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ABSTRACT

Since a conventional Convolutional Neural Network (CNN) using a large number
of extracted features is not fully explainable and not very memory-efficient, we
develop an explainable and efficient CNN model consisting of convolutional lay-
ers, a new feature selection (FS) layer, a classifier, and a novel “Patch Ranking
Map” (PRM). The PRM contains top-ranked image patches that have important
associations with decisions of the CNN. Top-ranked common features selected
by different FS methods are used to generate two newly defined matrices: the
“feature accumulation matrix” and the “feature ranking matrix”. Different from a
typical heatmap, these two matrices are used to rank image patches in the PRM
to effectively explain the relationship among an input image, top-ranked features,
top-ranked feature maps, and the final classification decision. Simulation results
using the Alzheimer’s MRI preprocessed dataset for 4-class image classification
with 6, 400 128× 128 images indicate that the three PRMs based on three robust
top-ranked common feature sets generated by seven different FS methods have the
same top two most important patches associated with Alzheimer’s disease diagno-
sis. In addition, 8×8 patches of a 128×128 image at the 7th and 12th patch rows
and at the 8th and 9th patch columns are most informative because they have the
top two most important patches and the top two most top-ranked common row-
wise and column-wise features. The relationship among brain regions associated
with Alzheimer’s disease, the top-ranked patches, the top patch rows, and the top
patch columns will be analyzed based on research results in brain informatics and
medical informatics. The simulations also show that the trained CNN with FS can
have higher classification accuracy and smaller model size than the conventional
CNN without FS. More effective and efficient optimization algorithms will be de-
veloped to select the top (most informative) features and rank patches for building
an accurate and efficient CNN model with more explainable decisions that can be
captured by the PRM for various image classification applications.

1 INTRODUCTION

The Convolutional Neural Network (CNN) (Krizhevsky et al., 2012; LeCun et al., 2015) has suc-
cessful applications for image classification, such as skin cancer detection (Esteva et al., 2012) and
image recognition (He et al., 2016), but it is difficult to explain the reasons behind the black box
model decisions. Being able to accurately interpret the decisions of CNN models is still an impor-
tant problem, especially in computer vision.

Various methods are developed to interpret the decisions of a CNN (Wang et al., 2022; Schttl, 2022;
Zhang et al., 2020; Kim et al., 2022). The class activation mapping (CAM) method using the global
average pooling is developed to interpret a CNN by localizing the discriminative image regions
(Zhou et al., 2016). The Grad-CAM applies gradients to generate heatmaps for visual explanations
of a deep neural network (Selvaraju et al., 2017). A review of the latest applications of explainable
deep learning methods for medical imaging discusses various approaches, challenges for clinical
deployment, and the areas requiring further research (Singh et al., 2020). A detailed survey on
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the explainability of machine learning algorithms presents different interpretations for distinct cate-
gories for the medical field (Tjoa & Guan, 2020). However, current methods such as CAM-methods
based heatmaps do not deeply analyze a relationship among ranked image patches, top features, top
feature maps, and a decision.

Feature selection (FS) is useful in not only improving the model performance but also in interpreting
a deep neural network. MediMLP with FS using Grad-CAM was developed for lung cancer postop-
erative complication prediction (He et al., 2019). A new explainable vision transformer model was
developed to find the most causally significant input regions that contribute to the model decision
by using an instance-wise causal FS (Khanal et al., 2022). Open problems include how to select the
best individual features from the feature maps to effectively improve the quality of visual explana-
tions of a deep learning model, and how to use useful information in a small number of selected
feature maps to deeply explain the relationship among an input image, selected features, and a final
decision.

Research works in identifying the top image regions associated with Alzheimer’s disease have been
done in recent years. For example, an expert physician identified seven regions of interest in the
fluorodeoxyglucose positron emission tomography images related to the Alzheimer’s disease (Aidos
et al.). The assessment of shape-based analysis of key brain regions indicated that the scale-invariant
heat kernel signature was predictive of disease stage and disease progression (Duarte et al.). A
significant research problem is how to develop a novel method to effectively explain the relationship
among ranked top input image patches associated with special regions such as brain regions, ranked
top features, and the final decisions of the CNN.

