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Abstract

This work considers the problem of learning cooperative policies in multi-agent settings with par-
tially observable and non-stationary environments without a communication channel. We focus on
improving information sharing between agents and propose a new multi-agent actor-critic method
called Multi-Agent Cooperative Recurrent Proximal Policy Optimization (MACRPO). We propose
two novel ways of integrating information across agents and time in MACRPO: First, we use a
recurrent layer in critic’s network architecture and propose a new framework to use the proposed
meta-trajectory to train the recurrent layer. This allows the network to learn the cooperation and
dynamics of interactions between agents, and also handle partial observability. Second, we propose
a new advantage function that incorporates other agents’ rewards and value functions by controlling
the level of cooperation between agents using a parameter. The use of this control parameter is suit-
able for environments in which the agents are unable to fully cooperate with each other. We evaluate
our algorithm on three challenging multi-agent environments with continuous and discrete action
spaces, Deepdrive-Zero, Multi-Walker, and Particle environment. We compare the results with sev-
eral ablations and state-of-the-art multi-agent algorithms such as MAGIC, IC3Net, CommNet, GA-
Comm, QMIX, MADDPG, and RMAPPO, and also single-agent methods with shared parameters
between agents such as IMPALA and APEX. The results show superior performance against other
algorithms. The code is available online at https://github.com/kargarisaac/macrpo.

1 Introduction

While reinforcement learning (RL) (Kaelbling et al., 1996) has gained popularity in policy learning, many problems
which require coordination and interaction between multiple agents cannot be formulated as single-agent reinforce-
ment learning. Examples of such scenarios include self-driving cars (Shalev-Shwartz et al., 2016), autonomous in-
tersection management (Dresner & Stone, 2008), multiplayer games (Berner et al., 2019; Vinyals et al., 2019), and
distributed logistics (Ying & Dayong, 2005). Solving these kind of problems using single-agent RL is problematic,
because the interaction between agents and the non-stationary nature of the environment due to multiple learning
agents can not be considered (Hernandez-Leal et al., 2019; Lazaridis et al., 2020). Multi-agent reinforcement learning
(MARL) and cooperative learning between several interacting agents can be beneficial in such domains and has been
extensively studied (Nguyen et al., 2020; Hernandez-Leal et al., 2019).

However, when several agents are interacting with each other in an environment without real-time communication, the
lack of communication deteriorates policy learning. In order to alleviate this problem, we propose to share information
during training to learn a policy that implicitly considers other agents’ intentions to interact with them in a cooperative
manner. For example, in applications like autonomous driving and in an intersection, knowing about other cars’
intentions can improve the performance, safety, and collaboration between agents.

A standard paradigm for multi-agent planning is to use the centralized training and decentralized execution (CTDE)
approach (Kraemer & Banerjee, 2016; Foerster et al., 2016; Lowe et al., 2017; Foerster et al., 2018; Xiao et al., 2021),
also taken in this work.

In this work, we propose a new cooperative multi-agent reinforcement learning algorithm, which is an extension
to Proximal Policy Optimization (PPO), called Multi-Agent Cooperative Recurrent Proximal Policy Optimization
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Figure 1: Different frameworks for information sharing. Our proposed method and the standard approach for information sharing
through agents are shown in separate boxes. Blue arrows are for ours, and the red ones are for the standard approach to share
parameters. After collecting trajectories by agents, ours, in addition to sharing parameters between agents, uses the meta-trajectory
to train the critic’s LSTM layer. This allows the critic to learn the interaction between agents along the trajectories through its
hidden state. In contrast, the literature approach, which does parameter sharing, uses separate trajectories collected by agents to
train the LSTM layer. For more details about the network architectures, please see Fig 2.

(MACRPO). MACRPO combines and shares information across multiple agents in two ways: First, in network ar-
chitecture using long short term memory (LSTM) layer and train it by creating a meta-trajectory from trajectories
collected by agents, as shown in Fig 1. This allows the critic to learn the cooperation and dynamics of interactions
between agents, and also handle the partial observability. Second, in the advantage function estimator by considering
other agents’ rewards and value functions.

MACRPO uses a centralized training and decentralized execution paradigm that the centralized critic network uses
extra information in the training phase and switches between agents sequentially to predict the value of a state for each
agent. In the execution time, only the actor networks are used, and each learned policy (actor network) only uses its
local information (i.e., its observation) and acts in a decentralized manner.

Moreover, in environments with multiple agents that are learning simultaneously during training, each agent’s policy
and the dynamics of the environment, from each agent’s perspective, is constantly changing. This causes the non-
stationarity problem (Hernandez-Leal et al., 2019; Xiao et al., 2021). To reduce this effect, MACRPO uses an
on-policy approach and the most recent collected data from the environment.

In summary, our contributions are as follows: (1) proposing a cooperative on-policy centralized training and decen-
tralized execution framework that is applicable for both discrete and continuous action spaces; (2) sharing information
across agents using two ways: a recurrent component in the network architecture which uses a combination of tra-
jectories collected by all agents and an advantage function estimator that uses a weighted combination of rewards
and value functions of individual agents which uses a control parameter that can be utilized to change the cooper-
ation level between agents in MARL problems; (3) evaluating the method on three cooperative multi-agent tasks:
DeepDrive-Zero (Quiter, 2020), Multi-Walker (Gupta et al., 2017), and Particle (Mordatch & Abbeel, 2018) environ-
ments, demonstrating similar or superior performance compared to the state-of-the-art.

The rest of this paper is organized as follows. The review of related works in Section 2 demonstrates that while
MARL has been extensively studied, existing approaches do not address the dynamics of interaction between agents
in detail. In Section 3, we provide the required background in Markov Games and Proximal Policy Optimization. The
problem definition and the proposed method are described in Section 4, with emphasis on the two innovations, meta-
trajectory for recurrent network training and joint advantage function. Then, Section 5 presents empirical evaluation in
three multi-agent environments showing superior performance of the proposed approach compared to state-of-the-art.
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Finally, in Section 6 we conclude that implicit information sharing can be used to improve cooperation between agents
while discussing its limitations in settings with high number of agents.

