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Abstract

Existing incentive solutions for traditional Federated Learning (FL) only consider1

individual clients’ contributions to a single global model. They are unsuitable for2

clustered personalization, where multiple cluster-level models can exist. Moreover,3

they focus solely on providing monetary incentives and fail to address the need4

for personalized FL, overlooking the importance of enhancing the personalized5

model’s appeal to individual clients as a motivating factor for consistent partici-6

pation. In this paper, we first propose to treat incentivization and personalization7

as interrelated challenges and solve them with an incentive mechanism that fos-8

ters personalized learning. Second, unlike existing approaches that rely on the9

aggregator to perform client clustering, we propose to involve clients by allowing10

them to provide incentive-driven preferences for joining clusters based on their11

data distributions. Our approach enhances the personalized and cluster-level model12

appeal for self-aware clients with high-quality data leading to their active and con-13

sistent participation. Through evaluation, we show that we achieve an 8–45% test14

accuracy improvement of the cluster models, 3–38% improvement in personalized15

model appeal, and 31–100% increase in the participation rate, compared to a wide16

range of FL modeling approaches, including those that tackle data heterogeneity17

and learn personalized models.18

1 Introduction19

Training high-quality models using traditional distributed machine learning requires massive data20

transfer from the data sources to a central location, which raises various communication, computation,21

and privacy challenges. In response, Federated Learning (FL) [1–4] has emerged as a solution22

to train models at the source, reducing privacy issues and addressing the need for high-quality23

models. However, the success of FL relies on resolving various new challenges related to statistical24

heterogeneity [5–10], scheduling [11–13], and incentive distribution [14–18]. Recent works have25

focused on training personalized models [9, 19–22] to overcome data heterogeneity challenges.26

Among personalized Federated Learning (pFL) techniques, similarity-based approaches that use27

clustering of clients at the aggregator have gained popularity [23–27]. These personalization solutions28

fulfill the primary goal of overcoming data heterogeneity for specific cases. However, existing pFL29

solutions do not include any incentive mechanism, which is crucial in FL to motivate participants30

to contribute their data and computation resources. Existing incentive mechanisms [14, 16, 28] for31

traditional FL cannot be applied to pFL techniques because they only consider the performance32

contribution of clients towards training a single objective. In contrast, clients in pFL can be con-33

tributing towards multiple objectives simultaneously [7, 8, 24, 25, 29, 30]. Furthermore, traditional34

incentive solutions only provide monetary benefits and do not consider increasing personalized35

models’ appeal as an incentive for encouraging active and reliable participation of clients. Without36
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incentives, participants may provide low-quality data [14, 16, 18] or opt-out from participation1 [31],37

leading to poorly performing pFL models [10,32,33], as shown with empirical evaluations in the later38

section. Collaboration fairness [34, 35] can also be ensured by appropriately rewarding contributions39

and accounting for data heterogeneity [18, 36].40

In addition, since existing pFL techniques assume voluntary and consistent participation from clients,41

the aggregator controls the client selection and training with limited knowledge of clients’ training42

capacity, availability, frequency of new incoming data, clustering preferences, and performance43

requirements from the trained personalized models. These factors can directly influence the motivation44

of self-conscious clients to participate consistently. Our evaluation shows that this causes frequent45

opt-outs from uninterested clients due to uninformed clustering decisions by the server and low46

personalized model appeal (PMA)2, which leads to reduced pFL performance. We also show that47

solving personalization and incentivization as interrelated challenges yield better outcomes for pFL48

than solving them as separate problems. However, this requires new paradigms for clustered pFL49

using data distribution information available to clients via their preferences and designing incentive50

mechanisms for increasing pFL appeal to reduce client opt-outs.51

In this paper, we propose PI-FL that combines clustering-based pFL with token-based incentivization.52

Unlike previous works that control clustering from the server side, PI-FL allows clients to estimate53

the importance of each cluster and send their preferences for joining them to the aggregator as bids.54

To identify a cluster’s importance to a client we use the importance weight of the cluster model55

as defined by FedSoft [25]. Clients also use the importance weights to perform weighted local56

aggregation for single-shot personalization. This client-driven clustering approach results in accurate57

clustering because clients can attain a global perspective from their own local dataset which is only58

accessible to them and the importance weights information of each cluster. This allows them to make59

informed decisions that the server cannot make, resulting in improved PMA and reduced opt-outs. To60

incentivize clients for consistent participation, PI-FL motivates clients to join clusters with the clients61

that are most similar to them, maximizing their contribution to the cluster and, in turn, their rewards.62

