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Abstract

Unsupervised anomaly detection (AD) methods
typically assume clean training data, yet real-
world datasets often contain undetected or mis-
labeled anomalies, leading to significant perfor-
mance degradation. Existing solutions require
access to the training data, model pipeline or
model parameters, limiting real-world applica-
bility. To address this challenge, we propose
EPHAD, a simple yet effective test-time adapta-
tion framework that updates the outputs of AD
models trained on contaminated datasets using
evidence gathered at inference. Our approach
integrates the prior captured by the AD model
trained on the contaminated dataset with the out-
put of an auxiliary evidence function at test-time
using exponential tilting. This evidence can be
derived from foundation models like CLIP, clas-
sical methods such as the Latent Outlier Fac-
tor or domain-specific knowledge. We validate
its effectiveness through extensive experiments
across eight image-based AD datasets, twenty-
seven tabular datasets, and a real-world industrial
dataset. Our code is publicly available1.

1. Introduction
Anomaly detection (AD) is the basis of many critical ap-
plications, including cybersecurity (Xiao et al., 2024; Li
et al., 2023a), and industrial maintenance (Schwarz et al.,
2025; Patra et al., 2024). By enabling the identification
of abnormalities, potential threats, or critical system fail-
ures, AD contributes to the robustness and safety of real-
world systems. Despite its significance, AD remains a chal-
lenging task due to the inherent difficulty in characteris-
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ing anomalous behaviours and the lack of prior knowledge
about anomalous samples (Ruff et al., 2021). Thus, AD
is commonly approached as an unsupervised representa-
tion learning problem without access to labelled anomalies
(Batzner et al., 2024; You et al., 2022).

A standard approach in unsupervised AD involves train-
ing a model to learn a “compact” representation of the nor-
mal samples from a training dataset under the assumption
that the training data is “clean”, i.e. contains only normal
samples (Ruff et al., 2021). Then, anomalies are identified
as deviations from this learned normality. One-class (OC)
classification methods (Ruff et al., 2018; Tax and Duin,
2004) learn a decision boundary that encompasses all the
normal samples. In contrast, density-based methods (Gu-
dovskiy et al., 2022; Yu et al., 2021) learn the probabil-
ity distribution of normal samples. Furthermore, memory
bank-based approaches (Roth et al., 2022) store the features
corresponding to normal samples in a memory bank.

However, real-world datasets are often contaminated with
undetected anomalies (Hien et al., 2023; Qiu et al., 2022),
which leads to biased AD models that struggle to reli-
ably distinguish between normal and anomalous instances.
Thus, we consider a more realistic setting where the train-
ing data may be contaminated with anomalies. Existing
approaches to handle contamination in the unsupervised
setting primarily follow two strategies. The first employs
an auxiliary OC classifier to filter out suspected anomalies
(Yoon et al., 2022; Jiang et al., 2022), while the second
modifies the training pipeline to enhance robustness against
contamination (Qiu et al., 2022; Eduardo et al., 2020). Al-
though effective, these methods rely on prior knowledge of
the proportion of anomalies in the training data, i.e. the
contamination ratio, which is typically unknown. Also,
such methods are often computationally expensive. In the
semi-supervised setting, methods leverage additional la-
belled datasets containing normal and anomalous samples
(Hien et al., 2024; Ruff et al., 2020). However, their impact
diminishes when the anomalies encountered during train-
ing do not resemble real anomalies (Perini et al., 2025).

In this work, we aim to mitigate the possible adverse ef-
fects of data contamination on the performance of unsu-
pervised AD models (Bouman et al., 2024). Specifically,
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we address the challenging setting where the training data,
model pipeline, and model parameters cannot be accessed
or modified. This scenario reflects the growing trend of
deploying proprietary AD models in real-world applica-
tions, where access to internal model components is often
restricted. Even when fine-tuning is permitted, it is not
only computationally intensive but also unreliable due to
the absence of guaranteed clean training data, as anoma-
lies are inherently unknown a priori. This setup aligns with
preparation-agnostic, inference-time adaptation strategies
(Karmanov et al., 2024; Zhang et al., 2023) within the
broader class of test-time adaptation (TTA) methods (Xiao
and Snoek, 2024), which remain largely unexplored in the
context of AD. To address this gap, we make three key con-
tributions: (i) We introduce Evidence-based Post-Hoc Ad-
justment Framework for Anomaly Detection (EPHAD), a
simple yet effective test-time adaptation framework for un-
supervised AD models trained on contaminated datasets;
(ii) EPHAD combines the prior captured by the AD model
trained on the contaminated dataset with the output of
an auxiliary evidence function at test-time using exponen-
tial tilting; (iii) Extensive experiments across eight image-
based AD, twenty-seven tabular datasets, and a real-world
industrial dataset demonstrate the effectiveness of EPHAD.

2. Background
Let X ∈ X and Y ∈ Y denote a pair of random vari-
ables following a joint probability distribution PX,Y over
the space X × Y , where X = Rd and Y := {−1,+1}.
Here, the label Y = +1 and Y = −1 correspond to
the normal and anomalous classes, respectively. The con-
ditional distribution of normal samples is P+

X with PDF
f+
X(x) at X = x. Similarly, the conditional distribution

of anomalous samples is P−
X , with PDF f−

X (x). The train-
ing dataset without contamination is D+

train := {xi}mi=1,

where xi
iid∼ P+

X . The test dataset is Dtest := {(xi, yi)}ni=1,

where (xi, yi)
iid∼ PX,Y .

Density-based Anomaly Detection. An anomaly can be
defined as “an observation that deviates significantly from
some concept of normality” (Ruff et al., 2021). This def-
inition comprises two key aspects: the concept of nor-
mality and the significant deviation from it, which can
be formalised using a probabilistic framework. The con-
cept of normality is defined as the probability distribu-
tion of normal samples P+

X . To formalise this further,
we adopt the concentration assumption (Steinwart et al.,
2005), which posits that although the data space X is
unbounded, the high-density regions of P+

X are bounded
and concentrated. In contrast, P−

X is assumed to be non-
concentrated (Schölkopf and Smola, 2002), and is often ap-
proximated by a uniform distribution over X (Tax, 2001).
Given the PDF f+

X(x) associated with P+
X , which we re-

fer to as inlier density, a data point x ∈ X is identified
as an anomaly if it deviates substantially from this concept
of normality, i.e., if it resides in a low-probability region
under P+

X . However, since f+
X(x) is typically unknown in

practice, we approximate it using a density estimator.

Score-based Anomaly Detection. Density estima-
tion poses significant challenges, particularly in high-
dimensional spaces or when data availability is limited, and
often incurs substantial computational cost. Fortunately, in
the context of anomaly detection, the goal is typically not
to recover the exact data likelihood but rather to establish a
ranking of data points based on their degree of normality.
This motivates an alternative strategy: learning an anomaly
score function s−(x) : X → R, which directly assigns an
anomaly score to a data point x ∈ X , thereby quantify-
ing its degree of anomalousness (Ruff et al., 2021). Con-
sequently, the inlier score function is defined as s+(x) =
−s−(x), capturing the degree of normality, where higher
values indicate that x is normal. For AD, first, we train
a model to learn the anomaly score function s−(x) using
D+

train. Then, we define the anomaly detector as

gλs
(x) =

{
+1, if s−(x) ≤ λs

−1, if s−(x) > λs,
(1)

where λs ≥ 0 is the threshold (Perini et al., 2023; 2022).
The density-based AD method can also be interpreted as
a specific case of the score-based AD methods where the
anomaly score s−(x) = −ϕ(f+

X(x)) and the inlier score
s+(x) = ϕ(f+

X(x)). Here, ϕ(·) is an order-preserving
transformation typically chosen to be the logarithm.

Data Contamination. For training the AD model, a com-
mon assumption is that the training dataset D+

train consists
solely of i.i.d. samples from the normal data distribution
P+
X , without anomalies. However, this assumption is rarely

satisfied in practice, since anomalies are typically unknown
a priori. As a result, the training dataset is often contami-
nated with undetected anomalies. A more realistic assump-
tion is that the dataset Du

train := {xi}mi=1 comprises of
both normal and anomalous samples drawn from a mixture
distribution Pu

X with density fu
X(x) (Huber and Ronchetti,

2011; Huber, 1992). Let ϵ = P(Y = −1) denote the con-
tamination factor. The data distribution can be written as

Pu
X = ϵP−

X + (1− ϵ)P+
X . (2)

As ϵ increases, the model trained on Du
train becomes in-

creasingly biased (Qiu et al., 2022; Yoon et al., 2022), and
tends to misclassify anomalous samples as normal.