In this paper, we propose an efficient and accurate CNN image classification model by adding a
novel layer called the “FS Layer.” The FS layer uses multiple FS methods to reliably select the top
image features that are used to build an accurate and efficient CNN model. New informative feature
structures such as top feature maps, feature accumulation matrix, the feature distribution matrix, and
the top patch map are newly defined to effectively explain the relationship among an input image,
top features, top feature maps, top patch maps and a final decision.

2 NEW INFORMATIVE FEATURE STRUCTURES

2.1 TOP FEATURE MAP

The last Maxpooling layer of a CNN generates n H ×W feature maps F l (assuming the feature
map shape is H ×W × n) having features f lij for i = 0, 1, . . . ,H − 1, j = 0, 1, . . . ,W − 1, and
l = 0, 1, . . . , n− 1. The n feature maps are converted to m flattened features for m = n×H ×W .
The m features have m relevant feature index numbers (0, 1, . . . , m − 1). A FS method selects
top k features from the m features. The k selected features have k feature index numbers Ip for
Ip ∈ 0, 1, . . . ,m− 1 for p = 0, 1, . . . , k − 1. A top feature with Ip is associated with a feature map
F qp where qp = Ip mod n for p = 0, 1, . . . , k − 1. Let Q̄ = {q0, q1, . . . , qk−1}. After eliminating
duplicated elements in QS , we get Q with distinct elements for Q ⊆ Q̄.

Definition 1: Let the top feature map T q have features tqij for i = 0, 1, . . . ,H−1, j = 0, 1, . . . ,W−
1, and q ∈ Q. If fqij in a feature map F q is a selected feature, then tqij = fqij , otherwise tqij = 0.

The top feature map selection method has two steps: (1) identifying feature maps F q for q ∈ Q, and
(2) generating relevant top feature maps T q for q ∈ Q based on Definition 1.

Let P be the number of top feature maps (i.e., the number of elements in Q), so we have dk/(H ×
W )e ≤ P ≤ n. In addition, the distribution of a small number of top feature maps among n feature
maps F l for l = 0, 1, . . . , n − 1 is useful to understand the relationship among an input image,
selected features, and the final decision.

2.2 INFORMATIVE FEATURE MATRICES

To sufficiently investigate the relationship among an input image, the top features, the top feature
maps, and the final decision, we define six new feature structures as follows.
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Definition 2: Let the “feature binary matrix” B have binary numbers bij for i = 0, 1, . . . ,H − 1,
and j = 0, 1, . . . ,W − 1. If fij is a selected feature, then bij = 1, otherwise bij = 0.

For a special case, for n feature maps T l for l = 0, 1, . . . , n− 1, the relevant feature binary matrices
Bl with blij = 1 for i = 0, 1, . . . ,H − 1, j = 0, 1, . . . ,W − 1, and l = 0, 1, . . . , n− 1 because FS
is not performed.

Definition 3: Let the “feature accumulation matrix” A have elements called “feature accumulators”
aij for i = 0, 1, . . . ,H − 1 and j = 0, 1, . . . ,W − 1, where aij =

∑K
s=1 b

s
ijwhere bsij is an element

of the feature binary matrix Bs, and K is the number of feature maps T .

Definition 4: The row-wise feature accumulation number Ai
row is defined as Ai

row =
∑W−1

j=0 aij
for i = 0, 1, . . . ,H − 1.

Definition 5: The column-wise feature accumulation number Aj
column is defined as Aj

column =∑H−1
i=0 aij for j = 0, 1, . . . ,W − 1.

Definition 6: Let the “feature distribution matrix” D have elements dij for i = 0, 1, . . . ,H − 1
and j = 0, 1, . . . ,W − 1, where dij = aij/k where aij are feature accumulators of the feature
accumulation matrix A.

Let the top feature map T q have features tqij for i = 0, 1, . . . ,H − 1, j = 0, 1, . . . ,W − 1, and
q ∈ Q. If fqij in a feature map F q is a selected feature, then tqij = fqij , otherwise tqij = 0. The
features tqij are ranked by a feature ranking method such as the RFE (Guyon et al., 2002), then each
feature has its ranking number rqij for i = 0, 1, . . . ,H − 1, j = 0, 1, . . . ,W − 1, and q ∈ Q, where
the lower a ranking number, the higher a feature ranking. rqij are sorted to generate new ranking
numbers r̄kij in an increasing order for k = 0, 1, . . . , aij − 1.

