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ABSTRACT

Network pruning constitutes an effective measure to alleviate the storage and com-
putational burden of deep neural networks which arises from its overparameteriza-
tion. A fundamental question is: How sparse can we prune a deep network without
sacrifice on the performance? To address this problem, in this work we take a first
principles approach, specifically, by directly enforcing the sparsity constraint on
the original loss function and exploiting the universal concentration effect in the
high-dimensional world, we’re able to characterize the sharp phase transition point
of pruning ratio, which equal one minus the normalized squared Gaussian width
of a convex set determined by the Hessian matrix of the loss function. Meanwhile,
we provide efficient countermeasures to address the challenges in computing the
involved Gaussian width, including the spectrum estimation of a large-scale Hes-
sian matrix and dealing with the non-definite positiveness of a Hessian matrix.
Moreover, through the lens of the pruning ratio threshold, we’re able to identify
the key factors that impact the pruning performance. In specific, the flatter the loss
landscape or the smaller the weight magnitude, the smaller pruning ratio. This re-
sult can provide unified and intuitive explanations on many phenomena of existing
pruning algorithms. Extensive experiments are performed which demonstrate that
the theoretical pruning ratio threshold coincides very well with the experimental
one. All codes are available at: https://anonymous.4open.science/
r/Global-One-shot-Pruning-BC7B/

1 INTRODUCTION

Deep neural networks (DNNs) have achieved stunning success in the past decade. The success
of DNN relies heavily on overparametrization, i.e., the number of parameters are normally several
order of magnitudes more than the number of data samples. Though being a key enabler for the
striking performance of DNN, overparametrization however poses huge burden for computation and
storage in practice. It is therefore much tempting to ask: Whether can we compress the DNN by a
large ratio without no sacrifice of performance? and what’s the limit of such model compressing?

To answer the first question, the main approach is to perform network pruning, which was first in-
troduced by LeCun et al. (1989). Network pruning can substantially decrease the parameter number
and thus alleviate the computational burden of inference and storage burden. The basic idea of net-
work pruning is to devise metrics to evaluate the significance of parameters and then remove the
insignificant ones. Various pruning algorithms have been proposed so far: LeCun et al. (1989);
Han et al. (2015a;b); Luo et al. (2018); Zhou et al. (2016); Wang et al. (2018); Xiang et al. (2021);
Molchanov et al. (2016); Li et al. (2016); He et al. (2019) and Han et al. (2015b).

In contrast, regarding the second question mentioned above, namely, the theoretical understanding
of network pruning is unfortunately far less. Some relevant works are: Yang et al. (2023) explored
the impact of network pruning on model’s generalization ability. He et al. (2022) identified the
relationship between the double descent phenomenon of network pruning and the learning distance.
Larsen et al. (2021) proposed to characterize the degrees of freedom of a DNN by exploiting the
framework of high-dimensional convex geometry.

Despite the above progress, it however still remains elusive about the fundamental limit of network
pruning while maintaining the performance. To tackle this problem, we’ll take a first principle ap-
proach by imposing the sparsity constraint directly on the loss function, thus converting the original
pruning limit problem to a set intersection problem, i.e., deciding whether the k-sparse set inter-
sects with the loss sublevel set (i.e., the set of weights whose corresponding loss is no larger than
the original loss plus tolerance ϵ) and obtaining the smallest value of k.
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Intuitively speaking, the larger the loss sublevel set (higher complexity), the smaller the sparse set
required for intersection, i.e., the network can be more sparse. To rigorously characterize the com-
plexity of a set, by exploiting the high dimensional nature of DNNs, we are able to harness the
notion of statistical dimension and Gaussian width in high dimensional convex geometry. Through
this geometric perspective, it’s possible for us to take advantage of the universal concentration ef-
fect (Vershynin, 2014; 2020) 1 in the high-dimensional world, so as to get sharp results about the
above set intersection problem. In specific, we will exploit the powerful Approximate Kinematics
Formula in high-dimensional geometry, which roughly says that for two convex cones, if the sum of
their statistical dimension exceeds the ambient dimension, then these two cones would intersect with
probability 1, otherwise they would intersect with probability 0. We notice that a sharp phase tran-
sition emerge here, thus enabling a precise and succinct characterization of the fundamental limit of
network pruning.

