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Abstract

Multi-fidelity Bayesian optimization (MFBO) is a powerful approach that utilizes
low-fidelity, cost-effective sources to expedite the exploration and exploitation of a
high-fidelity objective function. Existing MFBO methods with theoretical founda-
tions either lack justification for performance improvements over single-fidelity
optimization or rely on strong assumptions about the relationships between fidelity
sources to construct surrogate models and direct queries to low-fidelity sources.
To mitigate the dependency on cross-fidelity assumptions while maintaining the
advantages of low-fidelity queries, we introduce a random sampling and partition-
based MFBO framework with deep kernel learning. This framework is robust to
cross-fidelity model misspecification and explicitly illustrates the benefits of low-
fidelity queries. Our results demonstrate that the proposed algorithm effectively
manages complex cross-fidelity relationships and efficiently optimizes the target
fidelity function.

1 Introduction

Multi-fidelity Bayesian optimization (MFBO) (Dai et al., 2019; Wu et al., 2020; Takeno et al., 2020)
is increasingly prevalent in the adaptive design of scientific experiments (Buterez et al., 2023),
automated hyperparameter optimization (Eggensperger et al., 2021; Pfisterer et al., 2022), and policy
optimization in control problems (Letham and Bakshy, 2019; Wu et al., 2020).

Previous work has often relied on various assumptions about the relationship between different
fidelities to analyze efficiency theoretically (Song et al., 2019; Kandasamy et al., 2016, 2017). Similar
to transfer learning for Bayesian optimization (BO), a more practical challenge involves handling
significant misalignment between fidelities while maintaining cost efficiency. Recent approaches
to robust transfer learning for BO (Appice et al., 2015; Probst et al., 2019; Perrone et al., 2019;
Reif et al., 2012; Pfisterer et al., 2021; Feurer et al., 2018) and robust single-fidelity BO against
model misspecification (Bogunovic and Krause, 2021; Liu et al., 2023) have addressed this issue
yet typically do not consider the sample efficiency on the lower fidelities. Some research suggests
mitigating the problem by avoiding evaluations or learning from unreliable low-fidelity sources
(Mikkola et al., 2023; Foumani et al., 2023), but they do not explicitly deal with errors incurred from
the unreliable model learning of the multi-fidelity structure in the model design and acquisition.

Leveraging recent advancements in efficient kernel learning, uncertainty quantification, and error
bounds for learning algorithms (Xu and Raginsky, 2017; Robinson et al., 2020; Wang et al., 2021),
we propose a general-purpose framework that uses sampling-based cost-aware acquisition. This
framework captures complex and potentially misaligned multi-fidelity evaluations while explicitly
addressing model misspecification on the fly with robust data acquisition and deep kernel learning.
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Figure 1: We illustrate the problem of learning and optimization on both target fidelity and misaligned
low fidelities. (a) demonstrates the one-dimensional Rastrigin function (Pohlheim, 2007) and the
manually constructed low fidelities. (b) demonstrates the posterior of learning the multi-fidelity
functions with conventional multi-task GP (Swersky et al., 2013) previously applied in MFBO
(Letham and Bakshy, 2019) when feeding 2000 training points densely distributed in the search space.
(c) shows the posterior of the proposed model when feeding 10 points from each fidelity.

2 Preliminaries

We begin by introducing useful notation, mostly following previous work by Song et al. (2019), and
formally stating the problem studied in this paper.

2.1 Multi-fidelity Optimization of Unknown Objective

Consider the problem of maximizing an unknown payoff function fM : X → R. We can probe
this function by directly querying it at some point x ∈ X, consequently obtaining a noise-free
observation y⟨x,M⟩ = fM (x).In addition to fM , we have access to oracle calls for unknown auxiliary
functions f1, . . . , fM−1 : X → R. Similarly, querying any fℓ at x yields a noise-free observation
yt = fℓt(xt). Each auxiliary function fℓ can be viewed as a lower-fidelity version of fM when ℓ < M .
Specifically, we model the unknown target fidelity functions with corresponding Gaussian process
(GP): fM ∼ GP (µM (x), kM (x,x′)), where µM and kM denote the prior mean and covariance. Let
⟨x, ℓ⟩ denote the action of querying fℓ at x. Each action ⟨x, ℓ⟩ incurs a cost of λℓ and yields a reward:

