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Abstract

While impressive performance has been001
achieved in image captioning, the limited di-002
versity of the generated captions and the large003
parameter scale remain major barriers to the004
real-word application of these systems. In this005
work, we propose a lightweight image caption-006
ing network in combination with continuous007
diffusion, called Prefix-diffusion. To achieve008
diversity, we design an efficient method that in-009
jects prefix image embeddings into the denois-010
ing process of the diffusion model. In order to011
reduce trainable parameters, we employ a pre-012
trained model to extract image features and fur-013
ther design an extra mapping network. Prefix-014
diffusion is able to generate diverse captions015
with relatively less parameters, while maintain-016
ing the fluency and relevance of the captions017
benefiting from the generative capabilities of018
the diffusion model. Our work paves the way019
for scaling up diffusion models for image cap-020
tioning, and achieves promising performance021
compared with recent approaches.1022

1 Introduction023

Image captioning, which combines computer vi-024

sion (CV) and natural language processing (NLP),025

focuses mainly on producing a description of an im-026

age. Existing works on image captioning typically027

employ an encoder-decoder architecture (Vinyals028

et al., 2015; Anderson et al., 2018; Zhou et al.,029

2020) to generate captions word-by-word. How-030

ever, such models require large trainable parame-031

ters to bridge the visual and textual representations.032

By utilizing the powerful representation capabil-033

ity of pre-trained models like CLIP(Radford et al.,034

2021), recent methods (Lovenia et al., 2022; Zhu035

et al., 2022; Mokady et al., 2021) map visual se-036

mantic information to language space for image037

captioning. Although autoregressive models have038

become the typical approach for image captioning,039

1Code will be released upon publication.

Figure 1: The diverse captions generated by Prefix-
diffusion. The model is trained on the COCO dataset.
More examples will be given in the supplementary ma-
terial.

their left-to-right generative manner leads to cumu- 040

lative errors. Moreover, human-like captions not 041

only maintain fluency and relevance properties, but 042

also contain diverse wordings and rich expressions. 043

Recently, the popular diffusion model (Sohl- 044

Dickstein et al., 2015), which generates samples 045

through an iterative denoising process, has pro- 046

vided a promising path to generate tokens in paral- 047

lel and inherently increase the diversity of captions. 048

Diffusion models (Sohl-Dickstein et al., 2015) have 049

become an active area of research owing to their 050

ability to generate comparable results with GANs 051

(Goodfellow et al., 2020) on computer vision tasks. 052

The strength of diffusion models trained on vast 053

image databases has led to an almost ubiquitous 054

fascination among researchers in producing highly 055

typical content, such as image generation and edit- 056

ing (Nichol et al., 2021; Balaji et al., 2022; Kim 057

et al., 2022; Gal et al., 2022). Nevertheless, the 058

path is blocked by the discreteness of texts and the 059

gap between different modals. 060

For the continuous diffusion models (Ho et al., 061
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Figure 2: Illustration of Prefix-diffusion. The bottom lies the diffusion process. The reverse process is defined by
pθ (xt−1 | xt, Iimg) and the diffusion model is depicted in the upper dashed box. We use the frozen CLIP to extract
image features and train a lightweight mapping network to connect the image space and the text space.