3. EPHAD: An Evidence-based Post-Hoc
Adjustment Framework

We consider the realistic scenario where an AD model has
already been trained on a contaminated dataset Du

train. The
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goal is to adapt the model’s predictions at inference time
to reduce the impact of contamination. To this end, we in-
troduce our Evidence-based Post-Hoc Adjustment Frame-
work for Anomaly Detection (EPHAD), a simple yet effec-
tive method to mitigate the adverse effects of training data
contamination using an auxiliary evidence function at test
time. Here, the auxiliary evidence function T (x) : X → R
quantifies how likely a sample x is to be normal, based on
a domain-specific concept of normality. The function T (x)
should assign higher values to samples deemed more likely
to be normal and can incorporate domain-specific knowl-
edge. As such, EPHAD aligns with preparation-agnostic
TTA methods (Xiao and Snoek, 2024).

Given an AD model trained on the contaminated dataset
Du

train, we denote the anomaly score for a data point x as
s−u (x). Then, we can compute the inlier score as s+u (x) =
−s−u (x). Considering s+u (x) as prior and an auxiliary ev-
idence function T (x), EPHAD computes the revised score
s+c (x) using exponential tilting. It is a technique used to
adjust a PDF by “tilting” it toward a specific outcome. Re-
call that the inlier score is an order-preserving transforma-
tion of the inlier PDF, i.e., s+(x) = ϕ(f+

X(x)) where ϕ
is a transformation function. Thus, given a score-based
AD model that learns s−u (x), tilting increases the relative
scores of the normal samples over the anomalous samples,
steering the model toward an outcome supported by the
evidence function. We first exponentiate the inlier score
s+u (x) = −s−u (x) to ensure non-negativity. Then, we
rescale T (x) with a temperature parameter β and exponen-
tiate it. Finally, the revised inlier score is computed as:

s+c (x) = exp(s+u (x)) exp(T (x)/β). (3)

Consequently, we can rewrite (1) using (3) as:

gλs
(x) =

{
+1, if s+c (x) ≥ λs,

−1, otherwise.
(4)

In doing so, EPHAD enables post-hoc adjustment of AD
models trained on contaminated datasets without requiring
access to the training procedure. Thus, EPHAD offers a
simple, yet effective solution for real-world AD systems.

Application to Density-based Anomaly Detection. Con-
trary to score-based AD models, density-based models di-
rectly learn to approximate the inlier PDF f+

X(x). Con-
sidering the model is trained on the contaminated dataset
Du

train, we denote the learned inlier PDF as fu
X(x) and

compute the revised PDF f c
n(x) using exponential tilting:

f c
X(x) =

fu
X(x) exp(T (x)/β)

Zβ
X

. (5)

Proposition 3.1 provides a condition under which the re-
vised PDF f c

X(x) is closely aligned with the true PDF

f+
X(x) than the contaminated PDF fu

X(x), in terms of Kull-
back–Leibler (KL) divergence.

Proposition 3.1. Let f+
X , fu

X , and f c
X be PDFs over same

domain X . Then the KL divergence between f+
X and f c

X is
strictly less than the divergence between f+

X and fu
X iff

Ex∼P+
X

[
log

exp(T (x)/β)

Zβ
X

]
> 0. (6)

The proof is provided in Appendix A. Thus, we expect
f c
X(x) will result in an improved AD performance com-

pared to using fu
X(x), assuming a well-chosen threshold.

Connection with TTA of generative models using Re-
inforcement Learning (RL) with KL penalties. We
highlight the conceptual connection between the applica-
tion of EPHAD to density-based AD methods and a well-
established TTA approach used in generative models (Mud-
gal et al., 2024; Li et al., 2024). A generative model πθ is
treated as an RL policy and is refined using a reward func-
tion r that encodes the desired evidence or alignment crite-
ria. The model is initially set to a prior π0 and fine-tuned
using a KL-regularised RL objective (Korbak et al., 2022):

JKL-RL(πθ) = Ex∼π0
[r(x)]− β KL(πθ∥π0), (7)

where β is a temperature hyperparameter. It can be shown
that the optimal solution to this objective is given by:

π∗
θ(x) =

π0(x) exp (r(x)/β)

Z
, (8)

where Z is a normalization constant ensuring that π∗
θ is a

valid PDF. Interestingly, this optimal solution is equivalent
to (5) when we set π0(x) = fu

X(x), r(x) = T (x), and
π∗
θ(x) = f c

X(x). This equivalence offers a valuable inter-
pretation of EPHAD as a form of inference-time alignment:
it shifts the prior density fu

X(x) toward regions favoured by
the evidence function T (x) while maintaining consistency
with the prior through KL regularisation.

4. Experiments
We evaluate the effectiveness of EPHAD for unsupervised
AD across a range of datasets, including image datasets
(Section 4.1), tabular datasets (Appendix C.2), and an in-
dustrial use case (Appendix C.3). The evidence functions
used are computed in an unsupervised manner without util-
ising ground-truth labels in the test set Dtest, mitigating the
risk of overfitting. Unless stated otherwise, we use ϵ = 0.1
and β = 0.5. An ablation study on different values of ϵ
and β is presented in Appendix C.5 and on varying number
of test samples n in Appendix C.6. Following prior work
(Roth et al., 2022; Gudovskiy et al., 2022), we provide AU-
ROC averaged across all categories for each dataset.
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Table 1. Performance on AD benchmarking datasets with 10% contamination ratio. Style: AUROC % (± SE). Best in bold.
Non-overlap OverlapMethod

MNIST FMNIST CIFAR10 SVHN RealIAD MVTec MPDD ViSA

CLIP 71.15 95.63 98.63 58.46 65.74 86.34 60.02 74.47
CFLOW 77.24 (± 1.01) 72.87 (± 0.48) 65.47 (± 0.02) 55.09 (± 0.09) 76.42 (± 0.47) 87.58 (± 0.77) 66.69 (± 2.06) 75.71 (± 1.28)

+ EPHAD 78.40 (± 0.81) 92.97 (± 0.19) 97.38 (± 0.01) 55.82 (± 0.06) 71.58 (± 0.17) 87.98 (± 0.12) 65.22 (± 0.93) 78.53 (± 0.27)

DRÆM 71.44 (± 0.29) 76.53 (± 0.18) 63.41 (± 0.26) 51.55 (± 0.07) 67.46 (± 0.21) 70.55 (± 1.97) 62.32 (± 1.96) 69.61 (± 1.57)

+ EPHAD 73.51 (± 0.39) 92.46 (± 0.25) 97.17 (± 0.02) 54.18 (± 0.07) 69.89 (± 0.23) 87.13 (± 0.39) 67.02 (± 0.29) 76.89 (± 0.99)

FastFlow 82.65 (± 0.43) 83.66 (± 0.06) 62.94 (± 0.37) 54.02 (± 0.11) 82.03 (± 0.08) 84.24 (± 1.07) 71.94 (± 0.87) 77.83 (± 0.22)

+ EPHAD 83.20 (± 0.43) 93.49 (± 0.07) 97.34 (± 0.02) 55.07 (± 0.07) 77.22 (± 0.08) 87.68 (± 0.5) 66.84 (± 0.34) 80.29(± 0.07)

PaDiM 87.50 (± 0.23) 86.84 (± 0.06) 62.53 (± 0.4) 55.49 (± 0.28) 80.39 (± 0.35) 77.85 (± 0.43) 36.58 (± 2.58) 73.07 (± 0.27)

+ EPHAD 87.45 (± 0.22) 94.66 (± 0.03) 97.10 (± 0.03) 56.94 (± 0.22) 75.94 (± 0.25) 86.58 (± 0.38) 55.48 (± 0.72) 77.73 (± 0.27)

PatchCore 86.33 (± 0.09) 78.97 (± 0.06) 75.69 (± 0.09) 69.64 (± 0.04) 70.08 (± 0.07) 70.51 (± 0.7) 53.58 (± 0.54) 27.2 (± 0.31)

+ EPHAD 86.36 (± 0.1) 94.73 (± 0.01) 97.74 (± 0.01) 61.31 (± 0.0) 69.76 (± 0.2) 86.45 (± 0.14) 60.58 (± 1.12) 62.94 (± 0.41)

RD 77.33 (± 0.09) 84.11 (± 0.72) 66.29 (± 0.31) 55.54 (± 0.58) 89.13 (± 0.18) 80.08 (± 1.32) 75.08 (± 1.75) 86.33 (± 0.46)

+ EPHAD 78.19 (± 0.28) 95.77 (± 0.03) 98.40 (± 0.0) 57.38 (± 0.14) 69.35 (± 0.26) 85.82 (± 0.31) 62.62 (± 0.27) 77.76 (± 0.19)

ULSAD 90.83 (± 0.08) 88.64 (± 0.13) 72.45 (± 0.18) 64.27 (± 0.22) 89.06 (± 0.01) 91.93 (± 0.15) 77.67 (± 0.42) 86.58 (± 0.13)

+ EPHAD 90.41 (± 0.06) 95.03 (± 0.07) 97.90 (± 0.02) 58.17 (± 0.18) 80.58 (± 0.06) 91.31 (± 0.06) 72.79 (± 1.05) 85.82 (± 0.1)

4.1. Experiments on Image Datasets

Benchmark Datasets. We evaluate on sensory datasets
and semantic anomaly detection (AD) using eight well-
established benchmarks: MVTecAD (Bergmann et al.,
2019), MPDD (Jezek et al., 2021), ViSA (Zou et al., 2022),
RealIAD (Wang et al., 2024), CIFAR-10, Fashion-MNIST,
MNIST, and SVHN. For MVTecAD, ViSA, and MPDD,
we adopt the “overlap” setting, introducing ϵ% contamina-
tion into the training set by randomly selecting anomalous
samples from the test set while retaining them in the test set
(Jiang et al., 2022). For the remaining datasets, we follow
the “non-overlapping” setting, excluding anomalous sam-
ples used for contamination simulation from the test set.
Additional details are provided in Appendix B.1.