2 RELATED WORK

The most straightforward and maybe the most popular approach to solve multi-agent tasks is to use single-agent RL
and consider several independent learning agents. Some prior works compared the performance of cooperative agents
to independent agents, and tried independent Q-learning (Tan, 1993) and PPO with LSTM layer (Bansal et al., 2017),
but they did not work well in practice (Matignon et al., 2012). Also, Zhao et al. (2020) tried to learn a joint value
function for two agents and used PPO with LSTM layer to improve the performance in multi-agent setting.

In order to use single-agent RL methods for multi-agent setting, improve the performance, and speed up the learning
procedure, some works used parameter sharing between agents (Gupta et al., 2017; Terry et al., 2020b). Especially
in self-play games, it is common to use the current or older versions of the policy for other agents (Berner et al.,
2019). We will compare our proposed method with several state-of-the-art single-agent RL approaches with shared
parameters between agents proposed in Terry et al. (2020b) in the experiments section. Our way of training the LSTM
layer in the critic differs from parameter sharing used in the literature such that instead of using separate LSTMs for
each agent, the LSTM layer in our method has a shared hidden state, which is updated using a combination of all
agents’ information. This lets the LSTM layer to learn about the dynamics of interaction and cooperation between
agents and across time.

In addition to using single-agent RL methods with or without parameter sharing, some other works focused on de-
signing multi-agent RL algorithms for multi-agent settings. In multi-agent environments, considering communication
between agents and information sharing will lead to designing multi-agent methods (Niu et al., 2021; Singh et al.,
2019; Liu et al., 2020; Sukhbaatar et al., 2016; Dutta et al., 2005; Da Silva & Costa, 2019; Kash et al., 2011). The
communication channel is often limited, leading to methods that try to optimize the communication including message
structure (Mao et al., 2020; Kullu et al., 2017). However, in some environments, there is no explicit communication
channel between agents. For example, consider an autonomous driving environment without connection between cars.
Finding a solution to address this problem and decrease the lack of communication effect seems necessary.

A recently popularized paradigm to share information between agents is to use centralized training and decentralized
execution. In general, we can categorize these types of approaches into two groups: value-based and actor-critic-based.
In value-based methods, the idea is to train a centralized value function and then extract the value functions for each
agent from that to act in a decentralized manner in the execution time (Sunehag et al., 2018; Rashid et al., 2018). On
the other hand, the actor-critic-based methods have actor and critic networks (Lowe et al., 2017; Foerster et al., 2018).
The critic network has access to data from all agents and is trained in a centralized way, but the actors have only access
to their local information. They can act independently in the execution time. The actors can be independent with
individual weights (Lowe et al., 2017) or share the policy with shared weights (Foerster et al., 2018). In this work, we
use an actor-critic-based method with centralized training and decentralized execution, providing two innovations to
improve information sharing without communication channel between agents during execution.

RMAPPO (Yu et al., 2022) is a method close to ours, which uses CTDE framework. They make no mention of recurrent
neural networks (RNNs) in their paper, but their code contains recurrent layers. In addition, they concentrate primarily
on adapting PPO components such as clipping, mini-batching, batch size, value normalization, value function input
representation, etc. for multi-agent environments. The distinction between our work and theirs is the meta-trajectory
we generate from the data of all agents and the specific manner in which we employ the RNN layer, whereas they
employ CTDE and RNN as usual without a combined trajectory as input. To share information, they use a shared
policy between all agents which is similar to what we do in addition to the meta-trajectory idea. Also, they have a
shared reward function for all agents which is the sum of all agents’ rewards without any cooperation control parameter.
In addition, their implementation and benchmark environments all use discrete action spaces, while we test our method
on both discrete and continues action spaces.

In Foerster et al. (2018), which is another work near ours, the actor is recurrent, but the critic is a feed-forward network,
whereas our actor and critic are both recurrent, and the recurrent layer in our critic has a crucial role in our method.
Their method is also for settings with discrete action spaces, whereas we test our method on three environments with
both discrete and continuous action spaces.
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ROLA (Xiao et al., 2021) is another work near ours. They use LSTMs in both actor and critic networks. Additionally,
ROLA employs both centralized and individual asymmetric critics that estimate individual advantage values using
local history and/or state information. However, we construct the meta-trajectory which has not only the history
of each agent, but also the history of the interaction between agents and the environment’s dynamics. In addition,
we propose a novel advantage function estimator which is a combination of all agents’ advantage functions and the
cooperation level of agents can be changed based on the problem using a control parameter.

Durugkar et al. (2020) is also a work that combines the agent specific reward and an environment-specific reward
to accomplish the shared task. They consider a framework that uses a linear mixing scheme to balance individual
preferences and task rewards. They demonstrate that in their test environments, a small amount of selfishness and not
full cooperation can be advantageous and facilitate team learning. In our test environments and with our framework,
full cooperation among agents yields superior performance. Depending on the environment, the amount of cooperation
and selfishness can be different.

The other similar work to ours, which is one of the most popular MARL methods, is the multi-agent deep determin-
istic policy gradient (MADDPG) (Lowe et al., 2017) that proposed similar frameworks with centralized training and
decentralized execution. They tested their method on some Particle environments (Mordatch & Abbeel, 2018). Their
approach differs from ours in the following ways: (1) They do not have the LSTM (memory) layer in their network,
whereas the LSTM layer in the critic network plays a critical role in our method. It helps to learn the interaction
and cooperation between agents and also mitigate the partial observability problem. (2) They tested MADDPG on
Multi-Agent Particle Environments with discrete action spaces. But we test our method in both continuous and dis-
crete action space environments. (3) They consider separate critic networks for each agent, which is beneficial for
competitive scenarios, whereas we use a single critic network and consider the cooperative tasks. (4) Their method is
off-policy with replay buffer, and they combat the non-stationarity problem by centralized training. In contrast, our
approach, in addition to centralized training, is an on-policy method without replay buffer allowing the networks to
use the most recent data from the environment. We will compare our method with MADDPG and show that ours has
comparable or superior performance. Wang et al. (2020) extends the MADDPG idea and adds a recurrent layer into
the networks, but they have separate actors and critics for agents, similar to MADDPG, and recurrent hidden states
of critics are isolated, and there is no combination of information in them. They also tested their method on one
environment with a discrete action space.