r(⟨x, ℓ⟩) =
{
fM (x) if ℓ =M

rmin otherwise

That is, performing ⟨x,M⟩ at the target fidelity level achieves a reward fM (x). The collective
historical observations after T iteration is denoted by DT ≜ {⟨xt, ℓt⟩, yt}t=1...T . We also define the
collective historical observations up to certain fidelity ℓ as Dℓ,T ≜ {⟨xt, ℓ

′
t⟩, yt}1≤t≤T,ℓ′t≤ℓ. When

given a fixed budget, we need to guarantee the cumulative cost does not exceed the budget, i.e.,∑T
t=1 λℓt ≤ Λ. Lower fidelity actions ⟨x, ℓ⟩ for ℓ < M yield the minimal immediate reward rmin

but can provide valuable information about fM , potentially leading to better decisions later. Without
loss of generality, we assume maxx fM (x) ≥ 0 and rmin ≡ 0. Note that we define the reward only
as incurred based on the target fidelity, and the query on low fidelity does not incur a reward but only
helps with the learning. Hence, in the context of multi-fidelity Bayesian optimization, the simple
regret (SR) is defined as: R(x̂) = fM (x∗)− fM (x̂), where x̂ := argmaxx:(⟨x,M⟩,y)∈DT

fM (x) is
a point selected to be evaluated at the target fidelity, and x∗ is the global maximizer of the function
fM . Our objective is to find the candidate that minimizes the simple regret after exhausting a given
budget Λ.

2.2 Expected Excess Risk

In addition to the conventional analysis that assumes the prior is properly specified, we explicitly
deal with the model misspecification regarding the difference between the posterior mean and true
underlying function. In the context of statistical learning theory, the convergence rate of the
expected excessive risk with respect to the training dataset Dℓ,T at fidelity ℓ ∈ [M ]+ = [1 . . .M ]

after T iterations is defined as RateMF (ℓ, T ) ≜ E
[
L(fℓ, f̃ℓ)|Dℓ,T

]
− L(fℓ, f̃∗ℓ ) = O(Tα), Here,

−1 < α < 0 is a constant that characterizes the rate of convergence. f̃ℓ is the hypothesis of fidelity ℓ
produced by the learning algorithm when trained on Dℓ,T . L(f, f̃) is the loss function evaluating the
hypothesis f̃ with respect to the true objective f , and f̃∗ℓ is the hypothesis on fidelity ℓ that minimizes
the expected loss.
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Figure 2: Schema for multi-fidelity learning implemented with deep kernel. The dotted lines denote
the flow of target fidelity (strong data), and the solid lines the flow of low fidelities(weak data). Here,
we denote the output space for certain fidelity ℓ ∈ [M ]+ as Yℓ. Specifically, the target fidelity output
space is denoted as YM .

3 Method

In this section, we discuss the model design and the analysis-inspired data acquisition procedure of
the proposed Robust Multi-Fidelity Bayesian Optimization with Deep Kernel Learning and Partition
(RMFBO-DP). The pseudo code and detailed design choices are deferred to Appendix B.

3.1 Model

We employ hierarchical deep kernel learning (Wilson et al., 2016) regularized with the spectral
norm (Van Amersfoort et al., 2021) with mean absolute error (MAE) as the loss function to deal
with overfitting caused by shortage of training data and the specific choice of training loss. We
assume that the multiple fidelities {fℓ}ℓ∈[M ] are mutually dependent through some fixed, possibly
unknown joint probability distribution. Therefore, we seek to approximate the joint underlying
function f : X × [M ]+ → R, where both the position x ∈ X and fidelity ℓ ∈ [M ]+ are inputs,
and learn the approximation f̃ through joint learning of h and gℓ∈[M ]+ . Here, a single latent space
mapping h : X× [M ]+ → Z convert the input space X to the latent space Z which consists of the
fidelity independent part ZM and fidelity dependent part Zℓ. On top of the latent space, we construct
a set of objective mappings g1 . . . gM for each fidelity. Namely ∀ℓ ∈ [M ]+, fℓ ≜ f(·, ℓ) and f(·, ℓ)
is approximated by f̃ℓ ≜ gℓ(h(·, ℓ)). We illustrate the model structure in figure 2. The model is
trained by first traversing all low fidelities for weak learning, then jointly optimizing the deep kernel.