2020; Nichol and Dhariwal, 2021; Song et al.,062

2020), they only work on continuous data but063

yield inferior results in generating text and image064

captioning, especially compared to the results of065

the autoregressive models. To effectively benefit066

from continuous diffusion, Diffusion-LM (Li et al.,067

2022) extends the the standard diffusion process068

with an embedding step followed by a rounding069

step, generating the high-quality text under six con-070

trol targets. The discreteness of texts has been over-071

come, whereas the gap between different modals072

stays unsolved. For image captioning with continu-073

ous diffusion, it is a more challenging task, which074

further requires the fusion of the image informa-075

tion.076

In this paper, we propose a lightweight cap-077

tioning model based on the continuous diffusion,078

namely Prefix-diffusion. The model tackles three079

key problems in image caption generation. Firstly,080

we utilize diffusion models to solve the limited081

diversity of the generated captions. Noticing that082

diffusion models have the powerful generative ca-083

pabilities but few research applied them to image084

captioning. Secondly, different from image cap-085

tioning models that have a large number of pa-086

rameters and are computationally expensive, our087

framework saves computing resources with the pre-088

trained CLIP model to extract image features. Last089

but not least, our method is able to generate more 090

accurate captions in parallel, since it injects prefix 091

image embeddings into the denoising process of 092

the diffusion model. This essentially solves the 093

problem of sequential error accumulation. 094

Figure 1 shows the captions generated by Prefix- 095

diffusion, where the captions accurately describe 096

the content of the image with fluency. Different 097

from the method of beam search, our method can 098

cover all distributions of the training datasets and 099

generate diverse captions. 100

The overall contributions of our work are: 101

• We propose a lightweight method Prefix- 102

diffusion to generate diverse captions. Our 103

work tackles the multi-modal issue for the dif- 104

fusion model and paves the way for scaling it 105

up for image captioning. 106

• Prefix-diffusion generates diverse captions in 107

a variety of forms, which is specifically re- 108

flected in the increase of Dist-3 and vocabu- 109

lary usage by 6.3 and 3.1 compared with the 110

baselines, respectively. 111

• Prefix-diffusion reduces more than 38% train- 112

able parameters compared with existing CLIP- 113

based methods(Nukrai et al., 2022; Mokady 114

et al., 2021), while achieving comparable or 115

even better results in newer metrics. 116
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2 Related Work117