The key contributions of this paper can be summarized as follows:

1. Our work is the first to characterize the fundamental limit of network pruning, whose result
turns out to be both precise and succinct. The key message of this fundamental limit are
twofold: 1) The smaller the network flatness (defined as the trace of the Hessian matrix),
the more we can prune the network; 2) The smaller the weight magnitude, the more we can
prune the network.

2. We provide an improved spectrum estimation algorithm for large-scale Hessian matrices
when computing the Gaussian width of a high-dim. non-convex set.

3. We present intuitive explanations on many phenomena accompanied with existing prun-
ing algorithms through our lens of the pruning ratio threshold, which include: (a). Why
magnitude pruning is better than random pruning. (b). Why IMP requires iterative pruning
instead of one-shot pruning. (c). Why gradually changing the pruning ratio during itera-
tive pruning is preferred. (d). Why there exists significant performance difference in Rare
Gems algorithm (Sreenivasan et al., 2022) between using and not using l2 regularization.

1.1 RELATED WORK

Pruning Methods: Unstructured pruning involves removing unimportant weights without adher-
ing to specific geometric shapes or constraints. Han et al. (2015b) presented the train-prune-retrain
method, which reduces the storage and computation of neural networks by learning only the signif-
icant connections. Yang et al. (2017) employed the energy consumption of each layer to determine
the pruning order and developed latency tables that employed greed to identify the layers that should
be pruned. Guo et al. (2016) proposed dynamic network surgery, which reduced network complex-
ity significantly by pruning connections in real time. Frankle & Carbin (2018) proposed pruning
by iteratively removing part of the small weights, and based on Frankle’s iterative pruning, Sreeni-
vasan et al. (2022) introduced l2-norm to constrain the magnitude of unimportant parameters during
iterative training. Most of the existing pruning methods rely on heuristic algorithms, to delve into
the fundamental constraints that impact network pruning, we adopt a first-principles approach by di-
rectly imposing sparsity constraints on the network and optimize for the convex l1 constraint, which
closely aligns with the sparsity constraint, the weights are pruned below a certain threshold. This
is the most fundamental and straightforward pruning approach, providing valuable insights into the
fundamental limit of network pruning research.
Theoretical Advances in Understanding Neural Networks: Despite a promising performance in
empirical data, providing theoretical guarantees for neural networks remains challenging. Shwartz-
Ziv & Tishby (2017) have explained the training dynamics of neural networks from the information
theoretic perspective. The most prominent approach to understanding neural networks is the lin-
earization or neural tangent kernel (NTK) technique Jacot et al. (2018). Using this linearization
technique, it is possible to prove convergence to a zero training loss point. Additionally, Larsen
et al. (2021) studied the training dimension threshold of the network from a geometric point of view,
which shows that the network can be trained successfully with less degrees of freedom (DoF) in
affine subspace, but the burn-in affine subspace needs a good starting point and also the lottery sub-
space is greatly affected by the principal components of the entire training trajectory. Therefore,

1Basically, the concentration effect says that a function of a large amount of independent (or weakly
dependent) variables tends to concentrate to its expectation value. Notable examples include the Johnson-
Lindenstrauss lemma (Bandeira et al., 2020) and related results in Compressive Sensing.

2



Under review as a conference paper at ICLR 2024

essentially the DoF result in Larsen et al. (2021) provides limited knowledge about the pruning ratio
threshold, which is exactly the main subject of our work.

2 PROBLEM SETUP & KEY TOOLS
To explore the fundamental limit of network pruning, we’ll take the first-principles approach as fol-
lows: by directly imposing the sparsity constraint on the original loss function and then pruning the
trained weight vector by the magnitudes, the feasibility of pruning can thus be reduced to determine
whether a sublevel set defined by the Hessian matrix of the loss function intersects a k-sparse set
or a subspace. Through this framework, we’re able to leverage powerful notions and tools in high-
dimensional convex geometry, such as statistical dimension (Amelunxen et al., 2014), Gaussian
width (Vershynin, 2014)and Approximate Kinematics Formula (Amelunxen et al., 2014).