3.2 Data Acquisition

We extend random exploration to the multi-fidelity regime. We use both the expected generalization
error and SR bounds to guide the cost-efficient acquisition. When the error bound contributes
more to global regret, we randomly explore until it is more cost-efficient to conduct target fidelity
acquisition. When the SR contributes more to the general regret, we conduct target fidelity acquisition
on certain partitions of the search space. We leverage the GP posterior calibrated with the excess
risk on observed points to exclude from acquisition the partitions of the search space that, with high
probability, do not contain the global optimum. To do so, we rely on both the upper confidence
bound UCBfM ,t(x) ≜ µfM ,t−1(x) + β

1/2
fM ,tσfM ,t−1(x) and lower confidence bound LCBfM ,t(x) ≜

µfM ,t−1(x) − β
1/2
t σfM ,t−1(x), where σt−1(x) = kt−1(x,x)

1/2 and βt acts as a scaling factor
corresponding to certain confidence. Formally, the acting search space at iteration t is X̂t =
{x ∈ X | UCBfM ,t(x) > maxx′∈X LCBfM ,t(x

′)− RateMF (M, t)} .
Regarding the theoretical justification, previous works offer an upper bound for cumulative regret
when applying random exploration on the partitions of interest (Salgia et al., 2024) defined as
{x ∈ X | UCBfM ,t(x) > maxx′∈X LCBfM ,t(x

′)}, as the target fidelity acquisition function when
we ignore the contribution of low-fidelity evaluation to the target fidelity learning. We extend the
cumulative regret bound into the following form of SR bound.

Informal Theorem 1 Under proper assumptions and choices of parameters, when ignoring the
contribution of performance by learning on the low fidelities, we have with probability at least
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Figure 3: We illustrate the performance of RMFBO-DP compared against MF-MES, MF-KG,
rMF-MES, and rMF-KG on both synthetic and real-world datasets. The results are collected from
10 independent trials. The y-axis denotes the simple regret, and the x-axis denotes the consumed
budget. The shades area shows the 95% confidence interval. We trim the shared initial single data
point. Detailed discussions are deferred to Appendix C.

1− δ, SR(t) = Õ
(√

γTM (t)

TM (t) log TM (t)
δ

)
. Here Õ means up to the logarithmic factor, and Tℓ(t) ≜

|{⟨xt′ , ℓt′⟩, yt′}1≤t′≤t,ℓt′=ℓ| denotes evaluations at fidelity ℓ among t evaluations.

We exploit recent advancements in expected excess risk in meta-learning (Robinson et al., 2020) to
extend the previous SR results to multiple weak learning sources. We state the informal version of
the theoretical results here while deferring the discussion of assumptions, proof, and other details to
Appendix A. First, we decompose the ultimate SR into separate components for the conventional
regret and the generalization error.

Informal Theorem 2 The misspecification-aware simple regret (SRMA) of the proposed algorithm
can be decomposed into the standard simple regret (SR) and the rate term as SRMA(t) ≤ SR(t) +
RateMF (M, t).

In the following, we generalize the meta-learning expected excess risk (Robinson et al., 2020; Xu
and Raginsky, 2017) to multi-fidelity learning.