Good quality cluster-level models then produce more appealing personalized models for each client.63

The incentive mechanism treats clients as both providers and consumers. As a consumer, the client64

tries to attain a certain level of personalized model appeal, so it pays the provider to spend resources65

to participate in training for the said model in each round. Whereas as a provider, the client earns66

a profit based on its marginal contribution to training the cluster models. The marginal contribution67

is calculated with a Shapley Value approximation due to the large computational overhead of the68

original algorithm [38–41].69

Contributions. Existing pFL solutions fail to include PMA as an incentive to maintain consistent70

participation, resulting in increased opt-outs. To address this issue, we propose PI-FL as the first71

contribution, which provides contribution-based incentives to achieve collaborative fairness and72

maintain the cluster-level and personalized models’ appeal for clients to prevent opt-outs. Additionally,73

PI-FL has the added advantage of creating personalized models for unseen clients with unknown74

data distributions that perform similarly to seen clients without the need for training. Secondly, we75

provide theoretical analysis and empirical verification of the benefits of including incentives with76

personalization. Lastly, we empirically evaluate the performance of PI-FL and other pFL models.77

2 Related work78

Cluster-based pFL: Among the cluster-based pFL works most related to PI-FL are FedSoft [25],79

FedGroup [24], and [29]. FedSoft utilizes soft clustering on the basis of matching data distributions80

in clients with cluster models while FedGroup quantifies the similarities between clients’ gradients by81

calculating the Euclidean distance of decomposed cosine similarity metric and [29] finds the optimal82

personalization-generalization trade-off from the cluster model by solving a bi-level optimization83

problem. This work incurs clustering overhead at each iteration and does not consider the overlap of84

distribution between clients wherein each client is restricted to one cluster for each training round.85

Other cluster-based pFL models include IFCA [42] which proposes a framework for loss-based86

clustering of clients and [23] which proposes three approaches for personalization using clustering,87

data interpolation, and model interpolation.88

Other pFL models: Some pFL models propose meta-learning techniques that provide methods for89

rapid training of a personalized model. These include fine-tuning methods such as Per-FedAvg [43]90

1By “opt-out” we mean the clients voluntarily leave FL due to the lack of incentivization.
2Akin to global model appeal [37], we propose a new metric to measure the personalized model appeal.
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and regularization of local models [44, 45]. Others works [8, 46] including FedALA [6], Ditto [30]91

and pFedMe [47] propose multi-task learning and model-interpolation [48] pFL models. FedFomo [7]92

suggests an adaptive local aggregation approach for personalization. FedProx [5] proposes a proximal93

term to improve the stability of FL. As per our knowledge, all of these pFL works lack qualities for94

attracting or sustaining long-term participation from self-conscious clients leading to an increase95

in opt-outs and low PMA. Moreover, most of these works require either require further training or96

re-clustering to adapt the personalized models for new incoming clients.97

Incentivized FL: FAIR [14] integrates a quality-aware incentive mechanism with model aggregation98

to improve global model quality and encourage the participation of high-quality learning clients.99

FedFAIM [18] proposes a fairness-based incentive mechanism to prevent free-riding and reward100

fairness with Shapley value-based client contribution calculation. [31] proposes an approach based101

on reputation and reverse auction theory which selects and rewards participants by combining the102

reputation and bids of the participants under a limited budget. [16] proposes an approach where103

clients decide whether to participate based on their own utilities (reward minus cost) modeled as a104

minority game with incomplete information. Other incentivized FL works include [15, 17, 34, 49, 50].105

All of these works propose standalone solutions to attract clients, however, none of them fulfill the106

design requirements to be used with any pFL models.107

Why existing incentive mechanisms cannot be applied directly to pFL frameworks?108

Existing FL incentivization schemes designed for motivating clients to contribute to a single global109

goal [14,16,18,31] may not be applicable to pFL frameworks due to the multi-dimensional goals and110

objectives involved. In pFL frameworks, multiple objectives must be optimized simultaneously, such111

as cluster and personalized models per client in cluster-based pFL [24, 25, 29] or global and local112

models per client in multi-task learning [20, 30, 45, 47]. To encourage clients to contribute towards113

the multiple objectives in pFL frameworks, new incentive mechanisms need to be developed that are114

specifically tailored to their multi-objective nature. PI-FL uses clustering for pFL wherein the clusters115

memberships are changed after every R training rounds. PI-FL is different from these as it forms116

clear boundaries between multiple cluster models and improves shared learning between cluster117

similarities through multiple participation at the client level. PI-FL incorporates maintaining PMA118

for consistent client participation with an incentive mechanism that directly motivates personalized119

training on the basis of Individual Rationality (IR) constraint of game theory [14, 51].120