We target problems where agents attempt to collaboratively maximize the sum of all agents’ expected rewards but
where each agents receives its own reward. We do not specifically consider the credit assignment problem for multi-
agent games where all agents have a shared team reward. The proposed algorithm can be applied to such problems,
but it is not designed for them.

3 BACKGROUND

3.1 MARKOV GAMES

In this work, we consider a multi-agent extension of Partially Observable Markov Decision Processes
(MPOMDPs) (Gmytrasiewicz & Doshi, 2005), also called partially observable Markov games (Littman, 1994). It
can also be modeled as a partially observable stochastic games (POSGs) (Hansen et al., 2004). A Markov game for N
agents is defined by a set of states S describing the possible configurations of all agents, a set of actions U1, . . . , UN

and a set of observations O1, . . . , ON for each agent. The probability distribution of the next state as a function of
current state and actions is determined by a Markovian transition function T : S × U1 × . . . × UN → S . Each agent
i uses a stochastic policy πθi

: Oi × Ui → [0, 1], parametrized by θi, to choose an action. Upon the state transition,
the agent receives a scalar reward ri : S × Ui → R. We consider games where the total reward can be decomposed
to individual agent rewards ri. Each agent i aims to maximize the rewards for all agents in a cooperative way (Lowe
et al., 2017).

3.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a family of policy gradient methods for solving reinforcement learning prob-
lems, which alternate between sampling data through interaction with the environment, and optimizing a surrogate
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objective function using stochastic gradient descent while limiting the deviation from the policy used to collect the
data (Schulman et al., 2017). PPO aims to maximize the clipped expected improvement of the policy

LCLIP (θ) = Êt[min(ft(θ)Ât, clip(ft(θ), 1 − ϵ, 1 + ϵ)Ât)]

where Ât is the advantage obtained by Generalized Advantage Estimation (GAE), ϵ is a hyperparameter, and ft(θ)
denotes the probability ratio ft(θ) ≡ πθ(ut|ot)

πθold
(ut|ot) for importance sampling. The clipping prevents excessively large

policy updates.

In addition to the expected improvement, the total objective function for PPO incorporates a loss function for a critic
network required for GAE and an entropy bonus term to encourage exploration, resulting in the total objective (Schul-
man et al., 2017)

LCLIP +V F +S
t (θ) = Êt[LCLIP

t (θ) − c1LV F
t (θ) + c2S[πθ](ot)] (1)

where c1, c2 are weight factors, S denotes the entropy bonus, and LV F
t is a squared-error loss for the critic

LV F
t (θ) = (Vθ(ot) − V targ

t )2 (2)

In the above equations, Vθ(ot) is the state-value function and θ denotes the combined parameter vector of actor and
critic networks. PPO uses multiple epochs of minibatch updates for each set of sampled interactions.

4 Method

In this section, we first explain the problem setting and outline our proposed solution. We then proceed to describing
its two main components: a critic based on a recurrent neural network with a new proposed meta-trajectory and
advantage estimation using weighted rewards with a control parameter for cooperation level between agents, ending
with a summary of the proposed algorithm.

4.1 Problem Setting and Solution Overview

Information sharing across agents can help to improve the performance and speed up learning (Gupta et al., 2017;
Foerster et al., 2018; Terry et al., 2020b). In this work, we focus on improving information sharing between agents
in multi-agent settings in addition to just sharing parameters across actors. We propose Multi-Agent Cooperative
Recurrent Proximal Policy Optimization (MACRPO) algorithm, which is a multi-agent cooperative algorithm and uses
the centralized learning and decentralized execution framework. In order to improve information sharing between
agents, MACRPO, in addition to parameter sharing, uses two novel ideas: (a) a recurrent critic architecture that
is trained using a meta-trajectory created by combining trajectories collected by all agents (Section 4.2), and (b)
an advantage function estimator that combines the rewards and value functions of individual agents using a control
parameter that can be employed to alter the degree of cooperation amongst agents. (Section 4.3).

4.2 MACRPO Framework

The proposed MACRPO framework consists of one recurrent actor, similar to Foerster et al. (2018), and one recurrent
critic network, as illustrated in Fig. 1. To consider the partial observability of multi-agent settings, we use recurrent
LSTM layers in both actor and critic networks to allow integration of information over time.

The actor network architecture is composed of a stack of Embedding, LSTM, and Linear layers and is trained using
trajectories collected by all agents. We denote the shared weights of actors with θa and use the same, latest weights
for all agents. The behaviors of different agents vary because of stochasticity and difference in their inputs. Denoting
the trajectory data for episode k with length T for agent i as

τk
i = (oi

1, ui
1, ri

1, . . . , oi
T , ui

T , ri
T ),

the training data for the actor is then DA = (τ1
1 , . . . , τk

i , . . .).
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Figure 2: Actor and critic network architectures. (a) Actor network architecture for agent i which uses the collected trajectory by
itself, (b) The centralized critic network architecture which uses the created meta-trajectory. Note that u, v, and o denote action,
value, and observation, respectively. Also, superscripts and subscripts show agent number and time-step, respectively.

