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Abstract

Deep learning has been at the center of analytics in recent years due to its impressive
empirical success in analyzing complex data objects. Despite this success, most existing tools
behave like black-box machines, thus the increasing interest in interpretable, reliable, and
robust deep learning models applicable to a broad class of applications. Feature-selected deep
learning has emerged as a promising tool in this realm. However, the recent developments
do not accommodate ultra-high dimensional and highly correlated features or high noise
levels. In this article, we propose a novel screening and cleaning method with the aid of
deep learning for a data-adaptive multi-resolutional discovery of highly correlated predictors
with a controlled error rate. Extensive empirical evaluations over a wide range of simulated
scenarios and several real datasets demonstrate the effectiveness of the proposed method in
achieving high power while keeping the false discovery rate at a minimum.

1 Introduction

In modern applications (e.g., genetics and imaging studies), the investigator is often interested in uncovering
the true pattern between a quantitiave response and a large number of features. The key working assumption,
oftentimes, is that there is an underlying sparsity pattern buried in the high dimensional data structure.
Detecting the essential features plays a crucial role in facilitating scientific investigations by offering improved
interpretability and explainability, coupled with reduced computational cost and less memory usage. Under
the linear model (LM) framework, this problem has been extensively studied over the past few decades,
stemming from the popular algorithms such as Lasso, Elastic net, SCAD, and MCP. A detailed review of this
literature can be found elsewhere (e.g., Fan & Lv (2010)) and thus is omitted here. However, regardless of
their ubiquitous applications, the LM has limited applications, especially when the underlying mechanism is
highly nonlinear, with potential interaction effects. This is particularly critical given that the true underlying
relationship is unknown to the analysts in real applications. The Artificial Neural Network (ANN) models
that relax the linearity assumption are well known for efficiently approximating complicated functions. For
example, from an information-theoretic viewpoint, Elbrächter et al. (2021) established that Deep Neural
Networks (DNN) provide an optimal approximation of a nonlinear function, covering a wide range of functional
classes used in signal processing. This property has promoted the use of Deep Learning (DL) models for
feature selection, an approach that has generated much research interest over the past few years. However,
the black-box nature and lack of explainability in DL models pose a major drawback, raising concerns about
their applicability in real-world decision-making, as highlighted by Rudin (2019). Hence, it is crucial to
exercise caution when employing DL models in practical applications.

Error controlled feature selection: Employing only the relevant predictors to construct a predictive
model is the right step toward explainable machine learning. Moreover, recent studies have shown that
the feature importance in DL-based algorithms can demonstrate substantial variability in the presence of
small input perturbations or a lower signal-to-noise ratio Ghorbani et al. (2019). To address this challenge,
our approach aims to achieve reproducible nonlinear error-controlled variable selection using DL models.
In this regard, we employ the False Discovery Rate (FDR), originally proposed by Benjamini & Hochberg
(1995). FDR is well-suited for large-scale multiple testing problems, offering a less conservative and more
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Figure 1: Examining the Impact of Multicollinearity on Knockoffs - A demonstration through a
simplistic simulation setting We generate n = 400 independent and identically distributed samples (y ∈
R, X ∈ R100), where the outcome y is generated by the linear model: y = 0.5(X20+X40+X60+X80+X100)+ϵ,
with ϵ ∼ N(0, 20). The features X follow a multivariate normal distribution N100(0,Σ), where (Σ)ij = ρ|i−j|

represents the autocorrelation strength. We vary the autocorrelation strength ρ from 0.1 to 0.95. Two
approaches for Model-X knockoff generation are implemented on 500 Monte Carlo replication of the data: (1)
Model-X estimated, using the method proposed in Candès et al. (2016) to generate knockoffs based on the
estimated feature distribution, and (2) Model-X True, generating knockoffs from the true distribution of X.
The FDR (false discovery rate) is depicted by vertical bars along the left y-axis, while the associated power
is represented by horizontal lines by the right y-axis. The black horizontal line indicates the nominal FDR
control level at q = 0.20.

powerful alternative compared to traditional methods such as the Family Wise Error rate (FWER). To
formally define the FDR, we consider the random variable, FDP , representing the False Discovery Proportion:
FDP = e0

N+∧1 , where e0= number of falsely selected variables, N+= number of total discoveries. Then, FDR
is defined as FDR = E(FDP ). The estimation of this expectation, considering the unknown data-generating
distribution, presents a distinct challenge in the context of model-free variable selection. To tackle this issue,
various approaches have been proposed in the literature. For instance, multiple testing literature suggests
using a p-value-based approach as a criterion for feature importance; refer to Tansey et al. (2018); Xia et al.
(2017); Li & Barber (2019); Lei & Fithian (2018) for an overview. However, generating interpretable p-values
remains an unresolved research issue in the context of DL models. To circumvent this limitation, the knockoff
framework has been proposed by Candès et al. (2016). Essentially, this is a model-free variable selection
algorithm with provable FDR control, assuming one has prior knowledge of the predictors’ distribution. Lu
et al. (2018) further proposed the DeepPINK algorithm by integrating the knockoff framework with the DL
architecture for improved explainability of the DL models. Nevertheless, in real-world applications, it is
often unrealistic to assume full knowledge of the distribution of the high-dimensional feature vector, which
is a fundamental requirement for the knockoff approach. Consequently, the predictor’s distribution needs
to be estimated in a real-world application to generate the knockoff variables, which adds another layer of
uncertainty to the analysis. Recently Barber et al. (2020) showed that the knockoff framework can lead
to inflation in false discoveries, which is proportional to the error incurred in estimating the predictor’s
distribution. This problem is exacerbated by highly correlated features. Figure 1 provides an empirical
illustration of Barber et al. (2020), showcasing how the model-X knockoff approach Candès et al. (2016) fails
to effectively control the FDR under high multicollinearity. Figure 1 also demonstrates that the problem
lies in accurately estimating the distribution of the features, as knockoffs generated from the true feature
distribution successfully control the FDR. However, relying on the true distribution is often unrealistic in
practical settings where the feature distribution is typically unknown. Consequently, any knockoff generation
method that imposes distributional assumptions on the features, such as (Candès et al., 2016; Sesia et al.,
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Figure 2: How multicollinearity affects feature selection. With the same simulation setting in the
linear model in Figure 1, we implement the Lasso algorithm for 500 Monte Carlo replication of the data,
and the y-axis shows the proportion of time each feature is selected out of 500 replications. For a higher
autocorrelation ρ, the selection probability of the true features was significantly reduced whereas the null
features that are associated with true features got selected more frequently.

2018), may prove inefficient in a general setting. To address these challenges associated with model-based
knockoff methods, recent advancements have introduced flexible knockoff generation algorithms based on
deep learning (DL), such as (Liu & Zheng, 2019; Jordon et al., 2019; Romano et al., 2020). however they
are trained in a typical big-n-small-p setting, and their performance in ultra-high dimensional settings with
limited sample size remains unclear. We next discuss in detail the multicollinearity issue in the context of
multi-resolutional feature selection.

Addressing uncertainty in highly correlated feature space: In contemporary high-dimensional
datasets often found in genetics and imaging studies, the presence of extreme multicollinearity is a significant
challenge in addition to ultra-high dimensionality. This phenomenon manifests as a complex intercorrelation
among the predictors, often with pairwise sample correlations surpassing 0.99. In a simplistic linear model
setting, Figure 2 shows how increased autocorrelation typically reduces the selection probability of the true
non-null features. Due to the near-indistinguishability of extremely correlated features, it is unrealistic to
assert that a specific feature within a cluster is independently associated with the outcome in a regression
framework. Therefore, it is more pragmatic to address the uncertainty by pursuing group-level variable
selection, asserting that at least one variable within a densely correlated group is significant for the outcome.
As such, by ’true discovery’ one refers to the selection of clusters that can serve as good proxies for at least
one element in the true index set of important features S0. This approach has been discussed in the context
of statistical genetics. For example, Brzyski et al. (2017)eloquently argued that the discovery of a specific
genomic region is considered more informative than the discovery of individual variants within that region.
Although conceptually appealing, a complication of this approach is that the notion of FDR in its original
formulation becomes non-trivial. For this reason, following Siegmund et al. (2011), we adopt the cluster
version of the FDR as the expected value of the "proportion of clusters that are falsely declared among all
declared clusters". We denote this as cFDR henceforth. There are other methods for handling extreme
multicollinearity, which have for the most part appeared in the hierarchical testing literature. Few examples
include CAVIAR (Hormozdiari et al., 2014), SUSIE (Wang et al., 2020), and KnockoffZoom (Sesia et al.,
2019). While the knockoff-based procedures have the limitation of generating knockoffs from an unknown
distribution with a very small sample size, other methods lack applicability in non-linear-nonparametric
setups as they typically depend on p-values.
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Figure 3: SciDNet Architecture Overview: The schematic diagram illustrates the proposed method
SciDNet, where the green and red modules represent the screening and cleaning blocks, respectively.

Our contribution To address the aforementioned complexities and unexplored gaps in variable selection,
particularly when applying deep learning (DL) methods, we introduce the SciDNet- Screening & Cleaning
Incorporated Deep Neural Network. This novel approach enables reproducible high-dimensional
nonlinear-nonparametric feature selection in the presence of highly correlated predictors. The method consists
of two steps: screening and cleaning. In the screening step, we perform dimension reduction by eliminating
null features and constructing a set of multi-resolution clusters. These clusters collectively encompass all
proxy variables necessary to capture the truly significant features with a high probability. In the cleaning
step, we employ a carefully tuned DL model with an appropriate resampling scheme to estimate the False
Discovery Rate (FDR). This estimation serves as a key component for selecting clusters of highly correlated
predictors while controlling the FDR. To this end, ’FDR observed for SciDNet’ would implicitly refer the
value of the cFDR discussed above. Our major contributions can be summarized below:

• The proposed method, SciDNet, incorporates techniques from statistical machine learning and sparse
modeling with the DL framework. It introduces a resampling-based FDR estimation scheme, allowing
for the identification of relevant features while discarding irrelevant ones in an FDR-controlled setting.
Moreover, SciDNet is specifically designed to handle the challenges posed by highly correlated features,
which are known to be problematic for traditional feature selection methods.

• To the best of our knowledge, no other method in the literature addresses the multicollinearity
issue in a high-dimensional setting through data adaptive cluster formation, followed by nonlinear-
nonparametric error-controlled feature selection integrated with DL. Extensive simulations and real
data analyses demonstrate the validity and efficacy of our proposed method. Additionally, an ablation
study dissects the contributions of individual steps in the overall performance of the feature selection
method.

• Unlike existing state-of-the-art methods, our approach relies on minimal modeling assumptions and
does not rely on p-values. As such, it provides a robust and better understanding of the sparse
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relationship between the outcome and the high-dimensional predictors. Through theoretical analysis,
we establish the provable FDR control guarantee of SciDNet in an asymptotic setting, further
consolidating the empirical results.