3 Proposed Methodology121
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Figure 1: PI-FL design

In this section, we introduce PI-FL, which has three main modules:122

the profiler, the token manager, and the scheduler as shown by123

the architecture diagram in Figure 1. The profiler calculates and124

maintains the history of client contributions using Shapley Values125

approximation (lines 24-27) of Algorithm 1. The profiler also aids126

the scheduler in forming clusters using two different modes further127

explained in section 3.1. The token manager orchestrates transactions, holds auctions, deducts128

payments, and distributes rewards as given in lines (13 and 14). The scheduler selects clients based129

on bids and contributions, grouping them for improved homogeneity shown in lines (20 and 27-29).130

Individual clients calculate the importance weights of each aggregated cluster model and send their131

preference bids to the Token Manager for joining clusters as shown in lines (23-28) in Algorithm 2.132

Clients also generate a single-shot personalized model, shown in line 29. We assume that each client133

will look to maximize their profits according to the principle of Individual Rationality (IR) [10, 52]134

and this will lead them to choose clusters in which they can contribute the most for maximum reward.135

3.1 Profiler136

At the start of pFL training, the scheduler module forms the initial clusters by randomly assigning137

clients. Then for each round, clients train the cluster-level model on their local data and calculate138

the importance weight of each aggregated cluster model Mk on their local dataset via Equation 1.139

Here υck is the normalized sum of correctly predicted data points nck on local dataset Dc of client c.140

The importance weights are used to generate a single-shot personalized model through the weighted141

aggregation of cluster-level models using Equation 2.142

υck = nck/nk ∈ [0, 1] | k ∈ [K] (1)
143
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Algorithm 1 PI-FL (Server)
Input: R: Rounds, Pr: Pre-training rounds, K: Number of clusters, Mk: Cluster-level model of

cluster k ∈ K,MG: Global model at aggregator,N : Number of clients, C: Number of classes
in dataset, ζa: Available Clients, Np: Number of clients to select on basis of performance,
Nr: Number of clients to select randomly for each cluster, ζk: Clients selected for training in
cluster k ∈ K, FedAvg: [2], F1-Scores: [53], sort(): Python 3.7 Timsort implementation [54]

1 for each round r ∈ R do
2 ζk = SelectClients(r) for each cluster k ∈ K
3 for cluster k ∈ K do
4 Server sends cluster-level model Mk for training to clients in ζk
5 Token Manager collects bid payments from all willing clients via Eqn. 4
6 Token manager updates available tokens for round r via Eqn. 5
7 Uk ← model updates received from clients in ζk
8 Mk = FedAvg(Uk)

9 Function SelectClients(r)
10 if r = 0 then
11 for k = 1 to K do
12 ζ∗k ← Scheduler randomly assigns clients from ζa.
13 return ζ∗k
14 else if r > 1 then
15 for i = 1 to N do
16 θi ← ClientPreferences(M1, ...,Mk) | ∀k ∈ [K] // from Algorithm 2
17 Server calculates marginal contributions ψki of each client within its cluster with Shapley

Values approximation in Algorithm 3 | ∀k ∈ [K],∀i ∈ [N ]
18 //Profiler sorts clients on the basis of their marginal contributions and preference bids
19 Sc = sort(θi, ψki)
20 for k = 1 to K do
21 ζ∗k ← Np clients selected from Sc and Nr clients randomly from ζa by Scheduler.