Informal Theorem 3 When the lowest single fidelity bears the convergence rate
RateMF (1, T ) = O(

√
1
T1
), the excess risk bound RateMF (ℓ, t) ≤

O

RateMF (ℓ− 1, t) +

√(
logTℓ(t)

RateMF (ℓ− 1, t) + 1
)
log Tℓ(t)

Tℓ(t)


This allows us to differentiate the multiple fidelities’ contribution to the target fidelity learning and
regret minimization. Specifically, a cost-aware multi-fidelity acquisition could be made by minimizing
the SRMA(T ) such that the total cost incurred by querying different fidelities does not exceed Λ.

3.3 Evaluation

We evaluated the proposed algorithm RMFBO-DP against four baselines on both synthetic datasets
corresponding to figure 1 and real-world protein design dataset. The results shown in figure 3
demonstrate the robustness of RMFBO-DP in various tasks and efficiency in tasks of different
dimensionalities. We defer detailed description to Appendix C.

4 Conclusion

In this paper, we introduced a novel multi-fidelity Bayesian optimization approach focusing on
robustness and efficiency. Our method explicitly addresses the misspecification issues in multi-
fidelity deep model learning by incorporating budget-sensitive low-fidelity sampling and constraining
acquisitions to a subset of the global search space for target fidelity optimization. By tackling the
challenges of low-fidelity misalignment and efficient target fidelity optimization in a principled,
cost-effective manner, we demonstrated that our approach significantly improves robustness and
performance over existing methods, as confirmed by our theoretical and empirical results.

4



Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-CONF-867786.
The GUIDE program is executed by the Joint Program Executive Office for Chemical, Biologi-
cal, Radiological and Nuclear Defense (JPEO-CBRND) Joint Project Lead for CBRND Enabling
Biotechnologies (JPL CBRND EB) on behalf of the Department of Defense’s Chemical and Bio-
logical Defense Program. This effort was in collaboration with the Defense Health Agency (DHA)
COVID funding initiative. The views expressed in this paper reflect the views of the authors and
do not necessarily reflect the position of the Department of the Army, Department of Defense,
nor the United States Government. References to non-federal entities do not constitute nor imply
Department of Defense or Army endorsement of any company or organization. This work was
completed in part with resources provided by the University of Chicago’s Research Computing
Center.

References
Annalisa Appice, Pedro Pereira Rodrigues, Vı́tor Santos Costa, Carlos Soares, João Gama, and Alı́pio

Jorge. Machine learning and knowledge discovery in databases. In Proceedings of the European
Conference, ECML PKDD, Part II, Porto, Portugal.–2015. Springer, 2015. 1

Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-
son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.
Advances in neural information processing systems, 33:21524–21538, 2020. 9

Kyle A Barlow, Shane O Conchuir, Samuel Thompson, Pooja Suresh, James E Lucas, Markus
Heinonen, and Tanja Kortemme. Flex ddg: Rosetta ensemble-based estimation of changes in
protein–protein binding affinity upon mutation. The Journal of Physical Chemistry B, 122(21):
5389–5399, 2018. 10

Ilija Bogunovic and Andreas Krause. Misspecified gaussian process bandit optimization. Advances
in neural information processing systems, 34:3004–3015, 2021. 1

Oliver Buß, Jens Rudat, and Katrin Ochsenreither. Foldx as protein engineering tool: better than
random based approaches? Computational and structural biotechnology journal, 16:25–33, 2018.
10

David Buterez, Jon Paul Janet, Steven J Kiddle, and Pietro Liò. Mf-pcba: Multifidelity high-
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A Theorems and Proofs

We begin by introducing the necessary notion.

Definition 1 (RKHS Salgia et al. (2024)) Consider a positive definite kernel k : X × X → R. A
Hilbert spaceHk of functions on X equipped with an inner product ⟨·, ·⟩Hk

is called a Reproducing
Kernel Hilbert Space (RKHS) with reproducing kernel k if the following conditions are satisfied: (i)
∀x ∈ X , k(·, x) ∈ Hk; (ii) ∀x ∈ X ,∀f ∈ Hk, f(x) = ⟨f, k(·, x)⟩Hk

. For simplicity, we use ψx to
denote k(·, x). The inner product induces the RKHS norm, ∥f∥2Hk

= ⟨f, f⟩Hk
.