Overall, our contributions provide a powerful tool for researchers and practitioners grappling with the
challenge of selecting relevant variables from highly correlated ultrahigh-dimensional datasets across various
fields, ranging from biology to finance to social sciences. The rest of the article includes a description of the
proposed screening and cleaning method in Section 2, followed by an extensive simulation study in Section 3,
and analyses of two real-world gene expression datasets in Section 4. Section 5 concludes with a summary
of findings and future directions. Theoretical study and additional simulation results are relegated to the
appendix.

2 The Algorithm

2.1 Notation and assumptions

Under the supervised learning framework, let Y denote a continuous response variable, and X = (X1, . . . , Xp)
denote p continuous covariates. Let Fy(·) denote the CDF of the response variable Y , and let Fk(·) denote
the CDF of the predictor Xk. The dataset comprises n independent and identically distributed (iid) samples,
each represented as (Yi, Xi) = (Yi, X1i, X2i, . . . , Xpi), where i refers to the data point index. Notably, we
focus on the ultrahigh-dimensional setting where the number of predictors, p, grows exponentially with n
as p = O(exp(nτ )), with τ > 0. We assume no specific functional relationship between the outcome Y and
the predictors X but we impose a high-level assumption on the distribution of X. In particular, we assume
that the predictors follow the nonparanormal distribution; i.e., there exist unknown differentiable functions
g(X) = {gj(Xj), j ∈ {1, 2, . . . , p}}, such that g(X) ∼ N(µp×1,Σp×p). This nonparanormal distribution
encompasses a wide range of parametric families of distributions and maintains the conditional dependency
structure of the original variables X. More theoretical details on the nonparanormal family of distributions
can be found in Liu et al. (2009). Additionally, to enforce sparsity, we assume the existence of a subset
S0 ⊂ 1, 2, . . . , p with |S0| = O(1), such that, conditional on the features in S0, the response Y is independent
of the features in Sc

0. In other words, S0 = {k : f(y|X) depends on Xk}, where f(y|X) is the conditional
density of y given X. Our objective is to learn the sparsity structure by estimating S0.

2.2 Screening Step

Under the assumption that the cardinality of S0 is much smaller than the feature space dimension p, most
of the features belong to Sc

0. Hence in the screening step, we focus primarily on finding an active set Ŝn

with |Ŝn| << p such that P (S0 ⊂ Ŝn) → 1 as n → ∞. This property is called the sure screening property
(Fan & Lv, 2008), which ensures that all the significant predictors are still retained in Ŝn and the other
predictors {Xj , j ∈ Ŝc

n} are henceforth eliminated from the remaining analysis. As these active variables are
highly correlated among themselves, in the second step we further cluster them by exploiting the conditional
dependency structure.

2.2.1 Finding the active set of variables

To find the active set, we first consider the nonparanormal transformation on (Y,X) and then perform the
Henze–Zirkler’s (HZ) test on the transformed variable. While the first transforms all the variables to a joint
Gaussian variable maintaining their conditional covariance structure; the second test confirms, by pairwise
testing, if there is significant dependence in the transformed response and predictors. This workflow has been
proposed by Liu et al. (2009),Henze & Zirkler (1990), Xue & Liang (2017). The strategy proceeds as follows:

1. nonparanormal transformation: We first consider the following transformation: Ty(Y ) =
Φ−1(Fy(Y )), Tk(Xk) = Φ−1(Fk(Xk)), k = 1, 2, . . . , p, where Φ(·) denotes the CDF of the standard
Gaussian distribution. However, in practice, the cdf of Y and Xk are unknown, we can estimate it
by the truncated empirical cdf as suggested by Liu et al. (2009). Henceforth, let (T̃y(Y ), T̃k(Xk))
denote the corresponding transformations.
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2. HZ test: By the basic properties of CDF, it is easy to see that (Ty(Y ), Tk(Xk)) will jointly follow
a bivariate Gaussian distribution N2(0, I2) if and only if Y is independent of Xk. This can be
tested using HZ test, Henze & Zirkler (1990), where the test statistic for the predictor Xk can be
expressed as wk =

∫
R2 |ψk(t) − exp(− 1

2 t
′t)|2ϕβ(t)dt, k = 1, 2, . . . , p; where ψk(t) is the characteristic

function of (Ty(Y ), Tk(Xk)) and exp(− 1
2 t

′t) represents the characteristic function of N2(0, I2). It
typically measures the disparity between the joint distribution of (Ty(Y ), Tk(Xk)) and N2(0, I2) and
is expected to be typically high for the non-null predictors Xj , j ∈ S0 indicating significant evidence
against the independence of the transformed variable (Ty(Y ), Tk(Xk)).
Next, as in practice, we proceed with (T̃y(Y ), T̃k(Xk)), we calculate the the HZ test statistic as

w̃∗
k = 1

n2

∑n
i=1

∑n
j=1 e

− β2
2 dij − 2

n(1+β2)
∑n

i=1 e
− β2

2(1+β2)
di + 1

1+2β2 (1)

where dij = (T̃k(xki)− T̃k(xkj))2 +(T̃Y (yi)− T̃Y (yj))2 and di = T̃ 2
k (xki)+ T̃ 2

Y (yi). Consistent with the
existing literature, we choose the value of the smoothing parameter β as (1.25n)1/6

√
2 , which corresponds

to the optimal bandwidth for a nonparametric kernel density estimator with Gaussian kernel (Henze
& Zirkler (1990)). The observed test statistics w̃∗

k converges to wk as shown in Xue & Liang (2017).

3. Next, we select the active set of predictors Ŝn according to the larger values of w̃∗
k, i.e., Ŝn = {1 ≤

k ≤ p : w̃∗
k > cn−κ} where where c and κ are predetermined threshold values.

This active set Ŝn contains all the predictors significantly correlated with the response marginally. Under
very mild regularity conditions on the signal strength of the nonnull predictors where mink∈S0 wk ≥ 2cn−κ

with c as a constant and 0 ≤ κ ≤ 1
4 , the screening process enjoys the advantage of sure screening property,

i.e., P (S0 ⊂ Ŝn) → 1, as n → ∞. More details on the theoretical guarantee can be found in Xue & Liang
(2017). A common practice is to set the active set size |Ŝn| at νn = [n/log(n)]. However, as we further cluster
the active variables in the next step, our proposed method is fairly robust in terms of the |Ŝn| as long as we
retain most of the significant variables. We propose to select a bigger active set with size proportional to νn.

2.2.2 Clustering the active predictors using the precision matrix

Algorithm 1: Finding clusters and the representatives
Input : (X ∈ Rn×p, Y ∈ Rn), The Active set Ŝn , |Ŝn| = p1 < p

1 Estimate the precision matrix: Σ̂−1 = (σ̂ij)i,j∈{1,2,...,p} using Nodewise Lasso
2 Define the clusters Ci = {j ∈ Ŝn : σ̂ij ̸= 0}, i ∈ Ŝn

3 for 1 ≤ i ≤ p1 do
4 for 1 ≤ j ≤ p1, j ̸= i do
5 Define Ωij =

{
corr(XCi

, XCj
)
}

= {ρ(Xl, Xl′), l ∈ Ci, l
′ ∈ Cj} ∈ R|Ci||Cj |

6 if max{Ωij} ≥ r then
7 Ci = Ci ∪ Cj

8 Cj = ϕ

9 end if
10 end for
11 end for
12 Retain only the non-null clusters: C = {Ci : Ci ̸= ϕ, i ∈ Ŝn}, |C| = pc

13 Find the cluster representatives S̃n = {Rj , 1 ≤ j ≤ pc : Rj = argmax
l∈Cj

{w̃∗
l }}

Output : Clusters C1, C2, ..., C|C| and corresponding cluster representatives S̃n = {Rj , 1 ≤ j ≤ pc}

The Henze-Zirkler test focuses on pairwise marginal correlations between predictors and the response variable,
often including null predictors that exhibit strong associations with significant predictors. Consequently, these
null predictors tend to be highly correlated among themselves. To address this issue, our strategy aims to
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reduce the correlation within the active set by leveraging the conditional dependency structure and dividing
the active variables Xj : j ∈ Ŝn into pc(<< p) non-overlapping clusters denoted as C1, C2, . . . , Cpc. The use
of a sparse precision matrix, which captures the dependence structure in high-dimensional feature spaces,
has been widely recognized in the statistical literature (e.g., Lauritzen (1996), Shojaie & Michailidis (2010))
due to its scalability. By analyzing the conditional dependence structure, we can gain valuable insights that
surpass the analysis of a simple covariance matrix. For instance, in the study of the human brain, two distinct
regions may exhibit high correlation without a direct relationship, only due to their strong interaction with a
common third region. Hence, without considering the conditional dependencies, simple correlation-based
clustering would lead to large cluster sizes and less interpretable groups of brain regions (Das et al., 2017).

To this end, in order to estimate the precision matrix we implement the nodewise Lasso algorithm (Van de
Geer et al., 2014) on the transformed variables (T̃y(Y ), T̃k(Xk)), k ∈ Ŝn. Nodewise Lasso regression is
generally entertained to estimate a sparse precision matrix in the context of the Gaussian graphical model by
performing simultaneous Lasso regression on each predictor. The tuning parameters in each nodewise Lasso
are typically selected using cross-validation. More details on this algorithm and its theoretical guarantees can
be found in (Meinshausen & Bühlmann, 2006). Let Σ̂−1 be the estimated precision matrix by the nodewise
Lasso algorithm and ρ(Z,Z ′) denotes any correlation metric for two random variables Z and Z ′, e.g. Pearson’s
correlation. Algorithm 1 summarizes the clustering step.

Here, in the clustering step, not only we are clustering the active predictors, but also selecting an appropriate
representative from each cluster. First, for each active predictor Xi ∈ Ŝn, we collect all the other active
predictors conditionally dependent on Xi, and make cluster Ci. Although clustering using conditional
dependence produces smaller clusters, there might be some overlaps owing to the complex association in the
original predictor space. Hence, to reduce the excessive intercluster correlation, we merge all those clusters
having a maximum correlation greater than some pre-specified threshold r (we typically set r=0.9). Next, each
cluster is updated by adding all the other features conditionally dependent on the existing cluster members.
Finally, to find the appropriate cluster representatives, we focus on the HZ-test statistic w̃∗

k in 1 which
measures the extent of resemblance between the distribution of each nonparanormally transformed variable in
a cluster and the null distribution N(0, I2). So, for cluster Ci, we select the variable Ri = argmaxj∈Ci

{w̃∗
j }

indicating its strongest association with the response variable compared to the other predictors in the cluster.

2.3 Cleaning with Deep Neural Network (DNN)

We start the cleaning step by modeling the response Y and the cluster representatives XS̃n
obtained through

2.2.2. In order to perform the error-controlled variable selection, each representative will be assigned an
importance score followed by a resampling algorithm to finally control the FDR.

