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ABSTRACT

Large-scale vision-language models (VLMs) have shown remarkable transferabil-
ity across tasks, and their synergy with federated learning (FL) frameworks offers
promising privacy-preserving learning capabilities. Recent advances in federated
prompt learning (FPL) leverage prompt tuning to reduce the computation and
communication overhead. However, existing FPL methods assume a homoge-
neous model setting, where all clients share the same VLMs, which is impractical
given the heterogeneous computational capacities of clients in real-world scenar-
ios. To bridge this gap, we propose model-heterogeneous federated prompt learn-
ing (MHFPL), a novel setting where clients with diverse VLM backbones collab-
oratively learn prompts. We further introduce FedAPPR, a principled framework
for MHFPL built on two key components: (a) server-level adversarial prompt
alignment for aligning client semantics via adversarial training, and (b) client-
level proximity regularization to further constrain prompt drift between clients.
Extensive experiments on six datasets with diverse architectures and data distri-
butions demonstrate the superiority and generalization of FedAPPR, confirming
it as an effective solution for FL with varying VLMs.

1 INTRODUCTION

Recent advances in large-scale vision-language models (VLMs), such as CLIP (Radford et al.,
2021), ALIGN (Jia et al., 2021), and Flamingo (Alayrac et al., 2022), have exhibited remarkable gen-
eralization abilities, allowing them to perform effectively across a wide range of downstream tasks.
Integrating these powerful pre-trained models into the federated learning (FL) paradigm (McMahan
et al., 2017; Yang et al., 2019) opens up exciting possibilities for privacy-conscious collaborative
learning, where decentralized clients benefit from joint model training without exchanging raw data.
Efforts to leverage vision transformers (Dosovitskiy et al., 2021) in FL settings have shown promis-
ing results in enhancing robustness under non-i.i.d. data conditions (Qu et al., 2022; Sun et al.,
2023). Despite their potential, the deployment of such large-scale architectures in practical FL en-
vironments is restricted by substantial computational burdens and high communication costs (Yang
et al., 2023), which hinder their scalability and practical applicability.

To mitigate these challenges, prompt learning (PL) (Zhou et al., 2022b; Liu et al., 2023) has emerged
as a lightweight alternative for adapting pre-trained models. By freezing the backbone and tuning
only a small set of prompt parameters, PL drastically reduces the training footprint. Extending this
concept, PromptFL (Guo et al., 2024) introduces the federated prompt learning (FPL) framework
that integrates PL with the FedAvg (McMahan et al., 2017) protocol. In this framework, each client
locally updates the prompt vectors using their private data, which are then aggregated on the server
to form a global prompt representation. Since only prompts are updated and exchanged, PromptFL
significantly lowers both computation and communication demands. Building on this foundation, a
growing body of work has proposed personalized prompt strategies to address client-specific data
disparities (Yang et al., 2023; Guo et al., 2023; Li et al., 2024; Cui et al., 2024; Luo et al., 2025),
improving adaptability in heterogeneous federated scenarios.

However, existing FPL methods operate under a homogeneous model assumption, i.e., all
clients use the same VLM architecture for prompt learning. This assumption is unrealis-
tic in practice. In real-world scenarios, client devices vary widely in computational re-
sources, operating environments, and pre-installed model architectures. In practice, clients
may employ different VLMs tailored to their local constraints (e.g., ViT or ResNet),
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Figure 1: (a) Accuracy of Local Train, PromptFL, and FedAPPR vs. rounds. PromptFL
performs worse than Local Train, while FedAPPR achieves better results. (b) Visualization of
prompts learned by PromptFL across clients under model-homogeneous settings, where each point
represents a client and prompts are well-aligned. (c)/(d) Visualization of prompts learned by
PromptFL/FedAPPR under model-heterogeneous scenarios, where colors indicate clients with dif-
ferent model architectures. PromptFL yields scattered and inconsistent prompts across clients, while
FedAPPR produces more coherent and structured ones. Implementation details are in the Appendix.
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84
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86

Figure 2: Client-wise accuracy
across 100 clients, grouped
into four sets of 25 based
on different VLM backbones
(e.g., first 25 blocks corre-
spond to first backbone). Clear
inter-group performance dis-
parities reveal notable model
heterogeneity. Implementation
details are in Appendix.

resulting in varying model capacities and prediction accuracies,
as illustrated in Figure 2. Consequently, enforcing model unifor-
mity is often infeasible or counterproductive. Furthermore, this
model heterogeneity can lead to significant prompt divergence in
the federating process, as shown in Figure 1 (b) and (c). This
divergence presents significant challenges for prompt aggregation
and knowledge sharing across clients, as depicted in Figure 1 (a),
where PromptFL performs worse than Local Train.

To bridge this gap, we introduce a novel and practical problem set-
ting: model-heterogeneous federated prompt learning (MHFPL),
where each client retains its own VLM and collaboratively learns
prompt representations through federated communication. To
tackle the MHFPL problem, we propose the Federated Adversarial
Prompt Alignment and Proximity Regularization (FedAPPR), a
principled framework for MHFPL that introduces two key mecha-
nisms: a) adversarial prompt alignment: An architecture-agnostic
alignment strategy that encourages prompt distributions from dif-
ferent clients to share more coherent semantics through adversarial
learning; b) proximity regularization: A lightweight regularization
term that pulls each local prompt toward a global reference, further
reducing inter-client divergence. The whole FedAPPR framework
is illustrated in Figure 3, and our key contributions are summarized as follows:

⋆ We focus on an important and practical FPL problem, where clients deal with varying model
architectures. We formalize this problem as a new learning topic called model-heterogeneous
federated prompt learning (MHFPL) and introduce the FedAPPR method to approach it.

⋆ FedAPPR integrates two complementary strategies: An adversarial alignment mechanism that
enforces cross-client semantic consistency by training prompts to fool a server discriminator,
making them architecture-invariant; A proximity regularization term that softly encourages each
local prompt to stay close to a global reference prompt, further reducing variance.

⋆ Experiments on six benchmarks validate the superior performance of FedAPPR over baselines,
demonstrating its effectiveness in handling heterogeneous backbones and highlighting its poten-
tial for federated learning with diverse VLMs.