2.1 Image Captioning118

The autoregressive models achieve promising per-119

formance on image captioning. The next token of120

the caption is conditioned on the former tokens. To121

generate more neural captions, (Lu et al., 2018) pre-122

dicts the slot locations that are explicitly tied to im-123

age regions. GET (Ji et al., 2021) captures a more124

comprehensive global representation by using a125

novel transformer architecture, to guide the caption126

generation. Similarly, (Li et al., 2019; Luo et al.,127

2021) use transformer to leverage the image infor-128

mation efficiently. Thanks to the powerful multi-129

modal representation capability of CLIP (Radford130

et al., 2021), (Mokady et al., 2021; Galatolo et al.,131

2021) take an image embedding as the input which132

is encoded by the CLIP visual encoder. Then they133

use the GPT-2 (Radford et al., 2019) model to pro-134

duce a sequence of words that describe the content135

of the input image. But autoregressive models suf-136

fer from the limitation of generation speed and the137

accumulation of errors.138

Non-autoregressive models have recently at-139

tracted attention due to their fast inference speed140

and generation quality. (Gao et al., 2019) randomly141

masks the input sequences with certain ratios to142

train a masked language model, and generates cap-143

tions parallelly during inference. Considering non-144

autoregressive image captioning as a cooperative145

multi-agent problem, (Guo et al., 2020) proposes a146

novel counterfactuals-critical multi-agent learning147

algorithm to improved the inference speed. (Fei,148

2020) proposes a non-autoregressive image cap-149

tioning approach based on the idea of iterative back150

modification, which refines the output in a lim-151

ited number of steps. To determine the length of152

the image caption, (Deng et al., 2020) designs a153

non-autoregressive decoder for length-controllable154

image captioning.155

2.2 Diffusion Model156

Diffusion models (Sohl-Dickstein et al., 2015) have157

demonstrated impressive capabilities in creative ap-158

plications. For text-to-image generation, a task159

of generating a corresponding image from a de-160

scription, (Balaji et al., 2022; Nichol et al., 2021;161

Rombach et al., 2022; Gu et al., 2022) apply dis-162

crete diffusion models to produce high-resolution163

images conditioned on the text prompts. Diffsound164

(Yang et al., 2022) proposes a novel decoder based165

on the diffusion model to generate high-quality166

sound. Similarly, ProDiff (Huang et al., 2022) stud- 167

ies on diffusion parameterization for text-to-speech 168

and achieves superior sample quality and diversity. 169

In the text generation domain, Diffusion-LM (Li 170

et al., 2022) starts with a sequence of Gaussian 171

noise vectors and denoises them incrementally into 172

vectors corresponding to words. Diffusion-LM en- 173

ables efficient gradient-based methods for control- 174

lable generation, achieving promising results in the 175

new forms of complex fine-grained control tasks. 176

Moreover, (Gong et al., 2022; Strudel et al., 2022) 177

extend vanilla diffusion models to learn conditional 178

text generation. However, few research applies the 179

diffusion model to image captioning, because of 180

the cross-modal challenge and the discreteness of 181

texts. 182

3 Methodology 183

As illustrated in Figure 2, we propose Prefix- 184

diffusion for injecting image features to learn im- 185

age captioning. Different from image generating, 186

our method requires to map discrete texts to a con- 187

tinuous space by a word embedding. For the con- 188

ditioned image, we first extract its features by the 189

CLIP image encoder, and then input them to the 190

mapping network to obtain the prefix image em- 191

beddings. We then concatenate the prefix image 192

embeddings and the caption embeddings in the 193

denoising process of the diffusion model. The con- 194

catenated vectors are fed into a deep neural net- 195

work (e.g. BERT(Kenton and Toutanova, 2019) or 196

the standard transformer). Since our work merely 197

trains a mapping network and a neural network, the 198

trainable parameter scale is reduced significantly. 199

Forward process. Following Diffusion-LM 200

(Li et al., 2022), we adopt an embedding func- 201

tion EMB(W ) to map a discrete word into a 202

continuous space. Define a caption W with k 203

words. Through the embedding function, we have 204

EMB(W ) = [EMB(ω1), ..., EMB(ωk)] ∈ 205

Rk×d1 , where d1 is the dimension of the vector. In 206

our experiments, we find that the value of d1 works 207

well at 48. Reducing the dimension will decrease 208

the performance, while increasing the dimension 209

will enlarges the computational burden. 210

For the forward process, diffusion models (Ho 211

et al., 2020; Nichol and Dhariwal, 2021; Song et al., 212

2020) add noise progressively to training a sample 213

according to a variance schedule β1, ..., βT . The 214

forward process has no learnable parameters and 215
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we get xt by the following equation:216

xt =
√
1− βtxt−1 +

√
βtϵ (1)217

where ϵ ∼ N (0, 1) and βt : 0.01 −→ 0.03 are hy-218

perparameters representing the variance schedule219

across diffusion steps. We have tried different noise220

methods, with the truncation linear noise schedule221

method being the best. We validate this observation222

in section 4.3.3.223

Reverse process. The reverse process gener-224

ates new samples from xT ∼ N (0, I). The data225

is sampled using the following reverse diffusion226

process:227

pθ (xt−1 | xt, Iimg) =228

N
(
xt−1;µθ (xt, Iimg) , σ (t)2 I

)
(2)229

where Iimg denotes the visual information from230

CLIP.231

In order to learn the reverse process, neural net-232

works are trained to predict µθ and σ (t)2 is a fixed233

variance.234

µθ (xt, Iimg) =

√
αt (1− ᾱt−1)

1− ᾱt
xt+

√
ᾱt−1βt
1− ᾱt

x0

(3)235236

σ(t)2 =
1− ᾱt−1

1− ᾱt
βt. (4)237

In order to get µθ, we compute x0 with the follow-238

ing equation:239

x0 =
1√
ᾱt

(
xt −

√
1− ᾱtz̃

)
(5)240

where z̃ can be obtained by deep neural networks241

(e.g. transformer).242

z̃ = Φ(xt, Iimg, t). (6)243

Here Φ denotes the neural network which is de-244

picted in the dashed box in the Figure 2. Since245

the transformer architecture has been shown to out-246

perform many other architectures on a wide range247

of text generation tasks, we explored two differ-248

ent transformer architectures as the neural network:249

BERT and the standard transformer. Different from250

other continuous diffusion approaches, we inject251

image features into the transformer architectures.252

This process changes the original mean in the cap-253

tion space, as illustrated in Figure 3.254

In the following, we will explain in detail how to255

inject the image information into the model. Firstly256

we use CLIP to encode image and receive its image257

Figure 3: After we concatenate the image features in
the reverse process, the original mean µ′