Definition 7: Let the “feature ranking matrix” Rk have ranking numbers r̄kij where r̄kij ≤ r̄k+1
ij

for i = 0, 1, . . . ,H − 1, j = 0, 1, . . . ,W − 1, and k = 0, 1, . . . , aij − 1, where aij are feature
accumulators of the feature accumulation matrix A.

2.3 THE PATCH RANKING MAP

To better understand the relationship between input images and final decisions, it is useful to rank
image patches with degrees of importance for decisions. A new definition is given below.

Definition 8: Let the “patch ranking matrix” P have patch ranking numbers pij for pij ∈
{1, 2, . . . ,HW} for i = 0, 1, . . . ,H − 1, j = 0, 1, . . . ,W − 1. The smaller pij is, the more
important a patch at (i, j) is associated with a decision.

3 MULTI-PHASE FS ALGORITHMS

We propose a general multi-phase FS algorithm, as shown in Algorithm 1. Different FS methods
at different phases are used to find a small set of robust and effective features based on different
selection criteria. Thus, Algorithm 1 with multiple phases can reliably select top-ranked features by
different FS methods.

Algorithm 1 General m-Phase FS Algorithm for m > 1

Input: Training Dataset and Test Dataset with N Features
Output: Training Dataset and Test Dataset with K Features

1: Phase 1: Apply the 1st FS Method to Generate a New Training Dataset and a New Test Dataset
with N1 Selected Features for N1 < N .

2: Phase 2: Apply the 2nd FS method to Generate a New Training Dataset and a New Test Dataset
with N2 Features for N2 < N1.

3: ...
4: Phase m: Apply the m-th FS method to Generate a Final Training Dataset and a Final Test

Dataset with K Features for K < Nm−1.
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4 THE ALGORITHM FOR RANKING PATCHES

The explainable and efficient CNN framework, as shown in Fig. 1, consists of the following: (1)
convolutional layers for extracting n H×W feature maps from a H̄×W̄ input image, (2) the flatten
layer for converting m flattened features from the n H ×W feature maps for m = n×H ×W , (3)
the FS layer for selecting top k features from the m flattened features, (4) a patch ranking method
for generating a PRM using the top k features, and (5) a classifier for making a decision based on
the top k features. Since the H ×W feature map with the top k features are associated with H̄ × W̄
input image with H̄/H × W̄/W patches (H̄ is divisible by H and W̄ is divisible by W for even
patch distribution for the PRM), the top k features rankings related to decisions can be used to rank
relevant image patches. The ranked image patches are useful for a user, such as a medical doctor, to
understand which image regions are most important to help with making a final diagnosis decision.

Figure 1: Explainable and Efficient CNN Model with a Top Patch Map.

The higher value of an element at a location (i, j) of the feature accumulation matrix and the higher
ranking of a top feature at a location (i, j) in the feature ranking matrix for i = 0, 1, . . . ,H − 1
and j = 0, 1, . . . ,W − 1, the more important a patch at a location (i, j). We propose a new image
patch ranking algorithm based on both a feature accumulation matrix and a feature ranking matrix
R0 with the top features with their ranking numbers r̄0ij . It is shown in Algorithm 2.

Algorithm 2 The Algorithm for Ranking Patches
Input: A feature accumulation matrixA and a feature ranking matrixR0 with top features’ ranking

scores r̄0ij .
Output: K top patches.

1: Step 1: Calculate a ranking score of a patch at (i, j): θij = f(aij , r̄
0
ij).

2: Step 2: Sort patch ranking scores.
3: Step 3: Select top K patches.