22 return ζ∗k

Pck =

K∑
k=1

υck × (ωk) (2)

Here the Pck is the personalized model of client c in cluster k and ωk is the weight vector of k cluster144

model. Using this, clients generate single-shot personalized models offline according to their dynamic145

data needs. The client-centric clustering and participation method enhances the appeal of pFL for146

clients and in doing so also provides them the opportunity to customize their personalized model147

offline in case their requirements which are unknown to the server change during training. Clients can148

also make informed decisions on participating in training clusters based on their budget and past re-149

wards, using importance weights and knowledge of previous rounds. They convey their preferences to150

the aggregator by submitting bids for the cluster they wish to participate in for the next training round.151

The profiler calculates the marginal contributions of each client after every round using Shapley152

Values approximation (Algorithm 3), aiding scheduling by providing data quality information to153

the scheduler. The Shapley Value approximation derivation from Appendix is used to avoid the154

computational expense of calculating Shapley Values for multiple clients. PI-FL also includes a mode155

to facilitate clients to form well-defined initial clusters. So the clients can avoid the decision-making156

process in the beginning and streamline their spending when the client contributions and cluster157

distributions are unclear. For this, the profiler and the scheduler module facilitate forming the initial158

clusters by training for some pre-training rounds. This is done as client contributions and similarity159

metrics that the clients use among other metrics to make decisions about joining clusters are initially160

unknown. After pre-training, the profiler calculates per-class F1-Scores ξ of all client local models161

on an IID test dataset [53]. Then the profiler with the help of scheduler clusters clients for the next162

training round using the K-Means clustering [55] algorithm with the most varying F1-scores VF1163

from C total classes. Equation 3 shows the calculation of VF1 where C is the number of total classes164

and N is the number of all available clients.165

VF1 = var(ξi) ∈ [1, C] | ∀i ∈ N (3)
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We perform all our evaluations for PI-FL without this feature, but this is an added feature that PI-FL in-166

cludes for faster convergence and to save clients’ costs. We also realize the constraints in choosing all167

the clients for training, which is why clients that reply within threshold time in pre-training rounds are168

used to calculate F1 scores. The remaining clients are considered unexplored and assigned to clusters169

randomly, they can later settle into appropriate clusters through preference and contribution selection.170

Algorithm 2 PI-FL (Client)
Input: Th: Importance weight threshold, K: Number of clusters, Mk: Cluster-level model of cluster

k ∈ K, D: Local dataset of client,

23 Function ClientPreferences(M1, ...,Mk)
24 for each cluster k ∈ K do
25 for each data point d ∈ D do
26 The client computes υk importance weight of Mk model for each data point d via Eqn. 1
27 if υk > Th then
28 Client adds cluster k to client’s preference bids list θ∗i

29 The client generates personalized model Pck via Eqn. 2
30 return θ∗i

3.2 Token Manager171

The token manager acts as a bank to orchestrate and keep track of transactions between different172

clients. At the start of each training round the token manager holds an auction for each cluster, and173

the clients that want to participate in that cluster place their bids using tokens. The token manager174

forwards the list of willing clients to the scheduler to select clients for training. It also deducts175

payments from the willing clients/consumers via Equation 4. Here τi is the tokens owned by client i,176

ζk are the clients willing to join cluster k, and τp in this and all following Equations is the per round177

bid amount to be paid by each client for participation.178

τi = τi − τp | i ∈ ζ∗k (4)

The tokens collected as payments from clients/consumers are then added to the available pool of tokens179

at the Token Manager as shown in Equation 5. Here τar are the total available pool of tokens at the180

Token Manager. The term Np is the number of clients selected on basis of performance and Nr is the181

number of clients selected randomly. The significance of using Np and Nr is explained in section 3.3.182

τar = τar + (Np+Nr)× τp | r ∈ [1, R] (5)

The token manager handles the distribution of reimbursement and rewards to each provider/client.183

Reimbursement penalizes degradation in the performance of providers and depends on the utility184

function. The utility is calculated as the percentage of average accuracy improvement of the cluster185

model Mk over the maximum achieved accuracy in past rounds on the local data of clients in cluster186

k. The utility function is given in Equation 6 and reimbursement calculation is given in Equation187

7, both metrics are calculated at the profiler which assists the token manager in reimbursement.188

θ =
η × (γ −min(γ,max(0.0, (Acckr−Acckmax)

Acckmax
)))

γ
| η ∈ [0, 1], γ ∈ [0, 1] (6)

189
τi = τi − τar × θ | θ ∈ [0, γ],∀i ∈ [N ],∀r ∈ [1, R] (7)

In Equation 6, Acckr is the cluster-level model accuracy in the current round r and Acckmax is the190

maximum cluster-level model accuracy achieved until the current round r. The term η represents the191

maximum portion of tokens that can be returned and γ represents the maximum accuracy improvement192

that leads to the use of one full token. In Equation 7, τar are the total number of tokens collected193

from consumers/clients for r training round. We have used a similar approach to [28], however, they194

use the accuracy of the FedAvg model on an IID dataset. It is not practical to assume the presence of195

an IID dataset that can correspond to the data distribution of clients within a cluster which is why we196

rely on the local dataset of clients within that cluster to gather this information.197