While it is possible to adopt any other generic sparsity-inducing DNN procedure, here we focus on the
LassoNet algorithm recently proposed by Lemhadri et al. (2021) for its elegant mathematical frameworks
which naturally sets the stage for nonlinear feature selection. To approximate the unknown functional
connection, it considers the class of all fully connected feed-forward residual neural networks; namely,
F = {f ≡ fθ,W : x 7→ θTx+ hW (x)}. Here, W denotes the network parameters, K denotes the size of the
first hidden layer, W (0) ∈ Rp×K denotes the first hidden layer parameters, θ ∈ Rp denotes the residual layer’s
weights. In order to minimize the reconstruction error: the LassoNet objective function can be formulated as:

min
θ,W

L(θ,W ) + λ||θ||1 subject to ||W (0)
j ||∞ ≤ M |θj |, j = 1, 2, . . . , p (2)

With L(θ,W ) = 1
n

∑n
i=1 l(fθ,W (xi), yi) as the empirical loss on the training data and xi as the vector of

cluster representatives observed for the ith individual. While the main feature sparsity is induced by the L1
norm on residual layer parameter θ, the second constraint controls the total amount of nonlinearity of the
predictors. As mentioned in Lemhadri et al. (2021), LassoNet can be argued as an extension of the celebrated
Lasso algorithm to nonlinear variable selection.

In L1 penalization framework, the importance of a specific feature is naturally embedded into the highest
penalization level up to which it can survive in the model. So, to measure the importance of each representative,
the LassoNet algorithm is executed over a long range of tuning parameter λ1 ≤ λ2 ≤ · · · ≤ λr on (Y,XS̃n

).
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In practice, a small value is fixed for λ1 where all the variables are present in the model. Then, we gradually
increase the value of the tuning parameter and stop at λr, where no variables are present in the model.
Next, the importance score for the j-th cluster is defined as λ̂j= maximum value of λ up to which the j-th
representative exists in the model, and then the following rank statistic is computed: Ij =

∑
j′ ̸=j 1

(
λ̂j ≤ λ̂j′

)
for j = 1, 2, . . . , pc. A lower Ij means that the j-th cluster representative stays in the model up to a higher
value λ implying its high potential as a significant cluster. In contrast, a higher Ij indicates the corresponding
cluster leaves the model even for a smaller value of λ as a consequence of being simply a collection of null
features. Hence, we should only focus on the clusters with lower ranks. Additionally, in order to control the
FDR, understanding the behavior of the predictors under the null distribution is important. In traditional
FDR controlling algorithms, this is typically done by generating the p-values. Here, as a p-value-free algorithm,
we propose the following resampling-based approach:

1. Generate B bootstrap versions of the data
{
Y b, Xb

S̃n

}B

b=1
considering only the cluster representatives

S̃n. For each bootstrap version, run the LassoNet algorithm parallelly, and calculate the importance
of each representative by measuring λ̂b

j= maximum value of λ up to which the j-th predictor exists
in the model for b-th bootstrap version, and then the ranks Ib

j =
∑

j′ ̸=j 1

(
λ̂b

j ≤ λ̂b
j′

)
.

Therefore, the averaged rank is: Īj = 1
B

∑B
b=1 Ib

j

2. For an arbitrary threshold δ, we would select the cluster representatives with averaged rank Īj lower
than δ; so we define, N+(δ) =

∑
j∈S̃n

1(Īj ≤ δ) representing the number of selected clusters with
respect to the cutoff δ.

3. Next, to estimate the expected number of falsely discovered clusters, define Rb = {j : Ib
j ≤ δ},

the number of cluster representatives with higher importance score so that the corresponding rank
is lower than the cutoff δ in the b-th bootstrap version. Additionally, define a neighbourhood
N (Īj , κ) = {l ∈ {1, 2, . . . , pc} : |Īj − l| ≤ κ}, for some specific small number κ.

4. Further, we estimate the number of falsely discovered clusters and hence an estimator of the FDR
can be constructed as ˆFDR(δ) = ê0(δ)

N+(δ) where,

ê0(δ) = 2
B

∑B
b=1

{∑
j∈Rb 1(Ib

j ̸∈ N (Īj , κ))
}

(3)

5. The ˆFDR is sequentially estimated with δ = Ī(1), Ī(2), . . . , Ī(pc) and the optimum threshold is

∆∗ = max{δ > 0 : ˆFDR(δ) < q}

for some pre-specific FDR control level q. The final selected set of clusters with controlled FDR is
given by

D̂n = {Cj , j = 1, 2, . . . , pc : Īj ≤ ∆∗}

The proposed method integrates the concept of false discovery through resampling. If a null predictor obtains
a relatively high importance score, it is likely due to a specific bootstrap iteration that generates a spurious
relationship, which is not consistent across all other bootstraps. Conversely, significant predictors should
consistently yield higher importance scores across all bootstrap iterations. Consequently, the variability
in importance score rankings will be substantially greater for null predictors compared to their non-null
counterparts. This principle, introduced in the statistical literature as bagging methods (Breiman, 1996;
Bühlmann & Yu, 2002), aims to reduce variance in black-box models for prediction/estimation. The proposed
method leverages this phase transition phenomenon in the feature selection framework to effectively identify
false discoveries. An empirical illustration of this phenomenon is presented in Figure 4. Although we employ
non-parametric bootstrap for simplicity in this demonstration, other bootstrap techniques, such as multiplier
bootstrap or perturbation bootstrap, can be readily applied. The theoretical investigation is provided in
Appendix A, where, following the approach of perturbation bootstrap (Ng & Newton, 2022), we utilize
random-weighted Group Lasso penalization to emulate the resampling setup.

8



Under review as submission to TMLR

Figure 4: Illustration of phase transition using synthetic
data: Features selected by SciDNet at q = 0.2 clearly
have lower bootstrap variability compared to the other
irrelevant features

How to choose the hyperparameter κ: Choos-
ing an appropriate value of κ has a significant effect
on the performance of SciDNet. A higher value of
κ might lead to weaker control over the inclusion of
false discoveries, whereas choosing a small κ will cre-
ate tighter error control resulting in reduced power.
However, we propose an effective way to tune the κ
with the assistance of phase transition in the ranks
of the importance score Īj of the cluster represen-
tatives. For an illustration, in Figure 4 we consider
a single index model (see section 3 for more details
of the data-generating mechanism), and the features
with top 15 importance scores are shown along the
x-axis. The first 5 representative features are the
only relevant predictors (indicated by the vertical
dotted red line). Along the y-axis, the center of
the ellipse for each feature represents the rank of
the importance scores Īj averaged over 50 bootstrap
replications and the area of each ellipse represents
the bootstrap variability around the averaged score.
One would observe a clear phase transition in the
bootstrap distribution of the ranks. For the signifi-

cant features, the ranks are lower with extremely precise estimates. On the other hand, for the rest of the
null features, the averaged ranks possess much higher values coupled with huge variability producing bigger
ellipses. Hence, for a compact neighborhood N (Īj , κ) to capture only the small variability in the bootstrap
ranks of the significant features, we simply fix κ= K* (in figure 4), the phase transition point for the averaged
rank. This phase transition property is further illustrated on a real data in Appendix B.2.

3 Numerical Illustrations

In this section, we investigate the finite-sample performance of SciDNet using a wide spectrum of simulation
scenarios. We compare SciDNet to several baseline methods which are widely used in practice. We conduct
this simulation study on synthetic data generated from a high-dimensional regression problem.

Data Generation: We first consider the single index model for the data-generating mechanism, which is a
straightforward yet flexible example of nonlinear models. Here the response is related to a linear combination
of the features through an unknown nonlinear, monotonic link function, i.e., y = g(x′β) + ϵ. We choose the
following link functions: g(x) = x3

10 + 3 x
10 .

We set n = 400 and p = 5000. The coefficients β ∈ Rp is sparse with the true nonzero locations S0 =
{50, 150, 250, 350, 450}, s = |S0| = 5, where βSc

0
= 0, βS0 ∼ N5(uβ0, 0.1I5×5) with u = {±1}5. The value of

β0 is set at β0 = 2, 4 to incorporate varying signal strength. The random error ϵ ∼ N(0, σ2), with three
increasing noise level as σ2 = 1, 5, 10. The high dimensional predictors are generated from X ∼ Np(0,Σ)
where the covariance matrix Σ is chosen as a Toeplitz matrix with Σij = ρ|i−j|. To check the effect of
multicollinearity, we consider three different settings: ρ = 0.1, 0.5, 0.95.

Evaluation Metrics: Let D̂n denote the selected set of features by some algorithm, then we use the following
three metrics to evaluate the performance of these feature selection algorithms:

1. Power= |D̂n∩S0|
|S0| , the proportion of relevant features that are correctly identified

2. Empirical FDR = |D̂n∩Sc
0 |

|D̂n| , the proportion of falsely identified features among all the identified
features

9
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Figure 5: Illustration of the effect of multicollinearity on the feature selection methods

3. n_var = |D̂n|, the number of total features selected and n_clust = |S̃n|, the number of clusters
selected by a group feature selection method like SciDnet.

The whole experiment is repeated over 100 Monte Carlo replications and We summarize the results from the
empirical evaluations in the following three subsections: (1) The effect of multicollinearity on major existing
feature selection methods, (2) the Power vs. FDR balance of SciDNet, and (3) an ablation study showing the
effectiveness of all the steps for SciDNet.

3.1 The effect of multicollinearity on major existing feature selection methods

We present a simulation study to evaluate the performance of our proposed algorithm in comparison with the
following five baseline feature selection methods

1. Lasso (Tibshirani, 1996): the L1 penalized linear regression to prevent overfitting and improve model
interpretability.

2. Model-X knockoff (Candès et al., 2016): A theoretically guaranteed statistical method for FDR
control used in high-dimensional variable selection. It constructs "knockoff" variables that mimic the
correlations between the original variables and their relationship with the response variable, allowing
for control of the false discovery FDR while identifying important variables.

3. SurvNet (Song & Li, 2021): A DNN-based FDR control method for feature selection applicable to
high-dimensional large datasets.

4. Deep Feature Selection (DFS) (Chen et al., 2021): A novel DNN method for feature selection in
a high-dimensional setting with complex nonlinear relationships utilizing L0 penalization.

5. LassoNet (Lemhadri et al., 2021): The nonlinear extension of Lasso. It combines the advantages of
both L1 penalization and neural network structures to identify the important features.

10
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Although several other existing methods exist in the literature for ultra-high dimensional feature selection, we
choose these five baseline methods because of their wide applicability and reliable theoretical guarantees. Also,
these five methods can be thought of as representative of different classes of algorithms. For example, Model-X
knockoff represents the big class of knockoff-based algorithms; whereas SurvNet, DFS, and LassoNet show
the effectiveness of the DL-based feature selection methods. Among these five baseline methods, Model-X
knockoff and SurvNet are designed to control the FDR and we use q = 0.2 as the FDR-control threshold.
Also, Lasso, LassoNet, and DFS require proper tuning for their L1 or L0 penalty parameters, which can be
done via a grid search. For this purpose, we optimize a BIC-type criterion (Chen & Chen, 2008) to tune these
hyperparameters, as suggested by the authors of Chen et al. (2021). For the practical implementation of
these baseline methods, we used the code/hyperparameters provided by the authors in the respective papers.