To allow the critic network, which is also a stack of Embedding, LSTM, and Linear layers, to integrate information
across agents and time, we use all agents’ trajectories in each roll-out and concatenate them in a sequence to create a
meta-trajectory, and train the critic network using that (see Fig. 1). To remove the dependency to the order of agents,
we randomize the order of agents at each meta-trajectory generation phase. Whenever we create a meta-trajectory, we
consider one order and create the meta-trajectory and train the network with it. So the order stays the same in that
meta-trajectory. We then change the order of agents for creation of the next meta-trajectory, but it remains the same for
the entire meta-trajectory. Similar to the training data for actor, we can define the training data for the critic network
too. Denoting the meta-trajectory for episode k with length T for N agents as

µk = (o1
1, . . . , oN

1 , u1
1, . . . , uN

1 , r1
1, . . . , rN

1 , . . .

, o1
T , . . . , oN

T , u1
T , . . . , uN

T , r1
T , . . . , rN

T )

the training data for the critic is then DC = (µ1, . . . , µk, . . .).

By using the above meta-trajectory, the critic network receives information from all agents to capture the agents’
history, the interactions between them, and the environment dynamics, all capture by the hidden state. In other words,
MACRPO is able to consider temporal dynamics using the LSTM layer, which incorporates a history of states and
actions across all agents. Modeling temporal dynamics allows the latent space to model differential quantities such as
the rate of change (derivative) between the distance of two agents and integral quantities such as the running average
of the distance.

Additionally, the hidden state of recurrent networks can be viewed as a communication channel that allows information
to flow between agents to create richer training signals for actors during training. The network will update the hidden
state in each time-step by getting the previous hidden state and the data from the agent i in that time-step. The network
architectures for actor and critic are shown in Fig 2. It is important to note that the critic network is only needed during
training and that the optimized policy can be deployed using only the actor such that the agents are able to operate in
a fully distributed manner without communication.

4.3 Objective Function

In addition to the LSTM layer, we propose a novel advantage function estimator based on weighted discounted returns
using a parameter which controls the agents’ cooperation level and integrates information across agents. We consider
the V targ

t in Equation (2) as discounted return and propose to calculate it for agent i at time t as

Ri
t = rt + γrt+1 + . . . + γT −t+1V (oi

T ) (3)

6



Under review as submission to TMLR

Algorithm 1 MACRPO

1: Randomly initialize actor and critic networks’ parameters θc and θa

2: for iteration=1, 2, ... do
3: for environment=1, 2, ..., E do
4: Run all N agents with latest trained weights in the environment for T time-steps and collect data
5: Combine collected trajectories by all agents according to Fig 1
6: Compute discounted returns and advantage estimates using Equations (5, 3)
7: end for
8: for epoch=1, ..., K do
9: for minibatch=1, ..., M do

10: Calculate the loss functions using Equations (7, 8)
11: Update Actor and Critic parameters via Adam
12: end for
13: end for
14: end for

where

rt =
ri

t +β
∑

j ̸=i rj
t

N
, V (oi

T ) =
V (oi

T )+β
∑

j ̸=i V (oj
T )

N
(4)

where ri
t is the reward for agent i at time t, γ is the discount factor, β is the cooperation control parameter used for

rewards of other agents, and V (oi
T ) is the value for the final state of agent i. The advantage for each agent i is then

calculated as
Âi

t = δi
t + (γλ)δi

t+1 + . . . + . . . + (γλ)T −t+1δi
T −1 (5)

where

δi
t = 1

N
[ri

t + γV (oi
t+1) − V (oi

t)+

+β
∑
j ̸=i

(rj
t + γV (oj

t+1) − V (oj
t ))] (6)

where λ is the temporal difference factor of the GAE algorithm, and V (oi
t) is the state-value at time t for agent i.

The intuition behind the weighting is that each agents’ own rewards are likely to be affected most by its own action
choice but that the actions taken by other agents can also affect the reward. In addition, the β parameter can be
interpreted as a control parameter for cooperation level between agents. This heuristic is related to credit assignment
between agents and provides a trade-off between optimizing the policy considering only individual rewards (β = 0 and
no cooperation between agents), which could lead to sub-optimal total reward when individual rewards are in conflict
with each other, and optimizing the policy using the sum of all rewards (β = 1 and full cooperation between agents),
which could lead to challenging assignment of credit between agents. One should note that policy optimization is
performed across all agents such that in the end, the expected rewards over all agents are maximized, independent of
the choice of β.

MACRPO uses separate networks for actor and critic. Therefore, the objective functions of the actor and critic net-
works are separate, in contrast to PPO. The actor’s objective function in the shared weights case is defined as

LCLIP +S
t (θa) = Êt[LCLIP

t (θa) + cS[πθa
](ot)] (7)

and the critic objective function is
LV F

t (θ) = (Vθc
(ot) − V targ

t )2 (8)

where θc are the parameters of the critic A parallelized version of the MACRPO algorithm is shown in Algorithm 1.

5 EXPERIMENTS

This section presents empirical results that compare the performance of our proposed method, MACRPO, with several
ablations to see the effect of each proposed novelty. We also compare our method with recent advanced RL meth-
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ods in both single-agent domain with shared parameters between agents (Gupta et al., 2017; Terry et al., 2020b) and
multi-agent domain like MAGIC, (Niu et al., 2021), IC3Net (Singh et al., 2019), GA-Comm (Liu et al., 2020), Comm-
Net (Sukhbaatar et al., 2016), MADDPG (Lowe et al., 2017), RMAPPO (Yu et al., 2022), and QMIX (Rashid et al.,
2018).

5.1 Test Environments

We test our method in three MARL environments. In two of them, DeepDrive-Zero (Quiter, 2020) and Multi-
Walker (Terry et al., 2020a) environments, the action space is continuous, and in the third environment, the Particle
environment (Mordatch & Abbeel, 2018), the action space is discrete. Fig 3 show these three environments.

(a) (b) (c)

Figure 3: Considered MARL simulation environments (a) DeepDrive-Zero environment: an unprotected left turn scenario, (b)
Multi-Walker environment, (c) Particle environment: cooperative navigation.