A feature ranking score is defined as βij = 1− (r̄0ij − 1)/(n− 1) where n is the total number of top
features, and a feature accumulation ranking score is defined as αij = 1 − (aij − 1)/(m − 1) for
m = max(aij) for i = 0, 1, . . . ,H−1, and j = 0, 1, . . . ,W−1. To get a robust patch ranking score,
different weighted average functions for ranking patches are defined as θkij = ωkβij + (1− ωk)αij

where ωk+1 = ωk + δ, 0 < ωk < 1 and 0 < δ < 1 for k = 1, 2, . . . ,K and K is an odd positive
integer. Then the reliable patch ranking function is defined as an average of the different weighted
average functions: θij = (

∑K
k=1 θ

k
ij)/K for 0 ≤ θij ≤ 1. Thus, θij = (ω1 + δ(K − 1)/2)(βij −
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αij) + αij = ω(K−1)/2(βij − αij) + αij . For a given interval [a, b] of ω, a patch ranking function
can be defined as θij = ω̄(βij − αij) + αij for ω̄ = (a+ b)/2.

5 PERFORMANCE ANALYSIS

The Alzheimer’s MRI preprocessed dataset with 6, 400 128× 128 images (Kumar & Shastri, 2022)
are used for performance analysis. It has 4 classes: Mild Demented (896 images), Moderate De-
mented (64 images), Non Demented (3, 200 images), and Very Mild Demented (2, 240 images). The
6, 400 images are divided into 5, 119 training images, 642 test images, and 639 validation images.

We used a feature extractor that consists of convolutional layers of a ResNet50 model (pretrained on
ImageNet dataset and fine-tuned using the Alzheimer’s MRI dataset) and a new MaxPooling layer.
The final MaxPooling layer of the fine-tuned pretrained ResNet50 generates 64 16 × 16 feature
maps. The 16 × 16 feature map has 256 features that are associated with 256 8 × 8 patches. The
16, 384 features have feature index numbers (i.e., 0, 1, ..., 16, 383).

5.1 FS METHODS FOR BUILDING ACCURATE AND MEMORY-EFFICIENT CLASSIFIER

We use seven different FS methods, including three 1-phase FS algorithms using Chi2, f regression
and f classif respectively, the 2-phase FS algorithm using f regression and the RFE, the 3-phase
FS algorithm using Chi2, f classif and the RFE, the 4-phase FS algorithm using Chi2, mutu-
tal info regression, f classif and the RFE, and the 5-phase FS algorithm using Chi2, f regression,
mututal info regression, f classif and the RFE. These seven different FS methods are used to gener-
ate seven different top feature sets from all 16, 384 features. The RFE method is applied to rank top
features for each top feature set. The Alzheimer’s MRI data with a small number of top features are
used to train a MLP model. Finally, the ResNet50-FS model is built by combining the fine-tuned
pretrained ResNet50 model without the MLP, the new FS layer, and the newly trained MLP model.

Tables 1 and 2 show that the trained ResNet50-FS models can have higher classification accuracy
and smaller model size than the conventional ResNet50 without FS with test accuracy 0.9642. The
top features are selected by the 5-phase FS algorithm from 16, 384 features with original 64 16× 16
feature maps. Top feature maps associated with selected features, test accuracies and model sizes
are shown in Table 1. The traditional ResNet50 without FS uses 64 256-feature maps, the new
ResNet50-FS model uses fewer top feature maps with much smaller number of selected top features.
For instance, a ResNet50-FS model with the top 100 features uses the top 41 feature maps (23
original feature maps and 16, 284 features are eliminated from 64 original feature maps). The top
41 feature maps index numbers include 1, 3, 4, 6, 7, 8, 10, 11, 13, 14, 15, 18, 19, 20, 21, 23, 24,
26, 27, 28, 30, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 48, 49, 51, 53, 54, 57, 58, 59, 60, and 61. For
example, after 251 features of the 27th original feature map with an index number 26 are eliminated
by the 5-phase FS method, a top feature map with top five features (F1=1306, F2=5786, F3=6490,
F3=6746, and F5=11738) is generated as shown in Fig. 8 in Appendix.