Model Setup. Let ŷ = f(w,x) be a deep neural network M with weights w ∈ RD and inputs
x ∈ RK . For a given training data set {xn,yn}Nn=1 and loss function ℓ, the empirical loss landscape
is defined as L(w) = 1

N

∑N
n=1 ℓ(f(w,xn),yn). We employ classification as our primary task,

where y ∈ {0, 1}k with k is the number of classes, and ℓ(f(w,xn),yn) is the cross-entropy loss.

Pruning Objective. In essence, network pruning can be formulated as the following optimization
problem:

min ∥w∥0 s.t. L(w) ≤ L(w∗) + ϵ (1)

where w is the optimized weight and w∗ is the original one. By utilizing the Lagrange formulation
and convex relaxation of l0 norm, Eq.1 can be reformulated as:

min L(w) + λ∥w∥1 (2)

After training with the above objective, the network weights will be pruned based on magnitudes,
and the performance of the resulting network is evaluated. 5.

Sparse Network. The weight of the dense network is represented as w∗ , the weight of the sparse
network, which retains the k largest magnitude weights from w∗, is denoted as wk.

Loss Sublevel Sets. A loss sublevel set of a network is the set of all weights w that achieve the
loss up to L(w∗) + ϵ:

S(ϵ) := {w ∈ RD : L(w) ≤ L(w∗) + ϵ}. (3)

Feasible k-Sparse Pruning. We call wk as a feasible k-sparse pruning if it obeys:

S(ϵ) ∩ {wk} ≠ ∅, (4)

and the pruning ratio is defined as p = k/D.
Below are some key notions and results from high dimensional convex geometry, which are of
critical importance to our work.

Definition 1 (Convex Cone & Conic Hull) A convex cone C ∈ RD is a convex set that is positively
homogeneous: C = τC for all τ > 0. The convex conic hull of a sublevel set S(ϵ) := {w ∈ RD :
L(w) ≤ L(w∗) + ϵ} is:

C(S(ϵ)) := {w ∈ RD : L(ηw) ≤ L(w∗) + ϵ for some η > 0} (5)

Statistical dimension is a useful metric to characterize the complexity of a convex cone. Intuitively
speaking, the bigger the cone, the larger the statistical dimension, as illustrated in Fig. 1(b).

Definition 2 (Statistical Dimension) The statistical dimension δ(C) of a convex cone C is:

δ(C) := E[∥ΠC(g)∥22] (6)

where ΠC is the Euclidean metric projector onto C and g ∼ (0, ID×D) is a standard normal vector.

To characterize the sufficient and necessary condition of the set (or cone) intersection, the Approx-
imate kinematics Formula Amelunxen et al. (2014) is a powerful and sharp result, which basically
says that for two convex cones (or generally, sets), if the sum of their statistical dimension exceeds
the ambient dimension, then these two cones would intersect with probability 1, otherwise they
would intersect with probability 0.
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Figure 1: Panel (a): Illustration of a convex conic hull of a sublevel set. Panel (b): Illustration of
the statistical dimension. Panel (c): Effect of projection distance on projection size and intersection
probability.

Theorem 1 (Approximate kinematics Formula) Let C be a convex conic hull of a sublevel set
S(ϵ) in RD, and draw a random orthogonal basis Q ∈ RD×D. For a k-dimensional subspace Lk,
it holds that (Amelunxen et al., 2014):

δ(C) + k ≲ D → P{C ∩QLk = {0}} ≈ 1

δ(C) + k ≳ D → P{C ∩QLk = {0}} ≈ 0 (7)

Theorem 1 indicates that when k ≲ D−δ(C), the k-dimensional subspace and the cone do not share
a ray.

3 LOWER BOUND: NO SPARSE SOLUTION CAN BE FOUND
In this section, we aim to characterize the lower bound of the pruning ratio, i.e., when the pruning ra-
tio falls below a threshold, it’s impossible to keep the generalization performance nearly unaffected.
To establish the impossibility result, we’ll leverage the powerful Approximate Kinematics Formula
as detailed in Theorem 1

3.1 NETWORK PRUNING: PERSPECTIVE FROM SET INTERSECTION

Sparse Space Consider a k-dimensional sparse subspace contained in D dimensional weight
space, parameterized by θ ∈ Rk : w(θ) = Aθ + wk. Here the columns of A ∈ RD×k are
random k standard bases in RD. If w(θ) and S(ϵ) do not intersect, wk /∈ S(ϵ), there is no k-sparse
solution.

