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Abstract

Conventional score-based diffusion models (DMs) may struggle with anisotropic
Gaussian diffusion processes due to the required inversion of covariance matrices
in the denoising score matching training objective [58]. We propose Whitened
Score (WS) diffusion models, a novel framework based on stochastic differential
equations that learns the Whitened Score function instead of the standard score.
This approach circumvents covariance inversion, extending score-based DMs by
enabling stable training of DMs on arbitrary Gaussian forward noising processes.
WS DMs establish equivalence with flow matching for arbitrary Gaussian noise,
allow for tailored spectral inductive biases, and provide strong Bayesian priors
for imaging inverse problems with structured noise. We experiment with a va-
riety of computational imaging tasks using the CIFAR, CelebA (64 × 64), and
CelebA-HQ (256× 256) datasets and demonstrate that WS diffusion priors trained
on anisotropic Gaussian noising processes consistently outperform conventional
diffusion priors based on isotropic Gaussian noise. Our code is open-sourced at
github.com/jeffreyalido/wsdiffusion.

1 Introduction

Diffusion models (DMs) are a powerful class of generative models that implicitly learn a complex
data distribution by modeling the (Stein) score function [48, 49, 18, 13, 26, 25]. The score function
is then plugged into a reverse denoising process described by an ordinary differential equation (ODE)
or a stochastic differential equation (SDE) to generate novel samples from noise. Typically, the
forward noising process is defined by adding different levels of isotropic Gaussian noise to a clean
data sample, which enables a simple and tractable denoising score matching (DSM) objective [58].
However, the DSM objective exhibits instability when the forward diffusion noise covariance is
ill-conditioned or singular, as its computation requires inverting the covariance matrix.

Flow matching (FM) [33, 35, 1, 65] is an alternative generative modeling paradigm that reshapes an
arbitrary known noise distribution into a complex data distribution according to an implicit probability
path constructed by the flow. For the isotropic Gaussian case, [34, 52] established that FM and DMs
are equivalent up to a rescaling of the noise parameters that define the SDE and probability paths.
However, for anisotropic Gaussian noise, there exists a gap between score-based DMs and FM, where
score-based DMs cannot be as easily trained for arbitrary Gaussian forward noising processes due to
the necessary inversion of the covariance matrix in the conditional score [58].

A denoising DM capable of denoising structured, correlated noise is desirable in many scientific
inverse problems, especially in imaging, as it may serve as a rich Bayesian prior [49, 16, 63, 28].
Imaging through fog, turbulence and scattering [3, 64, 31], wide-field microscopy [39], diffraction
tomography [32, 30], optical coherence tomography (OCT) [21], interferometry [56] and many other
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imaging modalities have an image formation process corrupted by structured, spatially correlated noise
[62, 6], in contrast to the widely assumed additive isotropic (white) Gaussian noise. Conventional
DMs are trained on isotropic Gaussian noise, which may render them practically insufficient Bayesian
priors for realistic use cases with correlated noise.
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Figure 1: Our framework enables arbitrary Gaus-
sian diffusion processes, allowing us to train a de-
noising DM on a diverse set of structured noise.
The WS DM applies to a variety of imaging in-
verse problems corrupted with correlated, struc-
tured noise.

Motivated by FM’s ability to model arbitrary
probability paths and the expressiveness of dif-
fusion priors for inverse problems, we propose
Whitened Score Diffusion, a framework for
learning DMs based on arbitrary Gaussian nois-
ing processes. Instead of learning the (time-
dependent) score function, ∇xt

log p(xt), we
learn GtG

⊤
t ∇xt

log pt(xt), with Gt the diffu-
sion matrix in the forward diffusion process
(Fig. 1). We term our framework Whitened
Score (WS) DMs, after the whitening transfor-
mation that transforms the score vector field
into an isotropic vector field. This extends the
current SDE framework for score-based DMs
as it avoids the computation of the inverse co-
variance for any anisotropic Gaussian noise in
DSM objective, enabling an arbitrary choice of
Gaussian probability paths, similar to FM. We
elaborate on the equivalence of our framework
to FM and draw a connection to the reverse-
time diffusion process derivation by [8], where
GtG

⊤
t ∇xt

log pt(xt) is a predictable process
of the stochastic term in a reverse-time SDE.

This work presents an extension of score-based
DMs to arbitrary Gaussian forward processes,
bridging a gap between DMs and FM. Our
framework enables a principled construction
of denoising generative priors that incorporate
spectral bias aligned with correlated measure-
ment noise, leading to improved performance in
inverse problems with structured noise. Empiri-
cal results on CIFAR-10, CelebA (64× 64), and
CelebA-HQ (256× 256) across several imaging
tasks show consistently higher peak signal-to-
noise ratio (PSNR) reconstructions compared
to conventional models trained with isotropic
noise. Our contributions are: (i) a framework for training DMs that supports arbitrary Gaussian prob-
ability paths, (ii) theoretical insights and a connection to FM, and (iii) a demonstration of effective
priors for imaging inverse problems under structured noise.