τi = τi + sort(ψki,Ωki)×
τar

Nr × (Nr+1)
2

| ∀k ∈ [K],∀i ∈ [N ],∀r ∈ [R] (8)
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After reimbursement, the token manager uses the marginal contributions calculated by the profiler198

and sorts providers/clients by their contributions and participation record in Equation 8. Here ψki199

represents the marginal contributions and Ωki represents the participation records of all clients N200

in K clusters. The term β is a normalizing term from Equation 8 in which Nr are the number of201

providers selected for participation in round r. Using the ranks α of providers from sorting and202

the normalization term β, the remaining available tokens are distributed between these providers203

in Equation 8. Here τi represents the tokens owned by provider/client i and τar are the tokens204

available for incentive distribution at the token manager. Through reimbursements to consumers and205

payments to providers, the Token Manager ensures that each client receives an incentive according206

to their contributions in training the pFL models. By doing so, PI-FL incentivizes improvement in207

personalized learning, resulting in an enhancement of PMA and a decrease in opt-outs.208

3.3 Scheduler209

The scheduler selects clients for each round r by the SelectClients(r) function given in Algorithm210

1. The scheduler receives the preference bids θi from the token manager, the marginal contributions211

ψki from the profiler for each client i ∈ N in cluster k ∈ K, where N is the total number of clients212

and K are the total number of clusters. Using this information scheduler groups clients with similar213

preference bids and then sorts those clients by their marginal contributions. Then the scheduler214

selects Np number of clients from the sorted clients and Nr number of clients randomly. Both Np215

and Nr are tunable parameters. To reduce bias, a small portion of clients Nr are selected randomly216

which is a technique adopted from previous works [2, 28, 56, 57]. By grouping clients with similar217

preferences the scheduler reduces the within-cluster bias improving the within-cluster homogeneity218

and a cluster model is produced that accurately represents the clients within it. Section 4 gives a219

theoretical analysis of how this is an important factor in improving the PMA.220

4 Theoretical Analysis221

We study the following particular case to develop insights. Suppose there are m clients in total,222

each observing a set of independent Gaussian observations zi,j ∼ N (µi, σ
2), j = 1, . . . , ni, with a223

personalized task of estimating its unknown mean µ ∈ R. The quality of the learning result, denoted224

by µ̂, will be assessed by the mean squared error Ei(µ̂− µ)2, where the expectation Ei is taken with225

respect to the distribution of client i.226

It is conceivable that if clients’ underlying parameters µi’s are arbitrarily given, personalized FL227

may not boost the local learning result. To highlight the potential benefit of cluster-based modeling,228

we suppose that the m clients can be partitioned into two subsets: one with m1 clients, say T1 =229

{1, . . . ,m1}, and the other withm2 clients, say T2 = {m1+1, . . . ,m}, whose underlying parameters230

are randomly generated in the following way:231

µi ∼ N (β1, τ
2) | i ∈ T1, µi ∼ N (β2, τ

2) | i ∈ T2. (9)
Here, β1 and β2 can be treated as the root cause of two underlying clusters. We will study how232

the values of sample size ni, data variation σ, within-cluster similarity as quantified by τ , and233

cross-cluster similarity as quantified by |β1 − β2| will influence the gain of a client in personalized234

learning. To simplify the discussion, we will assess the learning quality (based on the mean squared235

error) of any particular client i in the following three procedures:236

Local training: Client i only performs local learning by minimizing the local loss Li(µ) =237 ∑ni

j=1(µ− zi,j)2, and obtains µ̂i = n−1
i

∑ni

j=1 zi,j . Thus, the corresponding error is238

e(µ̂i) = Ei(µ̂i − µ1)
2 =

σ2

ni
. (10)

Federated training: Suppose the FL converges to the global minimum of the loss,239 ∑m
i=1

ni

n Li(µ), n
∆
=

∑m
i=1 ni, which can be calculated to be µ̂FL =

∑m
i=1

ni

n µ̂i. Consider240

any particular client i. Without loss of generality, suppose it belongs to cluster 1, namely i ∈ T1.241