In order to apply Theorem 1, we translate w(θ) to the origin and perform a simultaneous translation
of S(ϵ) in the same direction and distance, and we denote the translated S(ϵ) as Swk . The non-
existence of sparse solutions can be formulated as: Swk ∩Aθ = ∅, since Aθ is a subspace centered
at the origin, Swk ∩Aθ = ∅ and C(Swk) ∩Aθ = ∅ are equivalent. Therefore, we can utilize the
statistical dimension in theorem 1 to determine the threshold where d-sparse solutions do not exist.
Next, we will introduce the Gaussian width for calculating the statistical dimension of C(Swk)).

Definition 3 (Gaussian Width) . The gaussian width of a subset S ∈ RD is given by:

w(S) =
1

2
E sup

x,y∈S
⟨g,x− y⟩ ,g ∼ N (0, ID×D). (8)

Amelunxen et al. (2014) indicates that the Gaussian width of a spherical convex set is comparable
with the statistical dimension of the cone generated by the set:

Theorem 2 Given a unit sphere SD−1 := {x ∈ RD : ∥x∥ = 1}, let C be a convex cone in RD,
then:

w(C ∩ SD−1)2 ≤ δ(C) ≤ w(C ∩ SD−1)2 + 1 (9)

As theorem 2 requires the set to be a spherical convex set, for using Gaussian width as a proxy
for statistical dimension, we need project the sublevel set Swk onto the surface of the unit sphere
centered at origin. The projection of Swk is defined as:

proj(Swk) = {(x−wk)/∥x−wk∥2,x ∈ S} (10)
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Consider two manifolds with equal width, it can be observed that as the distance from the sphere
increases, the projected size on the sphere decreases, the Gaussian width of the spherical convex set
also decreases, leading to the cone becoming smaller with a reduced probability of intersection with
the subspace. This relationship is visually depicted in Figure 1(c). Under the projection setting,
theorem 1 of the pruning work is adjusted to:

Theorem 3 (Network Pruning Approximate Kinematic) Let C be a convex conic hull of a sub-
level set Swk in RD. For a k-dimensional subspace Aθ and draw a random orthogonal basis
Q ∈ RD×D, it holds that:

w(proj(Swk))2 + k ≲ D → P{C(Swk) ∩QAθ = {0}} ≈ 1

w(proj(Swk))2 + k ≳ D → P{C(Swk) ∩QAθ = {0}} ≈ 0 (11)

This theorem tells us that when the dimension of the sub-network is lower than D−w(proj(Swk))2,
the subspace will not intersect with Swk , ie., no sparse solution can be found. Therefore, the lower
bound of the pruning ratio of the network M can be expressed as:

T (M,wk) =
D − w(projwk(S))2

D
= 1− w(projwk(S))2

D
. (12)

3.2 REFORMULATION OF THE SUBLEVEL SET

Consider a well-trained deep neural network model M∗ with weights w∗ and an arbitrary loss
function L(w), where w lies in a small neighborhood of w∗. Perform a Taylor expansion of L(w)
at w∗:

L(w) = L(w∗) + (w −w∗)G+
1

2
(w −w∗)TH(w −w∗) + ∆. (13)

where G and H denote the first and second derivatives of L(w) with respect to the model parameters
w, and ∆ represents the higher order terms in the Taylor expansion which can be ignored.
For a well-trained deep neural network model, the first derivatives of L(w) satisfy G = 0 and the
second derivatives H is a positive definite matrix. Consequently, the loss sublevel set S(ϵ) can be
expressed as:

S(ϵ,w∗) = {ŵ ∈ RD :
1

2
ŵTHŵ ≤ ϵ} (14)

where ŵ = w −w∗. Due to the positive definiteness property of H, S(ϵ,w∗) forms an ellipsoid,
and the proof regarding the ellipsoid can be found in Appendix C.1.

