantly enhanced the seg-
mentation of anatomical structures and lesions in medical images. These mod-
els, however, often depend on manually annotated datasets, which are labor-
intensive to create [10,32,2,21,41,17]. To reduce this burden, interactive segmen-
tation methods have been developed, utilizing simpler annotations like clicks or
bounding boxes instead of detailed voxelwise labels [29,44,14,15,3,40,25,39,30].
These methods combine user inputs with image data to make predictions, which,
once verified by medical professionals, can be used as new annotations [29]. How-
ever, scribbles provide a more intuitive and versatile annotation method, allowing
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users to specify exact pixels of the target object. Various studies have employed
freehand strokes to initiate segmentation masks [13,6,42,40] and to refine ex-
isting ones [13,42], significantly speeding up the annotation process. Interactive
models leveraging scribbles can therefore facilitate quicker and more precise data
annotation.

Related Work. MedSAM [26] is a fine-tuned version of the Segment Any-
thing Model (SAM) [24] that has been trained on 11 imaging modalities and
over 1.5 million image-mask pairs, showcasing impressive generalizability across
various segmentation tasks [26,29]. However, MedSAM is limited to processing
bounding boxes or clicks and does not support scribble-based inputs. Adapta-
tions like ScribblePrompt [42] have optimized MedSAM for scribble guidance,
maintaining its generalization across multiple modalities. Despite these advance-
ments, the research on scribble-based interactions remains relatively sparse. To
address this gap, Ma et al. [26] organized the Segment Anything in Medical Im-
ages on Laptop Challenge (Task 2: Scribble) 5 to develop and evaluate efficient
scribble-based methods for interactive segmentation. This paper presents our
submission to this challenge, aiming to contribute further to the exploration of
scribble-based interactive segmentation techniques.

Motivation. Our motivation stems from the efficacy of classical methods
in addressing segmentation tasks with simplicity and efficiency. By comparing
these methods against recent generalist models like MedSAM, we seek to unravel
insights into how such straightforward models can surpass large, pre-trained
vision models. Furthermore, we aim to initiate discourse on enhancing MedSAM
for future iterations. Our study offers the following contributions:

1. We investigate classical approaches for the fundus, microscopy, PET, and
OCT modalities and investigate if they can outperform MedSAM’s lightweight
implementation (LiteMedSAM-Scribble6) in terms of segmentation accuracy
and efficiency

2. We examine the failure cases and discuss why MedSAM silently fails on cer-
tain modalities and propose how to tackle this in future fine-tuning iterations

3. We make all our code and trained models publicly available to the community

2 Method

We go over the fundus, OCT, PET, and microscopy imaging modalities one-by-
one and examine which classical approaches are able to outperform MedSAM
and propose techniques to make MedSAM more efficient on modalities on which
we could not outperform it. For the rest of the modalities in the challenge, we
use MedSAM’s lightweight implementation LiteMedSAM-Scribble.

Note: We only focus on the segmentation tasks seen in the MedSAM training
dataset, e.g., only FDG-PET lesions segmentation and only vessel segmentation
on fundus images. We also always use LiteMedSAM-Scribble as a lightweight
MedSAM implementation and refer to it as MedSAM for brevity.
5 https://www.codabench.org/competitions/2566/
6 https://github.com/bowang-lab/MedSAM/tree/LiteMedSAMScribble
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Fig. 1: Overview of our pipeline. We apply a different model for the various imag-
ing modalities. For PET and OCT, we use the generalized histogram threshold
(GHT) [4]. For microscopy, we check the number of channels and apply: (1)
Geodesic Distance Transform [7] for n = 3; (2) a threshold, set to the mean
image intensity for n = 2; (3) k-means clustering [28] for n = 1 if less than
35% of the bounding boxes contain circular objects, otherwise we apply a circle
template matching. For fundus images, we apply a Meijering filter [31]. For the
rest of the modalities, we use MedSAM.

2.1 PET and OCT

Tasks: The challenge presents PET data exclusively sourced from the AutoPET
dataset [10], which is dedicated to the delineation of active tumor lesions across
the whole body using Fludeoxyglucose (FDG) as the imaging agent. Similarly,
the OCT data is drawn solely from a single dataset [1], concentrating on the
segmentation of intraretinal cystoid fluid.

Challenges: The scarcity of public PET datasets for tumor segmentation
[10,35,12] hampers the development of large-scale foundational models in this
field. In the AutoPET dataset [11], PET lesions exhibit low contrast against
surrounding tissues, and other healthy anatomical structures, such as the heart,
brain, and bladder, also show high physiological uptake. Moreover, the top re-
sults from AutoPET 20237 are modest, with the highest Dice Score being 0.36,
highlighting the difficulty of the task. For OCT, the images have high resolution
but feature tiny target structures, resulting in a pronounced class imbalance.