Baseline AD Methods. We evaluate the performance
of several state-of-the-art unsupervised anomaly detection
(AD) methods, including PatchCore (Roth et al., 2022),
PaDim (Defard et al., 2021), CFLOW (Gudovskiy et al.,
2022), FastFLOW (Yu et al., 2021), DRÆM (Zavrtanik
et al., 2021), Reverse Distillation (RD) (Deng and Li,
2022), and ULSAD (Patra and Ben Taieb, 2024), both with
and without the integration of EPHAD.

Evidence Function. For the experiments, we use Con-
trastive Language-Image Pre-training (CLIP) (Radford
et al., 2021) as the evidence function following (Jeong
et al., 2023). Additional details are in Appendix B.2.1.

Results. In Table 1, we observe that while zero-shot AD
using CLIP performs well on real-world image datasets
such as CIFAR10 and FMNIST, its effectiveness de-
clines on domain-specific datasets like MVTec, MPDD,
and ViSA, where existing AD methods, such as ULSAD,
achieve superior performance. However, when these AD
methods are used within the EPHAD framework with CLIP
as an evidence function in a post-hoc manner, their perfor-
mance improves in most cases. Notably, even when CLIP-

based AD alone does not achieve the best results, as seen
in SVHN, incorporating it within EPHAD still leads to sig-
nificant improvements. For instance, CFLOW, PaDiM, and
RD exhibit enhanced performance after using EPHAD, sur-
passing both CLIP and the standalone AD methods. This
highlights the effectiveness of EPHAD in refining anomaly
scores for better AD performance. In some cases, such as
ULSAD on MNIST, we observe a decline in performance
when integrating EPHAD compared to the standalone AD
method. This typically occurs when the AD method sub-
stantially outperforms the evidence function. In such sce-
narios, overly relying on the evidence can diminish over-
all performance. To mitigate this effect, careful tuning of
β enables the framework to adapt effectively to different
datasets, AD methods, and evidence functions. A detailed
analysis of the impact of varying β values is presented in
Appendix C.5. Additionally, an unsupervised approach for
selecting the optimal β value is presented in Appendix C.7.

5. Conclusion
Unsupervised AD methods typically assume anomaly-free
training data, yet real-world datasets often contain unde-
tected or mislabeled anomalies, leading to performance
degradation. Existing approaches to address contamina-
tion often require access to model parameters, training data,
or the training pipeline, limiting their practicality in real-
world deployments. In this work, we introduce EPHAD,
a simple, post-hoc adjustment framework that refines the
outputs of any AD method trained on contaminated data
by incorporating evidence collected at inference time. Ex-
periments demonstrate the effectiveness of EPHAD across
diverse scenarios. Further exploring the interplay between
datasets, AD methods, and evidence functions remains an
open direction for future work. Additionally, ablation stud-
ies analyse the impact of hyperparameters and varying con-
tamination levels, highlighting the robustness of EPHAD.
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A. Proof of Proposition 3.1
Proof. From (2), we have

fu
X(x) = ϵf−

X (x) + (1− ϵ)f+
X(x).

Additionally, from (5), we have

f c
X(x) =

fu
X(x) exp(T (x)/β)

Zβ
X

Then,

KL(f+
X∥f c

X) = Ex∼P+
X

[
log

f+
X(x)

f c
X(x)

]
(9)

= Ex∼P+
X

[
log f+

X(x)− log f c
X(x)

]
(10)

= Ex∼P+
X

[
log f+

X(x)− log
fu
X(x) exp(T (x)/β)

Zβ
X

]
(11)

= Ex∼P+
X

[
log f+

X(x)− log fu
X(x) exp(T (x)/β) + logZβ

X

]
(12)

= Ex∼P+
X

[
log f+

X(x)− log fu
X(x)− log exp(T (x)/β) + logZβ

X

]
(13)

= KL(f+
X∥fu

X)− Ex∼P+
X

[
log exp(T (x)/β)− logZβ

X

]
(14)

= KL(f+
X∥fu

X)− Ex∼P+
X

[
log

exp(T (x)/β)

Zβ
X

]
(15)

We are interested in increasing the alignment between f+
X and f c

X . As KL-divergence is always non-negative if the expec-
tation term is positive, it results in KL(f+

X∥f c
X) ≤ KL(f+

X∥fu
X). Thus, we want the following condition to hold:

Ex∼P+
X

[
log

exp(T (x)/β)

Zβ
X

]
≥ 0. (16)

B. Additional Implementation Details
B.1. Benchmark Datasets

For sensory AD in industrial settings, we use three widely recognised benchmark datasets. MVTecAD (Bergmann et al.,
2019) comprises images from 15 categories (10 objects and 5 textures) with 3629 normal training images and 1258 anoma-
lous and 467 normal test images, each containing pixel-level annotations of defects. MPDD (Jezek et al., 2021) targets
metal part defects under varying conditions, offering 888 training images and test datasets consisting of 176 normal and 282
anomalous images across 6 metal part categories. ViSA (Zou et al., 2022) provides 10821 high-resolution images (9621
normal and 1200 anomalous) spanning 12 categories, capturing a range of anomalies such as scratches, cracks, missing
parts, and misplacements. Each defect type is represented by 15–20 images, and some images feature multiple defects.
RealIAD (Wang et al., 2024) is a large-scale industrial AD dataset comprising ∼ 150k images across 30 categories and
having various types of defects such as scratches, dirt and missing parts. For experiments with RealIAD, we use the train-
ing split with 10% contamination and the test split provided by the authors. For the semantic datasets, using the one-vs-rest
protocol, we create k AD tasks for each dataset, where k is the number of classes. In each task, one class is designated as
normal, while the remaining classes are treated as anomalous. Across both sensory and semantic AD, the training datasets
consist of a mixture of normal samples and a fraction ϵ of anomalous samples, reflecting realistic contamination scenarios.
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B.2. Computing Evidence Functions

EPHAD relies on an evidence function T (x), computed during inference, to refine anomaly scores by assigning higher val-
ues to samples from P+

X than those from P−
X . In this section, we introduce domain-agnostic evidence functions applicable

to image (Section B.2.1) and tabular datasets (Section B.2.2). While these functions are commonly used as standalone
methods for anomaly detection, their role as evidence functions is novel and complementary to our framework. By oper-
ating in a transductive setting, they refine the outputs of an AD model initially trained in an inductive setting. Moreover,
as shown in Section 4, using these evidence functions solely as anomaly scores does not always yield strong AD perfor-
mance. However, when integrated into EPHAD, they significantly enhance the performance of a pre-trained model. Finally,
the choice of an T (x) is not restricted to AD methods and can be adapted to incorporate domain-specific knowledge for
improved effectiveness.

B.2.1. EVIDENCE FOR IMAGE DATASETS

For the evidence function in image-based AD, we propose using Contrastive Language-Image Pre-training (CLIP) (Radford
et al., 2021), a robust large-scale framework that learns joint vision-language representations from web-collected image-
text pairs. While CLIP has been explored in prior work as a zero-shot AD method (Jeong et al., 2023; Zhou et al.,
2024), its performance varies across different datasets. Although CLIP excels in detecting anomalies in real-world image
datasets such as CIFAR10, it faces significant challenges when applied to domain-specific datasets, particularly those used
for industrial inspection, like MVTec. This limitation stems from the lack of domain-specific knowledge in CLIP’s pre-
training. In this section, we describe how CLIP is integrated into EPHAD as an evidence function T (x), leveraging its
strengths while mitigating its limitations in specialized domains.

Given a dataset D := {(xj , tj)}nj=1, CLIP trains an image encoder ei and a text encoder et using contrastive learning
(Chen et al., 2020), maximizing the cosine similarity between ei(xj) and et(tj) for all (xj , tj) ∈ D. For an input image x,
CLIP performs zero-shot classification (Radford et al., 2021) by computing a k-way categorical distribution over a set of
candidate class texts C = {c1, . . . , ck}

P(C = cj | x; c ∈ C) := exp (⟨ei(x), et(cj)⟩/γ)∑
s∈C exp (⟨ei(x), et(s)⟩/γ)

,

where C ∈ C is a random variable, ⟨·, ·⟩ denotes the cosine similarity, and γ is a temperature parameter that controls the
sharpness of the distribution. Pairing class labels c ∈ C with prompt templates (e.g., a photo of a [c]) improves
classification accuracy, and aggregating embeddings from multiple prompt variations (e.g., a cropped photo of a
[c]) further enhances performance.