From the client i’s angle, conditional on its local µi and assuming a flat prior on β1 and β2, client j’s242

µj follows µj | µi ∼ N (µ1, 2τ
2) for j ∈ T1 and j ̸= i, and µj | µi ∼ N (µ1 + β2 − β1, 2τ2) for243

j ∈ T2. Then, the corresponding error is244

e(µ̂FL) = Ei(µ̂FL − µ1)
2

=

{∑
j∈T2

nj
n
(β2 − β1)

}2

+
∑

j=1,...,m,j ̸=i

(
nj
n

)2(
σ2

nj
+ 2τ2

)
+

(
ni
n

)2
σ2

ni
. (11)
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It can be seen that compared with (10), the above FL error can be non-vanishing if
∑

j∈T2

nj

n (β2−β1)245

is away from zero, even if sample sizes go to infinity. In other words, in the presence of a significant dif-246

ference between the two clusters, the FL may not bring additional gain compared with local learning.247

Cluster-based personalized FL: Suppose our algorithm allows both clusters to be correctly identified248

upon convergence. Consider any particular client i. Suppose it belongs to Cluster 1 and will use a249

weighted average of Cluster-specific models. Specifically, the Cluster 1 model will be the minimum250

of the loss
∑

j∈T1

nj

nT1
Lj(µ), nT1

∆
=

∑
j∈T1

nj , which can be calculated to be µ̂T1 =
∑

j∈T1

nj

nT1
µ̂i.251

By a similar argument as in the derivation of (11), we can calculate252

e(µ̂T1) =
∑

j∈T1,j ̸=i

(
nj
nT1

)2(
σ2

nj
+ 2τ2

)
+

(
ni
nT1

)2
σ2

ni
. (12)

The above value can be smaller than that in (10). To see this, let us suppose the sample sizes ni’s are253

all equal to, say n0, for simplicity. Then, we have254

e(µ̂T1) =
m1 − 1

m2
1

(
σ2

n0
+ 2τ2

)
+

1

m2

σ2

n0
=
m1 − 1

m2
1

(
σ2

n0
+ 2τ2

)
+

1

m2
1

σ2

n0

=
1

m1

σ2

n0
+
m1 − 1

m2
1

2τ2,

which is smaller than (10) if and only if255

τ2 <
m1σ

2

2n0
. (13)

We derive the following intuitions from this analysis: R1. If the within-cluster bias is relatively small,256

the number of cluster-specific clients is large, and data noise is large, a client will have personalized257

gain from collaborating with others in the same cluster. R2. PI-FL’s incentive algorithm rewards258

accuracy improvement reflected in PMA, which directly correlates with reducing within-cluster bias259

as per Equation 13. R3. By association, the incentive algorithm motivates clients to join similar260

clusters which increases cluster homogeneity and reduces the within-cluster bias. We show the impact261

of change in performance with an ablation study of PI-FL incentive in section 5.5.262

5 Experimental Study263

5.1 Experimental Setup264

We use NVIDIA GeForce RTX 3070 GPUs for all our experiments. To evaluate the performance of265

PI-FL with other pFL models we use four datasets. A simple CNN model (32x64x64 convolutional266

and 3136x128 linear layer parameters) is used that can be trained on client devices with limited267

system resources to map Cross-Device FL settings [10] for all pFL methods.268

CIFAR10 Data. For comparison with FedSoft [25] we use the same CIFAR10 dataset provided in269

their repository. This image dataset has images of dimension 32 × 32 × 3 and 10 output classes. We270

copy different data heterogeneity conditions from [25], namely 10:90, 30:70, linear, and random. The271

data classes are divided into two clustersDA andDB . In the 10:90 partition, 50 clients have 90% train-272

ing data from DA and 10% from DB , while the other 50 have 10% training data from DA and 90%273

from DB . The 30:70 partition is similar to 10:90 except that the distribution ratios are 30% and 70%.274

EMNIST Data. This image dataset has images of dimension 28 x 28 and 52 output classes where275