Classical Approaches: Thresholding techniques are commonly employed
for tumor segmentation in PET scans [22,20,33], delivering promising results due
to their simplicity and intuitive application. Scribble-based methods enhance this
approach by allowing thresholds to be applied within the local context of the
scribble, effectively excluding healthy tissues like the heart and brain that lie

7 https://autopet-ii.grand-challenge.org/leaderboard/
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outside the defined boundaries. This is in contrast to previous methods that
globally excluded regions such as the brain and bladder from the whole-body
context [34,10,16]. Furthermore, using scribbles in OCT images helps mitigate
class imbalance by focusing on the local area around the scribble, rather than
the entire high-resolution image.

To effectively utilize the context around the scribbles for thresholding, we
first convert the scribbles into bounding boxes by expanding them by 50 pixels
in all directions. The bounding box B is computed as:

B = {min(Sx)− 50,min(Sy)− 50,max(Sx) + 50,max(Sy) + 50} (1)

where Sx, Sy are the sets of x and y coordinates of all the provided scribbles.
Next, we calculate the Generalized Histogram Threshold (GHT) [4] by aggre-

gating PET or OCT values from all expanded bounding boxes. This threshold
is then applied to the entire volume to generate a unified prediction, with in-
stance indices matching their respective scribble indices. For PET images, we
retain values exceeding the threshold, as tumors exhibit high FDG uptake. In
contrast, for OCT images, we keep values below the threshold due to the darker
appearance of cystoid fluids.

2.2 Microscopy

Tasks: MedSAM’s microscopy training data is exclusively derived from the
NeurIPS 2022 CellSeg dataset [27]. This dataset poses significant challenges
due to its diversity, containing images captured with various microscope types
such as brightfield, fluorescent, phase-contrast (PC), and differential interfer-
ence contrast (DIC). Additionally, the dataset includes a variety of cell types as
segmentation targets, further increasing the complexity of the task.

Challenges: The microscopy imaging modality presents several significant
challenges: (1) The number of instances per image can be exceptionally high,
sometimes exceeding 1000, leading to substantial computational overhead when
processing each bounding box individually. (2) The diversity of microscope types
requires either a highly robust generalist model or multiple specialized models
to handle the varying imaging characteristics effectively. (3) The high-resolution
nature of the images is problematic, as critical details may be lost when resizing
to smaller resolutions, such as MedSAM’s resizing to 256× 256.

Classical Approaches: We employ different classical methods based on
the number of channels in the image. Additionally, we convert all scribbles into
bounding boxes by expanding the scribble coordinates by 50 pixels in all direc-
tions, as described in Eq. 1.

Grayscale: When processing grayscale images, we apply a k-means clus-
tering algorithm [28] with k = 2. To identify the foreground class, we analyze
the pixel frequency for each class within a 10 × 10 window at the center of the
bounding box, selecting the class with the higher pixel count. We use the Hough
circle transform [23] to detect circles of various radii within each bounding box
and for images where > 35% of the bounding boxes contain circular objects the
largest detected circle serves as the prediction for that bounding box.
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Two-channel: For images with two channels (commonly three channels in
practice, where one channel is filled with zeros, as seen in fluorescent microscopy),
we employ the mean image intensity as a threshold. This simple yet effective
method enables reliable segmentation.

RGB: For RGB images, we opt to utilize the scribbles as seeds for a Geodesic
Distance Transform (GDT) [7]. For each scribble, we first transform it into a
bounding box B and then apply the GDT within the bounding-box cropped
image IB with the scribble S used as seeds:

GDT(x, S, IB)x∈IB = min
x′∈S

d(x, x′) (2)

where d(x, x′) is the Geodesic distance as described in [7]. We utilize the
GeodisTK8 implementation for computing the Geodesic distance. The Geodesic
distance quantifies the minimum cost of traversing from one pixel to another,
considering the intensity gradients along the path, which aids in edge-aware
segmentation. To apply it for segmentation, we assign all pixels x above the
70th percentile GDT70 as background and the rest as foreground.

seg(x) =

{
0 if GDT(x, S, IB) > GDT70,

1 otherwise.
(3)

2.3 Fundus

Tasks: Fundus tasks concentrate on optic discs and cups [37] as well as more
intricate structures such as retinal vessels [38,8]. In the case of vessels, bounding-
box interaction signals prove inadequate for highlighting relevant context, how-
ever, scribbles are precise enough to indicate the underlying tubular segmenta-
tion targets.

Challenges: Fundus image datasets focusing on retinal vessels exhibit a large
diversity in terms of labeling protocols and imaging characteristics, leading to a
large domain shift between datasets [9]. In particular, MedSAM struggles with
thin structures such as vessels as it has only been trained on optic disc and cups
in the fundus domain and bounding boxes are a suboptimal guidance signal for
such structures.

Classical Approaches: To detect tubular-like structures, we apply a Mei-
jering filter [31] over the whole image I and assign all pixel values x between the
90th and 95th percentile to the "foreground" as:

seg(x) =

{
1 if Meijering(I)90 < x < Meijering(I)95,
0 otherwise.