2 RELATED WORK

2.1 MODEL-HETEROGENEOUS FEDERATED LEARNING

Federated learning (FL) (McMahan et al., 2017; Yang et al., 2019) has emerged as a prominent dis-
tributed learning paradigm that addresses privacy and security concerns by allowing collaborative
model training among decentralized clients. However, a fundamental challenge in FL arises from
model heterogeneity across clients, which is often caused by variations in local computational ca-
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Figure 3: The server maintains a global prompt pool Pglobal and periodically aggregates client-
uploaded local prompts {P1, · · · ,Pn} to obtain global prompt P. A discriminator Dϕ is concur-
rently trained to distinguish between the distribution of local prompts and that of global prompts.
During local training, each client un receives the latest global prompt P and the discriminator Dϕ

from server. un then updates its prompt with guidance from: the local task loss (Ltask
n ), the adver-

sarial loss derived from Dϕ (Ladv
n ), and the proximity regularization term from P (Lreg

n ).

pacities. To address this challenge, model-heterogeneous federated learning (Alam et al., 2022; Ye
et al., 2023; Jiang et al., 2024) has been introduced, allowing clients to adopt diverse model archi-
tectures. Knowledge distillation (KD) is a widely used strategy in this setting. A common strategy
involves clients computing logits from their local models on a public dataset and uploading them to a
server, where the logits are aggregated into global logits and redistributed (Li & Wang, 2019; Huang
et al., 2022). Clients then refine their models by aligning local logits with global ones. However,
this strategy is limited by the availability of a suitable public dataset and is prone to performance
degradation when private data distributions diverge (Zhang et al., 2023). To avoid reliance on the
public dataset, another line of work replaces the public dataset with a collaboratively trained auxil-
iary model, which is trained and shared among clients and used for mutual distillation to enhance
their main models (Shen et al., 2020; Wu et al., 2022; Qin et al., 2023). While offering a viable
solution to model heterogeneity, these methods introduce significant overheads associated with the
training and dissemination of auxiliary models, particularly when applied to large-scale multi-modal
models.

Beyond KD, prototype-based methods, such as FedProto (Tan et al., 2022) and FedTGP (Zhang
et al., 2024a), propose exchanging label prototypes instead of model parameters, thereby allowing
model heterogeneity. More recently, FedHPL (Ma et al., 2024) studies heterogeneity in a setting
where clients share the same backbone family but with varying dimensions, incorporating prompt
tuning to reduce computational overhead and using collaborative logit distillation while avoiding
prompt aggregation. In contrast, we explore a fundamentally different and more challenging sce-
nario: clients hold heterogeneous VLMs. Our focus is on resolving semantic misalignment across
client-specific prompts, an aspect overlooked by aforementioned approaches.

2.2 FEDERATED PROMPT LEARNING

Recent advances in large-scale vision-language models (VLMs) (Radford et al., 2021; Zhang et al.,
2024b) have shown strong generalization across various downstream tasks, making them concep-
tually aligned with the goals of FL. Nonetheless, deploying such models in FL settings remains
non-trivial due to the considerable computational demands and high communication costs involved
in training them in a distributed manner. Prompt learning (PL) (Zhou et al., 2022b; Liu et al., 2023)
has become a flexible and efficient strategy for tailoring pre-trained models to specific tasks, utilizing
learnable soft prompts in place of manually crafted ones. For example, CoOp (Zhou et al., 2022b)
improves CLIP by substituting its static text templates with learnable prompts, and CoCoOp (Zhou
et al., 2022a) builds upon this idea by conditioning prompt learning on image features, thereby
further enhancing generalization and performance.

Building upon the efficiency of PL, PromptFL (Guo et al., 2024) presents the federated prompt
learning (FPL) framework, which combines PL with the FedAvg (McMahan et al., 2017) to learn a
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shared set of prompt vectors across distributed clients. Recent advances in FPL have increasingly
focused on addressing statistical heterogeneity across clients. Notably, pFedPG (Yang et al., 2023)
introduces a client-specific prompt generator on the server, facilitating the creation of personalized
prompts for each client. pFedprompt (Guo et al., 2023) employs a non-parametric personalized
attention module for each client, which generates localized visual features that are then integrated
with the global textual prompt for prediction. FedOTP (Li et al., 2024) applies unbalanced Optimal
Transport to improve the cooperation between global and local prompts. Meanwhile, FedPGP (Cui
et al., 2024) utilizes pre-trained CLIP to guide the optimization of global prompts, enhancing their
generalization, and incorporates a low-rank adaptation term to personalize them. Recently, DP-
FPL (Tran et al., 2025) applies differential privacy to prompts, ensuring stronger and more rigorous
privacy protection.

Although these FPL methods successfully integrate VLM into FL systems and deliver impressive
performance, they are limited by the assumption that all clients share an identical model architecture
for collaborative prompt learning. Such limitations restrict the applicability of existing methods in
realistic federated settings, where clients typically maintain heterogeneous models due to hardware
constraints, pre-training differences, or task-specific requirements. This model heterogeneity gives
rise to significant semantic divergence in learned prompts, undermining performance and stability
of collaborative learning. To fill this gap, we propose FedAPPR, a framework that systematically
enforces semantic consistency across client prompts through adversarial alignment at the server and
proximity regularization at the client to boost the collaborative training.

3 METHODOLOGY

3.1 FEDERATED PROMPT LEARNING

Prompt learning (PL) offers a parameter-efficient strategy to adapt pre-trained large models like
CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), by optimizing only a small number
of prompt-specific parameters for downstream tasks. Unlike zero-shot CLIP, which uses a fixed
word embedding matrix W = [w1,w2, · · · ,we] ∈ Rd×e and relies on hand-crafted prompts
such as “a photo of a [class]”, with e denoting the number of word embeddings and d rep-
resenting their dimensionality, PL replaces manual templates with m trainable context vectors
P = [p1,p2, · · · ,pm] ∈ Rd×m, allowing the prompt itself to be learned directly from data.
Accordingly, the prompt for class i is constructed as Pi = {w1,p1, · · · ,pm,wm+2, · · · ,we},
where the original static embeddings [w2, · · · ,wm+1] are substituted with learnable prompt vectors
[p1, · · · ,pm] to enhance adaptability in line with prior studies (Li et al., 2024; Cui et al., 2024).
With both the text encoder h(·) and image encoder g(·) kept frozen, the likelihood of assigning an
image x to class i is determined by computing the similarity between the image embedding g(x)
and the prompt representation h(Pi):

q(ŷ = i | x) = exp (sim (g(x), h (Pi)) /t)∑c
j=1 exp(sim(g(x), h(Pj))/t)

(1)

where sim(·, ·) denotes a similarity metric (e.g., cosine similarity), ŷ is the predicted label, c indi-
cates the number of classes, and t is a temperature hyperparameter. Given the training dataset D,
the learnable prompt parameters P can be optimized by minimizing the cross-entropy loss:

Ltask = − 1

|D|
∑

(x,y)∈D

c∑
i=1

yi log p(ŷ = i|x) (2)

where y denotes the one-hot encoded vector corresponding to the ground-truth label.