Figure 5 demonstrates the Power, FDR, and the n_var of all these methods under different correlation
strengths and varying noise levels, fixing β0 = 2. Also, as SciDNet selects the features as clusters, we
show the n_clust in numbers along with n_var, in the third row of Figure 5. One would observe that the
baseline methods perform poorly as the autocorrelation increases; they result in reduced power and inflated
false discoveries. The FDR-controlling methods such as Model-X knockoff and SurvNet fail to control their
FDR under the pre-specified threshold q = 0.2 for higher autocorrelation. This is somehow expected, as
these methods are not tailored for handling such huge multicollinearity. This demonstration empirically
motivates as well why we need a feature selection method designed for highly correlated feature space. The
DL-based method like LassoNet, DFS, or Survnet additionally suffers from insufficient data under the current
big-p-small-n setting. Our additional experiments, presented in Appendix D, demonstrate how these DL-based
models gain better power-FDR balance given sufficient training data and moderate correlation among the
features. Compared to these baseline methods, SciDNet successfully maintains its power while controlling the
FDR below the pre-specified threshold q = 0.2 irrespective of the correlation strength. Also, under moderate
multicollinearity, when there is no need for clustering, most of the selected clusters by SciDNet are just
singleton sets. On the other hand, under the setting of excessive multicollinearity, the individual features
become almost indistinguishable. SciDNet addresses this added uncertainty by selecting larger clusters for
higher autocorrelation, as demonstrated in the third row of Figure 5.

3.2 The Power vs. FDR balance of SciDNet

Figure 6: Power vs FDR balance for SciDNet
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Figure 7: Ablation study for SciDNet

One major validation for an FDR controlling method is to check how it retrieves its power with respect to
gradually increasing the FDR-control threshold q. Figure 6 shows this power-FDR trade-off for SciDNet. Also,
Section 3.1 demonstrates that the baseline methods are not well suited for highly correlated feature space.
As SciDNet is specifically designed for this setting, for ease of illustration, we only present the performance
of SciDNet setting ρ = 0.95. Figure 6 illustrates how our method enjoys quick recovery in power when we
gradually increase the FDR-controlling threshold q from 0.01 to 0.20 and also maintain the number of false
discoveries below the required level. This illustration empirically validates SciDNet as an FDR-controlled
feature selection method.

3.3 An ablation study

The proposed method SciDNet is a multi-step process. Its screening step reduces the dimension while retaining
the main important features and clustering the highly correlated features. Following this, the cleaning step
further uses a sparsity-inducing DL model and finally selects some cluster of features by controlling the FDR
via resampling. We aim to analyze the impact of these two steps on the overall performance of the model by
adding them one by one and observing the change in the evaluation metrics. We also compare our proposed
cleaning step (i.e. resampled LassoNet with FDR estimation) with other possible alternatives like using
knockoffs for the cleaning.

Hence, for the ablation study, we compare the following four methods under varying signal and noise strength:

1. Screening only,

2. Screening+LassoNet: Here we consider LassoNet as the cleaning step

3. Screenning+Knockoff : Here we consider Model-X knockoff as the cleaning step, with the FDR-
controlling threshold q = 0.2

4. Screening+resampled LassoNet, i.e. SciDNet. We use two FDR-controlling thresholds q =
0.1, and 0.2.

The power, empirical FDR, n_var are illustrated in Figure 7. In addition, the selected number of clusters, i.e.,
n_clust, are written in numbers in the third row of Figure 7. it empirically consolidates several interesting
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Figure 8: Adaptive cluster formation by SciDNet

characteristics: (a) Due to the sure-screening property 2.2.1, the screening step selects a slightly bigger set of
features resulting in high power and high FDR which necessitates further cleaning; (b) All the alternative
cleaning steps aim to eliminate the null features further and reduce the FDR while maintaining the power
of the screening step; (c) For higher signal and low noise case, SciDNet is comparable to other alternatives.
However, for difficult scenarios like low signal and high noise case, which is common in modern genomic and
imaging datasets, SciDNet maintains its performance. One would notice that Model-X knockoff loses its FDR
control at the nominal level q = 0.2 and results in inflated FDR in the presence of high noise. On the other
hand, by effectively using the added information from the resampling, SciDNet achieves the best performance
(in terms of the power-FDR tradeoff) and continues to preserve its FDR below the nominal level q.

Overall, our ablation study showed that the proposed cleaning following the screening step contributes to the
overall performance of SciDNet and that removing any of them leads to a significant drop in accuracy. The
screening helps in reducing the dimension of the feature space by removing a large chunk of irrelevant features,
which further makes the cleaning step computationally very efficient. We also conducted a further simulation
study considering several nonlinear models as data-generating processes with Gaussian and non-Gaussian
features. The results are presented in Appendix C which further substantiates the results mentioned above
that SciDNet maintains a satisfactory power-FDR balance for various complicated nonlinear models with and
without interaction terms. The hyperparameter selection and further implementation details of SciDNet are
relegated to Appendix B.1 and E, respectively.

3.4 Data-adaptive cluster formation with varying multicollinearity

An intriguing characteristic of SciDNet lies in its adaptive estimation of cluster size, enabling it to effectively
address the additional uncertainty arising from significant multicollinearity. To demonstrate this capability,
we employed SciDNet in a scenario where the data-generating mechanism followed a nonlinear additive model,
represented as y = 2X50 + 0.5 exp (X150) + 2X3

250 + 6X350 + 2ReLu(X450) + ϵ, with ϵ ∼ N(0, σ2). We set
σ2 = 5, while keeping the rest of the simulation setting consistent with the description at the beginning of
Section 3. The autocorrelation coefficients among the features were varied as ρ = {0.1, 0.2, . . . , 0.9}.

Figure 8 demonstrates several key aspects of SciDNet’s performance. First, with varying levels of multi-
collinearity strength, SciDNet effectively maintains a desirable power-FDR tradeoff, successfully controlling
the FDR below the nominal level q = 20%. Second, SciDNet adapts to the added uncertainty caused by high
multicollinearity by inflating the cluster size. Notably, in the figure, when there is lower auto-correlation
and no need for clustering, the number of selected features (n_var) and the number of selected clusters
(n_clust) are almost equal, indicating that the majority of selected clusters are single-tone sets. Conversely,
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for higher auto-correlation, SciDNet produces larger clusters, enhancing intra-block correlation and reducing
inter-block correlation, while keeping the number of clusters (n_clust) nearly constant, thereby achieving
a stable power-FDR balance across the entire range of the autocorrelation coefficient ρ. This experiment
provides additional evidence of the robustness of our proposed method.

Overall, the simulation study provides strong evidence supporting several key aspects of SciDNet, including
its effectiveness, ablation, and robustness. Furthermore, due to the independent nature of most of the
intermediate steps of SciDNet, parallel execution is possible, rendering it lightweight and computationally
feasible even for ultra-high dimensional datasets. As an illustration, for this simulation setting, the complete
execution of SciDNet takes approximately 1.56 minutes (61.31 sec for screening and 32.57 sec for cleaning),
in contrast to the Model-X knockoff Candès et al. (2016) which requires 7.4 minutes for generating knockoff
features in a 2000-dimensional feature space using "SDP"-style knockoff generation (refer to Patterson &
Sesia (2022) for more details). Notably, SciDNet eliminates the need for hyperparameter grid search, which
can be challenging in practice for ultra-high dimensional datasets. For instance, DFS (Chen et al. (2021))
requires approximately 1.65 minutes for execution with a fixed hyperparameter value, followed by an extensive
grid search that inflates computational complexity. All experiments were performed on a high-performing
computing facility equipped with Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz and 4 Tesla V100S. The
source code is available at an anonymous repository [link: https://anonymous.4open.science/r/SciDNet-9462].

4 Real Data Analysis

In addition to the simulation studies, we implemented the proposed algorithm SciDNet in the following two
publicly available gene-expression data sets - the CCLE dataset and the riboflavin dataset. We substantiate
the findings in two ways: We first provide supporting evidence from the domain research. Additionally, as a
more data-aligned validation, we demonstrate that several generic prediction models significantly gain in
test accuracy when applied only on the few features selected by SciDNet compared to the prediction result
considering the whole feature space. For this purpose, consistent with the other genomic studies, we use
the prediction correlation Corr(YP red, YT est) in addition to the test MSE as a metric to measure the test
performance. To overcome the extra burden of the low sample size and ultrahigh dimensionality in these data
sets, we consider 50 independent replications where the data is divided into training and testing maintaining
an 8 : 2 ratio to get the metrics for the test performance. The final estimate is obtained by averaging all
the test MSEs calculated on each of these replications. A similar approach is considered for the correlation
metric as well.

4.1 Selection of Drug Sensitive Genes using CCLE dataset

A recent large-scale pharmacogenomics study, namely, the cancer cell line encyclopedia (CCLE, link available
here), investigated multiple anticancer drugs over hundreds of cell lines. Its main objective is to untangle
the response mechanism of anticancer drugs which is critical to precision medicine. The data set consists of
dose-response curves for 24 different drugs across over n = 400 cell lines. For each cell line, it consists of the
expression data of p = 18, 926 genes, which we consider as features. For the response, we used the area under
the dose-response curve, known as activity area in (Barretina et al., 2012), as the response variable to measure
drug sensitivity. The activity area represents the extent to which a drug enters a person’s bloodstream after
administration and is a continuous variable. Here, in this ultra-high dimensional regression setting, we seek
to uncover the set of genes associated with the following five specific anticancer drug sensitivity: Topotecan,
17-AAG, Irinotecan, Paclitaxel, and AEW541. These drugs have been used to treat ovarian cancer, lung
cancer, and other cancer types. Previous research outputs on these drugs and related gene expression data
can be found elsewhere (Barretina et al., 2012).

SciDNet produces multi-resolutional clusters of genes for each of the five drugs considered which are
interpretable from the domain science perspective. For example, SciDNet discovers SLFN11 as the top
drug-sensitive gene for the drugs Topotecan and Irinotecan. This is consistent with the previous findings
as Barretina et al. (2012); Zoppoli et al. (2012) reported the gene SLFN11 to be highly predictive for both
drugs. For another drug 17-AAG, SciDNet discovers the gene NQO1 as the topmost important gene which is
known to be highly sensitive to 17-AAG (Hadley & Hendricks, 2014). The full table containing all the genes

14



Under review as submission to TMLR

Table 1: Drug-sensitive genes identified by SciDNet and related prediction performance
Drug # genes (clusters) selected Test MSE Corr(YP red, YT est)

by SciDNet by LassoNet LassoNet SciDNet + MLP SciDNet + RT Lassonet SciDNet + MLP SciDNet + RT

Topotecan 25 (9) 18469 1.25 (0.21) 1.23 (0.14) 0.81 (0.16) 0.47 (0.11) 0.58 (0.06) 0.69 (0.07)
17-AAG 12 (8) 7152 1.04 (0.16) 1.05 (0.09) 0.83 (0.15) 0.20 (0.16) 0.33 (0.10) 0.49 (0.10)
Irinotecan 18 (7) 17727 0.93 (0.20) 1.09 (0.18) 0.61 (0.13) 0.59 (0.10) 0.63 (0.07) 0.73 (0.08)
Paclitaxel 18 (8) 16437 1.46 (0.33) 1.46 (0.23) 1.11 (0.24) 0.44 (0.14) 0.45 (0.11) 0.59 (0.09)
AEW541 12 (10) 15145 0.33 (0.06) 0.39 (0.09) 0.27 (0.05) 0.30 (0.14) 0.49 (0.10) 0.47 (0.12)

selected by SciDNet at q = 15% error-control level and relevant findings from previous genomic studies have
been relegated to Appendix F.