3.3 GAUSSAIN WIDTH OF THE ELLIPSOID

We leverage tools in high-dimensional probability, especially the concentration of measure, which
enables us to present a rather precise expression for the Gaussian width of the high-dimensional
ellipsoid.

Lemma 1 Give an ellipsoid S(ϵ) defined by a quadratic form: S(ϵ) := {w ∈ RD : 1
2w

THw ≤ ϵ}
where H ∈ RD×D is a symmetric, positive definite Hessian matrix. Loss sublevel set S(ϵ) defined
by H is an ellipsoidal body with the Gaussian width:

w(S(ϵ)) ≈ (2ϵTr(H−1))1/2 = (
∑
i

r2i )
1/2 (15)

where ri =
√
2ϵ/λi is the radius of ellipsoidal body and λi is the i-th eigenvalue of H.

The proof of Lemma 1 is in Appendix C.1. We next perform translation and projection operation to
the loss sublevel set S(ϵ,w∗):

Lemma 2 Consider a projection projwk(S) defined in Eq.(10) and the projection distance R =
∥w∗ − wk∥2. Larsen et al. (2021) outline the Gaussian width of the projected quadratic well is
adjusted to:

w(projwk(S)) = (
∑
i

r2i
R2 + r2i

)1/2 (16)

Therefore, the projected Gaussian width of S(ϵ,w∗) defined in Eq.(14) becomes:

w(projwk(S)) = (
∑
i

r2i
R2 + r2i

)1/2 with ri =
√
2ϵ/λi (17)
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The Gaussian width of a projected ellipsoid demonstrated by Larsen et al. (2021) is

[(
√

2
π

∑
i

r2i
R2+r2i

)1/2, (
∑

i
r2i

R2+r2i
)1/2], the most notable difference is that our established Gaussian

width (
∑

i
r2i

R2+r2i
)1/2 is not represented as an interval but as a precise and definite value.

3.4 LOWER BOUND OF NETWORK PRUNING RATIO

According to Eq.(12), we have the lower bound of the pruning ratio as follows:
Corollary 1 For a well-trained deep neural network model M with weights w ∈ RD and an arbi-
trary loss function L(w), the lower bound of pruning ratio of model M is:

T (M,wk) =
D − w(projwk(S))2

D
= 1− 1

D

∑
i

r2i
R2 + r2i

with ri =
√

2ϵ/λi. (18)

where λi is the eigenvalue of the Hessian matrix of the loss function L(w) with respect to w and R
is the projection distance: R = ∥w∗ −wk∥2.

4 UPPER BOUND: THE EXISTENCE OF SPARSE SOLUTION

In order to establish the upper bound of the pruning ratio, the main task is to prove that the m-sparse
weight vector after pruning intersects with the loss sub-level set. To achieve that aim, we leverage
the fact that according to our proposed magnitude-based pruning procedure, all the erased weights
are of small magnitudes, therefore, the sub-vector comprised by them is very near to the origin, thus
intuitively speaking, the origin is very likely within the loss sub-level set centered by that sub-vector.
This heuristic reasoning can be made rigorous by exploiting the statistical dimension framework and
the Approximate Kinematic Formula (Amelunxen et al., 2014).

Unit sphere

(a) (b) (c)

Figure 2: Effect of extremely small projection distance on projection size and intersection probabil-
ity and statistical information of ResNet50 on TinyImagenet. Statistical information of all experi-
ments can be found in Appendix E.

Given the weights w∗ which is arranged in descending order, we categorize w∗ into two distinct part:
w1 = [w∗

1,w
∗
2, . . . ,w

∗
m], comprising the m largest parameters, and w2 = [w∗

m+1,w
∗
d+2, . . . ,w

∗
D],

encompassing the remaining D −m parameters. Fixing w1 and taking a specific focus on w2, we
establish the definition of the loss sublevel set denoted as:

S(w2) = {w2 ∈ RD−m : L([w1,w2]) ≤ L(w∗) + ϵ}
In the scenario where S(w2) intersects with any subspace of any dimension, it implies that the origin
is within S(w2). Consequently, the existence of an m-dimensional sparse solution is confirmed.