We chose this interval as values above the 90th percentile have a high enough
filter response to be considered tubular structures, but we observed that values
above the 95th percentile correspond to noise.
8 https://github.com/taigw/GeodisTK

https://github.com/taigw/GeodisTK
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2.4 Other modalities

For the rest of the modalities (CT, MRI, X-Ray, Mammography, Endoscopy,
Dermoscopy, Ultrasound), due to time constraints, we simply utilized MedSAM’s
lightweight pre-trained implementation LiteMedSAM-Scribble9. Note, that for
this challenge, only 2D images from the CT and MRI domain were used.

Table 1: Summary of our used models for the final submission.
Modality Used Model
PET and OCT Generalized Histogram Threshold [4]
Fundus Meijering Filter [31]
Microscopy k-means, Thresholding, Geodesic Distance [7], Circle Templates [23]
Other LiteMedSAM [26]

2.5 Preprocessing

We re-used the code provided by LiteMedSAM-Scribble10 for loading the data
and inferring predictions and added more functions to the script for our methods.
We avoid loading LiteMedSAM’s weights for tasks which do not need it and
import modules only immediately before they are used. The image loading and
preprocessing is done as follows:

LiteMedSAM: The image is resized to a common size of 256 × 256 and
padded to the shorter side to keep the original aspect ratio. Then, the image is
min-max normalized and fed to the model. The model performs a forward pass
for each scribble.

k-means and Geodesic Distance Transform (GDT): When applying
k-means clustering or GDT, we use the unnormalized values within each trans-
formed bounding box (computing via Eq. 1 for each scribble) and apply k-
means/GDT for each instance.

Thresholding: Thresholds are always computed using the combination of all
image values in the bounding boxes and then applied to the whole unnormalized
image. Instance indices are then assigned according to the scribble indices.

Meijering filter: The Meijering filter is applied on the whole unnormalized
image. However, the image is first converted to grayscale by computing the mean
over all of its channels.

9 https://github.com/bowang-lab/MedSAM/tree/LiteMedSAMScribble
10 https://github.com/bowang-lab/MedSAM/blob/LiteMedSAMScribble/CVPR24_

LiteMedSAM_infer_scribble.py

https://github.com/bowang-lab/MedSAM/tree/LiteMedSAMScribble
https://github.com/bowang-lab/MedSAM/blob/LiteMedSAMScribble/CVPR24_LiteMedSAM_infer_scribble.py
https://github.com/bowang-lab/MedSAM/blob/LiteMedSAMScribble/CVPR24_LiteMedSAM_infer_scribble.py
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2.6 Post-processing

After each forward pass, we perform only one post-processing transformation.
For all images, we keep the largest connected component and fill all the holes
within it.

3 Experiments

3.1 Dataset and evaluation measures

We used only the challenge dataset for model development and validation. The
evaluation metrics include two accuracy measures—Dice Similarity Coefficient
(DSC) and Normalized Surface Dice (NSD), alongside one efficiency measure:
running time. These metrics collectively contribute to the ranking computation.

3.2 Implementation details

Environment settings The development environments and requirements for
all our methods are presented in Table 2.

Table 2: Development environments and requirements for all our methods.
System Ubuntu 22.04.4 LTS
CPU11 Intel(R) Core(TM) i7-13700H CPU@5.00GHz
RAM 8×4GB; 5200MT/s
GPU (number and type) None
CUDA version 11.8
Programming language Python 3.10.14
Deep learning framework torch 2.2.1
Specific dependencies None
Code https://github.com/Zrrr1997/medsam_cvhci_scribble

Training protocols For MedSAM, we use the provided pre-trained LiteMedSAM-
Scribble model whose training is described in [26]. As such, we did no training
or fine-tuning whatsoever since we implemented only classical non-deep learning
methods for our submission.

4 Results and discussion

We discuss the results of the individual modalities one-by-one as we propose
different models for the OCT, PET, fundus, and micrsocopy imaging modalities.
11 https://ark.intel.com/content/www/us/en/ark/products/232128/

intel-core-i7-13700h-processor-24m-cache-up-to-5-00-ghz.html

https://github.com/Zrrr1997/medsam_cvhci_scribble
https://ark.intel.com/content/www/us/en/ark/products/232128/intel-core-i7-13700h-processor-24m-cache-up-to-5-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/232128/intel-core-i7-13700h-processor-24m-cache-up-to-5-00-ghz.html
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Table 3: Training protocol for LiteMedSAM.

Pre-trained Model LiteMedSAM [26]
Batch size No further fine-tuning
Patch size 256×256×3
Total epochs No further fine-tuning
Optimizer No further fine-tuning
Initial learning rate (lr) No further fine-tuning
Lr decay schedule No further fine-tuning
Training time No further fine-tuning
Loss function No further fine-tuning
Number of model parameters 9.79M12

Number of flops 1.81G13

CO2eq No further fine-tuning

4.1 PET and OCT

Efficiency Strategies: Thresholding eliminates the need for slow forward passes
as the threshold is applied directly on the whole image in a single binary oper-
ation. Table 4 shows that the thresholding is extremely fast for both the PET
and OCT modalities although it sacrifices some of the performance on the PET
modality. We do not report the Dice and NSD for OCT as it is not part of
the validation set but we report its efficiency on the training data. For this, we
simply simulate empty OCT scribbles to measure the inference time.