Figure 9: A snapshot of correlation strength for first 100 genes considered
for the drug Topotecan in CCLE dataset (left) and riboflavin dataset (right)

Additionally, as in a real set-
ting, it is difficult to check
the performance of a feature
selection algorithm, here we
present a more data-oriented
statistical evaluation for fur-
ther endorsement of SciDNet’s
discoveries. From the predic-
tion aspect, one would expect
that a prediction model im-
plemented only on a handful
of features selected by a suc-
cessful feature selection algo-
rithm would maintain the simi-
lar performance of a model im-

plemented on the whole feature space; in some cases, it might enhance the accuracy. To validate this, we
randomly split the whole data into 8:2 for training and testing. First, the SciDNet is implemented in the
training part, and then two separate prediction models are used only focusing on the selected features : (1) an
MLP - a feed-forward multi-layer perceptron with two hidden layers and (2) bagged regression tree (Breiman,
1996). These two experiments are henceforth called: "SciDNet+MLP" and "SciDNet+RT". Next, the
test data is used to check the out-of-sample prediction accuracy. Furthermore, similar to the simulation study
in section 3, we separately implement the LassoNet on the training data for its simultaneous sparsity-induced
prediction-optimal characteristics. The summary of the results is presented in table S5 which indicates
several interesting points. First, to get the prediction optimal result, LassoNet fails to capture the sparsity
and discovers a huge number of genes. This is somehow expected as most of the prediction-optimal sparse
methods tend to select a larger set of features to maintain the prediction quality (Wasserman & Roeder,
2009). On the other hand, SciDNet produces only ∼ 10 clusters with an average cluster size ∼ 2.5. Even
with this huge dimension reduction, the added gain in test MSE and Corr(YP red, YT est) further proves that
ScidNet successfully retains all the significant predictors. One would further notice, SciDNet+RT achieves
the best stable performance which is consistent for all the drugs and our simulation study as well. This
experiment demonstrates that a black-box predictive model produces more accurate results when applied
on the features selected by SciDNet rather than its implementation on the whole feature space, indicating
SciDNet’s potential use in both feature selection and prediction.

4.2 Selection of associated genes in Riboflavin production data set

We further implement the SciDNet in the context of riboflavin (vitamin B2) production with bacillus subtilis
data, a publicly accessible dataset available in the ‘hdi’ package in R. Here the continuous response is the
logarithm of the riboflavin production rate, observed for n = 71 samples along with the logarithm of the
expression level of p = 4088 genes which are treated here as the predictors. Unlike the previous CCLE data,
significant multicollinearity is present in most of the Riboflavin data set, as demonstrated in Figure 9. Hence,
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to determine which genes are important for riboflavin production, SciDNet resulted in finding 9 clusters of a
total of 160 correlated genes at the q = 15% FDR control level, making the average cluster size of ∼ 17.78,
which is much bigger compared to the previous analysis. SciDNet discovered the gene YCIC_at as one of the
expressive genes related to riboflavin production which was identified by Bühlmann et al. (2014) as a causal
gene in this context. The full list of the selected cluster of genes by SciDNet is relegated to Appendix F.2.

Table 2: Prediction performance of SciDNet for Riboflavin
production data set

Algorithm Test MSE Corr(YP red, YT est)
LassoNet 0.83 (0.18) 0.36 (0.30)
SciDNet + LassoNet 0.19 (0.15) 0.89 (0.12)
SciDNet + RT 0.42 (0.16) 0.74 (0.15)
SciDNet + MLP 2.64 (0.79) 0.28 (0.37)

The results from the empirical validation of
SciDNet’s feature selection on the riboflavin
dataset are presented in table 2. However, for
the empirical evaluation, SciDNet+MLP is per-
forming poorly as the inflated cluster dimensions
make the input layer of the MLP comparatively
large where the number of the training data
point is ≈ 57. This necessitates the need for
a sparse model here, and we adopt the idea of
Relaxed Lasso, first proposed by Meinshausen
(2007). Here we implement the LassoNet again on the selected features by SciDNet, which certainly improves
the prediction accuracy. Consistent with the previous experiments, SciDNet+RT effectively maintains its
prediction performance. This further consolidates the need for applying an apt feature selection method
before fitting a predictive model for an explainable research outcome.

5 Discussion

While the explainable AI is the need of the hour, statistical models coupled with cutting-edge ML techniques
have to push forward because of their solid theoretical foundation clipped with principled algorithmic
advancement. The proposed method SciDNet efficiently exploits several existing statistics and ML literature
tools to circumvent some of the complexities that simple adaptation of current DL-based models fail to
address appropriately. The basic intuition and exciting empirical results of SciDNet on simulated and real
datasets open avenues for further research. For example, one may be interested in developing a theoretical
foundation for this ’screening’ and ’cleaning’ strategy for provable FDR control. It would be worth mentioning
that although we used the sure independence screening with HZ-test and LassoNet as the main tools, SciDNet
puts forward a more generic framework and can be implemented with any other model-free feature screening
method and sparsity-inducing DL algorithms like Feng & Simon (2017). In the screening part, a further
methodological extension would consider relaxing the assumption of nonparanormally distributed features for
a more flexible approach. Additionally, as the dimensionality is reduced after the screening step, it would be
interesting to implement model-free knockoff generating algorithms like Romano et al. (2020) in the cleaning
step as further algorithmic development. One limitation is that we mainly focus on the regression setup
with the continuous outcome because of the requirements of the HZ sure Independence test used in the
screening step. For a classification task, any model-free feature screening method like Zhou & Zhu (2018) can
be applied in a more general framework.

Contents of the appendix: In the appendix, we provide a theoretical investigation showing the conditional
convergence of the estimated FDR to an upper bound of the actual FDR. Results from an additional simulation
study showing the finite sample performance of the proposed method SciDNet and its comparison with other
existing methods and an ablation study showing the effectiveness of different screening and cleaning strategies
are presented. The phase transition property of the feature importance is demonstrated by synthetic and real
data analysis. Lastly, the model implementation details, link to the code and a discussion on hyperparameter
setting are added in the appendix.
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A Appendix 1. Theoretical study

Although the proposed method SciDNet is demonstrated based on the LassoNet algorithm (Lemhadri et al.,
2021), any other sparsity-inducing Deep learning framework can be adopted at the cleaning step of SciDNet.
Hence, for the theoretical study, we consider a broader framework with a general analytic DNN. Also, as
the screening step is theoretically guaranteed by Xue & Liang (2017), we start the theoretical study directly
from the cleaning step, assuming the data is {Y i ∈ R, Xi ∈ X }n

i=1
iid∼ PD, where X is a bounded open set in

Rp, p < n and the input density px is positive and continuous on its domain X . In the spirit of Dinh & Ho
(2020), we consider the following general analytic neural network model fα(x), an L-layer neural network
with parameters α = (tin, Tin, tout, Tout, S) and defined by

• Input layer: h1(x) = tin + Tinx
• Hidden layers: hj(x) = ϕj−1(S, hj−1(x), hj−2(x), . . . , h1(x)), j = 2, 3, . . . , L− 1
• Output layers: fα(x) = hL(x) = tout + TouthL−1(x)

with di = size of the i-th layer, d1 = p, dL = 1, Tin ∈ Rd2×p, tin ∈ Rd2 , Tout ∈ R1×DL−1 , tout ∈ R and
ϕ1, ϕ2, . . . , ϕL−2 are analytic functions parameterized by the hidden layers’ parameter S. This general
framework covers a wide range of models, including feed-forward networks, convolutional networks, and a
major subclass of residual networks. For the sake of theoretical study, we further assume that (1) the set of all
feasible vectors α of the model is a hypercube W = [−A,A]nα , (2) both W and X are bounded, (3) fα is analytic
in the sense that there exist C1, C2 > 0 such that |fα(x)| ≤ C1, and || ▽α fα(x)||∞ ≤ C2,∀α ∈ W, x ∈ X and
these functions are Lipschtz continuous, and (4) Y = fα∗(X) + ϵ with ϵ ∼ N(0, σ2

ϵ ), α∗ ∈ W = [−A,A]nα

and we assume that the “true” model fα∗(·) only depends on x through a subset of significant features
S ∈ 1, 2, . . . , p while being independent of features in Sc, |S| = s = O(1). To this end, a general group Lasso
estimator (Feng & Simon, 2017; Dinh & Ho, 2020) has been defined as

α̂n = arg min
α

{ 1
n

n∑
i=1

l(α,Xi, Y i) + λn

p∑
j=1

||α[:,j]||} (4)

where l(α, x, y) = (y − fα(x))2 is the square-error loss, λn > 0 is the associated penalty parameter, || · || is
the standard Euclidean norm and α[:,j] is the vector of parameters associated with j-th input feature.

Now, we incorporate the notion of resampling/bootstrapping by introducing the random-weighted group lasso
defined as follows

α̂w
n = arg min

α
{ 1
n

n∑
i=1

Wil(α,Xi, Y i) + λn

p∑
j=1

||α[:,j]||} (5)

where Wi
iid∼ FW , independent of the data distribution PD. The random weighting scheme effectively maintains

the flavour of perturbation bootstrap (Das & Lahiri, 2019), thus can be used for uncertainty quantification
in the context of sparse models. Ng & Newton (2022) studied this in the context of sparse linear model.
Here, we first show that under appropriate random weights, α̂w

n converges to a set of well-behaved optimal
hypotheses in the sense that K = {α ∈ W : fα = fα∗ and α[:,j] = 0, for j ∈ Sc}.

We note that, with the addition of random weights the overall probability measure changed to P = PD × PW

where PW is the probability measure of the triangular array of random weights. We define the following three
sigma fields: Fw

n = σ{W1,W2, . . . ,Wn}, Fx
n = σ{X1, X2, . . . , Xn}, and Fy

n = σ{Y1, Y2, . . . , Yn}.

We further define, the risk function R(α) = EPD
(Y − fα(X))2, the empirical risk function Rn(α) =

1
n

∑n
i=1

(
Y i − fα(Xi)

)2 and the weighted empirical risk function Rw
n (α) = 1

n

∑n
i=1 Wi

(
Y i − fα(Xi)

)2. The
equivalence class can be expressed as H∗ = {α ∈ W : R(α) = R(α∗)}.