θ is changed to
µθ in the caption space. Hence, the unconditioned text
is converted to an image caption.

features I
′
img. Then we train a mapping network F 258

on I
′
img and obtain the visual prefix Imimg of length 259

l: 260{
Iimg = CLIP (image)

Imimg =
{
v
′
1, v

′
2, ..., v

′
l

}
= F (Iimg)

. (7) 261

We specifically formulate Imimg ∈ Rl×d2 as 262{
v
′
1, v

′
2, ..., v

′
l

}
for the convenience of subsequent 263

expression. To save the computation cost, we em- 264

ploy a simple Multi-Layer Perceptron (MLP) as 265

the mapping network. Through an upsampling 266

network, a sequence embedding xt has the same 267

dimension as Imimg, denoted as
{
c
′
1, c

′
2, ..., c

′
k

}
∈ 268

Rk×d2 . k is the length of the caption and d2 is the 269

dimension of the embedding. 270

Before concatenating the visual prefix embed- 271

ding and the caption embedding, we add positional 272

embedding Pos and type embedding Typ to it: 273

{c1, c2, ..., ck} =

{c′1, c
′
2, ..., c

′
k}+ P cap

os + T cap
yp

(8) 274

275
{v1, v2, ..., vl} =

{v′
1, v

′
2, ..., v

′
l}+ P img

os + T img
yp .

(9) 276

The positional embedding indicates the model 277

where the feature is located, which is essential 278

information. Similarly, the type embedding tells 279

the model where the image features lie. Then 280

the visual prefix and the caption embedding are 281

concatenated into a sequence {v1, ..., vl, t1, ..., tk}, 282

and processed by a standard transformer or BERT 283
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Method Common Metrics ↑ Similarity Score ↑ Diversity ↑

B@1 B@3 M R-L C S CLIP-S Ref-CLIP P-Bert D@2 D@3 Voc-u

MTIC 80.8 50.9 29.2 58.6 131.2 22.6 60.3 68.6 94.0 7.9 16.3 8.3
DLCT 81.1 51.1 29.4 58.9 133.1 22.8 60.6 69.0 94.1 8.1 17.1 8.3

Frozen
Clip

Feature

CapDec 68.3 36.6 25.2 51.2 91.7 18.3 60.4 67.8 93.4 8.3 14.9 1.9
ClipCap 73.6 42.3 26.7 54.4 105.8 19.8 60.8 68.6 93.8 11.3 21.7 2.6
Ours(T) 77.7 43.4 25.8 55.8 106.3 19.4 63.4 70.9 93.2 11.2 25.9 4.7
Ours(B) 78.1 44.2 26.6 56.1 109.3 20.4 63.7 71.2 93.7 12.7 28.0 5.7

Table 1: The results of image captioning on COCO. For all the metrics, the higher the better. We use boldface to
indicate the best performance. The second best result is underlined. Ours(T) and Ours(B) use a standard transformer
and BERT respectively. The values of vocabulary usage are reported at percentage (%).

Method Common Metrics ↑ Similarity Score ↑ Diversity ↑

B@1 B@3 M R-L C S CLIP-S Ref-CLIP P-Bert D@2 D@3 Voc-u

CapDec 57.6 27.9 20.0 44.5 42.0 14.3 58.0 61.4 92.8 15.5 25.2 1.3
ClipCap 67.0 35.2 22.5 49.0 60.8 16.5 60.9 65.0 93.0 20.9 34.5 1.77
Ours(T) 68.7 34.9 20.1 48.7 53.8 14.2 61.6 66.3 92.2 23.1 41.0 3.6
Ours(B) 71.0 36.2 21.1 49.3 61.4 15.2 64.7 68.6 92.0 27.6 46.0 4.0

Table 2: The results of image captioning on Flickr30k. For all the metrics, the higher the better. We use boldface to
indicate the best performance. The second best result is underlined.