The following discusses the necessary assumptions, formal theorems, and corresponding proofs. We
state the typical assumption for BO performance analysis first.

Assumption 1 Throughout the optimization, f̃M bears an upper boundB on the RKHS norm (Salgia
et al., 2024) corresponding to the learned deep kernels kt. Namely

∥∥∥f̃M∥∥∥
Hkt

≤ B.

Assumption 2 (Generalized Assumption 4.1 of Salgia et al. (2024)) For all n ∈ N, there exists a
discretization Dn of X such that for all f ∈ Hk,

|f(x)− f([x]Dn
)| ≤ ∥f∥Hk

/n and |Dn| = poly(n)3,

where [x]Dn = argminy∈Dn ∥x− y∥2, is the point in Dn that is closest to x.

Assumption 3 (Assumption 4.2 of Salgia et al. (2024)) Let Lη = {x ∈ X | f(x) ≥ η} denote the
level set of f for η ∈ [−B,B]. We assume that for all η ∈ [−B,B], Lη is a disjoint union of at most
Mf <∞ components, each of which is closed and connected. Moreover, for each such component,
there exists a bi-Lipschitzian map1 between each such component and X with normalized Lipschitz
constant pair Lf , L

′
f <∞.

We then state the assumption for analysis of the statistical learning.

Assumption 4 The hypothesis space for each fidelity Hℓ contains the underlying functions fℓ for
∀ℓ ∈ [M ]+.

Assumption 5 We assume the ∀ℓ ∈ {2, . . . ,M}, f̃ℓ is L-Lipschitz relative to the function space
Hh, meaning ∀x ∈ X, ∀y ∈ Yℓ, ∀h, h′ ∈ Hh, we have |L(y, gℓ(h(x))) − L(y, gℓ(h′(x)))| ≤
LL(gℓ−1(h

′(x)), gℓ−1(h
′(x))).

This generalizes the assumption of Theorem 10 from Robinson et al. (2020).

In the following section, we restate the key insights for this work.
1A map f : X → Y is bi-Lipschitzian if there exist constants c1, c2 > 0 such that c1∥x − y∥ ≤

∥f(x)− f(y)∥ ≤ c2∥x− y∥ for all x, y ∈ X .

7



Theorem 1 When Assumptions 1, 2, and 3 hold, constraining the random exploration on the target
fidelity on {x ∈ X | UCBfM ,t(x) > maxx′∈X LCBfM ,t(x

′)}, and choosing β = B2, we have the
following bound with probability at least 1− δ,

SR(t) = Õ(
√
γTM (t)

TM (t)
log(TM (t)/δ)) (1)

Proof: A direct extension of Theorem 4.3 and Theorem 4.5 of Salgia et al. (2024) by expand-
ing the noise-free bound in its Theorem 4.3 to the noisy scenario bound in Theorem 4.5 is that
when only considering single fidelity optimization applying random exploration in the region of
interest defined above, with probability at least 1− δ, the cumulative regret bears the upper bound
Õ(

√
γTM (t)TM (t)log(TM (t)/δ)). Adding TM (t) to the denominator converts it to a high probability

upper bound of SR. □

Theorem 2 Under the assumptions of Theorem 1 except for constraining random exploration in X̂t

as defined in equation 3. The misspecification-aware Bayesian simple regret (SRMA) of the proposed
algorithm can be decomposed into the standard Bayesian simple regret (SR) and the rate term as
follows:

SRMA(t) ≤ SR(t) + RateMF (M, t).

Proof: The result is a simple extension as we extend the region of interest to X̂t as defined in
equation 3. The additional term RateMF (M, t) count for the introduced excess risk. □

Theorem 3 (Generalized Theorem 10 of Robinson et al. (2020)) With the aforementioned assump-
tions 1-5 hold, and the lowest single fidelity bears the convergence rate RateMF (1, T ) = O(

√
1
T1
).