2 Background

2.1 Score-based diffusion models

Score-based DMs are a class of generative models that estimate a probability density function p(x0)
by reversing a time-dependent noising process. In continuous time, the forward noising process is
described by an Itô SDE in the form of,

dxt = Ftxtdt+Gtdw. (1)

Ft ∈ Rm×m is the drift coefficient, w ∈ Rm is the standard Wiener process (Brownian motion),
and Gt ∈ Rm×m is the diffusion matrix that controls the structure of the noise. The noise level is
indexed by time t ∈ [0, T ] such that x0 ∼ p(x0), xT ∼ N (0, I) and xt ∼ p(xt | x0), a probability
transition Gaussian kernel defined by Eq. 1.
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The corresponding reverse-time SDE for Eq. 1 is:

dxt =
[
Ftxt −GtG

⊤
t ∇xt

log pt(xt)
]
dt+Gt dw̄t, (2a)

and the deterministic ODE, also known as probability flow, with the same time-marginals is:

dxt =

[
Ftxt −

1

2
GtG

⊤
t ∇xt

log pt(xt)

]
dt, (2b)

where w̄ is the reverse-time standard Wiener process and∇xt
log pt(xt) is the Stein score function.

Sampling from p(x0) requires solving Eq. 2 and thereby knowing the score function, ∇xt log pt(xt).
[48, 49] approximated the score function with a neural network sθ(xt, t) by optimizing the DSM
objective [58]:

θ̂ = argmin
θ

Et∼U(0,1],xt∼p(xt|x0),x0∼p(x)

{
∥sθ(xt, t)−∇xt

log pt(xt | x0)∥22
}
, (3)

where the conditional score function has a closed form expression given by

∇xt log pt(xt | x0) = Σ−1
t (µt − xt), (4)

with µt and Σt the mean and covariance of the Gaussian transition kernel p(xt | x0). µt and Σt are
functions of the drift coefficient and diffusion matrix in Eq. 1 attained by solving the ODEs in Eqs.
5.50 and 5.51 in [54], creating a linearly proportional relationship as µt ∝ x0 and Σt ∝ GtG

⊤
t . This

leads the transformed score function term, GtG
⊤
t ∇xt

log pt(xt) in Eq. 2b to always be isotropic, as
the covariance will multiply with its inverse, regardless of the diffusion coefficient, Gt.

2.2 Structured Forward Processes in Diffusion Models

Conventional score-based diffusion models (DMs) typically employ uncorrelated white Gaussian
noise, corresponding to a diagonal diffusion matrix Gt [49]. However, this formulation constrains
the learned score function ∇xt log p(xt) to isotropic noise settings. Extending beyond diagonal Gt

poses numerical challenges, as the inversion of the covariance matrix in Eq. 4 can become unstable
for ill-conditioned or singular cases.

Recent studies have demonstrated that controlling the spatial frequency content of the forward noise
can influence the model’s inductive spectral bias and enhance generative flexibility [23]. Yet, a unified
framework for training diffusion models under arbitrary noising processes remains lacking. Our
work addresses this gap through the lens of score-based DMs in the SDE formulation, establishing a
principled foundation for frequency-controlled and structured forward processes that can be adapted
to diverse DM tasks.

Several prior approaches have introduced structured forward processes to improve generative expres-
sivity. CLD [15] and PSLD [40] extend the state space by incorporating velocity variables, injecting
noise in phase space to simplify score estimation, albeit at the cost of auxiliary dynamics. MDMs [45]
and Blurring Diffusion [19] employ anisotropic or spatially correlated noise but require inversion of
dense covariance matrices. Flexible Diffusion [17] parameterizes the forward SDE to allow adaptive
noise scheduling, increasing model complexity and training cost.

These advances collectively underscore the importance of moving beyond isotropic Gaussian noise
while revealing practical limitations related to stability and computational overhead. Motivated
by this, our proposed WS model enables arbitrary Gaussian forward processes without covariance
inversion, offering a simple, stable, and general mechanism for structured generative modeling.

2.3 Flow matching

Flow matching (FM) [33, 35, 1] is another paradigm in generative modeling that connects a noise
distribution and a data distribution with an ODE

dϕt(xt)

dt
= ut(ϕt(xt)), (5)

for FM vector field ut(xt) and initial condition ϕ0(x0) = x0. Noise samples are transformed along
time into a sample from the data distribution using a neural network that models the conditional FM
vector field

ut(xt | x0) = Σ′
t(x0)Σ

−1
t (x0)(xt − µt(x0)) + µ′

t(x0), (6)
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where µt(x0) and Σt(x0) are the mean and covariance of the probability path pt, and f ′ denotes the
time derivative of f . Because Σ′

t is proportional to Σt up to a scalar coefficient, multiplying by the
inverse to yield identity [54], the functional form of ut(xt | x0) allows simple and stable training of
FM models with arbitrary Gaussian probability paths. This diagonal matrix-yielding multiplication
currently lacks in score-based models due to the necessary inversion of the covariance matrix in Eq. 4.

We note that WS aligns with FM in the sense that both frameworks aim to enable arbitrary prob-
ability paths. In Section 3.2, we present a formal connection between WS and FM. Nevertheless,
FM may require new approaches to incorporate the measurement likelihood for solving inverse
problems [65], whereas our WS framework can be readily combined with existing techniques for
enforcing measurement consistency (see Section 2.4 for a review).

2.4 Imaging inverse problems with diffusion model priors

Reconstructing an unknown signal x0 ∈ Rm from a measurement y ∈ Rn given a known forward
model y ∼ N (Ax0,Σy)—with Σy ∈ Rn×n the covariance of the additive Gaussian noise and
A ∈ Rm×n the measurement forward model—is a central challenge in computational imaging
and scientific problems. Recent advances employ DMs as flexible priors [14], using plug-and-play
schemes [66, 67, 60], likelihood-guided sampling via posterior score approximations [22, 49, 9, 11,
47, 27], Markov Chain Monte Carlo (MCMC) techniques [38, 7, 61, 63, 53, 55], variational methods
[16, 37], and latent DM frameworks [43, 12, 46].