network:284

{y1, y2, ..., yl, yl+1, ..., yl+k} =

Network(concat(v1, ..., vl,c1, ..., ck)).
(10)285

We split yi and use {yl+1, ..., yl+k} as the input286

of the downsampling, yielding the output xt−1 ∈287

Rk×d1 of the diffusion model.288

Decoding process. In the decoding process, we289

strengthen the similarity of images and captions290

with CLIP scores. The benefit of CLIP in the cur-291

rent work is that it can provide a cosine similarity292

score between numerous texts and an image. Utiliz-293

ing the CLIP embedding of an image, we calculate294

the cosine similarity between the image and the295

n candidate captions. We then choose the most296

relevant captions. The similarity is computed as297

follows:298

similarity (Iimg,W
n
txt) =

Iimg ·Wn
txt

|Iimg| · |Wn
txt|

(11)299

where Iimg is the image features extracted by CLIP300

and Wn
txt is the features of the n candidate cap-301

tions. This is a retrieval-base (Ramos et al., 2022;302

Zhao et al., 2020) technique that picks the best ap-303

propriate caption from a set of candidate captions.304

We use this approach based on the advantage of305

Prefix-diffusion: our model can generate diverse306

captions with different Gaussian noises. We verify307

the effectiveness of this retrieval-base method in 308

section 4.3.3. 309

4 Experiment 310

In this section, we conduct quantitative and qualita- 311

tive experiments to evaluate our approach. We first 312

introduce the implementation details in subsection 313

4.1 and 4.2. Then we compare the performance of 314

our approach with the others on various evaluation 315

metrics (subsection 4.3.1 and 4.3.2). Finally, the 316

ablation experiments (subsection 4.3.3) are also 317

presented to analyze the significance of our design. 318

4.1 Dataset and Evaluation Metric 319

We use COCO (Lin et al., 2014) and Flickr30k 320

(Plummer et al., 2015) as the datasets for image 321

captioning. We split the datasets for training, val- 322

idation, and test according to the Karpathy et al 323

(Karpathy and Fei-Fei, 2015), where the test sets 324

of the two datasets contain 5000 images and 1000 325

images respectively. To evaluate the generalization 326

ability of our model, we train the model on one 327

dataset while evaluating on the other. 328

In this paper, we adopt automatic evaluation to 329

appraise the generated captions. In addition to the 330

common metrics and similarity, we consider two 331

metrics to evaluate the diversity of the generated 332

captions. 333
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Figure 4: The performance effect of the word dimension
on COCO. We report the metrics of Bleu-1 and CIDEr.

• Common Metrics. Following the com-334

mon practice in the literatures, we per-335

form evaluation using BLEU(B@N)(Papineni336

et al., 2002), METEOR(M)(Denkowski and337

Lavie, 2014), ROUGE-L(R-L)(Lin and Och,338

2004), CIDEr(C)(Vedantam et al., 2015),339

SPICE(S)(Anderson et al., 2016).340

• Similarity. We evaluate the generation by341

newer metrics: CLIP-S and RefCLIPScore342

(Ref-CLIP)(Hessel et al., 2021) , BERTScore343

(P-Bert)(Zhang et al., 2020), which achieve344

higher correlation with human judgmens.345

• Diversity. Diversity (Li et al., 2016) is a metric346

that evaluates the diversity of the generated347

captions. We report Dist-2(D@2) and Dist-348

3(D@3) by measuring the diversity of bigrams349

and trigrams in the generation.350

• Vocabulary usage. To analyze the diver-351

sity of the generated captions, according to352

(Dai et al., 2018), we compute vocabulary353

usage(Voc-u), which accounts for the percent-354

age of words in the vocabulary that are used355

in the generated captions.356

4.2 Baseline357

We adopt the previous competitive image caption-358

ing approaches to serve as the baseline models:359

MTIC (Cornia et al., 2020): MITC is a360

transformer-based architecture for image caption-361

ing. Its image features extracted are by ResNet362

(denoted as grid-based features).363

DLCT (Luo et al., 2021): DLCT achieves the364

complementarity of region and grid features for365

Method Human Evaluation↑
Paras (M) ↓

Fluency Sim Div

MTIC 3.65 3.63 3.52 38.44
DLCT 3.70 3.25 3.43 63.04

Capdec 3.53 2.95 3.29 178.03
ClipCap 3.83 3.38 3.67 155.91
Ours(T) 3.79 3.84 3.95 38.25
Ours(B) 4.07 3.95 4.12 94.83