Building on Jeong et al. (2023), we use CLIP as evidence function T (x) in EPHAD. We start by defining two lists of
textual prompt templates, TN = {n1, · · · , nk} and TA = {a1, · · · , ak}, corresponding to normal and anomalous classes,
respectively. The list of prompts is provided in Table 2. These templates are dataset-dependent, reflecting subjectivity (e.g.,
“missing wire” as anomalous for cables). For each label, we generate two lists of prompts for normal and anomalous cases
using TN and TA and compute the mean of text embeddings tN and tA. Finally, given an input image x, the evidence T (x)
during inference is computed as:

T (x) :=
exp (⟨ei(x), tA⟩/γ)

exp (⟨ei(x), tN ⟩/γ) + exp (⟨ei(x), tA⟩/γ)
.

On the use of CLIP for computing T (x). CLIP, being a pre-trained model, raises the possibility of overlap between
its pre-training data and the samples encountered during testing. Such overlap could challenge the assumption that test-
time statistics are computed solely on test data during inference, independent of the training datasets. However, Radford
et al. (2021) systematically analyzed the data overlap in CLIP’s pre-training process and demonstrated that removing all
overlapping data results in only a negligible drop in performance. This finding underscores that CLIP’s performance
primarily reflects its ability to generalize rather than leveraging specific training data. Consequently, our experiments with
CLIP focus on evaluating its generalization capabilities, making it applicable to our proposed framework without access to
the training dataset.
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Table 2. Prompts for CLIP where "c" denotes the category.

Semantic AD Sensory AD
Normal Anomalous Normal Anomalous
"c" damaged "c" a photo of the number "c" a photo of something

flawless "c" "c" with flaw

perfect "c" "c" with defect

unblemished "c" "c" with damage

"c" without flaw

"c" without defect

"c" without damage

B.2.2. EVIDENCE FOR TABULAR DATASETS

For tabular datasets, we use the output of two classical unsupervised AD methods as evidence functions T (x), namely,
Local Outlier Factor (LOF) (Breunig et al., 2000) and Isolation Forest (IForest) (Liu et al., 2012).

Local Outlier Factor. To detect anomalies, the local density of a point is compared to that of its k-nearest neighbours.
Specifically, given a dataset D := {xj}nj=1, the k-distance of a point x, denoted as k-distance(x), is defined as the distance
from x to its k-th nearest neighbor.

Based on this, the k-distance neighborhood of x, denoted as Nk(x), consists of all points whose distance from x is at
most k-distance(x). Additionally, the reachability distance of x from a neighbor xi is computed as reach-distk(x, xi) =
max{k-distance(x), d(x, xi)}, where d(x, xi) represents the distance between x and xi.

Then, local reachability density (LRD) of x is computed as

LRDk(x) =

[∑
xi∈Nk(x)

reach-distk(x, xi)

|Nk(x)|

]−1

.

Finally, the LOF-based evidence is computed as

T (x) =

∑
xi∈Nk(x)

LRDk(xi)
LRDk(x)

|Nk(x)|
.

Isolation Forest. Anomalies are identified by recursively partitioning the data using a tree-based method, where features
and split values are selected randomly. IForest operates under the assumption that anomalies are more susceptible to
isolation due to their sparsity and distinctiveness in the feature space. Given D, IForest constructs multiple isolation trees
(ITrees), where each data point x is assigned a depth representing the number of splits required to isolate it, referred to as
the path length. Specifically, the evidence function T (x) is computed as:

T (x) = 2−
E(h(x))

c(n) ,

where h(x) is the path length of x, i.e., the number of edges traversed from the root node to the leaf node where x is
isolated in an ITree. E(h(x)) is the expected path length, i.e., the average path length across multiple ITrees, and c(n) is
the average path length of an unsuccessful search.

B.3. Experimental Setup

For training the base AD methods, we use open-source Anomalib and ADBench libraries for experiments with image and
tabular datasets, respectively. Our decision to rely on these public libraries was intentional, ensuring transparency and
facilitating unbiased comparisons. For the training of each base AD model, we used a single NVIDIA A100 GPU. Then,
we run inference using EPHAD on CPU.
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Figure 1. DeepSVDD trained on 2D synthetic contaminated training data with different configurations: (I) Supervised AD with ground
truth labels for reference, (ii)“Blind” considering all samples as normal, (iii) “Refine” filtering out a fraction of the anomalies, and (iv)
EPHAD updating the “Blind” anomaly detector using evidence computed on test samples during inference.

C. Extended Results
C.1. Experiments on Synthetic Example

We evaluate EPHAD with a toy dataset inspired by Qiu et al. (2022). The dataset is generated using a two-dimensional
mixture model comprising three Gaussian components: c1 := N (µ1,Σ1), c2 := N (µ2,Σ2), c3 := N (µ3,Σ3). Here,
each component follows a Gaussian distribution N (µ,Σ) with mean µ and covariance Σ. Normal samples are drawn
from f+

X(x) = c1, with µ1 = [1, 1]T and Σ1 = 0.07 I2. Anomalous samples are drawn from a mixture distribution
p−X(x) := 0.5c2 + 0.5c3 where µ2 = [−0.25, 2.5]T , µ3 = [−1, 0.5]T and Σ2 = Σ3 = 0.03 I2. Using this setting, we
create a contaminated dataset consisting 100 data points. We compare the baseline DeepSVDD (Ruff et al., 2018) across
three configurations as illustrated in Figure 1: (i) “Blind”, (ii) “Refine”, and (iii) with EPHAD. “Blind” treats all samples
as normal while “Refine” iteratively filters out suspected anomalies during training.

For the experiments, we use DeepSVDD with a one-layer radial basis function (RBF) network. The hidden layer comprises
three neurons, with their centres fixed at the mean of each Gaussian component, while the scales are optimised during
training. The RBF network outputs a 1D scalar obtained as a linear combination of the outputs from the hidden layer. The
centre is initialised randomly and made trainable, with an added bias term in the final layer. Although these modifications
are not recommended by Ruff et al. (2018) to avoid collapse to a trivial solution, Qiu et al. (2022) observed that these
changes enhance model flexibility and convergence. Following this, we train DeepSVDD using the Adam optimiser with
a learning rate of 0.01, 200 epochs, and a mini-batch size of 25. As an evidence function in EPHAD, LOF (Breunig et al.,
2000) is computed on test samples during inference. The results in Figure 1 demonstrate that the “Blind” configuration
mistakenly considers all anomalies as normal. The “Refine” configuration improves performance by filtering out a subset
of anomalies. Finally, EPHAD establishes a clearer boundary around normal samples.

C.2. Experiments on Tabular Datasets

Benchmark Datasets. We evaluate our proposed framework on 27 classical benchmark datasets from ADBench (Han
et al., 2022). The classical datasets include datasets from different domains such as healthcare (e.g., antithyroid, cardio),
astronautics (e.g., Landsat, satellite), and finance (fraud). Following Qiu et al. (2022), we preprocess, split the dataset in
the train and test set and simulate contamination using synthetic anomalies created by adding zero-mean Gaussian noise
with a large variance to the anomalous sample from the test set.

Baseline AD Methods. We compare EPHAD against IFOREST (Liu et al., 2012), LOF (Breunig et al., 2000), DeepSVDD
(Ruff et al., 2018), ECOD (Li et al., 2023b) and COPOD (Li et al., 2020) using ADBench (Han et al., 2022).

Evidence Function. We use the output of Local Outlier Factor (LOF) (Breunig et al., 2000) and Isolation Forest (IForest)
(Liu et al., 2012). Additional details provided in the Appendix B.2.2.

Results. The experimental results for the 27 benchmarking datasets are presented in Table 3 and 4. We observe that most
AD methods benefit from our post-hoc adjustment framework EPHAD, often achieving performance improvements that
surpass both the evidence function and the AD method in isolation. For example, COPOD, when updated with LOF as the
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Table 3. Performance on tabular datasets with 10% contamination ratio and LOF as evidence function. Style: AUROC % (± SE). Best
in bold. † represents transductive inference.