Table 4: Results on the validation stage of the challenge for PET. We cannot
report results for OCT as there are no validation images for that domain but we
do report the time per image on the training set [1].

Model Dice NSD Time per Image
LiteMedSAM (PET) 66.80 49.42 0.01s
Thresholding (PET) 49.00 67.00 0.77s
LiteMedSAM (OCT) - - 1.78s
Thresholding (OCT) - - 0.005s

How to improve MedSAM on PET and OCT? The findings are alarm-
ing, as simple thresholding outperforms MedSAM in the PET task. We hypoth-
esize that this discrepancy stems from the insufficiency of available data to en-
hance MedSAM’s capacity for generalization and feature extraction sufficiently.

12 https://github.com/sksq96/pytorch-summary
13 https://github.com/facebookresearch/fvcore
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Moreover, PET data could benefit from augmentation with anatomical labels de-
rived from paired CT scans [19,34], which was the winning approach in AutoPET
2023. This approach supplements the model with expert knowledge regarding af-
fected anatomical regions, thereby enriching its understanding. Similarly, in the
OCT domain, incorporating additional anatomical labels, such as those corre-
sponding to various retinal layers, could lead to substantial improvements.

4.2 Microscopy

Efficiency Strategies: The classical approaches that we apply improve Med-
SAM’s efficiency 15-fold. The segmentation results on the validation set are also
x3 higher as seen in Table 5.

Table 5: Results on the validation stage of the challenge for Microscopy images
Model Dice NSD Time per Image
LiteMedSAM 12.00 9.00 38.2s
k-means OR threshold OR LiteMedSAM 31.81 32.55 2.4s

How to improve MedSAM on Microscopy? It appears that MedSAM
encounters challenges with miniature scribbles, particularly when they are re-
sized to fit its input size of 256×256. We believe that adopting a crop-then-infer
approach could enhance MedSAM’s performance. By cropping the image before
inference, only the crop would require resizing, ensuring that the scribbles retain
their detail and enabling MedSAM to focus more effectively on the local instance.
However, further research is warranted to validate this hypothesis thoroughly.

4.3 Fundus

Efficiency Strategies: We focus on segmentation accuracy rather than effi-
ciency in this domain. Thus, our model based on the Meijering filter [31] is
slower than the baseline (LiteMedSAM-Scribble), but achieves a much higher
Dice score and NSD as seen in Tab. 6.

Model Dice NSD Time per Image
LiteMedSAM 5.00 0.00 1.2s
Meijering filter 38.00 49.00 9.7s

Table 6: Results on the validation stage of the challenge for Fundus images

How to improve MedSAM on Fundus? MedSAM is only trained on the
tasks of optic disc and optic cup segmentation for fundus images [26]. As such,
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there is a domain/task gap when it is asked to segment thin vessel-like structures.
However, there are many public fundus datasets with annotated retinal vessels
[8,38,9,5,18,36] that could be used to fine-tune MedSAM on this specific task in
future iterations.

4.4 Quantitative results on validation set

Table 7 shows that our approach outperforms (on average) the baseline (LiteMed-
SAM). However, we also show in Tables 4-5 that we are able to significantly
improve the efficiency of the baseline on OCT, PET, and microscopy images.

Table 7: Quantitative evaluation results. Baseline: LiteMedSAM-Scribble. Abla-
tions were done on the Geodesic percentile threshold in Equation 3.

Target Baseline Ablation GDT10 Ablation GDT90 Proposed GDT70

DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%) DSC(%) NSD (%)
CT 81.00 83.00 81.00 83.00 81.00 83.00 81.00 83.00
MR 70.00 77.00 70.00 77.00 70.00 77.00 70.00 77.00
PET 67.00 90.00 49.00 67.00 49.00 67.00 49.00 67.00
US 85.00 88.00 85.00 88.00 85.00 88.00 85.00 88.00
X-Ray 22.00 19.00 22.00 19.00 22.00 19.00 22.00 19.00
Dermoscopy 90.00 91.00 90.00 91.00 90.00 91.00 90.00 91.00
Endoscopy 94.00 97.00 94.00 97.00 94.00 97.00 94.00 97.00
Fundus 5.00 0.00 38.00 49.00 38.00 49.00 38.00 49.00
Microscopy 12.00 9.00 22.44 24.12 30.22 30.78 31.81 32.55
Average 58.00 62.00 61.27 66.12 62.14 66.86 62.31 67.01

4.5 Segmentation efficiency results on validation set

The efficiency on a few samples from the validation set are listed in Table 8.
Our optimization on the PET and microscopy modalities contributes to a much
more efficient prediction time, especially when there are many instances in the
image such as for 2D_Microscope_0016 where the inference is reduces from
127 seconds to only 6 seconds with our approach. Our ablation regarding the
Geodesic percentile also demonstrates negligible differences in terms of efficiency.

4.6 Qualitative results on validation set

We show some qualitative image examples for the predictions of our models on
various modalities.