Table 3: Thr results of human evaluation and the number
of trainable parameters for different methods.

image captioning. To extract visual features, DLCT 366

uses the pretrained Faster-RCNN (Ren et al., 2015). 367

CapDec (Nukrai et al., 2022): CapDec is a sim- 368

ple and intuitive approach to learning a captioning 369

model based on CLIP. 370

ClipCap (Mokady et al., 2021): ClipCap lever- 371

ages powerful vision-language pre-trained models 372

(CLIP) to simplify the captioning process. And we 373

utilize the MLP mapping network and fine-tunes 374

the language model. All the hyper-parameters are 375

set following its original paper. 376

Since CapDec and ClipCap use CLIP to extract 377

the same image features and freeze CLIP as our 378

model, we use these methods as the primary base- 379

lines. We train our model for 200000 steps, with a 380

batch size of 128. The dimension of word embed- 381

ding is set to 48 and the diffusion steps T = 1000. 382

All the experiments are run on NVIDIA Tesla V100 383

GPUs. In the decoding process, we configure 384

the value of the candidate sentences with n = 5. 385

Specifically, during the evaluation, we set the de- 386

noising steps T = 50, which greatly reduces the 387

generation time. 388

4.3 Results 389

4.3.1 Image Captioning 390

We compare Prefix-diffusion to several baselines 391

with different evaluation metrics, as is shown in 392

Table 1. Our model outperforms all baselines on 393

CLIP-S and Ref-CLIP metrics, and achieves com- 394

parable results on P-Bert score, indicating that 395

the effectiveness of the continuous diffusion on 396

image captioning. Not only that, we have a sig- 397

nificant improvement on some diversity metrics 398

(such as the D@2 and D@3). Furthermore, Prefix- 399

diffusion covers the largest percentage of words, 400

observed from the vocabulary used to generate cap- 401

tions. It implies that captions generated by Prefix- 402
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Method Common Metrics ↑ Similarity Score ↑ Diversity ↑

B@1 B@3 M R-L C S CLIP-S Ref-CLIP P-Bert D@2 D@3 Voc-u

COCO=⇒ Flickr30k

CapDec 57.2 23.9 17.1 40.3 30.3 10.8 54.4 58.7 92.1 18.5 29.4 1.2
ClipCap 64.6 29.3 18.9 44.3 44.4 12.5 56.5 61.2 92.5 19.7 32.7 1.3
Ours(B) 69.5 31.2 19.3 46.6 46.8 13.0 61.2 65.3 91.9 19.4 37.0 3.0

Flickr30k=⇒ COCO

CapDec 44.1 15.2 15.7 36.4 25.7 8.6 47.7 51.4 90.4 5.5 10.4 2.0
ClipCap 55.7 23.5 19.2 42.0 51.3 12.2 54.9 60.0 91.1 11.3 21.3 3.5
Ours(B) 57.2 22.4 17.5 42.5 49.3 11.3 57.5 62.8 90.4 13.6 29.9 6.6

Table 4: The results of cross-domain captioning. COCO=⇒ Flickr30k means model trained on COCO while
evaluated on Flickr30k, and so is Flickr30k=⇒ COCO. We use boldface to indicate the best performance.