COPOD DeepSVDD ECOD IForest LOF
Dataset LOF†

Blind + EPHAD Blind + EPHAD Blind + EPHAD Blind + EPHAD Blind + EPHAD

aloi 72.64 (± 0.1) 51.46 (± 0.05) 52.55 (± 0.06) 54.06 (± 0.54) 64.36 (± 0.21) 53.14 (± 0.03) 54.33 (± 0.05) 54.05 (± 0.21) 71.75 (± 0.08) 73.57 (± 0.1) 73.62 (± 0.07)

annthyroid 68.53 (± 0.12) 73.45 (± 0.08) 73.82 (± 0.08) 62.69 (± 3.33) 67.00 (± 2.15) 76.05 (± 0.11) 76.31 (± 0.11) 71.39 (± 0.34) 70.41 (± 0.13) 72.12 (± 0.57) 71.06 (± 0.24)

backdoor 70.43 (± 0.08) 75.06 (± 0.07) 78.88 (± 0.08) 78.34 (± 1.21) 76.48 (± 0.57) 83.00 (± 0.09) 85.48 (± 0.08) 51.29 (± 1.29) 70.13 (± 0.12) 46.65 (± 0.26) 69.11 (± 0.1)

breastw 46.31 (± 0.92) 99.46 (± 0.06) 98.52 (± 0.14) 98.65 (± 0.05) 95.13 (± 0.97) 99.01 (± 0.04) 97.44 (± 0.03) 99.46 (± 0.04) 64.05 (± 1.17) 73.39 (± 1.35) 62.4 (± 1.25)

celeba 41.45 (± 0.32) 72.09 (± 0.01) 61.86 (± 0.1) 67.51 (± 3.07) 55.60 (± 2.13) 73.99 (± 0.01) 63.2 (± 0.09) 40.09 (± 0.83) 40.32 (± 0.23) 42.97 (± 0.23) 40.52 (± 0.38)

cover 52.12 (± 0.1) 78.70 (± 0.03) 79.01 (± 0.02) 75.11 (± 11.37) 75.74 (± 11.06) 85.34 (± 0.02) 85.45 (± 0.02) 72.59 (± 1.59) 63.64 (± 0.92) 22.44 (± 0.1) 44.20 (± 0.07)

fault 55.00 (± 0.53) 45.69 (± 0.58) 45.66 (± 0.57) 47.34 (± 0.99) 48.59 (± 0.99) 47.00 (± 0.4) 46.87 (± 0.4) 58.08 (± 0.94) 55.92 (± 0.68) 64.41 (± 1.35) 59.93 (± 0.37)

fraud 45.75 (± 0.13) 94.39 (± 0.0) 94.24 (± 0.0) 89.98 (± 0.97) 85.1 (± 0.66) 93.86 (± 0.0) 93.62 (± 0.01) 92.95 (± 0.29) 61.88 (± 0.49) 33.92 (± 0.34) 45.26 (± 0.16)

glass 77.52 (± 0.93) 76.11 (± 0.77) 79.45 (± 0.95) 64.52 (± 6.87) 80.94 (± 3.31) 67.65 (± 0.44) 72.59 (± 0.61) 78.50 (± 1.47) 79.12 (± 1.01) 71.79 (± 1.08) 76.40 (± 0.68)

http 37.65 (± 0.09) 94.91 (± 0.01) 90.26 (± 0.04) 99.17 (± 0.08) 94.97 (± 0.2) 92.35 (± 0.02) 87.88 (± 0.04) 96.82 (± 0.37) 69.51 (± 0.62) 17.85 (± 2.03) 24.61 (± 0.89)

ionosphere 82.43 (± 0.16) 79.42 (± 1.03) 81.67 (± 0.95) 83.09 (± 0.57) 84.90 (± 0.17) 73.04 (± 0.84) 74.34 (± 0.85) 89.58 (± 1.57) 83.50 (± 0.16) 94.64 (± 0.52) 89.74 (± 0.55)

letter 83.15 (± 0.73) 56.71 (± 0.12) 57.62 (± 0.09) 50.51 (± 2.54) 61.26 (± 2.42) 56.41 (± 0.29) 57.17 (± 0.29) 59.84 (± 0.64) 81.53 (± 0.59) 85.74 (± 0.54) 84.84 (± 0.39)

lymphography 99.44 (± 0.26) 99.52 (± 0.22) 99.76 (± 0.19) 98.57 (± 0.74) 99.53 (± 0.19) 99.60 (± 0.23) 99.76 (± 0.19) 99.76 (± 0.19) 99.52 (± 0.19) 98.57 (± 0.59) 99.36 (± 0.32)

mammography 67.29 (± 0.19) 89.29 (± 0.05) 89.28 (± 0.05) 87.23 (± 0.95) 87.29 (± 1.22) 89.38 (± 0.06) 89.26 (± 0.05) 80.44 (± 0.29) 73.93 (± 0.04) 69.70 (± 0.36) 72.29 (± 0.18)

mnist 59.63 (± 0.19) 75.87 (± 0.03) 75.89 (± 0.03) 74.26 (± 4.38) 73.93 (± 4.24) 72.62 (± 0.05) 72.64 (± 0.05) 71.27 (± 0.7) 62.75 (± 0.16) 94.55 (± 0.36) 83.26 (± 0.45)

musk 39.44 (± 0.57) 91.95 (± 0.32) 91.91 (± 0.33) 88.57 (± 5.4) 87.17 (± 5.87) 71.84 (± 0.34) 71.78 (± 0.34) 89.39 (± 1.88) 57.06 (± 2.03) 20.17 (± 0.48) 32.93 (± 0.04)

optdigits 59.58 (± 0.26) 62.26 (± 0.24) 62.49 (± 0.23) 40.01 (± 10.2) 46.77 (± 8.53) 54.04 (± 0.21) 54.36 (± 0.21) 40.87 (± 4.5) 56.80 (± 0.68) 18.45 (± 0.59) 50.59 (± 0.07)

pendigits 47.21 (± 0.12) 88.44 (± 0.2) 88.38 (± 0.2) 74.87 (± 9.91) 72.68 (± 8.72) 90.63 (± 0.17) 90.65 (± 0.17) 81.86 (± 1.48) 55.56 (± 0.98) 14.87 (± 0.18) 37.64 (± 0.13)

satellite 52.90 (± 0.31) 64.33 (± 0.25) 64.40 (± 0.25) 60.59 (± 1.77) 62.63 (± 1.38) 57.57 (± 0.16) 57.61 (± 0.16) 76.31 (± 0.7) 63.85 (± 0.4) 61.01 (± 0.29) 66.72 (± 0.28)

satimage-2 52.80 (± 0.15) 97.03 (± 0.06) 97.20(± 0.06) 92.65 (± 0.46) 96.16 (± 0.31) 94.21 (± 0.03) 94.39 (± 0.02) 98.91 (± 0.09) 70.75 (± 0.44) 24.52 (± 0.87) 47.14 (± 0.17)

shuttle 55.54 (± 0.11) 99.26 (± 0.0) 99.19 (± 0.0) 97.83 (± 0.91) 97.78 (± 0.79) 98.82 (± 0.01) 98.64 (± 0.01) 99.57 (± 0.02) 81.72 (± 0.27) 99.21 (± 0.01) 99.69 (± 0.02)

smtp 89.77 (± 0.55) 79.64 (± 0.01) 80.56 (± 0.12) 84.05 (± 0.57) 86.10 (± 0.5) 87.98 (± 0.02) 88.28 (± 0.09) 89.27 (± 0.88) 89.80 (± 0.5) 43.01 (± 1.57) 89.82 (± 0.27)

thyroid 75.91 (± 0.79) 88.45 (± 0.35) 88.71 (± 0.31) 86.73 (± 3.72) 88.33 (± 3.15) 94.91 (± 0.14) 94.85 (± 0.14) 93.67 (± 0.27) 83.42 (± 0.29) 73.59 (± 1.69) 77.10 (± 0.53)

vowels 89.10 (± 0.67) 56.10 (± 0.32) 58.87 (± 0.34) 64.47 (± 2.55) 76.61 (± 1.24) 54.29 (± 0.06) 56.82 (± 0.14) 66.01 (± 0.57) 88.59 (± 0.65) 93.04 (± 0.54) 91.30 (± 0.1)

wilt 64.63 (± 0.72) 33.45 (± 0.11) 35.55 (± 0.1) 35.79 (± 1.97) 46.44 (± 1.4) 38.06 (± 0.13) 39.80 (± 0.15) 42.92 (± 1.11) 61.30 (± 0.81) 81.09 (± 0.41) 73.37 (± 0.3)

wine 97.57 (± 1.46) 80.51 (± 1.36) 86.78 (± 1.96) 82.26 (± 2.29) 92.94 (± 1.74) 67.12 (± 2.04) 74.97 (± 2.88) 80.40 (± 3.42) 97.51 (± 1.51) 99.94 (± 0.05) 99.94 (± 0.05)

evidence function, shows this behaviour. Additionally, as seen in the image-based experiments, performance degradation
in certain cases arises when the framework places excessive emphasis on an evidence function that is substantially weaker
than the AD method. However, as previously discussed, this limitation can be mitigated by appropriately tuning β.

C.3. Experiments on Industrial Use Case

Concentrated Solar Power (CSP) Plant Dataset. For the industrial setting, we utilise the simulated dataset introduced by
Patra et al. (2024), which is generated by training a variational autoencoder on real-world data collected from an operational
CSP plant. The dataset consists of thermal images of solar panels captured using infrared (IR) cameras, distinguishing it
from the semantic and sensory anomaly datasets, as the images lack semantic structure and do not depict specific objects.