Here, we adopt methods that approximate the posterior. The posterior score can be factored into the
prior score and the likelihood score using Bayes’s rule to arrive at a modification of Eq. 2 for the
stochastic reverse diffusion

dxt =
[
Ftxt −GtG

⊤
t (∇xt log pt(xt) +∇xt log pt(y | xt))

]
dt+Gt dw̄t, (7a)

and the deterministic reverse diffusion

dxt =

[
Ftxt −

1

2
GtG

⊤
t (∇xt log pt(xt) +∇xt log pt(y | xt))

]
dt. (7b)

The prior score is approximated by the denoising DM. However, the measurement likelihood score is
intractable due to the time-dependence. Methods in [11, 5, 47, 50] make simplifying assumptions
about the prior distribution, while those in [22, 10, 28, 43] treat the likelihood score approximation
as an empirically designed update using the measurement as a guiding signal. All these likelihood
score approximations can thus be plugged into Eq. 7 to solve the inverse problem.

A major gap in current research on imaging inverse problems is the consideration of additive structured
noise. Most research on DM priors for imaging inverse problems has largely focused on scenarios
with isotropic Gaussian noise, employing corresponding isotropic Gaussian denoising DMs. Recent
work by [20] explored structured priors for imaging inverse problems using stochastic restoration
priors achieving superior performance over conventional denoising DMs trained on isotropic Gaussian
noising processes in cases involving both correlated and uncorrelated noise. However, a formal
treatment of structured noise in diffusion-based frameworks lacks, which we seek to address.

3 Whitened Score Diffusion

We define our forward-time SDE with non-diagonal diffusion matrix as,

dxt = −
1

2
βt︸ ︷︷ ︸

:=Ft

xtdt+
√

βtK︸ ︷︷ ︸
:=Gt

dw, (8)

adopting from the variance-preserving (VP) SDE [49]. In our experiments, we constrain K to be in
the class of circulant convolution matrices due to their ability to be implemented with the fast Fourier
transform (FFT). However, our method generalizes to any K that is positive semidefinite. When
K = I, we recover exactly the VP-SDE. The corresponding probability transition kernel of Eq. 8 is1

p(xt | x0) = N
(
xt | αtx0, (1− α2

t )KK⊤) , (9)

1The mean and covariance of the transition kernel are solved in Eqs. 5.50 and 5.51 in [54].
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Figure 2: Denoising correlated noise on CIFAR10 and CelebA (64× 64). We benchmark our WS
DM trained on anisotropic Gaussian noise with the conventional DM (conv) trained on isotropic
Gaussian noise. Left: results with a fixed SNR of 0.26; Right: measurements y with decreasing SNR
from 1.4 to 0.12 using additive grayscale noise filtered by a Gaussian kernel of std 2.5 and 5 pixels
for CIFAR10 and CelebA, respectively. The PSNR is labeled in white.

where αt = e−
1
2

∫ t
0
βsds. In general, αt is defined as the integral of the drift coefficient from 0 to t,

αt =
∫ t

0
Fsds. By leveraging the parameterization trick for Gaussian distributions, we may rewrite

Eq. 9 as the following continuous time system:

xt = αtx0 +
√
1− α2

tKz, z ∼ N (0, I). (10)

Note that we may use other drift and diffusion matrices, such as the variance-exploding (VE) SDE,
ending up with scalar multiples of x0 and GtG

⊤
t for the mean and covariance, respectively, given the

initial conditions of µ0 = x0 and Σ0 = 0. Specific to our SDE in Eq. 8, we define the signal-to-noise
ratio (SNR) to be the ratio αt/

√
1− α2

t .

3.1 Whitened Score matching objective

From Eq. 9, the conditional score to solve Eq. 3 is

∇xt
log p(xt | x0) =

(
(1− α2

t )KK⊤)−1
(αtx0 − xt) , (11)

and inverting the matrix may often lead to instability in the score computation. For example,
the condition number of a Gaussian convolution matrix grows as the Gaussian kernel K widens,
amplifying high spatial frequency features, leading to poor model training for the DSM objective in
Eq. 3.

To mitigate these numerical instabilities in the score computation during training, we apply a
whitening transformation to the score by naturally multiplying it with GtG

⊤
t , where GtG

⊤
t ∝ Σt,

the forward diffusion process covariance. Similar to DSM, for our SDE in Eq. 8, we approximate
GtG

⊤
t ∇xt

log pt(xt) as GtG
⊤
t ∇xt

log p(xt | x0) which has the following closed-form expression
after canceling Σt with GtG

⊤
t :

GtG
⊤
t ∇xt

log p(xt | x0) = βt
αtx0 − xt

1− α2
t

. (12)

We train a model nθ(xt, t) using the following denoising WS matching loss:

L = Et∼U(0,1],xt∼p(xt|x0),x0∼p(x)

{
∥nθ(xt, t)−GtG

⊤
t ∇xt

log pt(xt | x0)∥22
}
, (13)

with proof in Appendix A. This objective accounts for varying levels of spatial correlation in the
noise to enable our model to denoise arbitrary Gaussian noise.