For simplicity, in order to obtain a bounded weight, we assume FW is such that PW (C2 < W < C3) = 1, for
some C3 > 0.
Lemma A.1 (Probabilistic Lipschitzness of the random-weighted empirical risk). For any δ > 0, there exists
Mδ > c0 such that Rw

n (α) is an Mδ-Lipschitz function with probability at least 1 − δ.
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Proof. We note that,

|R(α) −R(β)| = |E
(
(Y − fα(X))2 − (Y − fβ(X))2)

|
≤ E| (fα(X) − fβ(X)) (2Y − fα(X) − fβ(X)) |
≤ C2||α− β||E| (2Y − fα(X) − fβ(X)) |
≤ C2||α− β|| (2E|Y − fα∗(X)| + E| (fα(X) + fβ(X) − 2fα∗(X)) |)
≤ C2||α− β||(2σ + 4C1)

Similarly,

|Rw
n (α) −Rw

n (β)| = | 1
n

n∑
i=1

Wi

(
(Y i − fα(Xi))2 − (Y i − fβ(Xi))2

)
|

≤ 1
n

n∑
i=1

Wi|
(
fα(Xi) − fβ(Xi)

)(
2Y i − fα(Xi) − fβ(Xi)

)
|

≤ C2||α− β|| 1
n

n∑
i=1

Wi

(
2|Y i − fα∗(Xi)| + |

(
fα(Xi) + fβ(Xi) − 2fα∗(Xi)

)
|
)

≤ C2||α− β||
(

4c1 + 2
n

n∑
i=1

Wi|ϵi|
)

Thus for all Mδ > 4C1C2, the proof is completed by noting the following

P
(

|Rw
n (α) −Rw

n (β)| ≤ Mδ||α− β||,∀α, β ∈ W
)

≥ P
( 1
n

n∑
i=1

Wi|ϵi| ≤ Mδ

2C2
− 2C1

)
= EPW

[
P

( 1
n

n∑
i=1

Wi|ϵi| ≤ Mδ

2C2
− 2C1|W1,W2, . . . ,Wn

)]
= EPW

[
1 − P

( 1
n

n∑
i=1

Wi|ϵi| ≥ Mδ

2C2
− 2C1|W1,W2, . . . ,Wn

)]
≥ EPW

[
1 −

1
n

∑n
i=1 WiE|ϵ1|

Mδ

2C2
− 2C1

]
≥ 1 − C3E|ϵ1|

Mδ

2C2
− 2C1

Lemma A.2 (Generalization bound for the random-weighted empirical risk). For any δ > 0, ∃ C4(δ) > 0
such that P

(
|Rw

n (α) −R(α)| ≤ C4
log(n)√

n

)
≥ 1 − δ, ∀α ∈ W

Proof. Note that nRw
n (α) =

∑n
i=1 Wi

(
Y i−fα(Xi)

)2
=

∑n
i=1 WiZ

2
i , where Zi = Y i−fα(Xi) ∼ N

(
fα∗(Xi)−

fα(Xi), σ2
ϵ

)
, conditional on FX .

Hence, conditional on FX ,FW , nRw
n (α)
σ2

ϵ
∼ a weighted non-central χ2 distribution. We will use the following

Lemma 3 to get a sharp tail bound for weighted non-central χ2 distribution. Hence,

P
(

|Rw
n (α) −R(α)| > t

2

)
≤ EFX ,FW

[
2exp

(
− Cn2t2

2n+ 2
∑n

i=1 Wi (fα∗(Xi) − fα(Xi))2 −
∑n

i=1 Wi

)]
≤ EFX ,FW

[
2exp

(
− Cn2t2

2n+ 2
∑n

i=1 Wi (fα∗(Xi) − fα(Xi))2

)]
≤ EFX ,FW

[
2exp

(
− Cn2t2

2n+ 2nC34C2
1

)]
≤ 2exp(−c̃nt2)
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The rest of the proof follows the direct proof of the Lemma 3.3 Dinh & Ho (2020).

Theorem A.3 (Convergence of random-weighted Group Lasso). For any δ > 0, there exist Cδ, C
′ > 0 and

Nδ > 0 such that for all n ≥ Nδ,

d(α̂w
n ,H∗) ≤ Cδ

(
λ

ν
ν−1
n + logn√

n

) 1
ν and ||α̂w[:,Sc]

n || ≤ 4C4
logn

λn

√
(n)

+ C ′d(α̂n,H∗)

where d(x, Z) = infz∈Z ||x− z||.

The proof directly follows from the above mentioned Lemma 1,2 and the theorem 3.3 from Dinh & Ho (2020).

Theorem A.3 demonstrates the convergence of the random-weighted group-Lasso estimates to a set of “well-
behaved” optimal hypotheses K = {α ∈ W : fα = fα∗ and ||α[:,Sc]|| = 0} ⊂ H∗. However, this depends on
the regularization parameter λn; finding its optimum value is generally a daunting task in practice. As a
solution, the importance score considering the whole regularization path would provide a more robust way
to identify false discoveries. Following our proposed method in Section 2.3, here we consider the cleaning
step in view of the random-weighted group-Lasso penalized DNN. We repeat this step over B independently
generated random-weighting scheme and recall the importance scores λ̂j and the corresponding ranks of the
importance score Ij for the b-th scheme as follows:
λ̂b

j = max{λn ∋ ||αw,[:,j]
n || ≠ 0} = maximum value of λ up to which the j-th feature exists in the model for

the b-th random scheme, and
Ib

j = rank of the importance scores =
∑

j′ ̸=j 1

(
λ̂j ≤ λ̂j′

)
and the averaged rank Īj =

∑B
b=1 Ib

j

Our basic strategy is to select the features with high-importance scores consistent in all the bootstrap
replication. Hence, for a cutoff δ, define the number of selected features as N+(δ) =

∑p
j=1 1

(
Īj ≤ δ

)
. We

further propose our estimate of the FDR as

ˆFDR(δ) = ê0(δ)
N+(δ) ,

where ê0(δ) = estimated number of false discoveries = 2
B

B∑
b=1


p∑

j∈1
1(Ib

j ≤ δ, Ib
j ̸∈ N (Īj , κ))


We further calculate the data-dependent optimum cutoff as ∆∗ = max{δ ∈ {Ī1, Ī2, . . . , Īp} : ˆFDR(δ) < q}
for some pre-specific FDR control level q.
Theorem A.4 (Convergence of the estimated FDR). Using the data-dependent cutoff ∆∗, the actual FDR is
bounded by the user-specified level q; that is E

(
ê0(∆∗)

N+(∆∗)

)
< q as n → ∞.

Proof. The feature importance scores Īj evidently provide the information of the survival of the feature Xj

over the whole regularization path. Now, under the setup of the random-weighted group-lasso framework,
this is uniquely monitored by the KKT condition: ||α[:,j]|| = 0 if ||

(
∂fα(X)
∂α[:,j]

)T

pj×n
diag(W1,W2, . . . ,Wn)(Y −

fα(X))n×1|| < λ
√
pj , where pj is the number of total parameters associated with the j-th feature. Hence,

this L2 norm in the KKT condition can be treated as the importance score λ̂j , mentioned in Section 2.3.
Now, for the null features j ∈ Sc

0, the derivative term is o
(
n−1/4log(n)

)
by the continuity of ▽αfα(x) and

the convergence of α̂w
n to K. Also, by Lemma A.2, the residual term is o

(
n−1/2log(n)

)
. Also, the random

weights W ’s are bounded in [C2, C3]. Hence, this new λ̂j , j = 1, 2, . . . , p become exchangeable asymptotically.

As a consequence of the exchangeable variables, the ranks of the importance scores λ̂j follows uniform
distribution asymptotically. Hence, for large n, Iw

j =
∑

j′ ̸=j 1

(
λ̂j ≤ λ̂j′

)
∼ U(p−s+ 1, p). Now, we consider
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the following random variable names False Discovery Proportion (FDP) whose expectation is the FDR.

FDP =
∑p

j=1 1
(
Īj ≤ ∆∗, j ∈ Sc

0
)∑p

j=1 1
(
Īj ≤ ∆∗

)
=

2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}
∑p

j=1 1
(
Īj ≤ ∆∗

)︸ ︷︷ ︸
≤q

.

∑p
j=1 1

(
Īj ≤ ∆∗, j ∈ Sc

0
)

2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}
︸ ︷︷ ︸

R(∆∗)

The first part of FPR is ≤ q by the typical choice of ∆∗ and hence, in order to show the asymptotic FDR
control, all we need to show is limn→∞ E(R(∆∗)) ≤ 1.

E(R(∆∗)) = E

 ∑p
j=1 1

(
Īj ≤ ∆∗, j ∈ Sc

0
)

2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}


= E

 ∑p
j=1 1

(
Īj ≤ ∆∗, {Ib

j }B
b=1 ∼ Uniform

)
2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}


= E

∑p
j=1 1

(
Īj ≤ ∆∗, {Ib

j }B
b=1 ∼ Uniform, Ib

j ∈ N (Īj , κ),∀b
)

2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}
 +

E

∑p
j=1 1

(
Īj ≤ ∆∗, {Ib

j }B
b=1 ∼ Uniform, Ib

j ̸∈ N (Īj , κ),∀b
)

2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}


≤ E

2
∑p

j=1 1
(
Īj ≤ ∆∗, {Ib

j }B
b=1 ∼ Uniform, Ib

j ̸∈ N (Īj , κ),∀b
)

2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}


≤ E

 2
∑p

j=1 1
(
Īj ≤ ∆∗, Ib

j ̸∈ N (Īj , κ),∀b
)

2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}


≤ E

 2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}
2
B

∑B
b=1

{∑p
j∈1 1(Ib

j ≤ ∆∗, Ib
j ̸∈ N (Īj , κ))

}
 = 1

The third inequality is true by the fact that the neighborhood N (Īj , κ) is much smaller than its complement
region. The last inequality is true because of the fact that P (Z1 ≤ z, Z2 ≤ z, . . . , Zp ≤ z) ≤ 1

p

∑p
i=1 P (Zi ≤ z),

for any set of random variables Z1, Z2, . . . , Zp. Hence, the actual FDR is controlled at the user-specific bound
q by selecting the features with ranks of their importance score greater than the data-dependent threshold
∆∗.

Lemma 3: Sharp tail bound for weighted non-central χ2 distribution

Consider a weighted non-central χ2 distributed random variable Y =
∑k

i=1 uiZ
2
i , Zi ∼ N(µi, 1) independently

and
∑k

i=1 µ
2
i = λ. Then for the centralized random variable X = Y −

∑k
i=1 ui(1 + µ2

i ), the following sharp
tail bound holds: there exists constants c,c’,C>0, such that

P (X ≥ x) ≤ c exp(− ct2

2k + 2
∑k

i=1 uiµ2
i −

∑k
i=1 ui

),∀0 ≤ x ≤ c′(2k + 2
k∑

i=1
uiµ

2
i −

k∑
i=1

ui)
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Proof :

The moment-generating function of X:

ϕX(t) = exp
[ 2t2

1 − 2t

k∑
i=1

uiµ
2
i − k

2 (log(1 − 2t) + 2t) + t(k −
k∑

i=1
ui)

]
Note, for 0 ≤ t ≤ 1/2, 2t2 ≤ −log(1 − 2t) − 2t ≤ 2t2

1−2t .