Baseline AD Method. We evaluate the performance of the forecasting-based anomaly detection method ForecastAD,
as proposed by the original authors, both with and without the integration of EPHAD. All experiments are conducted using
the original implementation provided by the authors.

Table 5. Performance on CSP plant dataset.

Setting Method AUROC (± SE)

Evidence Rule-based (R1, R2) 69.46 (± 0.0)

Clean ForecastAD 94.91 (±0.09)

Contaminated ForecastAD 90.45 (± 0.8)

(ϵ = 0.1) + EPHAD 93.51 (± 0.45)

Rule-based Evidence. To compute evidence, we utilise two of
the four rules proposed by Patra et al. (2024) that indicate nor-
mal operational behaviour of the CSP plant. The first rule (R1)
is based on the difference between consecutive images. Un-
der normal conditions, the plant’s temperature is expected to
remain relatively stable; therefore, substantial deviations from
one image to the next suggest potential anomalies. To quantify
this, pixel-wise squared differences are computed between ev-
ery pair of consecutive images, and the 95th percentile of these
differences is extracted as the representative evidence for each pair. The second rule (R2) involves the difference from the
average daily temperature. Here, samples with average temperatures significantly diverging from the typical daily average
could indicate anomalous behaviour. For this, the mean temperature of each day is first determined, and then the absolute
difference between each image’s average temperature and that day’s mean is computed to serve as the evidence.

Results. The results presented in Table 5 underscore the effectiveness and adaptability of our approach. Under a 10%
contamination setting, the baseline method ForecastAD experiences a performance drop of approximately 5%. However,
by incorporating domain-specific rules R1 and R2 as sources of evidence using EPHAD, the performance nearly matches

12



Table 4. Performance on tabular datasets with 10% contamination ratio and IForest as evidence function. Style: AUROC % (± SE).
Best in bold. † represents transductive inference.

COPOD DeepSVDD ECOD IForest LOF
Dataset IForest†

Blind + EPHAD Blind + EPHAD Blind + EPHAD Blind + EPHAD Blind + EPHAD

aloi 54.18 (± 0.31) 51.46 (± 0.05) 51.48 (± 0.04) 54.06 (± 0.54) 54.43 (± 0.51) 53.14 (± 0.03) 53.16 (± 0.03) 54.05 (± 0.21) 54.26 (± 0.22) 73.57 (± 0.1) 69.30 (± 0.18)

annthyroid 78.62 (± 1.01) 73.45 (± 0.08) 73.85 (± 0.05) 62.69 (± 3.33) 66.63 (± 2.19) 76.05 (± 0.11) 76.20 (± 0.09) 71.39 (± 0.34) 76.91 (± 0.88) 72.12 (± 0.57) 76.67 (± 0.39)

backdoor 67.83 (± 1.69) 75.06 (± 0.07) 75.06 (± 0.06) 78.34 (± 1.21) 81.43 (± 0.72) 83.00 (± 0.09) 82.95 (± 0.09) 51.29 (± 1.29) 66.48 (± 1.43) 46.65 (± 0.26) 66.23 (± 1.04)

breastw 97.97 (± 0.14) 99.46 (± 0.06) 99.46 (± 0.05) 98.65 (± 0.05) 98.96 (± 0.04) 99.01 (± 0.04) 99.07 (± 0.04) 99.46 (± 0.04) 98.98 (± 0.09) 73.39 (± 1.35) 81.16 (± 1.08)

celeba 66.62 (± 1.04) 72.09 (± 0.01) 72.00 (± 0.01) 67.51 (± 3.07) 68.20 (± 2.59) 73.99 (± 0.01) 73.87 (± 0.01) 40.09 (± 0.83) 60.55 (± 1.07) 42.97 (± 0.23) 49.73 (± 0.63)

cover 86.11 (± 1.6) 78.70 (± 0.03) 79.01 (± 0.09) 75.11 (± 11.37) 77.54 (± 9.82) 85.34 (± 0.02) 85.44 (± 0.06) 72.59 (± 1.59) 82.94 (± 1.71) 22.44 (± 0.1) 76.71 (± 2.42)

fault 52.02 (± 0.18) 45.69 (± 0.58) 45.73 (± 0.58) 47.34 (± 0.99) 47.89 (± 0.94) 47.00 (± 0.4) 47.04 (± 0.39) 58.08 (± 0.94) 53.76 (± 0.41) 64.41 (± 1.35) 58.97 (± 0.96)

fraud 94.87 (± 0.11) 94.39 (± 0.0) 94.40 (± 0.0) 89.98 (± 0.97) 92.26 (± 0.5) 93.86 (± 0.0) 93.87 (± 0.01) 92.95 (± 0.29) 94.60 (± 0.08) 33.92 (± 0.34) 85.94 (± 0.34)

glass 77.60 (± 1.77) 76.11 (± 0.77) 76.29 (± 0.8) 64.52 (± 6.87) 69.28 (± 5.85) 67.65 (± 0.44) 68.26 (± 0.52) 78.50 (± 1.47) 77.85 (± 1.64) 71.79 (± 1.08) 81.23 (± 0.95)

http 99.99 (± 0.0) 94.91 (± 0.01) 96.84 (± 0.05) 99.17 (± 0.08) 99.24 (± 0.05) 92.35 (± 0.02) 94.49 (± 0.07) 96.82 (± 0.37) 99.63 (± 0.02) 17.85 (± 2.03) 94.04 (± 0.05)

ionosphere 81.80 (± 0.28) 79.42 (± 1.03) 79.49 (± 1.0) 83.09 (± 0.57) 83.57 (± 0.62) 73.04 (± 0.84) 73.21 (± 0.85) 89.58 (± 1.57) 85.24 (± 0.63) 94.64 (± 0.52) 94.23 (± 0.68)

letter 61.76 (± 0.26) 56.71 (± 0.12) 56.76 (± 0.12) 50.51 (± 2.54) 52.37 (± 2.32) 56.41 (± 0.29) 56.47 (± 0.29) 59.84 (± 0.64) 61.35 (± 0.32) 85.74 (± 0.54) 80.36 (± 0.32)

lymphography 99.92 (± 0.07) 99.52 (± 0.22) 99.52 (± 0.22) 98.57 (± 0.74) 99.28 (± 0.41) 99.60 (± 0.23) 99.68 (± 0.17) 99.76 (± 0.19) 99.84 (± 0.13) 98.57 (± 0.59) 99.68 (± 0.26)

mammography 83.98 (± 0.32) 89.29 (± 0.05) 89.22 (± 0.04) 87.23 (± 0.95) 87.76 (± 0.85) 89.38 (± 0.06) 89.24 (± 0.04) 80.44 (± 0.29) 83.14 (± 0.17) 69.70 (± 0.36) 83.30 (± 0.15)

mnist 75.50 (± 0.08) 75.87 (± 0.03) 75.88 (± 0.03) 74.26 (± 4.38) 76.20 (± 3.66) 72.62 (± 0.05) 72.65 (± 0.05) 71.27 (± 0.7) 74.86 (± 0.18) 94.55 (± 0.36) 91.46 (± 0.39)

musk 99.29 (± 0.33) 91.95 (± 0.32) 92.00 (± 0.32) 88.57 (± 5.4) 91.39 (± 4.15) 71.84 (± 0.34) 71.92 (± 0.35) 89.39 (± 1.88) 98.74 (± 0.21) 20.17 (± 0.48) 89.22 (± 2.5)

optdigits 58.65 (± 3.55) 62.26 (± 0.24) 62.25 (± 0.26) 40.01 (± 10.2) 42.56 (± 9.28) 54.04 (± 0.21) 54.09 (± 0.24) 40.87 (± 4.5) 53.81 (± 1.83) 18.45 (± 0.59) 38.72 (± 2.67)

pendigits 92.04 (± 0.23) 88.44 (± 0.2) 88.58 (± 0.21) 74.87 (± 9.91) 79.77 (± 8.09) 90.63 (± 0.17) 90.73 (± 0.18) 81.86 (± 1.48) 90.40 (± 0.11) 14.87 (± 0.18) 68.81 (± 1.12)

satellite 64.44 (± 0.57) 64.33 (± 0.25) 64.33 (± 0.25) 60.59 (± 1.77) 60.84 (± 1.49) 57.57 (± 0.16) 57.60 (± 0.16) 76.31 (± 0.7) 68.34 (± 0.51) 61.01 (± 0.29) 72.19 (± 0.45)

satimage-2 99.43 (± 0.07) 97.03 (± 0.06) 97.06 (± 0.06) 92.65 (± 0.46) 95.23 (± 0.06) 94.21 (± 0.03) 94.27 (± 0.03) 98.91 (± 0.09) 99.41 (± 0.06) 24.52 (± 0.87) 92.79 (± 0.16)