This objective defines a new learning target within the broader landscape of diffusion model losses.
Our approach can be seen as a generalization of noise prediction [18] to the setting of correlated
Gaussian noise, where the preconditioning term GtG

⊤
t captures the noise structure. Unlike conven-

tional noise prediction, which assumes isotropic noise, our formulation enables stable training under
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Figure 3: ∇xt
log p(xt | x0) vector field (white) and GtG

⊤
t ∇xt

log p(xt | x0) vector field (red)
for increasingly anisotropic 2D Gaussian probability transition kernel p(xt | x0). The covariance
amplifies the magnitude of the conditional score field by its condition number κ(Σ), and additionally
rotates the direction towards the first principal subspace where there is higher density, while the
GtG

⊤
t ∇xt log p(xt | x0) field remains stable in magnitude and directionally isotropic pointing

towards the mean µt of the probability path.

arbitrary Gaussian forward processes. Furthermore, Eq. 15 reveals that the conditional FM vector
field ut is a linear combination of our conditional WS function and the drift term (see Appendix B),
highlighting that both WS and FM avoid covariance inversion by preconditioning the score function
with GtG

⊤
t . This shared property enables principled modeling of flexible Gaussian probability paths.

3.2 Interpretation of WS

Concurrently with [4], [8] derived identical results for the reverse-time SDE, Eq. 2a, by decomposing
the diffusion term of a reverse-time SDE into a unique sum of a zero-mean martingale and a
predictable process nt, given as

nt =

∑m
i=1

∂
∂xi

t

∑m
k=1 G

ik
t (xt, t)G

·k
t (xt, t)pt(xt)

pt(xt)
. (14)

When Gt is independent of the state xt, nt simplifies to GtG
⊤
t ∇xt log pt(xt). This process is

conditionally deterministic with respect to the filtration of the reverse time flow, motivating modeling
the complete predictable process instead of the score function in isolation.

Furthermore, multiplying the score with GtG
⊤
t whitens its vector field, as seen in Fig. 3 leading to a

two-fold effect. Firstly, the original score vector field is numerically unstable; its values are highly
sensitive to small errors in the residual, characterized by the condition number κ(Σ). This leads to
unstable model training, as there is often noise amplified by the condition number. Multiplying the
field with GG⊤, a scalar multiple of the transition kernel’s covariance, preconditions the field.

Secondly, the score field rotates in the direction towards the major principal axis that contains most
of the density for the noise transition kernel p(xt | x0). For anisotropic Gaussian transition kernels,
the score does not point towards the data distribution, but rather towards the major principal axis of
the (correlated) noise from the forward-time SDE. Eq. 2 naturally re-orients the field towards the
data mean, providing motivation for modeling the complete predictable process instead of solely the
score function. Furthermore, by learning the predictable process, we enable a more general scheme
for SDE-based DMs by developing a model that will always have isotropic reverse-time sample paths
without needing to specify the diffusion matrix during sampling.

Connection to FM To connect WS DMs with FM and explain why training models with arbitrary
Gaussian probability paths is achieved, we re-frame FM with the SDE framework and rewrite the
conditional FM vector field expressed in terms of the VP-SDE variables in Eq. 8:

ut(xt | x0) = Ft(2xt − αtx0) +GtG
⊤
t ∇xt

log p(xt | x0). (15)
Eq. 15 reveals that the conditional FM vector ut is a linear combination of our conditional WS
function and the drift term (see Appendix B for derivation). The key property shared by FM and WS
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Figure 4: Measurement noise with different covariance matrices shown in the bottom left of the
measurement. The PSNR is shown in white text for a sample image in the CIFAR10 validation dataset
and the CelebA (64× 64) validation dataset. Compared to DMs trained only on isotropic Gaussian
noise, our WS model is able to denoise correlated noise with superior PSNR. For uncorrelated noise
(first row), our model has similar performance as conventional DMs.

DMs is that they avoid inverting the covariance matrix in the score by preconditioning it with GtG
⊤
t ,

enabling flexible modeling of arbitrary Gaussian probability paths.

3.3 WS diffusion priors for imaging inverse problems

Algorithm 1 WS diffusion priors for imaging in-
verse problems
Require: T , A, y, {βt}Tt=0, nθ

1: Initialize xT ∼ N (0, I)
2: for t = T to 0 do
3: x′

t ← (2−
√
1− βt∆t)xt +

nθ(xt,t)∆t
2

4: xt−1 ← x′
t − λt

βtA
H(y−Axt)

2
5: end for
6: return x0

We solve the imaging inverse problem using
Eq. 7 with our WS diffusion prior and an approx-
imation of the measurement likelihood score.
Recall from Section 2.4 the myriad of methods
developed to approximate the measurement like-
lihood score, all of which follow the template,

∇xt log p(y | xt) ≈ Σ−1
y ∇xtr(xt), (16)

where ∇xtr(xt) is the gradient of the residual
function that guides the update xt towards re-
gions where the observation y is more likely.

The reverse-time SDE framework aids inverse problems with correlated noise as the diffusion matrix
GtG

⊤
t preconditions the inverse measurement covariance in the likelihood score, when GtG

⊤
t is

designed to be proportional to the covariance matrix,

GtG
⊤
t ∇xt

log p(y|xt) ≈ GtG
⊤
t Σ

−1
y︸ ︷︷ ︸

∝I

∇xt
r(xt). (17)

In designing our diffusion process, we set GtG
⊤
t = βtKK⊤ + γ2I, where KK⊤ encompasses a

large set of measurement noise covariances, and γ2 is drawn uniformly between 0 and 1 in order to
encourage the model to learn finer detailed features that reside in high spatial frequency subspaces.