PET and OCT threshold-based methods. Fig. 2 shows examples of
predictions on OCT and PET images. Although thresholds are more efficient
than MedSAM, they do produce noisier predictions.
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Table 8: Quantitative evaluation of segmentation efficiency in terms of running
time (s) on the hardware specified in Table 2. Abl.: Ablation
Case ID Size #Objects Baseline Abl. GDT90 Ours GDT70

2D_US_0525 (256, 256, 3) 1 1.9 1.9 1.9
2D_X-Ray_0001 (2487, 2048, 3) 7 6.0 6.0 6.0
2D_Dermoscopy_0003 (3024, 4032, 3) 1 3.7 3.7 3.7
2D_Endoscopy_0086 (480, 560, 3) 1 2.1 2.1 2.1
2D_Fundus_0003 (2048, 2048, 3) 1 2.5 9.9 9.9
2D_Microscope_0008 (1536, 2040, 3) 19 2.6 1.9 1.8
2D_Microscope_0016 (1920, 2560, 3) 241 126.8 6.3 5.7
2D_PET_0001 (200, 200, 3) 1 1.9 0.06 0.06
2D_PET_0002 (192, 192, 3) 1 1.9 0.08 0.08

Fig. 2: Examples for OCT and PET predictions.

Microscopy classical approaches. Fig. 3 demonstrate failure cases of
MedSAM in the microscopy domain. It seems that MedSAM struggles with
small structures with ambiguous boundaries. MedSAM also struggles with mul-
tiple instances indicated with scribbles and focuses only on a small subset of
them, or even only on one (last two rows). In contrast, classical approaches per-
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form quite well in these domains, landing a spot in our methodology for our final
submission to the challenge.

Fig. 3: Examples of microscopy predictions from the validation set.

Fundus. Fig. 4 shows examples for predictions on fundus images. Although
the filter produces noisy artifacts, it does segment a large portion of the retinal
vessels. MedSAM, on the other hand, clearly focuses on the optic disc and cup as
the model has no notion of what the target task is since it has only been trained
on segmenting discs and cups. This bias can be alleviated by either fine-tuning
MedSAM on more datasets, containing new tasks, such as vessel segmentation,
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or to provide contextual information on what is supposed to be segmented in
the image, e.g., with an additional "task prompt".

Fig. 4: Examples for Fundus predictions

4.7 Results on final testing set

The results on the final test set are presented in Table 9. Our focus on classical
methods is evident in the leading runtimes on the leaderboard, where we secured
1st place across all modalities. By making only minor adjustments to the post-
processing pipeline of LiteMedSAMScribble, our submission significantly outper-
forms the baseline in the CT and X-Ray domains. However, this improvement is
not observed in the MR, Endoscopy, and Ultrasound modalities. We ranked last
in the Fundus domain, possibly due to our assumption that all images contain
vessel-like structures as targets, thereby overlooking other features, such as optic
discs. Overall, our method achieved 2nd place on the final leaderboard out of a
total of four methods.

s

4.8 Post-challenge Analysis

During the post-challenge phase, we have participated in the Performance
Booster track without the use of any external datasets. Here, we describe how
we have improved our methods.
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Table 9: Results on the testing stage of the challenge. Worst rank is 4
Modality Dice (Rank) NSD (Rank) Runtime (Rank)
CT 68.86 (1) 74.87 (1) 5.37 (1)
MR 49.60 (3) 53.88 (3) 5.08 (1)
X-Ray 56.07 (1) 64.48 (2) 5.80 (1)
Endoscopy 83.69 (3) 85.78 (3) 5.09 (1)
Fundus 0.00 (4) 0.00 (4) 15.48 (1)
Microscopy 37.03 (2) 38.29 (2) 1.36 (1)
OCT 22.11 (1) 23.12 (3) 1.08 (1)
PET 65.17 (3) 77.80 (3) 0.97 (1)
US 60.89 (3) 61.36 (3) 5.26 (1)

Changed Methodology We made only a few adjustments to our methods,
focusing on incremental improvements. For MR, Endoscopy, and Ultrasound, we
remove all of our previous post-processing as we observed as decline in perfor-
mance in Table 7. Fo the Fundus domain, we distinguish between vessels and
optic discs as a segmentation target by counting the number of scribbles. If the
count is below 4, we simply use the baseline (LiteMedSAMScribble), otherwise,
we use our Meijering filtering approach.

Results from Post-challenge Analysis The changes in the code led to an
improvement in the runtime for the MR, Endoscopy, and Ultrasound domains
in terms of runtime as we omitted the postprocessing. For Fundus, we see a
dramatic improvement of 79% Dice and 81% NSD. The changes in performance
are listed in Table 10.

Table 10: Post-challenge changes in performance
Modality Dice NSD Runtime

US 60.89 61.36 5.04
MR 49.60 53.88 5.00

Endoscopy 83.69 85.78 4.94
Fundus 79.46 81.43 6.05

4.9 Limitation and future work

Our methodology has two primary limitations: (1) it concentrates on specialized
models tailored to individual modalities rather than developing a model capable
of reasoning and segmenting structures across any modality, thus restricting our
approach’s generalizability; (2) our models rely on strong assumptions about the
underlying task, such as vessel segmentation in fundus images, and if the task
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on the test set changes, our models are likely to fail completely, as observed with
MedSAM in Fig. ??. However, we deliberately use this segmented approach
to identify and understand the weaknesses in MedSAM, with the goal of im-
proving it in future iterations. Our findings indicate that incorporating explicit
assumptions about imaging modalities can provide a robust signal, sometimes
outperforming MedSAM in specific cases, but it needs to be applied adaptively.