shuttle 98.97 (± 0.08) 99.26 (± 0.0) 99.28 (± 0.01) 97.83 (± 0.91) 98.30 (± 0.78) 98.82 (± 0.01) 98.85 (± 0.0) 99.57 (± 0.02) 99.46 (± 0.04) 99.21 (± 0.01) 99.89 (± 0.01)

smtp 90.95 (± 0.28) 79.64 (± 0.01) 81.14 (± 0.06) 84.05 (± 0.57) 87.46 (± 0.73) 87.98 (± 0.02) 88.41 (± 0.04) 89.27 (± 0.88) 90.78 (± 0.3) 43.01 (± 1.57) 88.96 (± 0.35)

thyroid 96.65 (± 0.26) 88.45 (± 0.35) 89.21 (± 0.32) 86.73 (± 3.72) 89.21 (± 2.86) 94.91 (± 0.14) 95.06 (± 0.15) 93.67 (± 0.27) 96.02 (± 0.18) 73.59 (± 1.69) 93.41 (± 0.25)

vowels 72.73 (± 0.8) 56.10 (± 0.32) 56.50 (± 0.31) 64.47 (± 2.55) 66.27 (± 2.37) 54.29 (± 0.06) 54.65 (± 0.06) 66.01 (± 0.57) 71.08 (± 0.84) 93.04 (± 0.54) 91.68 (± 0.34)

wilt 42.57 (± 1.63) 33.45 (± 0.11) 33.70 (± 0.17) 35.79 (± 1.97) 36.43 (± 1.88) 38.06 (± 0.13) 38.14 (± 0.17) 42.92 (± 1.11) 42.66 (± 1.4) 81.09 (± 0.41) 71.40 (± 0.64)

wine 58.98 (± 0.68) 80.51 (± 1.36) 80.34 (± 1.39) 82.26 (± 2.29) 81.07 (± 2.51) 67.12 (± 2.04) 67.06 (± 2.08) 80.40 (± 3.42) 68.47 (± 2.3) 99.94 (± 0.05) 99.72 (± 0.12)

that on the clean dataset. It emphasises the value of leveraging structured, context-aware evidence to enhance the detection
of anomalies. Importantly, foundation models like CLIP are unsuitable in this context due to the lack of semantic content
in thermal imagery, rendering zero-shot approaches such as WinCLIP (Jeong et al., 2023) and AnoCLIP (Zhou et al., 2024)
ineffective. EPHAD addresses this limitation by providing a flexible framework that integrates both powerful foundation
models, where applicable, and domain-specific knowledge when necessary. This versatility enables EPHAD to deliver
robust performance across diverse real-world anomaly detection tasks while maintaining efficiency and ease of deployment.

C.4. Comparison against LOE

Table 6. Comparison with LOE (AUROC %)

Semantic AD Sensory ADMethod
MNIST FMNIST CIFAR10 SVHN MVTec MPDD ViSA

CLIP 71.15 95.63 98.63 58.46 86.34 60.02 74.47
Blind 90.15 89.01 90.79 61.82 78.13 80.41 61.95
Refine 91.35 91.37 92.79 61.78 82.54 87.32 65.63
LOE-Hard 86.89 90.53 93.10 53.86 79.28 83.34 78.82
LOE-Soft 91.56 92.89 94.71 61.69 85.46 92.31 74.5

N
T

L

EPHAD 78.96 95.99 98.65 57.64 86.20 59.88 74.22

To ensure a comprehensive evaluation,
we compare the performance of our
proposed post-hoc framework against
both variants of LOE (Qiu et al.,
2022). However, it is important to note
that, unlike our approach, LOE mod-
ify the training process to account for
contamination, making it inapplicable
to pre-trained networks without access
to the training dataset and pipeline,
which is our main focus.

For comparison with LOE, we con-
duct experiments using the Neural Transformation Learning-based (NTL) AD method (Qiu et al., 2021) and evaluate it
under four configurations: “Blind”, “Refine”, LOE-Hard and LOE-Soft. Additionally, we follow the same setup as LOE
by extracting image features using pre-trained ResNet152 and WideResNet50 for semantic and sensory datasets, respec-
tively, which are then used to train NTL. The results, summarised in Table 6, show that given a good evidence function, i.e.
the performance of the evidence is better than the “Blind” configuration, our simple inference-time framework outperforms
LOE.

Results on MVTec, CIFAR10, FMIST, and SVHN are examples of this behaviour. Also, on the ViSA dataset, the perfor-
mance improves over the “Blind” and “Refine” configurations. In the converse situations where the performance of the
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Figure 2. Ablation on ϵ.

Figure 3. Ablation on β.

evidence is lower than the “Blind” configuration, we observe a reduction in performance which can be accounted for by
putting more emphasis on the AD model by adjusting β.

C.5. Ablation on ϵ and β

In this section, we first analyse the sensitivity of EPHAD to various contamination ratios. Then, we investigate the effect of
the temperature β on AD performance.

Effect of varying contamination ratio. Here, we evaluate the sensitivity of our proposed framework by varying the
contamination ratio {0%, 5%, 10%, 15%}. The results are summarised in the Figure 2. Applying EPHAD results in im-
provements across all contamination ratios for most of the AD methods. Furthermore, in the presence of a strong evidence
function, such as CLIP, we can observe that the performance becomes almost constant even as the contamination ratio
increases from 5% to 15%.

Effect of temperature parameter β. We also analyse the performance of the EPHAD by varying the temperature parameter
β. In Figure 3, we can see how β allows for controlling the trade-off between the prior AD method and the evidence. As
discussed earlier, we observe that setting β ≈ 0 results in full reliance on T (x), while with increasing β, T (x) is disregarded
and it defaults to the prior.

C.6. Effect of Test Set Size n

The performance of our proposed framework, EPHAD, is influenced by both the pre-trained AD method and the evidence
function. While the pre-trained AD method is affected only by the training data, for the evidence function, we evaluated
two scenarios: (1) When using foundation models such as CLIP, the evidence function remains independent of the test
sample distribution. (2) When employing traditional AD methods like Isolation Forest or Local Outlier Factor, the evidence
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function relies on the local density of test samples, meaning that an insufficient number of test samples could lead to less
informative evidence which can be accounted for in EPHAD by adjusting the temperature parameter β. In Figure 4, we
analyse the impact of varying the proportion of anomalies in the test set, which exhibits consistent improvements across
all tested settings.

Figure 4. Ablation on varying proportion of anomalies in the test set.

C.7. Determining the Temperature Parameter β

As previously discussed, EPHAD has only a single hyperparameter, β, which controls the trade-off between reliance on
the prior AD model and the evidence function T (x). A straightforward approach to selecting β would involve evaluating
the AD performance of the prior and T (x) individually on a validation set and choosing β accordingly. However, this
strategy introduces additional computational overhead during inference and requires access to a labelled validation set
of sufficient size to ensure reliable performance estimation – conditions often impractical in real-world deployments. To
address this limitation, we propose an adaptive extension of our approach, termed EPHAD-Ada, which determines the
optimal β in an unsupervised manner using only the test data during inference. This adaptation is inspired by the principle
of Entropy Minimization (EM) (Press et al., 2024), a widely-used technique in test-time adaptation (Xiao and Snoek, 2024).
Motivated by the observation from Wang et al. (2021) that models tend to be more accurate when predictions are made
with high confidence, we apply it to compute the hyperparameter β. We begin by calculating the inlier probability from
the output scores to derive the entropy of the predictions from either the evidence function or the prior model.

Computing inlier probability from anomaly scores. Let S = sθ(X) and s = sθ(x), then the inlier probability is given
by

pY=+1(x) := P(Y = +1 | sθ(X) = sθ(x)) = P(Y = +1 | S = s) = P(S > s) = 1− ps, (17)

where ps := P(S ≤ s). Since ps is unknown in practice, we follow the approach of Perini et al. (2020) and treat it as a
random variable Ps with a prior distribution Beta(1, 1), corresponding to a uniform prior over [0, 1]. Given that the label
Y ∈ {+1,−1}, we model the conditional distribution Y | S = s as a Bernoulli random variable. To estimate ps, we draw
samples a ∼ S by first sampling x′ ∼ X and computing the corresponding anomaly score a = sθ(x

′). We record a success
(b = 1) if a ≤ s, and a failure (b = 0) otherwise. Repeating this procedure n times yields t successes and n − t failures.
Then, according to Theorem 2 in Perini et al. (2020), the posterior distribution of Ps given the observed binary outcomes
b1, . . . , bn is Beta(1 + t, 1 + n− t). We estimate ps using the posterior mean of Ps as

ps := E[Ps] =
1 + t

2 + n
. (18)

In practice, the posterior is inferred from test samples, so the sample size n is constrained by the number of available test
points. Finally, combining Equations (17) and (18), we obtain the estimated inlier probability for a data point x as

pY=+1(x) = 1− ps = 1− 1 + t

2 + n
. (19)
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Table 7. Performance on both sensory and semantic AD benchmarking datasets with 10% contamination ratio. Style: AUROC % (±
SE). Best in bold.