DeepDrive-Zero Environment: There are several autonomous driving simulators which can be used for multi-agent
simulation (Dosovitskiy et al., 2017; Santara et al., 2021; Quiter, 2020). In this work, we use DeepDrive-Zero (Quiter,
2020), because we don’t need to deal with image data and also need a fast simulation environment for training.
DeepDrive-Zero is a very fast and 2D simulation environment for self-driving cars which uses a bike model for the
cars. We use the unsignalized intersection scenario in this work, which is shown in Fig 3a. To test our algorithm,
we consider two cars in the environment, one starts from the south and wants to follow the green waypoints to do
an unprotected left-turn, and the other one starts from the north and wants to go to the south and follow the orange
waypoints. The agents need to learn to cooperate and negotiate to reach their destination without any collision.

Multi-Walker Environment: The multi-walker environment is a multi-agent continuous control locomotion task
introduced in Gupta et al. (2017). The environment contains agents (bipedal walkers) that can actuate the joints in
each of their legs and convey objects on top of them. Fig 3b shows a snapshot from the environment.

Cooperative Navigation in Particle Environment: Using the particle environment package from OpenAI (Lowe
et al., 2017), we created a new environment based on the cooperative navigation environment. This new environment
consists of N agents and N landmarks, and agents must avoid collisions and cooperate to reach and cover all landmarks.
Fig 3c shows the simulation environment.

Check Appendix A for more details about the environments.

5.2 Ablation Study

Four ablations were designed to evaluate each novelty. The name of the method and the explanation shows which
ablation has Feed-forward or LSTM or how information is shared in that ablation. In all cases, the parameter sharing
proposed in Gupta et al. (2017) and Terry et al. (2020b) was used:

FF-NIC (Feed-forward multi-layer perceptron (MLP) network + no information combination): two feed-forward
neural networks for actor and critic. The GAE is calculated using the single-agent PPO GAE equation (Schulman
et al., 2017). There is no LSTM layer or reward and value functions combination for information sharing in this case.
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FF-ICA (Feed-forward MLP network + information combination using the advantage estimation function): This
case is similar to the previous case, but the GAE is calculated using Equation (5) to show the effect of mixing reward
and value functions for information sharing. There is no LSTM layer in this case too.

LSTM-NIC (LSTM network + no information combination): two networks with LSTM layers for actor and critic.
There is no information sharing between agents through GAE calculation or the LSTM’s hidden state. The GAE is
calculated using the single-agent PPO GAE equation (Schulman et al., 2017).

LSTM-ICA (LSTM network + information combination using the advantage estimation function but not through
the LSTM layer): This case is identical to the previous case, but the GAE is calculated using Equation (5).

LSTM-ICF (LSTM network + information sharing using both the advantage estimation function and an LSTM
layer in the critic network (full proposed method)): two networks with LSTM layers for actor and critic. In addition to
parameter sharing between actors, the information integration is done through both the advantage estimation function
and the LSTM’s hidden state in the centralized critic network, shown in Fig 1.

Also, in order to see the effect of the β value in Equations (4, 6), the proposed method was evaluated with different β
values which shows different cooperation levels between agents.

All experiments were repeated with identical random seeds for each method to reduce the effect of randomness.
Hyperparameters used in MACRPO for three environments are detailed in Appendix C.

DeepDrive-Zero Environment: We ran all ablations for ten random seeds in the DeepDrive-Zero environment to
test our proposed method. We used self-play in simulations and used the latest set of parameters for actors in each
episode. The results are shown in Fig 4a. The x-axis shows the number of training iterations. In each iteration, we
ran 100 parallel environments for 3000 steps and collected data. Next, we updated actors and critic networks using
the collected data. After each iteration, we ran the agents for 100 episodes, took the mean of these episodes’ rewards
(sum of all agents’ rewards), and plotted them. The shaded area shows one standard deviation of episode rewards. The
hyperparameters used in the MACRPO algorithm are listed in Table 2 in Appendix C.

The proposed algorithm, LSTM-ICF, outperforms the ablations. The next best performances are for LSTM-ICA and
FF-ICA, which are almost the same. Moreover, information integration in the advantage function, in both FF-ICA
and LSTM-ICA, improves the performance compared to FF-NIC and LSTM-NIC; however, the achieved performance
gain in the fully connected case is higher. The FF-ICA surpasses LSTM-NIC, which shows the effectiveness of shar-
ing information across agents through the proposed advantage function, even without an LSTM layer. Furthermore,
the addition of LSTM layer to add another level of information integration, LSTM-ICF, boosts performance when
compared to FF-ICA. Fig 4b shows the analysis of the effect of different β values in Equations (3, 4, 6). The best
performance is for β = 1, which is for the full cooperation between agents, and as the value of β, agents’ cooper-
ation level, is reduced, the agents’ performance decreases. We demonstrate the effect of different β values in this
environment, but for other environments, the results will be provided for β ∈ {0, 1} only.

To achieve smooth driving performance, a curriculum-based learning method and gradual weight increase of reward
factors were used. The weights of Jerk, G-force, steering angle change, acceleration change, and going out of the
lane in the reward function were gradually increased to 3.3 × 10−6, 0.1, 3, 0.05, and 0.3, respectively. We then
added termination of episodes for lane violation to force cars to stay between the lanes. After curriculum learning and
smoothing the driving behavior, the cars follow the waypoints to reach their destination. The car that starts from the
bottom and wants to make a left-turn yields nicely for the other agent if they reach the intersection simultaneously and
then make the left-turn, and if it has time to cross the intersection before the other agent arrives, it does. A video of
the final result can be found in the supplementary materials.

Multi-Walker Environment: We ran 20 parallel environments and 2500 time-steps during each update iteration for
the Multi-Walker environment. After each iteration, we ran agents for 100 episodes and plotted the mean of these
episodes’ rewards. Each episode’s reward is the sum of all the agents’ rewards. Ten different random seeds are used
for each ablation. We also used the latest set of parameters for all actors. The hyperparameters used in the MACRPO
algorithm are listed in Table 2 in Appendix C.
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(a) (b)

Figure 4: Simulation results in DeepDrive-Zero environment. (a) Mean episode reward for different ablations, (b) mean episode
reward for different β values. The shaded area shows one standard deviation.