In practice, a regularization term λt is important to balance the generative prior with the data
likelihood. For proof-of-concept, we experiment with the likelihood-guided sampling via posterior
score approximation in [22] due to its functional simplicity∇xt

log p(y | xt) ≈ Σ−1
y AH(y−Axt).

We also use the deterministic sampler of Eq. 7b. The resulting algorithm is shown in Algorithm 1.
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Figure 5: Motion and lens deblurring on CIFAR10 dataset with additive spatially correlated grayscale
Gaussian noise of std = 2.5 pixels. WS diffusion prior consistently removes correlated noise
resulting in higher PSNR compared to DMs trained solely on isotropic Gaussian noise.

4 Experiments

4.1 Training details

For each dataset, we train two attention UNet models based on the architecture in [18] with three
residual blocks in each downsampling layer, where one is for the conventional isotropic Gaussian
SDE, and the other our anisotropic Gaussian SDE. We set the learning rate to 3e−5 with a linear
decay schedule. For CIFAR10 (32 × 32), the batch size is 128, for CelebA (64 × 64), the batch
size is 16, and for CelebA-HQ (256 × 256), the batch size is 4. Models were trained on a single
NVIDIA L40S GPU with 48GB of memory for two days. Our model is trained on the training sets of
CIFAR-10 [29], CelebA (64× 64) [36] and CelebA-HQ (256× 256) [24] where K is a 2D Gaussian
convolutional matrix characterized by an std. For CIFAR, the std that characterizes K is uniformly
distributed between 0.1 and 3, between 0.1 and 5 for CelebA (64× 64), and between 0.1 and 20 for
CelebA-HQ (256× 256) where std ≤ 0.5 equals the 2D delta function. The noise is also randomly
grayscale or color with a 0.5 probability.

4.2 Imaging inverse problems with correlated noise

It is well-established that natural image spectra exhibit exponential decay [57], indicating the dom-
inance of low-frequency components in representing images. When additive measurement noise
occupies the same spectral subspace, especially at low frequencies, the computational imaging task
becomes fundamentally more challenging. We show that our framework is beneficial as a generative
prior for solving inverse problems with such structured noise by experimenting with a variety of
computational imaging modalities that are known to be affected by structured noise.

The measurements in our experiments are corrupted by additive grayscale structured noise, designed
to mimic real-world conditions frequently encountered in both computational photography—such
as fog, haze, and atmospheric turbulence—and computational microscopy—including fluorescence
background, laser speckle, and detector noise. We use Algorithm 1 with T = 1000 and βmin = 0.01
and βmax = 20 so that the SNR decays to 0 at t = T . For results with our WS prior, xT was drawn
from N (0,KK⊤) with std = 3 and std = 6 for CIFAR and CelebA, respectively with grayscale
color (all color channels have the same value). For conventional DM prior results xT was drawn
from N (0, I). All evaluation was performed on unseen validation dataset sample images picked
uniformly at random. The regularization parameter λ scales the magnitude of the likelihood step
to be proportional to the magnitude of the prior step as was done by [22]. Line search was used to
find an optimal λ that yielded a reconstruction with the highest PSNR, where PSNR is defined as
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Figure 6: Effect of changing regularization parameter λ for denoising. The top figures are the
average power spectral density of the images in CIFAR and CelebA, with a dotted red circle to
denote the frequency support of the additive correlated noise. Changing the regularization weight λ
for denoising affects the final reconstructions using our WS diffusion priors (top) and conventional
diffusion priors (bottom). When λ is 0, it is equivalent to sampling form p(x). As λ increases, the
generative modeling effect is overpowered by the measurement fidelity term, that the reconstruction
resembles the measurement y.

PSNR = 20 · log10
(

1
MSE

)
where MSE is the mean squared error between the reconstruction and

the ground truth.

Our results are demonstrated on a variety of computational imaging tasks such as imaging through
fog, motion deblurring, lens deblurring, linear inverse scattering, and differential defocus. More
details are in Appendix C.

Denoising correlated noise To demonstrate the capabilities of our model as a generative prior
for measurements corrupted by correlated noise, we explore the denoising problem and compare
the results with that of a conventional score-based diffusion prior that was trained only on isotropic
Gaussian forward diffusion. Fig. 2 shows the results on CIFAR and CelebA (64× 64) test samples
across a range of SNRs, where color is faithfully restored from fog-like corruption and likeness to the
dataset is maintained due to the generative prior.

Generalize to different noise structures Our model generalizes to different measurement noise
covariance matrices with varying Gaussian noise distributions. Fig. 4 reveals that measurements
corrupted by different distributions of spatially correlated Gaussian noise are restored with higher
PSNR compared to conventional DM priors (conv). Conventional score-based priors change the
higher level semantic features of the measurement, due to the model’s inability to distinguish noisy
features from target image features based on Fourier support. Specifically, the added correlated
noise’s low frequency support overlaps with that of the visual features in the data, seen in Fig. 6. This
makes the reconstruction task more difficult.

Spectral inductive bias WS diffusion priors more effectively distinguish structured noise from
target features compared to conventional diffusion priors trained on isotropic Gaussian noise. As
shown in Fig. 6, standard DMs tend to suppress high-frequency components in the measurement,
assuming they originate from noise—a valid assumption only when the noise Fourier support extends
beyond that of the data. For CIFAR, whose average signal spectrum extends beyond the noise’s, this
misclassification leads to undesired attenuation of image features. In contrast, for CelebA (64× 64),
where the average image spectrum lies within the noise support, conventional models better preserve
image features.