A straightforward approach for integrating PL into FL is to allow each client to locally optimize
its prompt and intermittently upload them to a central server for aggregation and subsequent re-
distribution. Formally, consider an FL system composed of n clients {ui}ni=1, where each client ui

possesses a local dataset Di = {(x1,y1), (x2,y2), · · · , (xni ,yni)}, which is strictly private and in-
accessible to the central server or any other peers, and is equipped with a pre-trained VLM and a set
of learnable prompt vectors Pi = [pi,1, · · · ,pi,m] ∈ Rd×m. At each communication round, client
ui updates its local prompt parameters Pi by minimizing the loss over its dataset using stochastic
gradient descent:

Pi = Pi − µ∇Ltask
i (Pi;Di) (3)
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where Ltask
i (Pi;Di) represents the ui’s local loss of Pi on dataset Di, and µ denotes the learning

rate. After local training, clients transmit their refined prompts Pi to server to perform global
averaging:

P =
∑n

i=1

|Di|∑n
j=1 |Dj |

Pi (4)

where P represents the aggregated prompt, which incorporates the knowledge accumulated from
local clients. The overall optimization objective for FPL can thus be expressed as:

P
∗
= argminP

∑n

i=1

|Di|∑n
j=1 |Dj |

Ltask
i (P;Di) (5)

3.2 MODEL-HETEROGENEOUS FEDERATED PROMPT LEARNING

In the context of model-heterogeneous federated prompt learning (MHFPL), clients are equipped
with different visual-language models (VLMs) due to varying computational capabilities or operat-
ing environments. As these models differ in architecture, they produce highly inconsistent prompt
embeddings, which hinders effective prompt aggregation and thereby limits the model’s perfor-
mance, as illustrated in Figure 1. To address this challenge, we propose FedAPPR, a model-agnostic
method designed for MHFPL, which enforces cross-model prompt alignment while preserving local
adaptability via two complementary components: adversarial prompt alignment at the server level
to align prompts across clients, and proximity regularization at the client level to stabilize prompt
updates.

3.3 ADVERSARIAL PROMPT ALIGNMENT

In MHFPL, prompt embeddings optimized on non-identical VLMs often reside in disparate sub-
spaces of the embedding space. Even if they encode similar semantics, the lack of architectural
alignment results in representational drift across clients. To reconcile these divergences, we in-
troduce an adversarial alignment mechanism based on a server-side discriminator that identifies
whether prompts originate from a unified global distribution.

3.3.1 DISCRIMINATOR TRAINING OBJECTIVE (SERVER)

At the beginning of each communication round t, the server maintains a historical buffer Pglobal,
containing prompts aggregated from previous rounds. These prompts have undergone semantic
alignment through past global aggregation and thus serve as reliable references that represent the
desired target distribution of aligned prompts. Simultaneously, each client uploads its locally up-
dated prompt Pi to the server. Due to model and data heterogeneity across clients, these local
prompts often differ from the globally aligned prompt space. Instead of discarding these variations,
we leverage them as informative signals to guide alignment. Specifically, in each communication
round, we construct a set Plocal from the client-specific prompts, which serves as a reference for
server-level adversarial alignment. The server then trains a binary discriminator Dϕ(·) that learns
to distinguish between Pglobal and Plocal. The training objective is given by:

LD = −EP∼Pglobal
[logDϕ(P)]− EP∼Plocal

[log(1−Dϕ(P))]. (6)

This objective encourages the discriminator to regard historical global prompts as aligned and to
flag current local prompts as misaligned. Through this training process, the discriminator effectively
constructs a semantic decision boundary that delineates aligned prompts from misaligned ones. As
a result, Dϕ(·) provides a learnable reference frame that can guide the semantic calibration at client
when tuning prompts in subsequent FL process. Together with the globally aggregated prompt, it is
broadcasted to all clients to guide the next round of local training.

3.3.2 CLIENT ADVERSARIAL OBJECTIVE

After receiving the current global prompt and discriminator, each client is instructed to refine its
local prompt in an adversarial manner. Specifically, the discriminator Dϕ(·) serves as a semantic
evaluator. The objective of each client is to adjust its prompt Pi such that it can ”fool” the dis-
criminator, making it indistinguishable from those in the global buffer. This adversarial alignment
is achieved by minimizing the following loss:

Ladv
i = − logDϕ(Pi) (7)
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This adversarial objective encourages the local prompt Pi to be assigned with a higher confidence
score by the discriminator, effectively pushing it toward the semantic region defined by Pglobal. In
doing so, the client is implicitly guided to align its prompt representation with the global prompt
distribution, even under heterogeneous local model architectures.

3.3.3 WARM-UP STRATEGY

While adversarial alignment is critical for promoting semantic consistency among heterogeneous
clients, applying it from the very beginning of training can be counterproductive. Specifically, early
communication rounds suffer from two key challenges: (a) the global prompt Pglobal lacks semantic
stability due to insufficient aggregation, and (b) the initial local prompts Pi are highly variable,
reflecting random initialization or strong local biases. Under these conditions, directly optimizing
local prompts to fool an immature discriminator may lead to unstable training dynamics, degraded
task performance, and misaligned semantic representations.

To mitigate these risks, we introduce a warm-up strategy that defers the activation of adversarial
training and global prompt buffer until the model has reached a more stable state. Concretely, dur-
ing the first T0 communication rounds (referred to as warm-up rounds), clients are trained solely with
the task-specific loss (e.g., classification) and a proximity regularization term that will be introduced
later. Once the warm-up period concludes (i.e., when t > T0), the adversarial alignment objective
is activated and integrated into the client optimization process. At this point, the global prompt pro-
vides a more reliable semantic reference, and the discriminator Dϕ(·) can be trained more effectively
to guide the semantic alignment of the client prompts. This phased training scheme enhances the ro-
bustness of the overall learning process and improves convergence stability in model-heterogeneous
federated prompt learning.

3.4 PROXIMITY REGULARIZATION

Although adversarial alignment provides a global mechanism for guiding local prompts toward se-
mantic consistency, it alone may be insufficient to ensure stable and progressive alignment, espe-
cially under severe heterogeneity. To complement this, we introduce a client-level proximity regu-
larization strategy that reinforces global consistency through local temporal coherence.