This implies, for 0 ≤ t ≤ 2/5,

t2(2k + 2
k∑

i=1
uiµ

2
i −

k∑
i=1

ui) ≤ log(ϕX(t)) ≤ 5t2(2k + 2
k∑

i=1
uiµ

2
i −

k∑
i=1

ui)

Next, the exact tail bound can be obtained by applying theorem 1 from Zhang & Zhou (2020).

B Appendix 2. Additional Technical Details

In this section, additional technical and implementation details on the proposed algorithm SciDNet are
provided.

B.1 Hyperparameter Selection

Recently developed Deep Learning (DL) models are generally governed by several hyperparameters and
properly tuning them is necessary to get effective results. The proposed SciDNet relies on the following
hyperparameters: (1) size of the active set Ŝn, (2) the intracluster correlation bound r, (3) LassoNet tuning
parameters λ and M and (4) κ used in neighbourhood selection in cleaning step. SciDNet is fairly robust to
most of the associated hyperparameters. We discuss a practical way to tune all these hyperparameters here:

1. To choose the size of the active set, we propose to select a bigger active set with size proportional to
νn = [n/log(n)]. As we further cluster the active variables in the clustering step, a slightly bigger
active set with boost up the confidence of sure screening property, See the section E for an example.

2. After clustering, the intra-cluster correlation bound r should be fixed at some higher value (usually
at 0.9 or 0.95) otherwise the cluster sizes will be inflated.

3. In the cleaning step, a thorough grid search has been done over λ considering λ1 ≤ λ2 ≤ · · · ≤ λr; in
practice, a small value is fixed for λ1 where all the variables are present in the model. Then the value
of the tuning parameter gradually increased up to λr, where there are no variables present in the
model. The other hyperparameter for LassoNet is the hierarchy coefficient M for which we follow
the path considered in Lemhadri et al. (2021) and set M = 10. However, a more flexible approach
would be a parallel grid search for M as well.

4. The neighborhood length κ can be chosen using the phase transition in the ranks of the importance
scores, as described in Section 2.3.

B.2 Phase transition observed for the CCLE data

The main reason for the phase transition is that, for a null predictor Xj , j ∈ Sc
0, different bootstrap replicates

reshuffle its feature importance each time, whereas for a nonnull predictor Xj , j ∈ S0, the feature importance
is much stable in different bootstrap replicates. SciDNet effectively captures this characteristic to identify the
null features. As a demonstration, here we present in Figure 10, the bootstrap distribution of rank of the
importance scores for the top 25 important cluster representatives via box plots. The green and purple colors
respectively indicate if the cluster representatives are selected or rejected by the SciDNet. We can observe
the phase transition consistently for all five drugs, and SciDNet selects only those important representatives
with reduced variability over the bootstrap replicates.
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Figure 10: The phase transition property illustrated for the five anticancer drugs considered: (1) Topotecan,
(2) 17-AAG, (3) Irinotecan, (4) Paclitaxel, and (5) AWE541, respectively (from top left)
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Table S3: Empirical power and observed FDR of SciDNet with standard error in parentheses for gaussian
features

Nonlinear Additive Nonlinear with interaction Linear
ρ snr q 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15

ρ = 0.9

snr = 9 : 1 Power 0.79 (0.19) 0.93 (0.11) 0.96 (0.09) 0.96 (0.09) 0.99 (0.06) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.00) 0.00 (0.02) 0.01 (0.03) 0.02 (0.05) 0.00 (0.00) 0.02 (0.05) 0.03 (0.06) 0.04 (0.08) 0.00 (0.00) 0.01 (0.04) 0.01 (0.05) 0.01 (0.05)

snr = 8 : 2 Power 0.59 (0.20) 0.82 (0.15) 0.86 (0.14) 0.87 (0.13) 0.84 (0.24) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.03) 0.00 (0.03) 0.03 (0.07) 0.04 (0.08) 0.00 (0.00) 0.01 (0.03) 0.02 (0.06) 0.04 (0.07) 0.01 (0.05) 0.02 (0.06) 0.02 (0.06) 0.02 (0.06)

snr = 7 : 3 Power 0.42 (0.20) 0.65 (0.12) 0.77 (0.14) 0.81 (0.14) 0.72 (0.26) 0.94 (0.12) 0.95 (0.12) 0.96 (0.11) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.00) 0.00 (0.00) 0.00 (0.03) 0.01 (0.05) 0.01 (0.04) 0.03 (0.06) 0.03 (0.07) 0.05 (0.09) 0.00 (0.02) 0.02 (0.05) 0.02 (0.05) 0.02 (0.06)

ρ = 0.95

snr = 9 : 1 Power 0.83 (0.18) 0.96 (0.08) 0.98 (0.06) 0.98 (0.06) 0.99 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.03) 0.02 (0.05) 0.03 (0.07) 0.04 (0.07) 0.00 (0.00) 0.04 (0.07) 0.08 (0.09) 0.11 (0.10) 0.00 (0.02) 0.06 (0.09) 0.08 (0.10) 0.11 (0.12)

snr = 8 : 2 Power 0.60 (0.29) 0.82 (0.17) 0.87 (0.14) 0.89 (0.12) 0.98 (0.08) 0.99 (0.05) 0.99 (0.05) 0.99 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.03) 0.02 (0.05) 0.02 (0.06) 0.03 (0.07) 0.01 (0.04) 0.04 (0.07) 0.08 (0.12) 0.12 (0.12) 0.01 (0.03) 0.05 (0.09) 0.07 (0.10) 0.09 (0.11)

snr = 7 : 3 Power 0.32 (0.22) 0.61 (0.19) 0.79 (0.15) 0.82 (0.15) 0.80 (0.27) 0.96 (0.11) 0.98 (0.05) 0.98 (0.05) 0.93 (0.19) 0.96 (0.11) 0.97 (0.09) 0.97 (0.09)
FDR 0.00 (0.00) 0.01 (0.04) 0.01 (0.05) 0.03 (0.08) 0.00 (0.02) 0.04 (0.07) 0.07 (0.09) 0.12 (0.10) 0.00 (0.03) 0.04 (0.08) 0.06 (0.08) 0.07 (0.09)

C More Simulation Results

Here we demonstrate finite sample performance of SciDNet under various linear and nonlinear models with
varying multicollinearity level under different signal-to-noise-ratio.

C.1 Using Gaussian Features

For the high dimensional predictors, n i.i.d. copies are first generated from X ∼ Np(0,Σ), where n = 600,
p = 5000 and the covariance matric Σ is chosen as a toeplitz matrix with Σij = ρ|i−j|. The value of ρ is varied to
explore different correlation strength. We set the set of truely significant variables S = {100, 200, 300, 400, 500}
with s = 5. The response y is generated from y = g(x) + ϵ. Here we entertain the following three models:

1. Linear: g(x) = xSβS with βS generated from N(2, 0.1) independently and βSc = 0,

2. Nonlinear additive: g(x) = 2x100 + 2x3
200 + ex300 + 6 sin x400 + 2ReLu(x3

500), where
ReLu(x)=max(x,0)

3. Nonlinear with interaction: g(x) = 2x100 + 2x3
200 + ex300 + 6x400x500

In each cases, the random noise ϵ is independently generated from N(0, σ2), where the value of σ2 is chosen
maintaining the signal-to-noise ratio at the desired level. To this end, we define the signal-to-noise ratio
as snr = var(g(x))

σ2 . Here we consider three levels of snr = 9 : 1, 8 : 2 and 7 : 3. Table S3 shows that
SciDNet continues to maintain satisfactory power while successfully controlling the FDR below the threshold
q = 0.01, 0.05, 0.1, 0.15. The average cluster size is observed at 8.3 for ρ = 0.9 and 13.4 for ρ = 0.95.

C.2 Using Non-gaussian Features

To check SciDNet’s performance under non-gaussian setup, n iid copies of high-dimensional feature vector X
are generated from multivariate tp(5) distribution considering same correlation structure as in the previous
section C.1, with n=600, p=5000. The remaining simulation setting is consistent with the previous section
2.1. The performance of SciDNet is presented at table S4 which is quite analogous to the results of gaussian
features.

D Performance of existing feature selection methods in the presence of high
multicollinearity

In this section, we present a numerical illustration of the performance of several recently proposed nonlinear
FDR-controlled feature selection algorithms. The predictors are first generated from Xi ∼ Np(0,Σ), i =
1, 2, . . . , n, for multiple combination of (n, p) and the covariance matric Σ is chosen as a toeplitz matrix with
Σij = ρ|i−j|, ρ = 0.1, 0.5, and 0.9. Under simplistic setting, the response y is generated from y = xSβS + ϵ,
S = {5, 10, . . . , 50}, |S| = 10, with βS generated from N(β0, 0.1) independently and βSc = 0. The random noise
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Table S4: Empirical power and observed FDR of SciDNet with standard error in parentheses for non-gaussian
features

Nonlinear Additive Nonlinear with interaction Linear
ρ snr q 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15 0.01 0.05 0.1 0.15

ρ = 0.9

snr = 9 : 1 Power 0.68 (0.12) 0.96 (0.15) 1.00 (0.09) 1.00 (0.07) 0.92 (0.05) 0.95 (0.02) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.00) 0.00 (0.01) 0.04 (0.01) 0.07 (0.05) 0.00 (0.00) 0.01 (0.06) 0.04 (0.06) 0.06 (0.07) 0.00 (0.00) 0.01 (0.04) 0.01 (0.05) 0.01 (0.05)

snr = 8 : 2 Power 0.56 (0.24) 0.86 (0.11) 0.94 (0.14) 0.95 (0.13) 0.76 (0.23) .93 (0.02) 1.00 (0.04) 1.00 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.01) 0.00 (0.01) 0.06 (0.05) 0.09 (0.07) 0.00 (0.00) 0.00 (0.02) 0.04 (0.03) 0.07 (0.07) 0.01 (0.05) 0.02 (0.06) 0.02 (0.06) 0.02 (0.06)

snr = 7 : 3 Power 0.42 (0.21) 0.77 (0.13) 0.91 (0.16) 0.94 (0.12) 0.73 (0.26) 0.94 (0.12) 0.95 (0.15) 0.96 (0.14) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.00) 0.00 (0.01) 0.02 (0.03) 0.06 (0.04) 0.01 (0.05) 0.04 (0.06) 0.05 (0.07) 0.05 (0.09) 0.00 (0.02) 0.02 (0.05) 0.02 (0.05) 0.02 (0.06)