WS DMs, trained on ensembles of Gaussian trajectories, learn to identify structured noise beyond
simple spectral heuristics. This enables selective removal of low-frequency noise even when it
spectrally overlaps with signal content, yielding improved denoising performance in the presence of
correlated noise.
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Computational imaging Using WS diffusion prior to solve inverse problems with non-identity
forward operators outperforms traditional score-based diffusion priors in PSNR. Noticeably, our
diffusion prior is able to maintain fidelity to the color distribution for restoring measurements
corrupted by grayscale fog-like noise, while conventional score-based diffusion priors fail to remove
the noise, as seen in Figs. 5 and 8 for deblurring inverse problems. Additional results for other
imaging inverse problems on CIFAR, as well as on the CelebA (64×64) and CelebA-HQ (256×256)
datasets, are presented in Appendix C and and Figs. 7, 8, 9, 10, and 11.

5 Conclusion

We introduced WS diffusion, a generalization of score-based methods that learns the Whitened
Score, GtG

⊤
t ∇xt

log pt(xt). This avoids noise covariance inversion, enabling arbitrary anisotropic
Gaussian forward processes and bridging connections to FM. We demonstrate WS diffusion as
robust generative priors for inverse problems involving correlated noise, common in computational
imaging. Experiments consistently showed superior PSNR and visual reconstructions compared to
conventional diffusion priors trained on isotropic noise, particularly in accurately handling structured
noise while preserving image features. WS diffusion provides a principled approach for developing
effective generative models tailored to structured noise, advancing their utility in computational
imaging applications.

Limitations and future work A primary limitation of our approach lies in the computational cost
of sampling. The current time discretization of the reverse-time SDE necessitates approximately 1000
denoising steps, which may be prohibitive for certain practical applications. Reducing the number of
denoising steps through model distillation represents a promising direction for future work [44, 51].

Another limitation concerns the absence of an explicit mechanism to estimate the measurement noise
covariance, which directly influences the specification of the diffusion matrix Gt. A natural extension
of this framework would involve parameterizing and learning Gt jointly with the model parameters.
Such an approach would allow the diffusion process to adaptively capture data-dependent or task-
specific noise structures, thereby enhancing the model’s flexibility and representational capacity. This
line of work connects to recent advances in vector-valued and multivariate diffusion models, which
have demonstrated improved performance in scenarios characterized by complex or structured noise.

Finally, while our model exhibits strong performance as a denoising prior, additional research is
needed for WS DMs to achieve competitive results in unconditional or conditional generation tasks.
Promising directions include latent diffusion formulations and related techniques for improving
generative efficiency and expressiveness [12, 42, 41].
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A Denoising Whitened Score matching

Lemma A.1. (Generalized Tweedie’s formula for non-diagonal covariance). Let:

xt = αtx0 + z, (18)

where x0 ∼ p(x) and z ∼ N (0,Σ). Then

αtE[x0 | xt] = xt +Σ∇xt
log pt(xt) (19)

Proof.

∇xt
log pt(xt) =

∇xt
pt(xt)

pt(xt)

=
1

pt(xt)
∇xt

∫
pt(xt,x0) dx0 (de-marginalize joint distribution)

=
1

pt(xt)
∇xt

∫
pt(xt | x0)p0(x0) dx0 (factor joint via Bayes rule)

=
1

pt(xt)

∫
∇xtpt(xt | x0)p0(x0) dx0 (move gradient inside integral)

=
1

pt(xt)

∫
pt(xt | x0)∇xt log pt(xt | x0)p0(x0) dx0 (use identity∇f = f∇ log f )

=

∫
p0(x0 | xt)Σ

−1(αtx0 − xt) dx0 (Gaussian conditional score)

= Σ−1 (αt E[x0 | xt]− xt) (expectation under posterior)

Theorem A.2. (Denoising Whitened Score matching)
Our Whitened Score matching loss function, Eq. 13, copied here as:

Et∼U(0,1],xt∼p(xt|x0),x0∼p(x)

{
∥nθ(xt, t)−GtG

⊤
t ∇xt

log pt(xt | x0)∥22
}

(20)

is a denoising objective that uses the conditional probability to estimate GtG
⊤
t ∇xt

log pt(xt). Here
we prove that our loss function results in an estimator for GtG

⊤
t ∇xt

log pt(xt).

Proof. Let p(xt | x0) denote the Gaussian probability transition kernel associated with the forward-
time SDE in Eq. 8. For a linear SDE in xt, the covariance Σt of the transition kernel is a scalar
multiple of twice the diffusion matrix, GtG

⊤
t ([54]) provided the initial conditions of µ(0) = x0

and Σ(0) = 0 for p(xt | x0):
Σt = cGtG

⊤
t . (21)

The Minimum Mean Squared Estimator (MMSE) E[x0 | xt] is achieved through optimizing the least
squares objective:

min
θ

Ext∼pt(xt|x0),x0∼p(x)

[
∥hθ(xt)− x0∥22

]
, (22)

such that hθ∗(xt) = E[x0 | xt], for optimal network parameters θ∗. Tweedie’s formula from Lemma
A.1 gives us that,

αthθ∗(xt) = xt +Σ∇xt
log pt(xt). (23)

Parameterizing hθ(xt) as

hθ(xt) =
xt + cnθ(xt, t)

αt
, (24)

with scalars c, αt ∈ R and nθ(xt, t) our GtG
⊤
t ∇xt

log pt(xt) model, the MMSE objective in Eq.
22 becomes

min
θ

Ext∼pt(xt|x0),x0∼p(x)

[
∥xt + cnθ(xt, t)− αtx0∥22

]
, (25)

which is equivalent to our objective in Eq. 20 through the closed form expression of
GtG

⊤
t ∇xt

log pt(xt | x0) given in Eq. 12. Finding the optimal θ∗ implies

16



hθ∗(xt) = E[x0 | xt] =
xt + cnθ∗(xt, t)

αt
=

xt +Σ∇xt
log pt(xt)

αt
. (26)

which proves that our model nθ(xt, t) learns GtG
⊤
t ∇xt

log pt(xt) with objective Eq. 20.