(a) (b)

Figure 5: Simulation results in Multi-Walker and Particle environments for different ablations. (a) Multi-Walker simulation results,
(b) Particle environment simulation results.

Fig 5a shows a massive performance improvement of our proposed method, LSTM-ICF with β = 1, when compared
to ablations. LSTM-ICF with β = 0, information integration through only the LSTM layer, has the next best perfor-
mance. After these two, LSTM-ICA, which does the information integration using the advantage estimation function,
performs better than FF-ICA, FF-NIC, and LSTM-NIC cases. The effect of β value and information sharing through
the advantage estimation function in performance improvement can be seen as we move from LSTM-ICF with β = 0
to LSTM-ICF with β = 1 and from FF-NIC to FF-ICA. By comparing FF-ICA and LSTM-ICF, we can also see the
impact of information integration using the LSTM layer. Note that the β value in FF-ICA is equal to 1. A video of the
trained model can be found in the supplementary materials.

Cooperative Navigation in Particle Environment: In the particle environment, in each iteration, we ran 20 parallel
environments to collect data for 2500 time steps and used that data to update the network. The agents were then
evaluated using the trained weights for 100 episodes. We ran the simulation with six random seeds. MACRPO
hyperparameters are shown in Table 2 in Appendix C.

The results of this environment are depicted in Fig 5b. Similar to the other two environments, the proposed LSTM-
ICF with β = 1 outperforms ablations. The next best performance is achieved with LSTM-ICF with β = 0, which
only uses the LSTM layer that was trained using the created meta-trajectory. Moreover, the LSTM-ICA’s performance

10
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Table 1: Comparing performance of our method with state-of-the-art approaches. Numbers show average reward in each environ-
ment for ten random seeds, except for the Multi-Walker environment which is 1000 random seeds.

Method DeepDrive-
Zero Multi-Walker Particle

DQN 4 -100000 -151.8
RDQN 6 -100000 153.2
A2C 0.5 -27.6 -148.6

DDPG 2 -57.8 -
PPO 16 41 -144.3
SAC -1.5 -16.9 -143.7
TD3 -1 -8 -

APEX-DQN 8 -100000 -136.2
APEX-DDPG 14 -23 -

IMPALA -0.66 -88 -155.2
MADDPG -0.1 -96 -98.3

QMIX -0.9 -24 -155.6
MAGIC 3.1 - -114
IC3Net 2.1 - -117

GA-Comm 1.9 - -119
CommNet 1.6 - -115
RMAPPO -0.43 - -131

Ours (β = 0) 17.3 24.2 -100.7
Ours (full model) 23.7 47.8 -95.8

is almost identical to LSTM-ICF when β = 0. This shows that both novel ideas cause the same performance gain
over LSTM-NIC. These results show that cases with LSTM layer perform better than feed-forward ones, even in the
FF-ICA case, which integrates information through the advantage function. A video of the trained model can be found
in the supplementary materials.

Both ideas were evaluated in the ablation study, and the results clearly demonstrate the effect of the proposed ideas in
performance improvement. Ablation studies provide evidence that the findings are not spurious, but are associated with
the proposed enhancements. β = 1 corresponds to the total reward over all agents, the optimization goal. However,
it is known that such a team reward causes a credit assignment problem since each agent’s contribution to the team
reward could differ. Due to this, we wanted to experimentally study whether beta values less than one would alleviate
the credit assignment problem to the extent that the suboptimality of the reward would be overcome. According to the
results of the experiment, this wasn’t the case, and β = 1 gave the best performance.

Moreover, as the results illustrate, both proposed ideas result in a performance gain, but this is not the same for all
environments. In the DeepDrive-Zero environment, information integration through advantage function estimation
improves the performance slightly more than the LSTM layer. However, in the Multi-Walker environment, the LSTM
layer is more effective, and in the Particle environment, their effect is almost the same.

5.3 Comparison to State-of-the-Art Methods

We compared the proposed method with several state-of-the-art algorithms in each environment. Our method is
compared against several single-agent baselines with shared parameters across agents (DQN, RDQN, A2C, DDPG,
PPO, SAC, TD3, APEX-DQN, APEX-DDPG, and IMPALA), which were tested in Terry et al. (2020b). We also
compared our method to state-of-the-art multi-agent approaches such as MAGIC, (Niu et al., 2021), IC3Net (Singh
et al., 2019), GA-Comm (Liu et al., 2020), CommNet (Sukhbaatar et al., 2016), MADDPG (Lowe et al., 2017),
RMAPPO (Yu et al., 2022), and QMIX (Rashid et al., 2018).
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The architecture and hyperparameters used for PPO, IMPALA, A2C, SAC, APEX-DQN, Rainbow-DQN, DQN,
APEX-DDPG, DDPG, TD3, and QMIX are taken from Terry et al. (2020b) which has an open source implemen-
tation 1. For MADDPG (Lowe et al., 2017), we used the original source code 2, for RMAPPO (Yu et al., 2022) we
used their open source source code 3, and for MAGIC, IC3Net, CommNet, and GA-Comm we used the open source
implementation 4. We performed hyperparameter tuning using grid search to optimize performance for each method.

Note that some of the official implementations of baselines we used here do not support both discrete and continues
action spaces and we did not modify the code. The non-reported results for some baselines in the paper’s tables and
charts are due to this. In addition, we tried to use the discritized version of the DeepDrive-Zero environment for
algorithms with discrete action space which may cause poor performance.

Each agent’s goal in MACRPO is to maximize the total reward of all agents, while the goal of other methods is to
maximize the total reward of each agent without considering other agents’ reward in their objective function. In order
to have a more fair comparison, We report the result for our method when β = 0 too. The results are shown in Table 1.
The table contains some empty fields due to the fact that some algorithms do not support continuous or discrete action
spaces. Check Appendix B for more details.