Specifically, instead of enforcing alignment solely via external feedback from the server-side dis-
criminator, each client locally constrains its prompt updates across communication rounds. This is
achieved by introducing a proximity regularization term that penalizes deviations from the reference
prompt P, which corresponds to the global prompt received at the beginning of the current round:

Lreg
i = ||Pi −P||22 (8)

This regularization serves as an implicit consistency constraint: by anchoring the updated prompt
Pi to the global reference P, it locally preserves the semantic direction induced by prior rounds of
global aggregation. In this way, the proximity regularization steers each client toward the global
prompt space, but does not override client-specific knowledge, which is maintained through the
task-specific loss Ltask

i . By combining Lreg
i and Ltask

i , the framework balances global consistency
with local personalization, enabling effective and stable collaborative learning.

3.5 OVERALL OPTIMIZATION OBJECTIVE

During each communication round, each client jointly updates its prompt parameters by minimizing
a composite loss that integrates task-specific learning objectives with both global alignment and
local consistency constraints. The overall optimization objective for client ui is defined as:

Li = Ltask
i + λaLadv

i + λrLreg
i (9)

where Ltask
i is the local supervised loss, Ladv

i is the adversarial alignment loss, Lreg
i is the prox-

imity regularization loss, λa and λr are trade-off hyperparameters controlling the influence of the
respective component.

After the optimization of local prompts, each client uploads its prompts to the server. Based on the
aggregation strategy defined in Eq. (4), the server agglomerates these local prompts into a global
prompt. This global prompt serves as the semantic anchor for subsequent client updates, enabling
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consistent knowledge transfer across rounds. Algorithm S1 in Appendix summarizes the pseudo-
code of FedAPPR, which comprises prompt update on clients (Steps 4-8), and prompt aggregation
and discriminator training on the server (Steps 11-14). Discussion on communication and computa-
tional costs are provided in Section C of Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To comprehensively evaluate the effectiveness of FedAPPR, we adopt six widely rec-
ognized datasets commonly used in CLIP-related research (Radford et al., 2021). These datasets
span multiple categories of tasks: General object recognition: Caltech101 (Fei-Fei et al., 2004),
CIFAR-10 (Krizhevsky et al., 2009); Fine-grained visual classification: CIFAR-100 (Krizhevsky
et al., 2009), Flowers-102 (Nilsback & Zisserman, 2008), Oxford Pets (Parkhi et al., 2012); Action
recognition: UCF101 (Soomro, 2012). For each dataset, we simulate two types of data distribution
across clients: i.i.d. and non-i.i.d. In the i.i.d. setting, data samples are uniformly and randomly
assigned to clients. In the non-i.i.d. scenario, we follow a widely adopted practice by employing
a Dirichlet distribution to partition the data, where the degree of heterogeneity is controlled by a
Dirichlet parameter α, which also leads to different numbers of samples across clients. A lower
value of α indicates a more skewed distribution, resulting in greater heterogeneity among client
data. In main experiments, we use α = 0.1 as the default setting for heterogeneous partitioning (Lin
et al., 2020; Zhang et al., 2024a). We also conduct additional analyses on varying α in the Appendix.

Baselines. We conduct experiments using two types of baselines: (1) Local: (i) Zero-shot CLIP
(CLIP-ZS) (Radford et al., 2021), which uses manually crafted text prompt templates (e.g., ”a photo
of a [class]”), and (ii) CoOp (Local Train) (Zhou et al., 2022b), where each client independently
learns prompt vectors using local data. (2) Federated Learning: (i) FedProto (Tan et al., 2022), (ii)
FedHPL (Ma et al., 2024), (iii) PromptFL (Guo et al., 2024), (iv) pFedPrompt (Guo et al., 2023), (v)
FedOTP (Li et al., 2024), and (vi) FedPGP (Cui et al., 2024). For all baseline methods, we report the
mean and standard deviation of test accuracy over five independent trials. In each trial, we calculate
the average test accuracy across all clients.

Heterogeneous models. To simulate scenarios with model heterogeneity, we assign each client a
backbone randomly selected from a set of four widely used architectures in CLIP: ResNet-50 (He
et al., 2016), ResNet-101 (He et al., 2016), ViT-B/32 (Dosovitskiy et al., 2021), and ViT-B/16 (Doso-
vitskiy et al., 2021).

Implementation Details. To ensure a fair comparison, all methods are configured with the following
settings: CLIP as the local model; the SGD optimizer with learning rates of 0.001; the batchsize of
64; 1 epoch in each local update; 100 communication rounds; 60%/20%/20% partition of the local
data for the training/validation/testing dataset; cosine similarity as the metric function; n = 20
clients with 100% participation or n = 100 clients with 20% participation; the length of prompt
vectors m = 16 with a dimension d = 512. As to the hyper-parameter of our FedAPPR, the
discriminator is configured as the two-layer fully connected layer with ReLU non-linearity, the trade-
off parameter λa = 0.1, λr = 0.01 and Warm-up round T0 = 20.

More details about the datasets, baselines, and implementation specifics are provided in Appendix.

4.2 EXPERIMENTAL RESULTS

We conduct experiments on six datasets across two data distribution scenarios with 20 or 100 clients
and report the corresponding results in Table 1. Due to page limitations, the results for scenarios
with 20 clients are provided in the Appendix. Observations derived from these tables include:
(i) FedAPPR almost achieves superior performance across the six datasets and under both i.i.d. and
non-i.i.d. data distributions. This demonstrates the strong generalization ability and robustness of
our approach in diverse scenarios. When scaling the number of clients from 20 to 100, most methods
experience performance degradation due to the reduced training data per client caused by increased
data partitioning. CLIP-ZS, however, remains unaffected, as it performs zero-shot inference without
relying on client-side training. On the other hand, transitioning from i.i.d. to non-i.i.d. data distri-
butions leads to a noticeable accuracy drop for most FL methods, primarily due to the heightened
statistical heterogeneity among clients, which complicates the learning of effective prompts.
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Table 1: Accuracy (mean%±std%) of comparison methods on six datasets under scenarios with 100
clients. The best performance in each setting is bold-faced.

Dataset Caltech101 CIFAR-10 CIFAR-100
Distribution i.i.d. non-i.i.d. i.i.d. non-i.i.d. i.i.d. non-i.i.d.