26 classes are lower case letters and 26 classes are upper case letters. Same as CIFAR10 data, we use276

the 10:90 and 30:70 data partitions and also include linear, and random partitions. In linear partition,277

client k has (0.5 + k)% training and testing data from DA and (99.5− k)% training data and testing278

data from DB . In the random partition, client k is assigned a mixture vector generated randomly by279

dividing the [0, 1] range into S segments with S − 1 points drawn from Uniform(0, 1). The training280

and testing data are then assigned based on this vector from DA and DB . Similar to [6, 30, 37], we281

also divide the EMNIST dataset into K clusters, where K = Ct

Cp
, Ct are total classes and Cp are the282

classes owned per party with no overlap of data between clusters.283

Synthetic CIFAR10. This is a synthetic dataset created from the CIFAR10 dataset and contains284

the same hetrogenous partitions of 10:90, 30:70, linear, and random. The only difference is that285
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the training and testing data distributions are different to simulate dynamic data at the clients. For286

example, in 10:90 50 clients have 90% training data with 10% testing data fromDA and 10% training287

data with 90% testing data from DB and vice versa. Similar to this, all the other partitions also288

have inverse training and testing data distributions. The reason for separate training and testing data289

distributions are explained in further depth in Appendix.290

5.2 Focus of Experimental Study291

First, we compare the clustering ability of PI-FL with a recent clustering-based pFL algorithm [25].292

Second, we show how PI-FL compares with other non-clustering pFL models with a simple test293

accuracy comparison. Taking it one step further, we provide a comparison of PI-FL and other294

clustering and non-clustering pFL models in terms of reduction in opt-outs and PMA maintenance295

in section 5.3. Lastly, in section 5.5 we show that including client preferences while clustering yields296

better personalization results because clients can make decisions based on knowledge restricted to297

the aggregator server.298

Table 1: Test accuracy on CIFAR10
PI-FL FedSoft

10:90 30:70 10:90 30:70

c0 c1 c0 c1 c0 c1 c0 c1

θ0 63.7 41.3 58.0 57.7 48.9 49.5 48.0 48.4
θ1 43.7 63.8 58.6 58.8 50.7 49.6 50.0 50.0

Table 2: Test Accuracy of pFL methods on EMNIST
Partitions Ditto FedProx FedALA PerfFedAvg FedProto PI-FL

10:90 85.78±4.84 75.15±4.81 75.54±4.65 87.5±3.79 71.95±1.39 87.5±3.66
30:70 75.96±4.54 79.74±4.01 78.42±3.21 76.63±3.94 59.7±4.71 85.07±3.36
Linear 75.3±5.08 82.84±2.7 82.04±3.61 80.82±3.53 62.63±4.93 83.4±4.85
Random 77.82±6.79 80.93±4.42 78.98±5.07 83.31±5.19 68.43±5.65 86.21±4.34

5.3 Test Accuracy performance study.299

Effectiveness of clustering. We evaluate the performance of cluster-level models using holdout300

datasets sampled from the corresponding cluster distributions (DA and DB). To demonstrate the301

effectiveness of our proposed PI-FL method, we compare it with a recent cluster-based pFL algorithm302

called FedSoft using CIFAR10 data. We use the same parameters as in [25], with N = 100 clients,303

batch size 128, and learning rate η = 0.01, and perform training for 300 rounds. Table 1 presents the304

test accuracy for the 10:90 and 30:70 partitions with PI-FL. We observe that PI-FL performs better305

for the 10:90 partition, where each cluster dominates one of the distributions. With PI-FL, clients that306

have a greater portion of data from θ0 prefer to train in cluster c0, achieving 63.68% accuracy, while307

clients with a greater portion of data from θ1 prefer to train in cluster c1, achieving 63.82% accuracy.308

FedSoft cluster-level models, on the other hand, achieve 50.7% and 49.6% for 10:90 data. It is worth309

noting that FedSoft is unable to cater to different partitions of data through its clustering mechanism,310

and the performance is adversely impacted by increased heterogeneity. Moreover, cluster-level311

models in FedSoft are unable to dominate a single distribution of data. As expected, the performance312

for the 30:70 partition is not as good as it is a less heterogeneous partition than the 10:90 partition.313

Neither cluster dominates a single distribution, and the clients with different distributions are not314

clearly differentiated for training with different clusters. Additionally, the cluster-level models c0 and315

c1 have similar performance with either distribution (θ0 and θ1), as FedSoft promotes personalizing316

models when clients have a greater percentage of shared data. This generates cluster-level models317

that cannot represent a single distribution and do not perform as well as PI-FL with non-IID data.318

Comparison with non-clustering pFL models. Table 2 shows a test accuracy comparison of PI-FL319

with other recent pFL algorithms. This table shows that some pFL models are able to perform well320

for individual partitions such as Ditto for 10:90, FedProx and FedALA for Linear, and PerFedAvg for321