Non-overlap OverlapMethod
MNIST FMNIST CIFAR10 SVHN RealIAD MVTec MPDD ViSA

CLIP 71.15 95.63 98.63 58.46 65.74 86.34 60.02 74.47
CFLOW 77.24 (± 1.01) 72.87 (± 0.48) 65.47 (± 0.02) 55.09 (± 0.09) 76.42 (± 0.47) 87.58 (± 0.77) 66.69 (± 2.06) 75.71 (± 1.28)

+ EPHAD-Ada 78.08 (± 0.91) 91.63 (± 0.29) 96.43 (± 0.0) 55.78 (± 0.04) 73.86 (± 0.24) 89.84 (± 0.3) 67.81 (± 1.63) 79.64 (± 0.63)

DRÆM 71.44 (± 0.29) 76.53 (± 0.18) 63.41 (± 0.26) 51.55 (± 0.07) 67.46 (± 0.21) 70.55 (± 1.97) 62.32 (± 1.96) 69.61 (± 1.57)

+ EPHAD-Ada 72.88 (± 0.33) 84.96 (± 0.97) 87.73 (± 1.52) 53.79 (± 0.36) 70.15 (± 0.05) 87.24 (± 0.39) 69.55 (± 0.42) 74.95 (± 1.15)

FastFlow 82.65 (± 0.43) 83.66 (± 0.06) 62.94 (± 0.37) 54.02 (± 0.11) 82.03 (± 0.08) 84.24 (± 1.07) 71.94 (± 0.87) 77.83 (± 0.22)

+ EPHAD-Ada 82.83 (± 0.44) 92.1 (± 0.14) 96.24 (± 0.05) 55.26 (± 0.17) 81.1 (± 0.06) 88.07 (± 0.8) 70.08 (± 0.41) 80.71 (± 0.08)

PaDiM 87.5 (± 0.23) 86.84 (± 0.06) 62.53 (± 0.4) 55.49 (± 0.28) 80.39 (± 0.35) 77.85 (± 0.43) 36.58 (± 2.58) 73.07 (± 0.27)

+ EPHAD-Ada 87.56 (± 0.23) 92.87 (± 0.02) 90.23 (± 0.67) 57.09 (± 1.05) 79.56 (± 0.28) 86.1 (± 0.52) 49.06 (± 1.52) 76.62 (± 0.38)

PatchCore 86.33 (± 0.09) 78.97 (± 0.06) 75.69 (± 0.09) 69.64 (± 0.04) 70.08 (± 0.07) 70.51 (± 0.7) 53.58 (± 0.54) 27.2 (± 0.31)

+ EPHAD-Ada 86.38 (± 0.1) 89.99 (± 0.2) 96.63 (± 0.09) 68.4 (± 0.52) 77.18 (± 0.09) 83.53 (± 0.18) 56.97 (± 1.23) 48.6 (± 0.51)

RD 77.33 (± 0.09) 84.11 (± 0.72) 66.29 (± 0.31) 55.54 (± 0.58) 89.13 (± 0.18) 80.08 (± 1.32) 75.08 (± 1.75) 86.33 (± 0.46)
+ EPHAD-Ada 78.91 (± 0.21) 95.64 (± 0.04) 98.0 (± 0.17) 57.78 (± 0.5) 72.78 (± 0.43) 86.69 (± 0.38) 63.97 (± 0.88) 79.42 (± 0.34)

ULSAD 90.83 (± 0.08) 88.64 (± 0.13) 72.45 (± 0.18) 64.27 (± 0.22) 89.06 (± 0.01) 91.93 (± 0.15) 77.67 (± 0.42) 86.58 (± 0.13)

+ EPHAD-Ada 90.8 (± 0.07) 94.55 (± 0.08) 97.29 (± 0.02) 59.68 (± 0.16) 85.84 (± 0.04) 92.25 (± 0.07) 76.31 (± 1.04) 87.23 (± 0.05)

Computing the value of hyperparameter β. We begin by converting the anomaly scores from the prior AD model and
T (x) into inlier probabilities ppY=+1(x) and ptY=+1(x), respectively, using (18). We then compute the entropy of the prior
model’s prediction Hprior as:

Hprior =
∑

x∈Dtest

[
−(ppY=+1(x) log ppY=+1 + ppY=−1(x) log ppY=−1)

]
, (20)

where ppY=−1(x) = 1− ppY=+1(x). Similarly, we compute the entropy of the evidence model’s prediction Hevi as

Hevi =
∑

x∈Dtest

[
−(peY=+1(x) log peY=+1 + peY=−1(x) log peY=−1)

]
, (21)

with peY=−1(x) = 1 − peY=+1(x). A low Hprior indicates that the prior model is confident in its predictions, suggesting
that a higher value of β is appropriate to place greater trust in the prior. Conversely, a lower Hevi implies greater reliability
in the evidence function, advocating for a smaller β. Based on this intuition, we define the adaptive temperature parameter
as:

βadaptive =
Hevi

Hprior + δ
, (22)

where δ is a small positive constant introduced to ensure numerical stability. Through this formulation, EPHAD-Ada
effectively enables unsupervised, test-time selection of β, thereby enhancing practicality and reducing reliance on labelled
validation data.

Results. The effect of applying EPHAD-Ada is summarised in Table 7. We can observe that in most of the scenarios,
applying EPHAD-Ada improves the performance of the base AD method. Moreover, in some cases, such as applying
EPHAD-Ada to CFLOW on CIFAR10, the performance improvement is significant. Interestingly, even when the evidence
function in isolation does not achieve good performance as for RealIAD, its use as a part of EPHAD-Ada significantly
improves the performance of PatchCore, showing the framework’s effectiveness. While EPHAD-Ada provides a way to
determine the hyperparameter in an unsupervised manner, we observe a performance drop in certain scenarios, specifically
when the performance of the base AD method is better than the evidence function. We hypothesise that this occurs as
the inlier probability computed from the anomaly scores is not calibrated. We leave the further investigation and the
development of a better approach for determining the value of β as a promising future research.

D. Related Work
Unsupervised AD. Over the years, numerous approaches have been developed for unsupervised AD, which can be
broadly categorized into four main families: one-class classifiers (OCC), feature embedding-based, density-based, and
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reconstruction-based methods. One-class classifiers aim to learn a decision boundary that encapsulates all normal samples.
Classical OCC approaches employ shallow models such as support vector-based methods that learn a maximum-margin
hyperplane (Schölkopf et al., 2001) or a hypersphere (Tax and Duin, 1999). To mitigate the limitations of manual feature
engineering and extend to high-dimensional data, deep learning-based variants like DeepSVDD (Ruff et al., 2018) have
been introduced.

Feature embedding-based methods, on the other hand, leverage pre-trained deep models to extract representations of input
data. These representations are then either stored in a memory bank (Roth et al., 2022; Lee et al., 2022) or used to train a
student-teacher network (Zhang et al., 2024; Batzner et al., 2024; Patra and Ben Taieb, 2024). Density-based methods de-
tect anomalies by estimating the probability distribution of normal samples, assuming that anomalies reside in low-density
regions. While early methods include KDE (Kim and Scott, 2012), more recent deep-learning-based variants include
DAGMM (Zong et al., 2018), CFLOW (Gudovskiy et al., 2022), and FastFlow (Yu et al., 2021). Lastly, reconstruction-
based approaches learn to map normal samples into a lower-dimensional bottleneck and reconstruct them. The inability to
accurately reconstruct samples during inference serves as a detection criterion. For a more comprehensive survey, we refer
readers to Liu et al. (2024) and Ruff et al. (2021).

Data Contamination. Handling dataset contamination in AD typically assumes a low proportion of anomalies, allowing
methods to prioritise normal instances (inlier priority) (Wang et al., 2019). However, in practice, this assumption is difficult
to ensure since anomalies are often unknown. To mitigate contamination, Yoon et al. (2022) proposed a data refinement
approach using an ensemble of one-class classifiers (OCCs) to filter suspected anomalies and create a cleaner dataset. While
effective, this method incurs high computational costs and discards anomalies rather than leveraging them for improved
generalisation via Outlier Exposure (Hendrycks et al., 2019).

To address this, Qiu et al. (2022) introduced Latent Outlier Exposure (LOE), which iteratively assigns anomaly scores
and infers labels using block coordinate descent while incorporating the contamination ratio to prevent degenerate solu-
tions. However, estimating the contamination ratio remains a challenge. Perini et al. (2022) tackled this by leveraging an
auxiliary dataset with a known contamination ratio, assuming domain similarity. Alternatively, Perini et al. (2023) fits a
Dirichlet Process Gaussian Mixture Model to anomaly scores, though this approach lacks a closed-form solution. Despite
these advancements, existing methods introduce computational overhead and are often impractical for modern pre-trained
proprietary models, limiting their real-world applicability.
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