B Flow matching in SDE

Consider the probability path
pt = N (xt | µt(x0),Σt(x0)), (27)

and the corresponding continuous normalizing flow:

ϕt(x0) = µt(x0) +Σ
1
2
t (x0), (28)

where we define Σ
1
2
t (x0) such that Cov[ϕt(x0)] = Σt(x0) = Σ

1
2
t (x0)(Σ

1
2
t (x0))

⊤ and the initial
condition µ0(x0) = x0. This probability path is equivalent to the probability transition kernel in Eq.
9 defined by a linear SDE Eq. 8 with drift coefficient Ft and diffusion matrix Gt. Therefore we may
attain the time derivatives of the mean and covariance functions using Fokker-Planck (see Eqs. 6.2 in
[54]) expressed as

Σ′
t(x0) = 2FtΣt(x0) +GtG

⊤
t , (29)

µ′
t(x0) = Ftµt(x0). (30)

The FM conditional vector field for Gaussian probability paths is

ut(xt | x0) = Σ′
t(x0)Σ

−1
t (x0)(xt − µt(x0)) + µ′

t(x0). (31)

Plugging in Eqs. 30 and 29 into Eq. 31 we have

ut(xt | x0) = Σ′
t(x0)Σ

−1
t (x0)(xt − µt(x0)) + µ′

t(x0) (32)

= (2Ft +GtG
⊤
t Σ

−1
t (x0)(xt − αtx0)) + Ftµt(x0) (33)

= 2Ftxt − Ftαtx0 +GtG
⊤
t Σ

−1
t (x0)(xt − αtx0) (34)

= Ft(2xt − αtx0)−GtG
⊤
t ∇xt

log p(xt | x0). (35)

C Imaging inverse problems

Imaging through fog/turbulence We simplify imaging through fog/turbulence as a denoising
problem for correlated noise which we achieve by setting the imaging system A = I. Specifically,
we demonstrate our model for grayscale low-pass filtered white Gaussian noise, where K is a 2D
Gaussian kernel characterized by a std.

In our method, the model is trained to denoise correlated noise, and is able to distinguish target
image features from anisotropic Gaussian noise features, even though both may share similar spatial
frequency support. In contrast, the conventional DM trained to denoise only isotropic Gaussian noise,
removes the images features for low enough λ, as it mistakes the correlated additive noise for the
target features. As seen in Fig. 6, there are more image features on average outside the additive noise
support for CIFAR, and for CelebA, the support of the image features are more closely overlapped
with the noise support. Additional result on the CelebA-HQ (256× 256) dataset is shown in Fig. 7 .

Motion deblurring Motion blur is a common image degradation in computational photography.
We experiment with a spatially invariant horizontal motion blur kernel of five pixels for CIFAR and
seven for CelebA. The additive correlated noise is Gaussian-filtered grayscale WGN with a circular
kernel of std = 2.5 pixels for CIFAR and 5 pixels for CelebA, each with SNR = 0.493. The result
is shown in Figs. 5 and 8.
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Figure 7: Denoising correlated noise on CelebA-HQ (256×256). We benchmark our WS DM trained
on anisotropic Gaussian noise with the conventional DM (conv) trained on isotropic Gaussian noise.
Results for measurements y with additive grayscale Gaussian noise of std = 5 pixels.
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Figure 8: Motion and lens deblurring on CIFAR10 dataset with additive spatially correlated grayscale
Gaussian noise of std = 2.5 pixels. Our diffusion prior is able to consistently remove correlated
noise resulting in superior PSNR compared to DMs trained solely on isotropic Gaussian noise.

18



gt

14.379.45

8.65 9.25

14.9711.05

10.84 12.49

kz

kx

meas conv ours

tID
T

rID
T

real

tID
T

rID
T

fourier real fourier real fourier

Figure 9: Linear inverse scattering CIFAR

Lens deblurring Lens blur is the loss of high spatial frequency information as a result of light rays
being focused imperfectly due to the finite aperture size, causing rays from a point source to spread
over a region in the image plane rather than converging to a single point. This can be effectively
modeled as a convolution between a circular Gaussian kernel and the clean image. In Figs. 5 and 8,
we demonstrate our WS diffusion prior on lens deblurring with a Gaussian blur kernel of STD = 0.8
and 1.0 for CIFAR and CelebA, respectively. The additive correlated noise is Gaussian-filtered
grayscale WGN with a circular kernel of std = 2.5 pixels for CIFAR and 5 pixels for CelebA, each
with SNR = 0.810.