The excessive risk bears the bound

RateMF (ℓ, t) ≤ O

RateMF (ℓ− 1, t) +

√(
logTℓ(t)

RateMF (ℓ− 1, t) + 1
)
log Tℓ(t)

Tℓ(t)

 (2)

Proof: With aforementioned assumptions hold, for ∀1 < ℓ ≤M , the learning on fidelity ℓ− 1 and ℓ
meets the assumption of Theorem 10 of Robinson et al. (2020), then the bound above could be direct
results of recursively applying the theorem 10 for ℓ = 2 . . .M . □

B Additional Algorithm Details

In the following, we offer the additional details of implementing the proposed algorithm RMFBO-
DP.

Reliable search space exclusion We leverage the GP posterior calibrated with the excess risk on
observed points to exclude from acquisition the regions that, with high probability, do not contain the
global optimum. To do so, we rely on both the upper confidence bound UCBfM ,t(x) ≜ µfM ,t−1(x)+

β
1/2
fM ,tσfM ,t−1(x) and lower confidence bound LCBfM ,t(x) ≜ µfM ,t−1(x)−β1/2

t σfM ,t−1(x), where
βt is the scaling factor corresponding to certain confidence. Formally, the acting search space at
iteration t is X̂t defined as

{
x ∈ X | UCBfM ,t(x) > max

x′∈X
LCB′

fM ,t(x
′)

}
. (3)

Here LCB′
fM ,t(x

′) ≜ LCBfM ,t(x
′)− RateMF (M, t) generalize the lower confidence bound to the

incorporate the expected generalization error.
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Algorithm 1 Robust Multi-Fidelity Bayesian Optimization with Deep Kernel Learning and Partition
(RMFBO-DP)

1: Input:Search space X, t1 initial observation Dt1 , total budget Λ;
2: Initialize timestamp as t← t1.
3: Initialize remaining budget Λ← Λ−

∑t
t′=1 λℓt′

4: while Λ > 0 do
5: Update the model f̃ .
6: Identify ROIs X̂t according to equation 3.
7: Maximize cost-sensitive SRMA(t+ 1)− SRMA(t) reduction.

∆SR,t ← SR(t+1)−SR(t)
λM

∆RateMF ,t ← maxℓ∈[M ]+
RateMF (ℓ,t+1)−RateMF (ℓ,t)

λℓ

8: if ∆SR,t ≥ ∆RateMF ,t then
9: Draw random sample xt from X̂t on fidelity ℓt

ℓt ←M
xt ← maxx∈X̂ αfM (x)

10: else
11: Sample candidate on on fidelity ℓt

ℓt ← argmaxℓ∈[M ]+
RateMF (ℓ,t+1)−RateMF (ℓ,t)

λℓ

xt ← sample from uniform distribution on X.
12: end if
13: Update the observation Dt+1 ← Dt ∪ {⟨xt, ℓ

′
t⟩, yt}

14: Update the remaining budget Λ← Λ− λℓ
15: Update the timestamp t← t+ 1
16: end while

Estimation of SR rates Due to the difficulty of analyzing exact SR, we rely on the following simple
approximation. For two consecutive evaluations of the target fidelity, if we observe improvement
in the best reward, we leverage the improvement to regress the SR. Namely, for ∀1 ≤ t1 < t2 ≤ T ,
if ∆fM ≜ y⟨xt2 ,ℓt=M⟩ − y⟨xt1 ,ℓt=M⟩ > 0, we update the approximation for SR(t2) by solving
∆fM = SR(t2)− SR(t1).

Estimation of expected excess risk Similar to the above approximation of SR, we approximate the
excess risk reduction by regressing to the observed fitting error improvement. RateMF (M, t). for
∀1 ≤ t1 < t2 ≤ T, ℓ ∈ [M ]+, we resort to 5-fold cross-validation on Dℓ,t1 and Dℓ,t2 to estimate
the model fitting improvement ∆L(fℓ,f̃ℓ),t

= RateMF (ℓ, t2)− RateMF (ℓ, t1). Solving the equation
allows us to approximate RateMF (ℓ, t2).