Random, however, PI-FL is able to maintain its performance for all partitions.322

5.4 Effectiveness of PI-FL in opt-outs reduction and PMA maintenance.323

Each client’s natural aim is to create a model that maximizes its test accuracy. Clients can have324

different thresholds of how much should be the least accuracy gain for it to participate in pFL, and325

we define this self-defined threshold as ρi, i ∈ [N ]. Since each client can have its own definition of326

the threshold requirement, we define ρi as the test accuracy achieved by client i if it used FedAvg. So327

PMAi shows the gain in performance from pFL compared to vanilla FL using FedAvg for client i in328

N . PMA is similar to GMA from [37], however, creating a single global model may not be appealing329

for all clients as we show in section 4 and verify in section 5.4. We formally define PMA and opt-outs330

in Equation 14 and 15 respectively, where fi(wk) is the test accuracy achieved by pFL.331

PMAi = fi(wk)− ρi | i ∈ [N ], k ∈ [K] (14)

332
opt-outs =

1

N

N∑
i=1

fi(wk) < ρi | i ∈ [N ], k ∈ [K] (15)
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Figure 2: CDF of clients’ PMA for different datasets and methods

333 Figure 2 shows the empirical Cumulative Distribution Function (CDF) plot of PMA for all clients with334

CIFAR10 data using FedSoft and PIFL and with EMNIST dataset for all other pFL models. PI-FL335

particularly outperforms for the 10:90 partition in terms of PMA as this is the most heterogeneous336

data partition as can be seen in Figure 2a. The EMNIST dataset is less heterogeneous as it has more337

classes per client compared to CIFAR10 which is why FedAvg is able to perform relatively well and338

there is less room for improvement with personalizing. PI-FL maintains the PMA and also improves339

it, particularly for the 10:90 and 30:70 partitions where other pFL solutions lack. We also test on a340

more heterogenous case where the dataset is divided into 52 clusters and each client owns 4 maximum341

classes. Figure 2g shows that while other pFL solutions perform better than FedAvg only Ditto and342

FedProto come relatively close to PI-FL, however, PI-FL outperforms them both by approximately343

15% in terms of PMA. The FedProx, FedALA, and PerFedAvg opt-out ratios are 0.64, 0.31, and 0.68,344

respectively. Ditto, FedFomo, and PI-FL have no opt-outs. This goes to show that PI-FL is not only345

able to reduce the opt-outs but also improves the PMA under all data heterogeneity conditions.346

5.5 Advantages of including client preferences in pFL.347
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Figure 3: PI-FL and FedSoft
with Synthetic CIFAR10 data

We show that PI-FL can maintain the test accuracy of personalized348

models even in case of dynamic data at the client or a new unseen349

client accidentally being added to the wrong cluster. Figure 3 shows350

the CDF of clients’ personalized model test accuracy after training351

for 500 rounds. PI-FL is robust to variations in clients’ local data,352

while FedSoft is less effective due to its clustering approach being353

based on the server’s perspective, which lacks access to clients’ pri-354

vate data and limits its ability to make accurate clustering decisions.355
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Figure 4: PI-FL with and with-
out incentive (I/NI)

Ablatian study with Incentive in PI-FL. To measure the impact356

of incentive provision on personalized model generation we test357

PI-FL with incentives enabled and disabled. Figure 4 shows the358

CDF of clients’ personalized model test accuracy with the Synthetic359

CIFAR10 dataset. Except for the 30:70 partition, the accuracy for360

all other partitions is higher with the incentive enabled. We argue361

that the test accuracy for 30:70 is low in this case because it is a less362

heterogeneous data case and PI-FL performs best in cases where363

data is highly heterogeneous and requires personalized learning.364

Further details of the experimental setup and impact of incentive on365

clustering are discussed in the Appendix.366

6 Conclusion367

In this paper, we proposed PI-FL to address the challenges of incentive provision in pFL for increasing368

consistent participation by providing appealing personalized models to clients. PI-FL client-centric369

clustering approach ensures accurate clustering and improved performance even in case of dynamic370

data distribution shift of the client’s local data or inadvertently mistaken clustering decision by the371

client. Unlike prior works that consider incentivizing and personalization as separate problems,372

PI-FL solves them as interrelated challenges yielding improvement in pFL performance. Extensive373

empirical evaluation shows its promising performance compared to other state-of-the-art works.374
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