Linear inverse scattering Inverse scattering is a prevalent direction in optical imaging, to recover
the permittivity field from measurements under angled illumination. Intensity diffraction tomography
(IDT) is a powerful computational microscopy technique that can recover 3D refractive index
distribution given a set of 2D measurements. The model can be linearized using the first Born
approximation ([32]):

u(r) = ui(r) +

∫
ui(r

′)V(r′)G(r− r′)dr′, (36)

for the field at the measurement plane u(r) and incident field ui(r). The scattering potential
V(r) = 1

4πk
2
0∆ϵ(r) with permittivity contrast ∆ϵ(r) = ϵ(r) − ϵ0 between the sample ϵ(r) and

surrounding medium ϵ, and wavenumber k0 = 2π
λ for illumination wavelength λ. Green’s function

G(r) = exp(ik|r|)
r where k =

√
ϵ0k0.

When the illumination is transmissive, referred to as transmission intensity diffraction tomography
(tIDT), meaning that the light passes through the sample, the linear operator, A, results in a mask in
the shape of a cross section of a torus that attenuates Fourier coefficients as seen in Figs. 9 and 10,
leading to the well-known "missing cone" problem.

In reflection IDT (rIDT), placing the sample object on a specular mirror substrate causes light
to reflect towards the camera, enabling the capture of additional axial frequency components and
partially filling the missing cone, shown in Figs. 9 and 10.
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Figure 11: Laplace imaging, Transport of Intensity (TIE)

We experiment with both tIDT and rIDT with the measurements corrupted by low-pass filtered
grayscale WGN to mimic background noise common in microscopy. The grayscale noise is similarly
Gaussian-filtered with std = 2.5 and 5, for CIFAR and CelebA, respectively with SNR = 0.632.

Differential defocus Differential defocus is a computational imaging technique that aims to recover
the depth map from a series of defocused measurements ([2]). The linear operator can be realized
with a 2D Laplacian kernel, bandpassing mid-frequency components. In computational microscopy,
this is also known as transport of intensity imaging ([59]) to recover the phase and amplitude of an
object.

We demonstrate our framework on the differential defocus problem in Fig. 11. The noise is
again grayscale WGN filtered with Gaussian kernels of std = 2.5 and 5, for CIFAR and CelebA,
respectively with SNR = 12.91. We also compare with a Tikhonov regularization, which is an L2

norm prior on the object to constrain the energy of the reconstruction.
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Figure 12: FID scores for different WS DMs trained on different stdmax.

D Generative modeling

We also train 6 different models where we vary the std of the maximum value of the Gaussian blur
kernel, K, from a delta function (isotropic Gaussian noise) to stdmax = 5 pixels. During training, K
varies uniformly from std = 0.1 to std = stdmax.

Novel samples are produced by solving the probability flow ODE, replacing GtG
⊤
t ∇xt log pt(xt)

with our optimized model nθ(xt, t) using Euler-Maruyama discretization with T = 1000 and
βmin = 0.01 and βmax = 20. The initial noise condition, xT ∼ N (0,Kstdmax

K⊤
stdmax

). The
Fréchet Inception Distance (FID) scores decrease as the spatial correlation range increases as seen in
Fig. 12.

While WS DMs perform well as generative denoising priors for inverse problems, we leave to future
work further investigation on their generative capabilities.

E Forward Consistency Loss

The model nθ(xt, t) is trained to approximate the scaled noise component introduced in the forward
stochastic differential equation (SDE) that perturbs x0 to yield xt. Accordingly, the score function
GtG

⊤
t ∇xt log p(xt | x0) in Eq. 12 can be substituted with the model prediction. To enforce

consistency with the forward diffusion process, we introduce an auxiliary loss term defined as:

L2 = Et∼U(0,1],x0∼p(x),xt∼p(xt|x0)

{∥∥∥∥x0 −
βtxt + (1− α2

t )nθ(xt, t)

βtαt

∥∥∥∥2
2

}
. (37)

The term inside the expectation represents a reconstruction of x0 based on the noisy sample xt and
the model prediction nθ. Minimizing L2 encourages the model to remain faithful to the generative
process defined by the forward SDE.

Empirically, we find that including L2 as an auxiliary objective—weighted equally with the primary
loss term L—leads to improved training stability and faster convergence.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the core innovation—learning a whitened score to handle
anisotropic Gaussian processes—and claims align well with the theoretical development
and experimental validation presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss its suboptimal performance in generative tasks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide proofs in the appendix that clearly state assumptions and step-by-
step proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details related to training and hyperparameter selection are mentioned in
the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A link to the repository is provided and the datasets are public datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and test details are described in the Experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Experiments conducted are image reconstruction, which cannot include error
bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details of the compute resources are described in the Experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research adheres to the NeurIPS Code of Ethics, as it presents a
methodological contribution without involving human subjects, sensitive data, or foreseeable
societal harms.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Not applicable—this paper presents a theoretical and algorithmic contribution
in diffusion modeling without direct deployment implications, and does not discuss societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable, as the paper does not involve the release of models or data
with high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: CIFAR-10 and CelebA datasets are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not use crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There are no human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not used
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Score-based diffusion models
	Structured Forward Processes in Diffusion Models
	Flow matching
	Imaging inverse problems with diffusion model priors

	Whitened Score Diffusion
	Whitened Score matching objective
	Interpretation of WS
	WS diffusion priors for imaging inverse problems

	Experiments
	Training details
	Imaging inverse problems with correlated noise

	Conclusion
	Denoising Whitened Score matching
	Flow matching in SDE
	Imaging inverse problems
	Generative modeling
	Forward Consistency Loss