DeepDrive-Zero Environment: In this environment, our full method and also the case with β = 0 achieved the
highest average reward. The next best was PPO with parameter sharing between agents followed by APEX-DQN and
APEX-DDPG. A version of the environment with discretized action space was used for algorithms with discretized
action space.

Multi-Walker Environment: Similar to the previous environment, the proposed method outperformed other meth-
ods by a large margin with an average reward of 47.8. Next, PPO with parameter sharing had the second-best perfor-
mance with a maximum average reward of 41. Our method with β = 0 achieved the third best average reward. Some
algorithms do not support continuous action spaces and are marked with a dash in the table.

Cooperative Navigation in Particle Environment: As in both previous environments, our approach outperformed
other approaches in this environment as well, although the difference was minor compared to MADDPG. Our method
with β = 0 is in the third place after MADDPG with small margin. We used a categorical distribution instead of a
multivariate Gaussian distribution in this environment with discrete action space. Algorithms with continuous action
spaces were not tested in this environment, and are marked with a dash in the table. Adapting these algorithms for dis-
crete action environments could be achieved using the same trick, but we did not change the standard implementation
for baselines.

It is evident from the reported results that RMAPPO performance in the DeepDrive-Zero environment is not satisfac-
tory and that it is average in the Particle environment. As the current implementation of RMAPPO does not support
continuous action spaces, we could not test this method in the Multi-Walker environment. Additionally, we conducted
limited hyperparameter searches for RMAPPO, but since this method aims to recommend a set of modifications and
hyperparameters that will improve PPO’s performance for multi-agent systems, we did not deviate too far from the
main hyperparameters. The performance of MADDPG is not also good in DeepDerive-Zero and Multi-Walker envi-
ronments. However, it performs well when used in the Particle environment.

All hyperparameters for each algorithm are included in Appendix C.

The results show that the performance benefit given by the two proposed ways of sharing information across agents is
significant such that the method outperforms state-of-the-art algorithms.

1https://github.com/parametersharingmadrl/parametersharingmadrl
2https://github.com/openai/maddpg
3https://github.com/marlbenchmark/on-policy
4https://github.com/CORE-Robotics-Lab/MAGIC
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6 Conclusion & Future Work

In this paper, MACRPO, a centralized training and decentralized execution framework for multi-agent cooperative
settings was presented. The framework is applicable to both discrete and continuous action spaces. In addition to
parameter sharing across agents, this framework integrates information across agents and time in two novel ways:
network architecture and the advantage estimation function. An ablation study in three environments revealed that
both ways of information sharing are beneficial. Furthermore, the method was compared to state-of-the-art multi-
agent algorithms such as MAGIC, IC3Net, CommNet, GA-Comm, QMIX, and MADDPG, as well as single-agent
algorithms that share parameters between agents, such as IMPALA and APEX. The results showed that the proposed
algorithm performed significantly better than state-of-the-art algorithms. A single recurrent network to summarize the
state of all agents may be problematic when the number of agents is large. A potential solution to this problem could
be to use an attention mechanism for the agent to learn on which other agents to pay attention to, warranting further
study to realize the potential of the proposed approach with a high number of agents.
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A Detailed Environment Descriptions

DeepDrive-Zero Environment: The observation space is a vector with continuous values. Each agent in the envi-
ronment receives some information about itself, as well as information from other agents. This information can come
from some modules like Perception, Localization, and HDMap in a self-driving car and be used by the decision mak-
ing and control modules. The observation vector for each agent contains some information about the agent itself like
distance and angle to waypoints, velocity, acceleration, and distance to left and right lanes, and also some information
about the other agents like the relative velocity of the other agent to the ego agent, velocity and acceleration of the
other car, angles to corners of the other agent, and distance to corners of the other agent.

Each action vector element is continuous from -1 to 1: steering, acceleration, and braking. Negative acceleration can
be used to reverse the car, and the network outputs are scaled to reflect physically realistic values. This environment
also has a discretized version that we used in discrete action methods.

The reward function is a weighted sum of several terms like speed, reaching the destination, collision, G-force, jerk,
steering angle change, acceleration change, and staying in the lane. Initially, we used 0.5, 1, 4, 1 × 10−7, 6 × 10−6,
0.0001, 0.0001, 0.001 as weights, then used curriculum learning to smooth the driving behavior.
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Multi-Walker Environment: To keep the package balanced and move it as far to the right as possible, the walkers
must coordinate their movements. A positive reward is given to each walker locally, based on the change in the package
distance summed with 130 times the change in the walker’s position. A walker is given a reward of -100 if they fall,
and all walkers receive a reward of -100 if the package falls while moving forward has a reward of 1. By default, the
environment is done whenever a walker or package falls or when the walkers reach the edge of the terrain. The action
space is continuous, with four values for torques applied to each walker’s leg. The observation vector for each walker
is a 32-dimensional vector that contains information about nearby walkers as well as data from some noisy LiDAR
sensors.

Cooperative Navigation in Particle Environment: We assign each agent a landmark and calculate its local reward
based on its proximity to its landmark and collisions with other agents. As a result, agents will have different reward
values; not one shared reward. Each agent’s observation data is its position and velocity, as well as the relative position
of other agents and landmarks. There are five discrete actions in the action space: up, down, left, right, and no move.
After 25 time-steps, the episode ends.

B Comparison to State of The Art Methods

To get a better idea of the performance of the state-of-the-art algorithms, the mean episode reward for different baseline
algorithms in test environments are shown in Fig 6.
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(a)

(b)

(c)

Figure 6: Analysis of baseline algorithms proposed in Terry et al. (2020b) in three environments: (a) DeepDrive-Zero, (b) Multi-
Walker, and (c) Particle environments.
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C Hyperparameters

Hyperparameters used in MACRPO for three environments are described in Table 2.