The sublevel set S(w2) remains an ellipsoid, as demonstrated in Appendix D.1. When projecting
S(w2), centered at w2, onto the surface of the unit sphere with the projection distance Rm =

∥w2∥2, as per Lemma 2, the resulting Gaussian width of the projected S(w2) is (
∑D−m

i
r2i

R2
m+r2i

)1/2

with ri =
√

2ϵ/λi, where λi is the eigenvalue of the hessian matrix of L([w1,w2]) with respect to

w2, a subspace of dimension k = D−m−
∑D−m

i
r2i

R2
m+r2i

is required for intersection with S(w2).

Therefore, the minimal of m which obeys D −m−
∑

i
r2i

R2
m+r2i

= 0 is the lower bound of pruning

threshold, at this pruning point, all elements in w2 can be pruned with w1 ∈ Rm remains. Hence,
the upper bound for the pruning ratio is the fix-point of U(p) where p = m/D:

U(p) = (D −
D−m∑

i

r2i
R2

m + r2i
)/D = 1− 1

D

D−m∑
i

r2i
R2

m + r2i
(19)
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Training based on l1-regularization leads to the presence of a substantial number of weights with
vanishingly small magnitudes in the network. As shown in Figure 2(b), the majority of weights
are extremely small, resulting in a very small projection distance w2. The curve in 2(c) represents
R2

m with respect to m/D, which is the sum of squares of the D − m smaller parameters in w∗.
The vertical line represents T , which is the lower bound of the pruning ratio predicted in Section 3.
When m = DT , as the weights in w2 are all very small, the square of the projection distance Rm

is also small, which can be confirmed by the intersection point in Figure 2(c). Therefore, the upper
bound for the pruning ratio is:

U(p) = 1− 1

D

D−m∑
i

r2i
R2

m + r2i
≈ 1− 1

D

D−m∑
i

r2i
r2i

= 1− D −m

D
= 1− D −DT

D
= T (20)

Eq. 20 indicates that the upper bound of the pruning ratio is approximately equal to the lower bound.
Here, we provide experimental statistical information. We independently replicated the experiments
five times across eight tasks and recorded the differences between the upper bound and lower bound,
denoted as ∆, the statistical information is shown in Table 1.

Table 1: The Difference Between Lower Bound and Upper Bound of Pruning Ratio.

CIFAR10 FC5 FC12 Alexnet VGG16
∆ 0.25%±0.09% 0.03%±0.02% 0.02%±0.01% 0.01%±0%

ResNet 18 on CIFARF100 50 on CIFARF100 18 on TinyImagenet 50 on TinyImagenet
∆ 0.01%±0.01% 0.01%±0.01% 0.31%±0.08% 0.27%±0.11%

Computational Challenges & Countermeasures: In practice, determining the Gaussian width of
the ellipsoid defined by the network loss function is a challenging task. The network normally fails
to converge perfectly to its extremum, leading to a non-positive definite Hessian matrix for the loss
function, thus deforming the original ellipsoid. To address this problem, we instead calculate the
convex hull of non-convex body resulting from non-positive definite matrices. The proof that the
convexifying processing has no impact on the Gaussian width is presented in Appendix C.2.

Furthermore, neural networks often exhibit a significant number of zero or exceedingly small eigen-
values in their Hessian matrices. It’s thus hard for the spectrum estimation algorithm SLQ(Stochastic
Lanczos Quadrature) proposed by Yao et al. (2020) to accurately estimate these eigenvalues. To ad-
dress this issue, we enhance the existing large-scale spectrum estimation algorithms by a key modi-
fication, i,e, to estimate the number of these exceptionally small eigenvalues by employing Hessian
matrix sampling . A comprehensive algorithm description and the implemented improvements are
presented in Appendix B.

Final Result: As is shown in Table 1, the upper bound is approximately equal to the lower bound,
thus we can use the lower bound in corollary 1 as the final pruning ratio threshold.