ρ = 0.95

snr = 9 : 1 Power 0.81 (0.19) 0.95 (0.07) 0.98 (0.06) 0.98 (0.07) 0.99 (0.04) 0.99 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.01) 0.03 (0.06) 0.03 (0.04) 0.05 (0.03) 0.00 (0.00) 0.04 (0.07) 0.08 (0.09) 0.09 (0.13) 0.00 (0.01) 0.03 (0.05) 0.07 (0.11) 0.10 (0.14)

snr = 8 : 2 Power 0.65 (0.29) 0.84 (0.16) 0.89 (0.17) 0.89 (0.12) 0.94 (0.07) 0.97 (0.04) 0.99 (0.07) 0.99 (0.07) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
FDR 0.00 (0.03) 0.01 (0.05) 0.04 (0.06) 0.05 (0.06) 0.01 (0.03) 0.04 (0.04) 0.07(0.14) 0.11 (0.11) 0.01 (0.02) 0.05 (0.09) 0.06 (0.14) 0.09 (0.11)

snr = 7 : 3 Power 0.47 (0.22) 0.64 (0.17) 0.75 (0.19) 0.87 (0.11) 0.82 (0.27) 0.95 (0.10) 0.98 (0.04) 0.98 (0.02) 0.95 (0.10) 0.96 (0.11) 0.97 (0.08) 0.97 (0.06)
FDR 0.00 (0.00) 0.02 (0.04) 0.02 (0.04) 0.04 (0.09) 0.00 (0.01) 0.04 (0.05) 0.09 (0.03) 0.13 (0.09) 0.00 (0.02) 0.04 (0.05) 0.05 (0.08) 0.08 (0.07)

Figure 11: Power and FDR comparison under varying correlation strength and different (n, p) ratio

ϵ ∼ N(0, 1). We focus on the Model-X knockoff (Candès et al., 2016), SurvNet (Song & Li, 2021), DeepPINK
(Lu et al., 2018). For a more rigorous analysis, we consider two different versions of Model-X knockoff - (1)
Model-X-Estimated, where the knockoffs are generated using an estimated multivariate gaussian distribution
and (2) Model-X-True, where the knockoffs are generated using the true data generating multivariate gaussian
distribution mentioned above. For the knockoff generation, we consider the equicorrelated construction using
the R package knockoff: The Knockoff Filter for Controlled Variable Selection. To implement the SurvNet
and DeepPINK, we use the codes mentioned in the respective papers Song & Li (2021); Lu et al. (2018). We
set q = 0.20 as the FDR control threshold.

Figure 11 reveals several interesting characteristics. Both Model-X-Estimated and Model-X-True maintain the
power-FDR balance under a low correlation setup. However with higher multicollinearity, Model-X-Estimated
fails to control the FDR below the specified threshold while the Model-X-True controls the FDR efficiently.
This disparity indicates Model-X procedure induces inflation in false discoveries if the knockoffs are not
generated properly under a ’difficult’ situation. As expected, the DL-based algorithms, such as SurvNet and
DeepPINK work much better in big-n-small-p and low correlation setups but typically fail in other cases,
indicating their reduced effectiveness in ultrahigh dimensional data with small sample sizes.
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Table S5: Drug-sensitive genes identified by SciDNet and confirming references
Drug Selected clusters of genes Confirming references
Topotecan {SLFN11},{TUFT1,THRB},{CDT1,SF3A2,SNRPA},{FTH1P10,FTH1},{RPL18},{KLF5}, Barretina et al. (2012)

{RPL11,RPL5P4,RPS8,RPL5,RPL10A,AL162151.3,RPS9,RPL3}, Li et al. (2012)
{KIF15,CCNA2,LMNB1,KIF22,AC009133.14},{MATN2,HSPB8},

17-AAG {NQO1,CTD.2033A16.1},{BAX},{SLC16A3},{PHPT1,SH3BP1} Hadley & Hendricks (2014)
{SPCS3,DCTD},{CTD.2008A1.2,SORD},{NSMCE4A},{CSK} Barretina et al. (2012)

Irinotecan {SLFN11},{KIF15,LMNB1,ARHGAP19},{TCEANC2},{KIF21B},{SQSTM1},{HDAC11} Barretina et al. (2012)
{KHDRBS1,HNRNPA1P35,HMGB2,HNRNPA1,HNRNPA1L2, Li et al. (2012)

HNRNPA1P48,HNRNPA1P7,AC021224.1,HNRNPA1P10,RBMX}
PaclitaXel {PARP1,BCL2L1},{MMP24},{DIMT1},{RP11.872D17.4,SSRP1,MTA2},{DCUN1D3} Dorman et al. (2016)

{RPL10AP6,RPL10A,EEF2,RPL3},{ARHGAP11B,ARHGAP11A,BUB1B,CASC5},{HCLS1,LCP1} Lee et al. (2016)
AEW541 {TCEAL4,MID2},{E2F6},{AC096772.6},{SLC44A1},{PGM1} Liang et al. (2018)

{ATP8B2,RNF122}, {RP11.1017G21.4},{ETNK2},{NHS},{ATG13}

E Model implementation details and Sensitivity Analysis

In this section, we mention the implementation details of SciDNet that we consider for the simulation study
and real data analysis. To select the size of the active set Ŝnin the screening step, in consistence with Xue &
Liang (2017), we set |Ŝn| = [ 2n

log(n) ] by selecting the predictors with the top |Ŝn| Henze–Zirkler test statistic
w̃∗

k , where [z] denotes the integer part of z. In all our simulation scenarios, we set r=0.9, the hyperparameter
for intra-cluster correlation bound to further integrate highly correlated conditionally dependent clusters. In
cleaning step, for LassoNet 100 dimensional one-hidden-layer feed-forward neural network has been used;
more detailed model architecture can be found at appendix in Lemhadri et al. (2021). For creating the
compact neighbourhood in the cleaning step, each time we choose the value of κ utilizing the phase transition
property mentioned in section 2.2 of main manuscript. The feature selection performance of the SciDNet
is demonstrated by calculating the average power and cFDR along with their standard error observed in
50 Monte Carlo replications. Each data set is randomly divided into train, validation and test with a
70-10-20 split. To asses the prediction performance, the test Mean Square Error (MSE) before and after the
variable selection has been shown as part of the simulation study. For the prediction model, a 40-dimensional
two-hidden-layer feed-forward neural network with ReLU and linear activation function is considered with
Adam as optimizer. For the regression tree, we used the bagging for further stabilization, as mentioned in
Breiman (1996). The number of leaves and nodes are chosen by minimising the MSE on validation set.

To access the error bar for the sensitivity analysis, we generate typical data using the polynomial setup
(section 3 in the main manuscript, with β = 2, σ2 = 1) and rerun SciDNet 50 times on the same data and set
q = 0.1 as FDR-control threshold. The mean and standard deviations from these 50 replications are following:
power = 0.99 (0.01), observed FDR = 0.03 (0.03), test error by LassoNet = 1.048 (0.101), test error
by SciDNet+RT = 0.710 (0.002).

F Important clusters of gene discovered by SciDNet

F.1 For CCLE dataset

Following Table S5 presents all the selected cluster of genes by SciDNet for the five anticancer drugs considered.
The genes in a single cluster are mentioned in the "{}". Previous research on this gene-expression data has
revealed several genes as biologically associated with the corresponding drugs. SciDNet successfully discovers
these genes as the top-most important gene associated with the drugs.In Table S5, the selected genes which
are confirmed by previous domain research, are highlighted and corresponding references are mentioned in
the column 3.

F.2 For Riboflavin dataset

The Riboflavin production dataset contains much complicated correlation structure than the CCLE data, see
Figure 1 in the main manuscript for a visual illustration. As a result, SciDNet has produced much larger
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Table S6: Selected clusters of genes by SciDNet applied in the riboflavin gene data example
Cluster No. Genes selected

1
EPR_at, IOLD_at, KAPB_at, PROJ_at, RPLQ_at, UREA_at,
YCGB_at, YCGM_at, YCGN_at, YCSN_at, YCGO_at, YCGT_at,
YDBM_at, YHXA_at, YKZC_at, YOAB_at, YPJB_at, YUSX_at, YVFH_at

2
COMX_at, CSPC_at, HAG_at, MPR_at, YBDL_at, YDBM_at,
YHCB_at, YJFB_at, YHFS_at, YOAB_at, YODF_at, YOAC_at,
YONU_at, YOTL_at, YQKI_at, YQZH_at, YTEI_at, YUSV_at

3

HIT_at, KATX_at, LICH_at, NASA_at, OPUCB_at,
PHRG_i_at, PHRK_at, ROCB_at, ROCR_at, SACB_at, SPOIIE_at,
TMRB_at, YACN_at, YBBJ_at, YBGB_at, YCBF_at, YFKJ_at,
YHCS_at, YHXA_at, YJBF_at, YLBA_at, YLOU_at, YPUI_at,
YQGY_i_at, YUKE_at, YVYD_at, YXLJ_at, YXZF_at

4

APPA_at, BGLS_at, ccpB_at, MMR_at, SIGY_at, SOJ_at,
TREA_at, YBGB_at, YDGF_at, YOPR_at, YQEB_at, YVCI_at,
YVDR_at, YWBG_at, YWDE_at, YWFM_at, YXBB_at, YXIL_at,
YXIO_at, YXIQ_at, YXJA_at, YXJN_at, YXLC_at, YXLD_at,
YXLE_at, YXLF_at, YXLG_at, YXLJ_at, YXZF_at, YYBF_at

5 LYTD_at, SQHC_at, XKDE_at, YFIG_at, YFIH_at, YFII_at,
YFNC_at, YHDV_at, YIST_at, YJGA_at, YTCP_at, YTMP_at

6
YCDH_at, YCDI_at, YCEA_at, YCIA_at, YCIB_at, YCIC_at,
YDAR_at, YHZA_at, YRPE_at, YTGA_at, YTGB_at, YTGC_at,
YTGD_at, YTIA_at, YVQH_at

7

OPUBD_at, PHRE_at, SIPS_at, YBFF_at, YDEM_at, YNAB_i_at,
YNAC_at, YNEK_at, YOBF_at, YOKG_at, YONX_at, YOPA_at,
YOPR_at, YOTL_at, YPBB_at, YQZH_at, YRDA_at, YRKK_at,
YRKL_at, YTGB_at, YUXI_at, YWCE_at, YWQK_at, YYDB_at, YYDF_i_at

8 ARGB_at, ARGC_at, ARGD_at, ARGJ_at, CARA_at, CARB_at
9 PROJ_at, RPLF_at, RPLJ_at, RPLL_at, RPSN_at, RPSP_at, YLQC_at

cluster of genes compared to the cluster sizes from the CCLE dataset. For example, the average cluster size
for CCLR and Riboflavin dataset is respectively 2.5 and 17.78. Following Table S6 shows the 9 selected cluster
of genes selected by SciDNet while the FDR is controlled at q = 0.15. Additionally, SciDNet discovered
the gene YCIC_at as one of the expressive genes related to riboflavin production which was identified by
Bühlmann et al. (2014) as a causal gene in this context.
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