CLIP-ZS 75.67±0.62 75.69±0.71 80.23±0.63 80.12±0.69 57.58±0.65 56.99±0.73
Local Train 85.43±0.63 85.03±0.59 89.56±0.43 89.59±0.60 73.34±0.65 73.01±0.56
FedProto 83.09±0.48 82.55±0.33 87.18±0.45 86.49±0.37 71.35±0.59 70.72±0.78
FedHPL 85.42±0.50 84.69±0.44 89.86±0.55 89.08±0.67 74.39±0.62 73.60±0.78

PromptFL 84.39±0.67 83.28±0.42 88.53±0.55 87.53±0.53 72.10±0.69 71.20±0.62
pFedPrompt 85.30±0.63 84.56±0.60 89.63±0.49 88.52±0.40 73.69±0.50 72.72±0.65

FedOTP 85.39±0.46 84.38±0.63 90.20±0.50 89.33±0.38 74.06±0.26 73.19±0.36
FedPGP 85.53±0.40 84.63±0.51 90.47±0.58 89.65±0.43 73.95±0.38 73.02±0.44
FedAPPR 87.65±0.39 86.56±0.43 92.53±0.43 91.53±0.50 75.85±0.39 75.03±0.49

Dataset Flower102 OxfordPets UCF101
Distribution i.i.d. non-i.i.d. i.i.d. non-i.i.d. i.i.d. non-i.i.d.

CLIP-ZS 53.39±0.56 53.06±0.82 74.07±0.73 73.89±0.60 51.03±0.56 51.25±0.53
Local Train 79.83±0.49 79.92±0.55 81.17±0.53 80.86±0.49 74.26±0.49 74.06±0.59
FedProto 77.39±0.43 76.89±0.55 79.56±0.47 78.82±0.56 72.90±0.52 72.07±0.61
FedHPL 80.56±0.60 79.88±0.52 81.29±0.42 80.50±0.60 74.09±0.66 73.72±0.52

PromptFL 79.29±0.53 78.26±0.47 80.09±0.59 79.12±0.73 73.41±0.46 72.65±0.73
pFedPrompt 80.55±0.43 79.61±0.55 80.86±0.44 80.02±0.63 74.16±0.52 73.25±0.60

FedOTP 80.93±0.30 80.12±0.59 81.73±0.52 80.83±0.39 74.79±0.59 73.83±0.53
FedPGP 80.76±0.45 80.09±0.40 81.99±0.49 80.76±0.52 75.78±0.33 74.81±0.39
FedAPPR 82.86±0.36 81.77±0.59 83.26±0.40 82.39±0.37 75.59±0.58 75.05±0.39

(ii) Local vs. FL: While LIP-ZS exhibits strong zero-shot generalization, its inability to adapt to
specific tasks constrains its performance. Local Train addresses this limitation by incorporating
learnable prompts tailored to the target tasks. PromptFL often lags behind Local Train due to large
prompt divergence caused by model heterogeneity, which even makes the global prompt hard to con-
verge to a universally effective representation across diverse client models. However, Local Train
are consistently outperformed by our FedAPPR, which enables meaningful collaboration among
clients through prompt alignment that mitigates prompt divergence across heterogeneous clients.
(iii) FedAPPR vs. FedProto and FedHPL: FedAPPR consistently outperforms both FedProto and
FedHPL across settings, revealing that conventional prototype- or distillation-based approaches ig-
nore the semantic divergence of prompt spaces, which consequently hampers their effectiveness to
handle heterogeneous models.
(vi) FedAPPR vs. PromptFL, pFedPrompt, FedOTP and FedPGP: Although pFedPrompt, Fe-
dOTP and FedPGP adopt prompt personalization to achieve better performance than PromptFL, they
still struggle to surpass Local Train. This is due to their limited ability to coordinate personaliza-
tion with cross-client model-heterogeneity. In contrast, our FedAPPR explicitly addresses prompt
divergence by integrating prompt alignment that balances local adaptability with shared semantic
consistency, enabling more effective and stable learning across heterogeneous clients.

4.3 FURTHER ANALYSIS

Ablation Studies. We conduct an ablation study to investigate the individual contributions of key
components in FedAPPR. To this end, we design three ablated variants of FedAPPR: FedAPPR-
nA excludes the adversarial loss used for prompt alignment; FedAPPR-nW removes the warm-up
strategy, which is introduced to stabilize the training process; FedAPPR-nR eliminates the proxim-
ity regularization, which enforces further consistency constraints. Table 2 presents results of three
variants and FedAPPR on Caltech101, CIFAR-10 and CIFAR-100 under 100 clients, while results
on Flower102, OxfordPets and UCF101 are reported in the Appendix. From the tables, we observe
that: (i) Removing any component leads to a consistent drop in performance across datasets and data
distributions, validating the importance of each design choice. (ii) The absence of the adversarial
loss (FedAPPR-nA) results in the most significant degradation, highlighting the crucial contribution
of prompt alignment to the overall effectiveness of the method. (iii) Excluding the warm-up strategy
(FedAPPR-nW) reduces performance, indicating its stabilizing effect during discriminator train-
ing. (iv) Disabling the proximity regularization (FedAPPR-nR) also yields performance decline,
highlighting its contribution to model consistency across clients.
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Table 2: Accuracy (mean%±std%) of FedAPPR and its variants under scenarios with 100 clients.
The best performance in each setting is bold-faced.

Dataset Caltech101 CIFAR-10 CIFAR-100
Distribution i.i.d. non-i.i.d. i.i.d. non-i.i.d. i.i.d. non-i.i.d.
FedAPPR-nA 85.39±0.48 84.39±0.52 90.35±0.43 89.83±0.49 73.64±0.36 73.18±0.39
FedAPPR-nW 86.03±0.40 84.93±0.53 90.89±0.50 90.22±0.35 73.99±0.49 73.53±0.52
FedAPPR-nR 86.33±0.39 85.41±0.30 91.27±0.50 90.39±0.56 73.83±0.51 73.92±0.66
FedAPPR 87.65±0.39 86.56±0.43 92.53±0.43 91.53±0.50 75.85±0.39 75.03±0.49

Figure 4: (a) Accuracy of FedAPPR vs. Warm-up Rounds (T0); (b) Accuracy of FedAPPR vs. λa;
(c) Accuracy of FedAPPR vs. λr. Both are conducted under non-i.i.d. scenarios with 100 clients.