Table 2: MACRPO hyperparameters for three MARL environments

Param. DeepDrive-
Zero Multi-Walker Particle

actor hidden size 64 32 128
critic hidden size 128 32 128

batch size 512 32 1500
discount 0.99 0.99 0.99

GAE lambda 0.94 0.95 0.95
PPO clip 0.15 0.3 0.2

PPO epochs 4 4 10
max grad norm 1.0 1.0 1.0
entropy factor 0.001 0.01 0.01
learning rate 0.0002 0.001 0.005

recurrent sequence
length (time-step) 20 40 3

no. of recurrent layers 1 1 1

The architecture and hyperparameters used for other baselines are taken from Terry et al. (2020b) with some fine-
tuning to get better performance, and are shown in Tables 3, 4, and 5. Some hyperparameter values are constant across
all RL methods for all environments. These constant values are reported in Table 6. We used the source code for all
algorithms from Terry et al. (2020b) except for MADDPG which we used the original implementation (Lowe et al.,
2017).
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Table 3: Hyperparameters for three MARL environments

RL method Hyperparameter DeepDrive-Zero Multi-Walker Particle

PPO sample_batch_size 100 100 100
train_batch_size 5000 5000 5000

sgd_minibatch_size 500 500 1000
lambda 0.95 0.95 0.95

kl_coeff 0.5 0.5 0.5
entropy_coeff 0.01 0.01 0.001
num_sgd_iter 10 10 50
vf_clip_param 10.0 10.0 1.0
clip_param 0.1 0.1 0.5

vf_share_layers True True True
clip_rewards True True False
batch_mode truncate_episodes truncate_episodes truncate_episodes

IMPALA sample_batch_size 20 20 20
train_batch_size 512 512 512

lr_schedule [[0, 5e-3], [2e7, 1e-12]] [[0, 5e-3], [2e7, 1e-12]] [[0, 5e-3], [2e7, 1e-12]]
clip_rewards True True False

A2C sample_batch_size 20 20 20
train_batch_size 512 512 512

lr_schedule [[0, 7e-3], [2e7, 1e-12]] [[0, 7e-3], [2e7, 1e-12]] [[0, 7e-3], [2e7, 1e-12]]
SAC sample_batch_size 20 20 20

train_batch_size 512 512 512
Q_model {activation: {activation: {activation:

relu, relu, relu,
layer_sizes: layer_sizes: layer_sizes:
[266, 256]} [266, 256]} [266, 256]}

optimization {actor_lr: {actor_lr: {actor_lr:
0.0003, 0.0003, 0.0003,

actor_lr: actor_lr: actor_lr:
0.0003, 0.0003, 0.0003,

entropy_lr: entropy_lr: entropy_lr:
0.0003,} 0.0003,} 0.0003,}

clip_actions False False False
exploration_enabled True True True

no_done_at_end True True True
normalize_actions False False False
prioritized_replay False False False

soft_horizon False False False
target_entropy auto auto auto

tau 0.005 0.005 0.005
n_step 1 1 5

evaluation_
interval

1 1 1

metrics_smoothing_
episodes

5 5 5

target_network_
update_freq

1 1 1

learning_starts 1000 1000 1000
timesteps_per_

iteration
1000 1000 1000

buffer_size 100000 100000 100000
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Table 4: Hyperparameters for DeepDrive-Zero, Multi-Walker, and Particle environments

RL method Hyperparameter DeepDrive-Zero Multi-Walker Particle

APEX-DQN sample_batch_size 20 20 20
train_batch_size 32 512 5000
learning_starts 1000 1000 1000

buffer_size 100000 100000 100000
dueling True True True
double_q True True True

Rainbow-DQN sample_batch_size 20 20 20
train_batch_size 32 512 1000
learning_starts 1000 1000 1000

buffer_size 100000 100000 100000
n_step 2 2 2

num_atoms 51 51 51
v_min 0 0 0
v_max 1500 1500 1500

prioritized_replay True True True
dueling True True True
double_q True True True

parameter_noise True True True
batch_mode complete_episodes complete_episodes complete_episodes

Plain DQN sample_batch_size 20 20 20
train_batch_size 32 512 5000
learning_starts 1000 1000 1000

buffer_size 100000 100000 100000
dueling False False False
double_q False False False

QMIX buffer_size 10000 3000 100000
gamma 0.99 0.99 0.99

critic_lr 0.001 0.0005 0.001
lr 0.001 0.0005 0.001

grad_norm_clip 10 10 10
optim_alpha 0.99 0.99 0.99
optim_eps 0.00001 0.05 0.00001

epsilon_finish 0.02 0.05 0.02
epsilon_start 1.0 1.0 1.0

MADDPG lr 0.001 0.0001 0.01
batch_size 64 512 500
num_envs 1 64 1
num_cpus 1 8 1

buffer_size 1e5 1e5 1e5
steps_per_update 4 4 4
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Table 5: Hyperparameters for DeepDrive-Zero and Multi-Walker

RL method Hyperparameter DeepDrive-Zero Multi-Walker

APEX-DDPG sample_batch_size 20 20
train_batch_size 512 512

lr 0.0001 0.0001
beta_annealing_fraction 1.0 1.0
exploration_fraction 0.1 0.1

final_prioritized_replay_beta 1.0 1.0
n_step 3 3

prioritized_replay_alpha 0.5 0.5
learning_starts 1000 1000
buffer_size 100000 100000

target_network_update_freq 50000 50000
timesteps_per_iteration 2500 25000

Plain DDPG sample_batch_size 20 20
train_batch_size 512 512
learning_starts 5000 5000

buffer_size 100000 100000
critics_hidden [256, 256] [256, 256]

TD3 sample_batch_size 20 20
train_batch_size 512 512
critics_hidden [256, 256] [256, 256]
learning_starts 5000 5000

pure_exploration_steps 5000 5000
buffer_size 100000 100000

Table 6: Variables set to constant values across all RL methods for all environments

Variable Value set in all RL methods

# worker threads 8
# envs per worker 8

gamma 0.99
MLP hidden layers [400, 300]
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