diffusion contain diverse wordings and rich expres-403

sions. Our model can generate high-quality cap-404

tions compared with captioning approaches that405

extract image feature with CLIP. Prefix-diffusion406

performs worse than MTIC and DLCT (who not407

use freeze features for image captioning) on the408

common metrics, partially due to the proven limi-409

tations of word-overlapping-based metrics across410

various domains(Hessel et al., 2021; Zhang et al.,411

2020), and also because our generation is more412

diverse in expression and correctly describe the vi-413

sual content, which can be observed from similarity414

score and diversity metrics.415

We also conduct experiments on dataset of416

Flickr30k, as presented in Table 2, from which417

we can draw similar conclusions with the dataset418

of COCO. Our model achieves impressive perfor-419

mance in the image captioning task compared to420

the baseline models. In detail, from the results421

of diversity metrics, we notice that the metrics of422

Dist-3 and vocabulary usage increase by more than423

6.0 and 3.0, respectively. Additionally, we also424

observe an improvement of 2.6 and 2.8 in CLIP-S425

and Ref-CLIP metrics, respectively. This indicates426

that the diffusion model can effectively improve427

the caption diversity while ensuring coherence and428

relevance in the generated captions. To generate429

diverse captions, existing methods tend to generate430

different captions via top-k sampling. Intuitively,431

such methods may ignore syntactic diversity and432

semantic diversity that humans are really interested433

in. Unlike existing methods, Prefix-diffusion seeks434

to generate multiple captions with rich expressions435

from different Gaussian noises.436

Figure 1 shows the captions generated by Prefix-437

diffusion. It is observed that the generated captions438

are pretty consistent with the image as well as keep- 439

ing the qualified fluency. Meanwhile, our model is 440

able to generate diverse captions that are more like 441

human-generated. 442

Furthermore, we conduct human evaluation and 443

report the number of trainable parameters to vali- 444

date the applicability of our method. As is shown in 445

Table 3, our model only requires a small number of 446

model parameters. It brings potential advantages 447

of saving memory storage space and computing 448

costs, and thus being much more useful in practice. 449

For human evaluation, we randomly selected 20 450

samples and presented them in a shuffled manner 451

to 20 annotators. The annotators rated the fluency, 452

similarity(Sim), and diversity(Div) of the captions 453

on a scale from 1 to 5, with higher scores indi- 454

cating better quality. From the human evaluation 455

results, We can draw similar conclusions with the 456

automatic evaluation. Our model outperforms the 457

baselines in diversity while holding better fluency 458

and relevance. 459

The dimension of word embeddings is an impor- 460

tant hyper-parameter. The higher dimension leads 461

to more training time and memory usage. To further 462

study the effect of embedding dimension in Prefix- 463

diffusion, we conduct experiments by training with 464

different dimensions. As is shown in Figure 4, the 465

metrics of Bleu-1 and CIDEr are improved as the 466

embedding dimension increases. The reason is that 467

a word embedding becomes richer with semantic 468

information due to the higher dimension. How- 469

ever, there is a performance bottleneck when we 470

continue to increase the dimension of word embed- 471

dings. It is observed that the performance trends to 472

be stable when the dimension goes beyond 48. 473
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n
Common Metrics ↑ Similarity Score ↑ Diversity ↑

B@1 B@3 M R-L C S CLIP-S Ref-CLIP P-Bert D@2 D@3 Voc-u

1 77.2 43.6 26.0 55.6 105.2 19.5 60.4 68.6 93.1 11.9 26.4 5.4
5 78.1 44.2 26.6 56.1 109.3 20.4 63.7 71.2 93.7 12.7 28.0 5.7
10 78.3 43.8 26.6 56.0 109.1 20.3 65.3 72.2 93.4 13.1 28.8 5.8
15 78.2 43.4 26.5 55.8 108.5 20.3 66.0 72.6 93.4 13.4 29.3 5.9

Table 5: The effect of different values of candidate captions. n = 1 means no cosine similarity calculation in the
decoding process.

Noise
Schedule

Metrics ↑

B@1 CLIP-S Ref-CLIP P-Bert

Square 70.5 66.8 72.2 92.6
Linear 70.4 65.9 71.6 92.3
Cosine 70.5 66.5 72.0 92.5
T-Cosine 72.5 66.5 72.3 92.9
T-Linear 78.1 63.7 71.2 93.7

Table 6: The analysis of different noise schedule in the
forward process. T-Linear and T-Cosine means trunca-
tion linear noise schedule and truncation cosine noise
schedule respectively.