Study on Warm-up Strategy. In this experiment, we investigate the effect of the warm-up strat-
egy on performance by varying the number of warm-up rounds T0 from 0 to 100 under non-i.i.d.
scenarios with 100 clients. As shown in Figure 4 (a), the accuracy of FedAPPR initially increases
with T0, reaching a peak around T0 = 20 ∼ 30, and then gradually declines as T0 continues to
increase. This trend highlights the trade-off between premature adversarial activation and delayed
alignment. When T0 is too small, adversarial alignment is introduced prematurely, while the global
prompt Pglobal and the local prompts Pi are still unstable. This results in noisy gradient signals from
the discriminator and undermines the alignment process, leading to degraded performance. On the
other hand, setting T0 too large delays the introduction of adversarial supervision, which limits the
benefits of semantic alignment in later training stages.

Effect of Trade-off Parameters. To evaluate the influence of trade-off parameters on model perfor-
mance, we conduct sensitivity analyses on the adversarial weight λa and the regularization weight
λr, both of which balance different components of the local training objective in FedAPPR, by
varying it within the range of {0.0001, 0.001, · · · , 10, 100}. The results under non-i.i.d. scenarios
with 100 clients are shown in Figure 4 (b) and (c). (i) For λa, accuracy steadily improves as the value
increases up to approximately λa ≈ 0.1, highlighting the benefits of stronger adversarial alignment.
However, as λa continues to increase, accuracy drops significantly due to the adversarial objective
overpowering the primary task loss, leading to unstable updates and degraded performance. (ii) For
λr, accuracy similarly improves with increasing λr up to around λr ≈ 0.01, demonstrating the ad-
vantage of moderate proximity regularization. This guides local prompts toward the global semantic
space. Beyond this range, however, excessive regularization restricts the flexibility of local prompts,
resulting in underfitting and reduced performance.

Further experimental results, including convergence analysis, robustness to data heterogeneity,
large-scale evaluations, and complexity analysis, are provided in Appendix.

5 CONCLUSION

In this paper, we focus on an important and practical but unexplored FPL problem: model-
heterogeneous federated prompt learning (MHFPL), where clients adopt different model architec-
tures due to their varying computational resources. To tackle the significant prompt divergence
challenges arising from model heterogeneity, our FedAPPR introduces the server-level adversar-
ial alignment and client-level proximity regularization to ensure semantic consistency and reduce
prompt variance across clients. Extensive experiments on six benchmark datasets demonstrate the
superiority of FedAPPR, highlighting its effectiveness in handling heterogeneous VLMs scenarios
and affirming it as a promising approach for FL with large-scale VLMs. We hope that this work
paves the way for future research in FPL in more realistic and heterogeneous environments.
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7 REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results:
Datasets: All benchmark datasets are publicly available, and their sources are cited in the paper.
Baselines: We carefully reproduce the baselines and configure them with the recommended param-
eters reported in the respective literature to ensure fairness.
Hyperparameters: All hyperparameter configurations, training schedules, and optimization strate-
gies are explicitly reported in the main text and Appendix.
Implementation: We provide the full implementation of FedAPPR in the main paper or Appendix,
including model definitions, training procedures, evaluation scripts, and other essential components.
Environment: The software environment and hardware specifications are documented in the Ap-
pendix.
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Appendix

A THE USE OF LARGE LANGUAGE MODELS

The use of large language models (LLMs) in this work is limited to language polishing and grammar
improvement.

B ALGORITHM TABLE

Algorithm S1 FedAPPR: Federated Adversarial Prompt Alignment and Proximity Regularization
Input: n clients, where each client ui carries local data Di and learnable prompts Pi; T = 100
(number of communication rounds).

Output: trained personalized prompts {P∗
1, · · · ,P∗

n}.
1: Server initializes clients’ prompt using P.
2: for t = 1 → T do
3: for all clients i = 1 → n in parallel do
4: Receive aggregated prompts P and discriminator Dϕ from server.
5: Compute the adversarial alignment loss Ladv

i as Eq. (7).
6: Calculate the proximity regularization loss Lreg

i as Eq. (8).
7: Compute the overall local loss as in Eq. (9) and update the local prompts accordingly.
8: Upload updated prompts Pi to server.
9: end for

10: for server do
11: Receive local prompts {Pi}ni=1 from n clients.
12: Aggregate local prompts using Eq. (4) to obtain global one and buffer it into global pool.
13: Calculate discriminator training loss using Eq. (6) and optimize the discriminator

accordingly.
14: Broadcast global prompts P and discriminator Dϕ to respective clients.
15: end for
16: end for

Algorithm S1 summarizes the pseudo-code of FedAPPR, which comprises prompt update on clients
(Steps 4-8), and prompt aggregation and discriminator training on the server (Steps 11-14).

C DISCUSSION ABOUT COMMUNICATION AND COMPUTATIONAL COST

Communication Cost. FedAPPR only exchanges prompt vectors and a lightweight discriminator
between clients and the server in each round. Therefore, the additional communication overhead
compared to PromptFL is CL(Dϕ), where CL(∗) denotes the communication load of ∗. Given that
the discriminator consists of only two fully connected layers (as detailed in Section 4), this added
communication cost remains minimal and acceptable.

Computational Overhead. On the client side, the additional computational cost mainly stems
from the adversarial alignment loss and proximity regularization loss used to guide prompt training,
which introduces only minimal overhead due to their lightweight computation. On the server side,
the primary overhead arises from training the discriminator. As the discriminator in FedAPPR
comprises only two fully connected layers, its training cost remains significantly lower than that of
local training.

D EXPERIMENTAL SETUP

D.1 DATASETS

To comprehensively evaluate the effectiveness of FedAPPR, we adopt six widely recognized
datasets commonly used in CLIP-related research (Radford et al., 2021). These datasets span mul-
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Table S1: Statistics of six datasets.
Dataset #Classes #Samples Task

Caltech101 101 6,593 Object recognition
CIFAR-10 10 60,000 Image Classification

CIFAR-100 100 60,000 Fine-grained image classification
Flower102 102 6,556 Fine-grained flower recognition
OxfordPets 37 6,613 Fine-grained pet recognition

UCF101 101 11,422 Action Recognition

tiple categories of tasks: General object recognition: Caltech101 (Fei-Fei et al., 2004), CIFAR-
10 (Krizhevsky et al., 2009); Fine-grained visual classification: CIFAR-100 (Krizhevsky et al.,
2009), Flowers-102 (Nilsback & Zisserman, 2008), Oxford Pets (Parkhi et al., 2012); Action recog-
nition: UCF101 (Soomro, 2012). Detailed statistics for these datasets are provided in Table S1.