5 EXPERIMENTS

In this section, we experimentally validate our pruning method and lower bound on network pruning
using the Approximate Kinematics Formula.
Tasks. We evaluate the pruning algorithm and pruning ratio threshold on: Full-Connect-5(FC5),
Full-Connect-12(FC12), AlexNet (Krizhevsky et al., 2017) and VGG16 (Simonyan & Zisserman,
2014) on CIFAR10 (Krizhevsky et al., 2009), ResNet18 and ResNet50 (He et al., 2016) on CI-
FAR100 and TinyImageNet (Le & Yang, 2015). We make use of theoretical principles to anticipate
the pruning ratio limit of the network, followed by an evaluation of the sparse sub-networks perfor-
mance at different sparse ratios on test data. Specifically, we calculate accuracy and loss metrics
to quantify their performance. Finally, we compare the predicted lower bound on the pruning ratio
with the actual pruning ratio and evaluate whether they match. Detailed descriptions of datasets, net-
works, hyper-parameters and eigenspectrum adjustment can be found in Section A of the Appendix.

5.1 PRUNING LOWER BOUND: VALIDATION

We validated our prediction results on all tasks for the lower bound of network pruning. The images
generated during the experimental process, such as the statistical plots of Hessian matrix row l1
norm, can be found in Appendix B. Figure. 3 shows the sparsity-accuracy trade-off in all tasks
and provides compelling evidence of the high redundancy of deep neural networks. The theoretical
lower bound we derive matches well with the practical pruning ratio threshold.
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Figure 3: We assessed the influence of sparsity on loss and test accuracy using the test dataset,
and we marked the theoretical pruning ratio with vertical lines. The first row, from left to right,
corresponds to FC5, FC12, AlexNet, and VGG16. The second row, from left to right, corresponds
to ResNet18 and ResNet50 on CIFAR100, as well as ResNet18 and ResNet50 on TinyImagenet.
The figures demonstrate that our theory predicts the critical pruning points quite accurately.

5.2 PREDICTION COMPARISON

The numerical comparison between the predicted pruned weights ratio and the actual value is shown
in Table 2. The results in Table 2 exhibit a high degree of agreement between the predicted and
actual values which demonstrate that our theoretical predictions effectively estimate the network
pruning ratio threshold.

Table 2: Comparison between Prediction of Pruned Parameters Ratio and Actual Values.

Dataset Model Prediction(%) Experimental Results(%) ∆(%)

CIFAR10

FC5 97.9±0.25 98.3±0.12 -0.40±0.35
FC12 99.0±0.30 99.2±0.06 -0.15±0.26

AlexNet 99.1±0.00 99.2±0.08 -0.14±0.08
VGG16 99.2±0.06 99.2±0.06 0.04±0.08

CIFAR100 ResNet18 98.5±0.05 98.0±0.13 0.54±0.15
ResNet50 98.1±0.05 97.9±0.16 0.28±0.19

TinyImageNet ResNet18 96.1±0.82 95.7±0.38 0.46±0.71
ResNet50 97.4±0.24 97.1±0.33 0.36±0.10

5.3 COMPARISON OF PRUNING PERFORMANCE

We validated l1-regularization based global one-shot pruning algorithm(GOP) against four base-
lines: dense weight training and three pruning algorithms: (i) Rare Gems(RG) proposed by Sreeni-
vasan et al. (2022), (ii) Lottery Tickets Hypolothis(LTH) donated by Frankle & Carbin (2018), (iii)
Smart-Ratio (SR) which is the random pruning method proposed by Su et al. (2020). Table 3 shows
the pruning performance of the above algorithms, our pruning algorithm is better performing than
other algorithms.

Table 3: Performance comparison of various pruning algorithms.

Dataset Model Dense Acc (%) Sparsity (%) Test Acc (%)@top-1
GOP(ours) RG LTH SR

CIFAR10

FC5 55.3±0.62 1.7 59.96±0.45 58.76±0.15 38.71±2.25 -
FC12 55.5±0.26 1.0 60.84±0.21 54.96±0.28 10.00±0.00 -

AlexNet 89.60±0.31 0.7 90.55±0.04 85.55±0.11 21.65±2.63 10.00±0.00
VGG16 90.73±0.22 0.6 91.66±0.08 87.66±0.11 86.59±0.21 10.00±0.00

CIFAR100 ResNet18 72.19±0.23 1.9 71.82±0.09 67.52±0.30 64.42±0.20 66.50±0.24
ResNet50 74.07±0.43 2.0 75.22±0.11 70.96±0.23 61.17±0.45 66.99±0.21