Table 1: Performance of a Model with All Features and Efficient Models with Top Features

Number of Features 16, 384 1, 000 800 600 400 200 100
Number of Feature Maps 64 64 63 63 63 57 41

Test Accuracy 0.9642 0.9844 0.9891 0.9688 0.9657 0.9299 0.8738
Model Size (KB) 16, 300 696 594 268 241 184 156

Table 2: Test Accuracies of a Model with 16, 384 Features and Models with 800 Selected Features

No FS Chi2 f classif f regression 2-phase FS 3-phase FS 4-phase FS 5-phase FS
0.9642 0.9798 0.9704 0.9611 0.9657 0.9704 0.9704 0.9891
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5.2 MULTIPLE FS METHODS FOR SELECTING RELIABLE TOP COMMON FEATURES

The top seven partial feature sets with top six features from the complete top seven 100-feature sets
generated the seven FS methods are shown in Table 3. The feature (11738) is ranked first for all
top seven 100-feature sets, so it is the most important feature. The second most important feature
is 6693. Importantly, 11738 is also ranked first in both the top seven 400-feature sets and the top
seven 800-feature sets, so it is the most important feature associated with the patch at (11, 7) for
Alzheimer’s disease diagnosis.

To get reliable top common features, the top 188, 65, and 12 common features are selected based on
average feature rankings from seven 800-feature sets, seven 400-feature sets, and seven 100-feature
sets generated by the seven FS methods.

Table 3: Seven Top-ranked 6 Feature Sets Generated by the Seven FS Methods

Chi2 f classif f regression 2-phase FS 3-phase FS 4-phase FS 5-phase FS
11738 11738 11738 11738 11738 11738 11738
5655 6693 5638 5638 6693 6693 6693
4737 7437 6693 10073 5030 6664 5030
15002 6811 4776 15002 7437 7437 6664
1330 6684 10151 6693 5786 6811 7437
6693 6700 11649 15039 6700 5390 6811

5.3 TOP PATCH MAPS BASED ON THE FEATURE ACCUMULATION MATRIX AND THE
FEATURE RANKING MATRIX

The feature accumulation matrices and the top feature ranking matrices for the top 188, 65 and 12
common features are shown in Figures 2, 3, and 4, respectively. A top feature ranking matrix R0

has t̄0ij for i = 0, 1, . . . , 15 and j = 0, 1, . . . , 15. The other top feature ranking matrices Rk for
k = 1, 2, . . . , aij have other ranking numbers. For instance, the other top three feature ranking
matrices for the top 12 common features are shown in Figures 9, 10, and 11 in Appendix. The
right column of the feature accumulation matrix shows blue row-wise feature accumulation numbers
Ai

row for i = 0, 1, . . . , 15. The bottom row of the feature accumulation matrix shows green column-
wise feature accumulation numbers Aj

column for j = 0, 1, . . . , 15.

Fig. 2 (a) shows that the top three patch row numbers are 6, 11, and 4. Fig. 3 (a) and Fig. 4 (a)
show that the top three patch row numbers are 6, 11, and 5. Fig. 2 (a), Fig. 3 (a) and Fig. 4 (a) show
that the top three patch column numbers are 7, 8, and 10. 8 × 8 patches of a 128 × 128 image at
the top patch rows and the top patch columns are more informative for image classification because
they have more top-ranked common features. Thus, the relationship between Alzheimer’s disease
and both the top patch rows and the top patch columns will be investigated.

For three intervals [0.2, 0.4], [0.4, 0.6], and [0.6, 0.8] of ω, ω = 0.3, ω = 0.5, and ω = 0.7 are used
for the patch ranking function θij = ω × (βij − αij) + αij . The ranked top 10, 10, and 7 8 × 8
patches are shown in three 16× 16 PRMs in Fig. 5, Fig. 6, and Fig. 7(a), respectively.

Fig. 5, Fig. 6, and Fig. 7(a) show that the top two patches’ rankings for ω = 0.3, 0.5, and 0.7
are unchanged for the top 188, 65, and 12 common features. Interestingly, the top three patches are
located at the intersections of the top three rows and the top three columns. For example, the top
three patches in Fig. 6 are located at (11, 7), (6, 8) and (5, 10) for the top three rows (6, 11, 5) and the
top three columns (7, 8, 10). Fig. 7(a) shows that all top seven patches’ rankings for ω = 0.3, 0.5,
and 0.7 are unchanged. Fig. 7(b) and Fig. 7(c) indicate that the top two patches associated with the
top two features (11738 and 6693) are most informative for Alzheimer’s disease diagnosis.