Constraining acquisition We rely on random discretization to constrain the acquisition within X̂t,
which rejects the candidates outside X̂t. Note popular BO frameworks typically allow optimizing the
acquisition function subject to constraints, e.g., Botorch (Balandat et al., 2020).

C Experiments

We compare the proposed RMFBO-DP against four baselines. The first one is the entropy-based
method denoted as MF-MES proposed by Takeno et al. (2020); the second one is denoted as MF-KG,
which is the cost-efficient knowledge gradient method proposed by Wu et al. (2020). The third and
fourth algorithms are corresponding variants when applying the robust MFBO framework proposed
by Mikkola et al. (2023), denoted as rMF-MES and rMF-KG correspondingly. We rely on BoTorch
(Balandat et al., 2020) and gpytorch (Gardner et al., 2018) to implement RMFBO-DP and the
baselines.
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C.1 Dataset

We evaluate algorithm performance on synthetic datasets and a real-world multi-fidelity protein
design task.

Rastrigin dataset As illustrated in figure 1, we construct the four-fidelity version of Rastrigin
function (Pohlheim, 2007) on 1D search space. We further extend the construction to 20D search
space. Here, the first two lower fidelities generally share the same trend as the target-fidelity
underlying function, while the lowest fidelity that incurs the cheapest evaluation cost disagrees with
the target fidelity function except for limited central area and largely diverges in the border areas.

Multi-fidelity protein design We use a protein engineering dataset describing a set of anti-
gen/antibody binding calculations. These calculations, executed using supercomputing resources,
estimate the change in binding free energy at the interface between each of the 71769 modified
antibodies and the SARS-CoV-2 spike protein, as compared to the single reference antibody from
which they are derived. Estimations of binding free energy (∆∆G) are calculated using protein-
structure-based Rosetta Flex simulation software (Das and Baker, 2008; Barlow et al., 2018) and
FoldX (Schymkowitz et al., 2005; Sapozhnikov et al., 2023; Buß et al., 2018). We treat Rosetta’s
outcomes as the objective of the target fidelity. These calculations took several CPU hours each and
were produced during an antibody design process (Desautels et al., 2020, 2022).

C.2 Evaluation

We evaluated the proposed algorithm Robust Multi-fidelity Bayesian Optimization (RMFBO-DP)
against four baselines on both synthetic datasets corresponding to figure 1 and four real-world tasks.
We’ve shown that the proposed algorithm outperforms the baselines in terms of simple regret on
Rastrigin-1D, Rastrgin 20d, and Protein-88D.

C.3 Ablation Study

We conduct an ablation study to investigate the impact of the proposed algorithm components.
We compare the performance of the additional variants of the baselines when applying the same
deep kernel learning yet without random sampling on low-fidelities. As is shown in table 1, the
performance of the variants is not consistently improved upon the corresponding baselines and lags
behind RMFBO-DP. This observation suggests that data acquisition is crucial to the performance
improvement of the proposed RMFBO-DP.

Method Rastrigin-1D Rastrigin-20D
RMFBO-DP 0.75 ± 0.30 86.64 ± 9.80
MF-MES 15.00 ± 6.83 105.66 ± 4.25
MF-KG 1.84 ± 0.61 106.03 ± 6.96
MF-MES-DK 2.83 ± 2.57 106.62 ± 5.72
MF-KG-DK 7.04 ± 4.60 110.00 ± 0.00
rMF-MES 8.33 ± 7.36 100.93 ± 8.87
rMF-KG 3.02 ± 1.18 103.37 ± 6.41
rMF-MES-DK 14.88 ± 7.65 103.20 ± 6.24
rMF-KG-DK 3.37 ± 1.23 103.52 ± 5.32
Random 5.05 ± 2.43 104.06 ± 6.15

Table 1: Ultimate simple regrets for Rastrigin-1D and Rastrigin-20D tasks. The best-performing
algorithm for each task is highlighted in bold. The results are collected from at least ten independent
trials. We mark the variants using a deep kernel with “-DK”.
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