D.2 BASELINES

We conduct experiments using two types of baselines: (1) Local: (i) Zero-shot CLIP (CLIP-
ZS) (Radford et al., 2021), and (ii) CoOp (Local Train) (Zhou et al., 2022b). (2) Federated Learn-
ing: (i) FedProto (Tan et al., 2022), (ii) FedHPL (Ma et al., 2024), (iii) PromptFL (Guo et al., 2024),
(iv) pFedPrompt (Guo et al., 2023), (v) FedOTP (Li et al., 2024), and (vi) FedPGP (Cui et al., 2024).
These methods are configured with the suggested parameters from the respective literature:

• CLIP-ZS uses manually crafted text prompt templates (e.g., ”a photo of a [class]”) to perform
zero-shot prediction.

• Local Train refers to the strategy where each client individually optimizes prompt vectors using
its own local dataset.

• FedProto shares local prototypes instead of models and executes prototype aggregation on the
server by averaging the prototype sent from participating clients. Suggested configuration: the
trade-off parameter λ = 0.1.

• FedHPL relies on global logit distillation with weighted aggregation to address model heterogene-
ity in federated learning, while using lightweight prompt tuning only for efficient local adaptation.
Suggested configuration: the temperature parameter T = 4.5 and the trade-off parameter γ = 1.

• PromptFL combines prompt learning with FedAvg (McMahan et al., 2017), enabling the learning
of a unified set of prompt vectors from distributed datasets across multiple clients.

• pFedPrompt maintains a non-parametric personalized attention module for each client, which
generates locally personalized visual features and combines them with the global textual prompt
for prediction. Suggested configuration: trade-off parameter α = 0.5.

• FedOTP employs unbalanced Optimal Transport to better align and coordinate global and local
prompts for improved cooperative learning. Suggested configuration: regularization parameter
λ = 0.1 and maximum iteration number iter = 100.

• FedPGP employs a pre-trained CLIP model to guide the optimization of globally shared prompts,
thereby improving their generalization across clients, and further integrates a low-rank adaptation
term to enable client-specific personalization. Suggested configuration: low-rank decomposition
bottleneck b = 8, and the trade-off parameter µ = 1.

D.3 IMPLEMENTATION DETAILS

We implement all the methods using PyTorch 1.13 and conduct experiments on a server with the
Intel(R) Xeon(R) Gold 6248R CPU, 512G memory, 2 NVIDIA L40 GPUs, and Ubuntu 22.04.

D.4 IMPLEMENTATION OF FIGURE 1.

For the experiments illustrated in Figure 1, we perform evaluations on the Caltech101 dataset under
an i.i.d. setting with 100 clients. In the model-homogeneous scenario, all clients utilize the ViT-
B/16 backbone. In contrast, the model-heterogeneous scenario assigns each client a model randomly
chosen from four commonly used architectures: ResNet-50, ResNet-101, ViT-B/32, and ViT-B/16.
To visualize the learned prompts, we employ the t-SNE (Van der Maaten & Hinton, 2008).
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Table S2: Accuracy (mean%±std%) of comparison methods on six datasets under scenarios with 20
clients. The best performance in each setting is bold-faced.

Dataset Caltech101 CIFAR-10 CIFAR-100
Distribution i.i.d. non-i.i.d. i.i.d. non-i.i.d. i.i.d. non-i.i.d.

CLIP-ZS 75.56±0.53 75.93±0.62 80.01±0.62 80.62±0.55 57.01±0.76 56.53±0.69
Local Train 87.59±0.50 87.79±0.63 91.29±0.46 91.20±0.52 75.53±0.54 75.79±0.42
FedProto 85.98±0.47 85.19±0.56 89.85±0.63 89.09±0.50 73.67±0.64 72.89±0.50
FedHPL 88.20±0.39 87.39±0.59 91.26±0.59 90.58±0.49 75.92±0.48 75.05±0.62

PromptFL 86.13±0.60 85.26±0.39 90.25±0.50 89.03±0.53 74.35±0.26 73.33±0.53
pFedPrompt 87.79±0.48 87.03±0.52 91.59±0.56 90.52±0.40 75.93±0.45 75.19±0.50

FedOTP 88.28±0.39 87.65±0.57 91.89±0.47 91.23±0.38 75.86±0.39 75.17±0.41
FedPGP 88.52±0.40 88.11±0.52 91.29±0.62 91.09±0.54 76.03±0.46 75.12±0.61
FedAPPR 90.63±0.43 89.99±0.35 94.26±0.36 92.53±0.50 77.97±0.52 77.56±0.53

Dataset Flower102 OxfordPets UCF101
Distribution i.i.d. non-i.i.d. i.i.d. non-i.i.d. i.i.d. non-i.i.d.

CLIP-ZS 53.55±0.60 53.29±0.66 74.35±0.60 74.11±0.36 51.50±0.49 51.44±0.39
Local Train 82.66±0.52 81.73±0.49 83.03±0.43 82.72±0.60 76.53±0.50 75.46±0.86
FedProto 80.83±0.47 80.10±0.59 81.59±0.57 80.89±0.40 74.88±0.52 74.02±0.60
FedHPL 82.29±0.42 81.58±0.67 82.97±0.50 82.13±0.45 76.61±0.43 75.98±0.58

PromptFL 81.53±0.60 80.67±0.35 82.23±0.43 81.65±0.62 75.61±0.39 74.88±0.62
pFedPrompt 82.56±0.49 81.53±0.63 83.13±0.62 82.77±0.39 77.07±0.62 75.69±0.56

FedOTP 83.02±0.42 83.50±0.62 83.38±0.68 82.68±0.47 76.79±0.48 76.01±0.40
FedPGP 82.86±0.35 82.19±0.55 83.50±0.62 82.87±0.56 76.53±0.52 75.88±0.53
FedAPPR 84.05±0.39 83.34±0.39 85.62±0.48 84.58±0.32 78.20±0.50 77.74±0.42

Table S3: Accuracy (mean%±std%) of FedAPPR and its variants under scenarios with 100 clients.
The best performance in each setting is bold-faced.

Dataset Flower102 OxfordPets UCF101
Distribution i.i.d. non-i.i.d. i.i.d. non-i.i.d. i.i.d. non-i.i.d.
FedAPPR-nA 81.23±0.39 79.73±0.35 81.03±0.48 80.06±0.49 73.59±0.42 73.00±0.39
FedAPPR-nW 81.50±0.43 80.13±0.47 81.47±0.49 80.59±0.55 74.03±0.39 73.18±0.40
FedAPPR-nR 81.79±0.40 80.42±0.39 81.89±0.65 80.83±0.42 74.05±0.56 73.43±0.43
FedAPPR 82.86±0.36 81.77±0.59 83.26±0.40 82.39±0.37 75.59±0.58 75.05±0.39

D.5 IMPLEMENTATION OF FIGURE 2.