A promising future direction involves adding an adaptive task prompt to
MedSAM. This would act as a model or an additional input that provides in-
formation about the underlying task, such as "fundus vessel segmentation" or
"fundus optic cup segmentation." This can potentially adjust MedSAM’s mode
to the specific task, producing more accurate predictions and avoiding the train-
ing biases seen in Fig. ??. In essence, informing the model about the specific seg-
mentation task should enhance its adaptability and performance. This approach
allows the integration of domain knowledge directly into the model, potentially
tailoring it to specific domains and tasks.

5 Conclusion

Our results suggest that MedSAM needs further fine-tuning on scribble-based
data and a method for adapting to new tasks it has not encountered, such as
vessel segmentation. Our findings reveal the importance of integrating explicit
task knowledge to surpass MedSAM’s current performance. We propose for fu-
ture iterations that a task adapter, which supplies information about the target
structure and imaging modality, could boost MedSAM’s effectiveness in these
challenging areas.

Acknowledgements We thank all the data owners for making the medical
images publicly available and CodaLab [43] for hosting the challenge platform.
The present contribution is supported by the Helmholtz Association under the
joint research school “HIDSS4Health – Helmholtz Information and Data Science
School for Health. Parts of this work were performed on the HoreKa super-
computer funded by the Ministry of Science, Research and the Arts Baden-
Württemberg and by the Federal Ministry of Education and Research.

References

1. Ahmed, Z., Ahmed, M., Baqai, A., Umrani, F.A.: Intraretinal cystoid fluid
(2022). https://doi.org/10.34740/KAGGLE/DS/2277068, https://www.kaggle.
com/ds/2277068

2. Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-Schneider, A., Landman,
B.A., Litjens, G., Menze, B., Ronneberger, O., Summers, R.M., et al.: The medical
segmentation decathlon. Nature communications 13(1), 4128 (2022)

3. Asad, M., Williams, H., Mandal, I., Ather, S., Deprest, J., D’hooge, J., Ver-
cauteren, T.: Adaptive multi-scale online likelihood network for ai-assisted interac-
tive segmentation. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. pp. 564–574. Springer (2023)

https://doi.org/10.34740/KAGGLE/DS/2277068
https://doi.org/10.34740/KAGGLE/DS/2277068
https://www.kaggle.com/ds/2277068
https://www.kaggle.com/ds/2277068


16 Z. Marinov et al.

4. Barron, J.T.: A generalization of otsu’s method and minimum error threshold-
ing. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part V 16. pp. 455–470. Springer (2020)

5. Budai, A., Bock, R., Maier, A., Hornegger, J., Michelson, G., et al.: Robust vessel
segmentation in fundus images. International journal of biomedical imaging 2013
(2013)

6. Chen, X., Cheung, Y.S.J., Lim, S.N., Zhao, H.: Scribbleseg: Scribble-based inter-
active image segmentation. arXiv preprint arXiv:2303.11320 (2023)

7. Criminisi, A., Sharp, T., Blake, A.: Geos: Geodesic image segmentation. In: Com-
puter Vision–ECCV 2008: 10th European Conference on Computer Vision, Mar-
seille, France, October 12-18, 2008, Proceedings, Part I 10. pp. 99–112. Springer
(2008)

8. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen,
C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal
blood vessel segmentation. IEEE Transactions on Biomedical Engineering 59(9),
2538–2548 (2012)

9. Galdran, A., Anjos, A., Dolz, J., Chakor, H., Lombaert, H., Ayed, I.B.: State-of-
the-art retinal vessel segmentation with minimalistic models. Scientific Reports
12(1), 6174 (2022)

10. Gatidis, S., Früh, M., Fabritius, M., Gu, S., Nikolaou, K., La Fougère, C., Ye, J.,
He, J., Peng, Y., Bi, L., et al.: The autopet challenge: towards fully automated
lesion segmentation in oncologic pet/ct imaging (2023)

11. Gatidis, S., Früh, M., Fabritius, M., Gu, S., Nikolaou, K., La Fougère, C., Ye,
J., He, J., Peng, Y., Bi, L., et al.: The autopet challenge: Towards fully au-
tomated lesion segmentation in oncologic pet/ct imaging. preprint at Research
Square (Nature Portfolio ) (2023). https://doi.org/https://doi.org/10.21203/
rs.3.rs-2572595/v1

12. Gatidis, S., Hepp, T., Früh, M., La Fougère, C., Nikolaou, K., Pfannenberg, C.,
Schölkopf, B., Küstner, T., Cyran, C., Rubin, D.: A whole-body fdg-pet/ct dataset
with manually annotated tumor lesions. Scientific Data 9(1), 601 (2022)