The feature accumulation matrices in Figures 2, 3, and 4 show that less important features are
gradually eliminated from both the four side black areas and the center butterfly black area. Also,
they show that the more important top 400 features and the most important top 100 features are
generated by ranking common features extracted from seven feature sets generated by the seven FS
methods. Similarly, the top-ranked patches based on the top 100 features in Fig. 7(a) are more
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Figure 2: A Feature Accumulation Matrix and a Feature Ranking Matrix R0 (Top 188 Common Features).

Figure 3: A Feature Accumulation Matrix and a Feature Ranking Matrix R0 (Top 65 Common Features).

informative and more critical for decision-making than those based on the top 800 and 400 features
in Figures 5 and 6. The most important patch located at (11, 7) in Figures 5, 6, and 7 is associated
with both the largest number of features in the feature accumulation matrices in Figures 2(a), 3(a),
and 4(a) and the most important feature (11738) in Figures 2(b), 3(b) and 4(b).

In summary, the relationship among the top seven patches in Fig. 7(a), the top two patch rows (6
and 11) and the two top patch columns (7 and 8) in Figures 2, 3 and 4 and Alzheimer’s disease will
be analyzed by using results in relevant literature.

6 CONCLUSIONS

Simulation results using the Alzheimer’s MRI preprocessed dataset indicate that three 16×16 PRMs
have reliable ranked top 8 × 8 patches for an explainable diagnosis. For instance, the three PRMs
based on the top 188, 65, and 12 common features have the same top two most important patches
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Figure 4: A Feature Accumulation Matrix and a Feature Ranking Matrix R0 (Top 12 Common Features).

Figure 5: Top Three Patch Maps with Different Values of ω Based on the Top 188 Common Features.

associated with Alzheimer’s disease diagnosis. In addition, 8 × 8 patches of a 128 × 128 image at
the 7th and 12th patch rows and at the 8th and 9th patch columns are most informative because they
have the top two most important patches and most top-ranked common features.

A new and efficient CNN model consists of convolutional layers, the new FS layer, a classifier, and
the new PRM. The simulations also show that the trained CNN with FS can have higher classification
accuracy and smaller model size than the conventional CNN without FS.

The explainable top-ranked image patches are associated with decisions of the CNN because the
top patches are ranked based on highly informative feature accumulation matrix and feature ranking
matrix. The PRM can provide users, such as medical doctors, with ranked patches based on a small
number of highly informative features for them to better understand the relationship between the
input images and the decisions of a CNN with FS.

A small number of informative top feature maps associated with the selected informative image fea-
tures can be easily generated. The feature accumulation matrices, the feature distribution matrices,
and feature ranking matrices have much statistical information associated with an input image, top
patches, top features, top feature maps, and the final decision.

With the decrease of the top features selected by the FS method, gradual changes of the feature
accumulation matrices, the feature distribution matrices, and PRMs can be used to analyze the rela-
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Figure 6: Top Three Patch Maps with Different Values of ω Based on the Top 65 Common Features.

Figure 7: (a) The Top Patch Map Based on the Top 12 Common Features, (b) The Same Ranked
Top Patches in Figures 6 and 7(a), (c) The Same Ranked Top Patches in Figures 5, 6, and 7(a).

tions among the most, less, and least important features and the most, less, and least important input
image patches, and the final decisions of a CNN with FS.

7 FUTURE WORKS

It is useful and necessary to sufficiently analyze the relationship among an input image, image
patches, selected top features, top feature maps, and the final decision in statistical and mathemati-
cal ways by using the feature accumulation matrices, feature distribution matrices, feature ranking
matrices, PRMs, and heatmaps together.

The relationship among Alzheimer’s disease, the top patches and both the top patch rows, and the
top patch columns will be analyzed by using brain regions identified by experts and research results
in brain informatics and medical informatics.

More effective and efficient optimization algorithms will be developed to select the top (most in-
formative) features and rank patches for building an accurate and efficient CNN model with more
explainable decisions that can be captured by the PRM for various image classification applications.
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A APPENDIX

Figure 8: The 16× 16 Top Feature Map with top five features generated by the 5-phase FS method.

Figure 9: The Feature Ranking Matrix R1 with the top two features from the top 12 common
features.
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Figure 10: The Feature Ranking Matrix R2 with the top two features from the top 12 common
features.

Figure 11: The Feature Ranking Matrix R3 with one top feature from the top 12 common features.
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