For the experiments in Figure 2, we adopt PromptFL to conduct experiments on the Caltech101
dataset under an i.i.d. scenario with 100 clients and model heterogeneity. Clients are grouped into
four sets of 25 based on different VLM backbones, and their individual accuracies are reported.
Clear performance disparities across groups highlight the impact of model heterogeneity.

E ADDITIONAL RESULTS

E.1 ADDITIONAL RESULTS OF MAIN EXPERIMENTS

Table S2 presents the comparison results in scenarios involving 20 clients. The results show that the
proposed FedAPPR consistently outperforms the baselines across various settings, and the conclu-
sions are consistent with those of the main manuscript.

E.2 ADDITIONAL RESULTS OF ABLATION STUDY

Table S2 presents the additional ablation results on Flower102, OxfordPets, and UCF101 under
scenarios with 100 clients. The results again validate the effectiveness of each component in the
proposed FedAPPR.
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Figure S1: Accuracy of compared methods vs. communication round under non-i.i.d. scenarios
with 100 clients on (a) Caltech101, (b) CIFAR-10 and (c) CIFAR-100.

Figure S2: Accuracy of compared methods vs. α under 100-client scenarios on (a) Caltech101, (b)
CIFAR-10 and (c) CIFAR-100.

E.3 CONVERGENCE ANALYSIS

Figure S1 depicts the test accuracy of compared methods throughout the training process on three
datasets under non-i.i.d. scenarios with 100 clients. The figures reveal that FedAPPR attains its
peak accuracy within approximately 75 communication rounds. This observation highlights a com-
parable convergence rate compared to other methods, accompanied by exceptional classification
accuracy. These results once again emphasize the practicality and superiority of FedAPPR in ad-
dressing model heterogeneity among clients.

E.4 DIFFERENT LEVELS OF DATA DISTRIBUTION HETEROGENEITY

To evaluate the robustness of compared methods under varying degrees of data heterogeneity, we
simulate non-i.i.d. conditions by adjusting the Dirichlet distribution parameter α across the set
{0.1, 1, 10, 100, 1000}. Smaller values of α result in highly skewed distributions, while larger values
approximate uniform data allocation across clients. Experimental results on Caltech101, CIFAR-10,
and CIFAR-100 (see Figure S2) reveal that model performance consistently improves as α increases,
highlighting the positive correlation between data homogeneity and collaborative learning efficiency.
Notably, our proposed FedAPPR demonstrates stable and superior accuracy across all levels of
heterogeneity, underscoring its strong generalization capability in federated environments.

E.5 ACCURACY WITH LARGER SCALE CLIENTS

We conduct further experiments under a larger-scale FL setting with 1,000 clients and 10% partic-
ipation in each communication round. The results in Table S4 show that FedAPPR consistently
achieves the highest accuracy across both datasets and distributions, outperforming all baselines by
a notable margin. This highlights FedAPPR’s potential for real-world deployment in practical FL
scenarios with large client populations.
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Table S4: Accuracy (mean%±std%) of compared methods under non-i.i.d. scenarios with 1000
clients.

Dataset CIFAR-10 CIFAR-100
Distribution i.i.d. non-i.i.d. i.i.d. non-i.i.d.

CLIP-ZS 80.15±0.62 80.39±0.55 56.01±0.40 56.78±0.48
Local Train 86.58±0.45 85.63±0.75 70.67±0.43 70.29±0.74
FedProto 84.62±0.39 84.01±0.56 68.74±0.48 67.95±0.70
FedHPL 87.49±0.50 86.66±0.30 70.41±0.57 69.98±0.54

PromptFL 85.07±0.39 84.40±0.62 69.25±0.55 68.73±0.55
pFedPrompt 86.83±0.50 85.52±0.66 70.89±0.42 69.98±0.47

FedOTP 87.53±0.49 86.72±0.46 71.38±0.42 70.56±0.50
FedPGP 87.82±0.64 86.97±0.43 70.79±0.45 70.25±0.47

FedAPPR 89.77±0.39 88.94±0.38 72.73±0.41 72.26±0.58

E.6 COMMUNICATION AND COMPUTATIONAL OVERHEAD

To further address concerns about complexity, we now provide quantitative comparisons on: (i)
Communication cost per round (in transmitted parameters), and (ii) Computation time per round
(in average runtime). The results under non-i.i.d. scenarios with 100 clients are reported.

As shown in Table S5, FedAPPR achieves favorable computational efficiency, with runtime con-
sistently lower than FedHPL, FedOTP and FedPGP, and competitive with FedProto, PromptFL and
pFedPrompt.

Furthermore, Table S6 confirms that the communication overhead of FedAPPR is only marginally
higher than that of other prompt-based methods, primarily due to the inclusion of a lightweight
discriminator with d1 × d2 + d2 parameters. Specifically, with a prompt dimension of d = 512,
prompt length m = 16, and discriminator dimensions d1 = 512, d2 = 8, the additional overhead
introduced by the discriminator amounts to 512× 8 + 8× 1 = 4,104 parameters. This is negligible
compared to the prompt transmission size of m × d × 2 = 16 × 512 × 2 = 16,384 parameters.
The cost is also comparable to that of FedProto and FedHPL, where p = 512 denotes the prototype
dimension and l the number of labels.

Table S5: Runtime (seconds) of compared methods within one communication round under non-
i.i.d. scenarios with 100 clients.

Dataset Caltech101 CIFAR-10 CIFAR-100 Flower102 OxfordPets UCF101
FedProto 46.5 166.8 190.1 69.9 53.6 84.5
FedHPL 65.8 238.5 299.1 109.2 85.3 139.2

PromptFL 39.7 147.2 169.7 62.7 47.6 78.5
pFedPrompt 52.6 214.6 236.2 88.2 63.7 94.2

FedOTP 63.4 241.3 285.0 104.6 80.0 134.5
FedPGP 68.6 258.6 318.8 116.2 89.2 147.6

FedAPPR 57.8 231.4 248.2 96.3 68.1 102.9

Table S6: Communication overhead of compared methods within one communication round.

Method Cost
FedProto p× l × 2
FedHPL l × l × 2

PromptFL m× d× 2
pFedPrompt m× d× 2

FedOTP m× d× 2
FedPGP m× d× 2

FedAPPR m× d× 2 + d1 × d2 + d2
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