4.3.2 Cross-domain Captioning474

We also conduct experiments on cross-domain cap-475

tioning to evaluate the generalization capability of476

Prefix-diffusion. The results of the cross-domain477

evaluation are shown in Table 4. We train the478

model on the dataset of a source domain while479

evaluating it on another dataset. From the results of480

COCO=⇒Flickr30k, Prefix-diffusion achieves ex-481

cellent performance over all compared approaches,482

with the results on the common metrics being the483

best. In addition, it acquires significant improve-484

ments on both Dist-3 and vocabulary usage metrics.485

This is due to the powerful generative ability of486

the diffusion model. When we train on flickr30k487

while evaluating on COCO, the results also show488

that our approach has strong capability in the cross-489

domain scenario. By comparing the two results, we490

find that Prefix-diffusion works even better when491

trained on a larger dataset, implying the better gen-492

eralization ability.493

4.3.3 Ablation494

We perform an ablation study on the dataset of495

COCO to quantify the contribution of each module496

in Prefix-diffusion.497

Table 5 presents the effect on the number of498

candidate captions. From the two groups of exper-499

iments, n = 1 and n = 5, it can be seen that this 500

selection strategy improves the performance of im- 501

age captioning. We observe a significant increase 502

in the CIDEr metric, which boosts the CIDEr score 503

from 105.2 to 109.3. It confirms the function of cal- 504

culating the similarity between the image and the 505

candidate captions and choosing the highest. But 506

too many candidate captions lead to a reduction in 507

the performance of the caption fluency. This is be- 508

cause we use the CLIP score as the only similarity 509

selection metric, which may neglect the fluency of 510

captions. 511

As presented in Table 6, We investigate the per- 512

formance of different noise schedules. Observing 513

the results, we conclude that truncated linear noise 514

schedule is able to generate more precise and de- 515

scriptive captions. We also conclude that the se- 516

mantic information is corrupted by the complicated 517

noise schedule in the forward process, leading to 518

a more difficult learning problem in the denoising 519

process. 520

5 Conclusion and Future Work 521

In this paper, we propose a lightweight network 522

for image captioning in combination with continu- 523

ous diffusion, called Prefix-diffusion. Experiments 524

and further analysis demonstrate that it can gener- 525

ate diverse captions while maintaining the fluency 526

and relevance of the captions. By trained on one 527

dataset but evaluated on the other, Prefix-diffusion 528

presents remarkable generalization ability. Besides, 529

our model requires a small number of training pa- 530

rameters, which is more applicable in reality. We 531

also conduct ablation experiments to show the ef- 532

fect of the selection strategy and noise schedules. 533

The empirical results verify that Prefix-diffusion 534

has powerful generative ability for image caption- 535

ing. For future work, we will continue to explore 536

the potential impact of diffusion models on image 537

captioning. 538
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Limitations539

As presented in Table 1 and Table 2, though Prefix-540

diffusion can generate diverse captions with rela-541

tively less parameters, it is inferior to MTIC and542

DLCT on the common metrics. But it performs543

well on newer metrics which have been shown544

higher correlation with human generation. The545

reason is that our generated captions have a rich546

expression that is inconsistent with the reference547

text, but still convey the same underlying semantics.548

The length is an important property as it reflects the549

amount of information carried by a caption. Since550

our model is a non-autoregressive model, we can-551

not control the length of the generated text, leading552

to a less accurate description of the image. We553

leave this part of exploration for future work.554

Ethics Statement555

Since the proposed Prefix-diffusion can be used to556

generate captions. With the advantages of being557

accurate, diverse and descriptive, its generation is558

more like human-generated. This would benefit im-559

age captioning applications on downstream tasks,560

such as chatting robots and automatic voice guide561

system. On the other hand, the large number of562

image captions will make it difficult to distinguish563

human-wrote from machine-generated. Hence, ex-564

ploring adversarial attacks on image captioning is565

necessary. Moreover, excellent captions should566

involve a variety of words and rich expressions,567

which prevents them from being too dull or tedious.568

The diffusion model generates new samples from569

different noises. Therefore, Prefix-diffusion can be570

used to improve the diversity of the captions.571
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