13. Gotkowski, K., Gonzalez, C., Kaltenborn, I., Fischbach, R., Bucher, A., Mukhopad-
hyay, A.: i3deep: Efficient 3d interactive segmentation with the nnu-net. In: Inter-
national Conference on Medical Imaging with Deep Learning. pp. 441–456. PMLR
(2022)

14. Hadlich, M., Marinov, Z., Kim, M., Nasca, E., Kleesiek, J., Stiefelhagen, R.: Sliding
window fastedit: A framework for lesion annotation in whole-body pet images.
arXiv preprint arXiv:2311.14482 (2023)

15. Hallitschke, V.J., Schlumberger, T., Kataliakos, P., Marinov, Z., Kim, M., Heiliger,
L., Seibold, C., Kleesiek, J., Stiefelhagen, R.: Multimodal interactive lung lesion
segmentation: A framework for annotating pet/ct images based on physiological
and anatomical cues. In: 2023 IEEE 20th International Symposium on Biomedical
Imaging (ISBI). pp. 1–5. IEEE (2023)

16. Heiliger, L., Marinov, Z., Hasin, M., Ferreira, A., Fragemann, J., Pomykala, K.,
Murray, J., Kersting, D., Alves, V., Stiefelhagen, R., et al.: Autopet challenge:
Combining nn-unet with swin unetr augmented by maximum intensity projection
classifier. arXiv preprint arXiv:2209.01112 (2022)

17. Hernandez Petzsche, M.R., de la Rosa, E., Hanning, U., Wiest, R., Valenzuela, W.,
Reyes, M., Meyer, M., Liew, S.L., Kofler, F., Ezhov, I., et al.: Isles 2022: A multi-
center magnetic resonance imaging stroke lesion segmentation dataset. Scientific
data 9(1), 762 (2022)

https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1
https://doi.org/https://doi.org/10.21203/rs.3.rs-2572595/v1


Filters, Thresholds, and Geodesic Distances 17

18. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal
images by piecewise threshold probing of a matched filter response. IEEE Trans-
actions on Medical imaging 19(3), 203–210 (2000)

19. Jaus, A., Seibold, C., Hermann, K., Walter, A., Giske, K., Haubold, J., Kleesiek, J.,
Stiefelhagen, R.: Towards unifying anatomy segmentation: automated generation
of a full-body ct dataset via knowledge aggregation and anatomical guidelines.
arXiv preprint arXiv:2307.13375 (2023)

20. Jentzen, W., Freudenberg, L., Eising, E.G., Heinze, M., Brandau, W., Bockisch, A.:
Segmentation of pet volumes by iterative image thresholding. Journal of nuclear
medicine 48(1), 108–114 (2007)

21. Ji, Y., Bai, H., Ge, C., Yang, J., Zhu, Y., Zhang, R., Li, Z., Zhanng, L., Ma, W.,
Wan, X., et al.: Amos: A large-scale abdominal multi-organ benchmark for versatile
medical image segmentation. Advances in Neural Information Processing Systems
35, 36722–36732 (2022)

22. Kim, M., Seifert, R., Fragemann, J., Kersting, D., Murray, J., Jonske, F., Pomykala,
K.L., Egger, J., Fendler, W.P., Herrmann, K., et al.: Evaluation of thresholding
methods for the quantification of [68ga] ga-psma-11 pet molecular tumor volume
and their effect on survival prediction in patients with advanced prostate cancer
undergoing [177lu] lu-psma-617 radioligand therapy. European Journal of Nuclear
Medicine and Molecular Imaging 50(7), 2196–2209 (2023)

23. Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators.
Communications of the ACM 18(2), 120–122 (1975)

24. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4015–4026
(2023)

25. Luo, X., Wang, G., Song, T., Zhang, J., Aertsen, M., Deprest, J., Ourselin, S.,
Vercauteren, T., Zhang, S.: Mideepseg: Minimally interactive segmentation of un-
seen objects from medical images using deep learning. Medical image analysis 72,
102102 (2021)

26. Ma, J., He, Y., Li, F., Han, L., You, C., Wang, B.: Segment anything in medical
images. Nature Communications 15(1), 654 (2024)

27. Ma, J., Xie, R., Ayyadhury, S., Ge, C., Gupta, A., Gupta, R., Gu, S., Zhang, Y.,
Lee, G., Kim, J., Lou, W., Li, H., Upschulte, E., Dickscheid, T., de Almeida, J.G.,
Wang, Y., Han, L., Yang, X., Labagnara, M., Gligorovski, V., Scheder, M., Rahi,
S.J., Kempster, C., Pollitt, A., Espinosa, L., Mignot, T., Middeke, J.M., Eckardt,
J.N., Li, W., Li, Z., Cai, X., Bai, B., Greenwald, N.F., Valen, D.V., Weisbart, E.,
Cimini, B.A., Cheung, T., Brück, O., Bader, G.D., Wang, B.: The multi-modality
cell segmentation challenge: Towards universal solutions. Nature Methods (2024).
https://doi.org/https://doi.org/10.1038/s41592-024-02233-6

28. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability. vol. 1, pp. 281–297. Oakland, CA, USA (1967)

29. Marinov, Z., Jäger, P.F., Egger, J., Kleesiek, J., Stiefelhagen, R.: Deep interactive
segmentation of medical images: A systematic review and taxonomy. arXiv preprint
arXiv:2311.13964 (2023)

30. Marinov, Z., Stiefelhagen, R., Kleesiek, J.: Guiding the guidance: A comparative
analysis of user guidance signals for interactive segmentation of volumetric images.
In: International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 637–647. Springer (2023)

https://doi.org/https://doi.org/10.1038/s41592-024-02233-6
https://doi.org/https://doi.org/10.1038/s41592-024-02233-6


18 Z. Marinov et al.

31. Meijering, E., Jacob, M., Sarria, J.C., Steiner, P., Hirling, H., Unser, e.M.: Design
and validation of a tool for neurite tracing and analysis in fluorescence microscopy
images. Cytometry Part A: the journal of the International Society for Analytical
Cytology 58(2), 167–176 (2004)

32. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J.,
Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor
image segmentation benchmark (brats). IEEE transactions on medical imaging
34(10), 1993–2024 (2014)

33. Moussallem, M., Valette, P.J., Traverse-Glehen, A., Houzard, C., Jegou, C., Gi-
ammarile, F.: New strategy for automatic tumor segmentation by adaptive thresh-
olding on pet/ct images. Journal of applied clinical medical physics 13(5), 236–251
(2012)

34. Murugesan, G.K., McCrumb, D., Brunner, E., Kumar, J., Soni, R., Grigorash,
V., Moore, S., Van Oss, J.: Improving lesion segmentation in fdg-18 whole-
body pet/ct scans using multilabel approach: Autopet ii challenge. arXiv preprint
arXiv:2311.01574 (2023)

35. Oreiller, V., Andrearczyk, V., Jreige, M., Boughdad, S., Elhalawani, H., Castelli, J.,
Vallières, M., Zhu, S., Xie, J., Peng, Y., et al.: Head and neck tumor segmentation
in pet/ct: the hecktor challenge. Medical image analysis 77, 102336 (2022)

36. Orlando, J.I., Barbosa Breda, J., Van Keer, K., Blaschko, M.B., Blanco, P.J., Bu-
lant, C.A.: Towards a glaucoma risk index based on simulated hemodynamics from
fundus images. In: Medical Image Computing and Computer Assisted Intervention–
MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20,
2018, Proceedings, Part II 11. pp. 65–73. Springer (2018)

37. Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe,
V., Meriaudeau, F.: Indian diabetic retinopathy image dataset (idrid): a database
for diabetic retinopathy screening research. Data 3(3), 25 (2018)

38. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.:
Ridge-based vessel segmentation in color images of the retina. IEEE transactions
on medical imaging 23(4), 501–509 (2004)

39. Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T.,
David, A.L., Deprest, J., Ourselin, S., et al.: Interactive medical image segmen-
tation using deep learning with image-specific fine tuning. IEEE transactions on
medical imaging 37(7), 1562–1573 (2018)

40. Wang, G., Zuluaga, M.A., Li, W., Pratt, R., Patel, P.A., Aertsen, M., Doel, T.,
David, A.L., Deprest, J., Ourselin, S., et al.: Deepigeos: a deep interactive geodesic
framework for medical image segmentation. IEEE transactions on pattern analysis
and machine intelligence 41(7), 1559–1572 (2018)

41. Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W.,
Heye, T., Boll, D.T., Cyriac, J., Yang, S., et al.: Totalsegmentator: Robust segmen-
tation of 104 anatomic structures in ct images. Radiology: Artificial Intelligence
5(5) (2023)

42. Wong, H.E., Rakic, M., Guttag, J., Dalca, A.V.: Scribbleprompt: Fast and flexible
interactive segmentation for any medical image. arXiv preprint arXiv:2312.07381
(2023)

43. Xu, Z., Escalera, S., Pavão, A., Richard, M., Tu, W.W., Yao, Q., Zhao, H., Guyon,
I.: Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform.
Patterns 3(7), 100543 (2022)

44. Zhao, F., Xie, X.: An overview of interactive medical image segmentation. Annals
of the BMVA 2013(7), 1–22 (2013)



Filters, Thresholds, and Geodesic Distances 19

Table 11: Checklist Table. Please fill out this checklist table in the answer column.
Requirements Answer
A meaningful title Yes
The number of authors (≤6) 4
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Figure 1
Pre-processing Page 8
Strategies to data augmentation Page 10
Strategies to improve model inference Pages 3-8
Post-processing Page 9
Environment setting table is provided Tables 2 and 3
Training protocol table is provided Table 3
Ablation study Page 11, Table 7
Efficiency evaluation results are provided Table 8
Visualized segmentation example is provided Figures 2-4
Limitation and future work are presented Yes
Reference format is consistent. Yes
Main text >= 8 pages (not include references and appendix) Yes


	Filters, Thresholds, and Geodesic Distances for Scribble-based Interactive Segmentation of Medical Images