TinyImageNet ResNet18 52.92±0.13 4.2 55.42±0.02 37.14±0.20 55.02±0.27 53.28±0.25
ResNet50 56.45±0.17 2.9 57.49±0.01 36.78±0.13 49.35±1.27 53.65±0.34

6 DISCUSSION

Iteration is needed in IMP. In the IMP (Iterative Magnitude Pruning) work, we determine the
pruning ratio thresholds for various stages through calculations, as depicted in the top row of Figure
4. It is noteworthy that the pruning rate threshold at each stage does not directly support one-
shot pruning to the final sparsity level, necessitating multiple iterations of pruning under IMP’s
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configuration. As the pruning depth gradually increases, the theoretical pruning ratio threshold also
increases. Therefore, it is appropriate to prune smaller proportions of weights gradually during
iterative pruning, in this context, the pruning rate refers to the proportion of retained weights in the
current active weights (chosen by a mask) during this pruning operation. Both Zhu & Gupta (2017)
and Sreenivasan et al. (2022) have employed pruning rate adjustment algorithms, gradually pruning
smaller proportions of the weights with the iteration of the algorithm.
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Figure 4: Top Row: The theoretical pruning ratio threshold in IMP of ResNet50 on TinyImagenet,
respectively. From left to right, as the number of iterations increases, it leads to an increase in the
theoretical pruning ratio threshold. Bottom Row: The comparison of the pruning ratio threshold in
pruning for ResNet50 on TinyImagenet when using and not using l2-regularization. Sparse networks
are obtained by magnitude-based pruning with fixed pruning ratios. The two plots on the left and
the two plots on the right correspond to different fixed pruning ratios.

l2-regularization enhances the performance of Rare Gems. In Rare Gems, Sreenivasan et al.
(2022) shows that the use of l2 regularization and its absence led to significant differences in the
final performance, we have similarly scrutinized the differences between these approaches during
pruning as is shown in the bottom row of Figure 4. We have discovered that when l2-regularization
is applied, the pruning ratios tend to be larger than the theoretical limits, whereas the absence of
l2-regularization results in excessive pruning, which can be regarded as wrong pruning.

Magnitude pruning is better than random pruning. In Figure 4, we depict the curves for ran-
dom pruning. Under the same pruning ratio (For instance, in the top-left subplot of Figure 4, focus-
ing on a pruning ratio of 0.5.), when using random pruning, the pruning occurs below the theoret-
ically predicted curve, indicating the absence of current sparse solutions. Therefore, the heuristic
magnitude pruning performs better than random pruning. The influence of weight magnitudes on
the pruning ratio threshold can be found in Appendix E.1, and its brief description is as follows:
Smaller magnitudes result in a lower pruning ratio threshold.

7 CONCLUSION

In this paper we explore the fundamental limit of pruning ratio of deep networks by utilizing the
framework of high dimensional geometry, thus, the pruning limit problem can be reduced to deter-
mine whether two sets (cones, subspaces etc.) intersect. Through this geometric perspective, power-
ful tools, such as statistical dimension and Approximate kinematic formula, can be leveraged. Thus
we can for the first time characterize the sharp phase transition point of network pruning (namely,
the pruning ratio threshold), and moreover, with a very succinct form. The key message is that the
fundamental limit of network pruning is mostly determined by the magnitude of the weight vector
as well as the spectrum of the Hessian matrix corresponding to the weight vector. Equipped with
this guidelines, we’re able to provide clear explanations of many phenomenon of existing pruning
algorithms. Furthermore, to address the challenges in computing the associated Gaussian width, we
develop an improved spectrum estimation for large Hessian matrices. Experiments demonstrate both
the high accuracy of our theoretical result and the excellent performance of our proposed pruning
algorithm.
Future work. Inspired by the fact that the maximal pruning ratio of a DNN is succinctly deter-
mined by the statistical dimension of a given cone (induced by the loss landscape), it’s natural to
ask: whether that statistical dimension can be served as a measure of the capacity of the DNN?
In another regard, the pruning procedures considered in our paper is based on the result after the
training, an intriguing problem is: whether is it possible to prune the network before the training,
and what’s its fundamental limit?
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