
Vision Foundation Model Enables
Generalizable Object Pose Estimation

Kai Chen1, Yiyao Ma1, Xingyu Lin2, Stephen James3, Jianshu Zhou1

Yun-Hui Liu1, Pieter Abbeel2, Qi Dou1

1The Chinese University of Hong Kong, 2UC Berkeley, 3Dyson Robot Learning Lab

Abstract

Object pose estimation plays a crucial role in robotic manipulation, however, its
practical applicability still suffers from limited generalizability. This paper ad-
dresses the challenge of generalizable object pose estimation, particularly focusing
on category-level object pose estimation for unseen object categories. Current meth-
ods either require impractical instance-level training or are confined to predefined
categories, limiting their applicability. We propose VFM-6D, a novel framework
that explores harnessing existing vision and language models, to elaborate object
pose estimation into two stages: category-level object viewpoint estimation and
object coordinate map estimation. Based on the two-stage framework, we introduce
a 2D-to-3D feature lifting module and a shape-matching module, both of which
leverage pre-trained vision foundation models to improve object representation
and matching accuracy. VFM-6D is trained on cost-effective synthetic data and
exhibits superior generalization capabilities. It can be applied to both instance-
level unseen object pose estimation and category-level object pose estimation for
novel categories. Evaluations on benchmark datasets demonstrate the effective-
ness and versatility of VFM-6D in various real-world scenarios. Project website:
vfm-6d.github.io/.

1 Introduction

Object pose estimation refers to the procedure of identifying the position and orientation of target
objects. This essential operation is highly valued in various scenarios such as robotic manipulation [1,
2], augmented reality [3, 4], and embodied intelligence [5, 6], etc. Predominantly, most existing
approaches [7, 8] largely rely on instance-level training to associate object frame and camera frame
for object pose estimation. These methods struggle to accurately predict the poses of objects that
were not present during the training phase. In order to enhance the manipulation and interaction with
a broad range of objects, there is a considerable demand for generalizable object pose estimation.

Towards generalizable object pose estimation, two main streams of effort have been made in recent
literature: instance-level unseen object pose estimation [9, 10, 11, 12] and category-level object pose
estimation [13, 14, 15]. Instance-level unseen object pose estimation methods work by comparing
the observed object to instance-level reference images and then estimating a relative pose from the
reference to the observation. These methods typically necessitate either textured CAD models or the
collection and labeling of reference images for each object instance. However, these requirements are
often impractical for many real-world scenarios [16, 17, 18], such as open-world mobile manipulation,
where the objects that the agent encounters are unpredictable. This greatly hampers the practical
applicability of instance-level unseen object pose estimation methods. On the other hand, recent
category-level approaches learn to recover object pose from category-level object semantic and shape
features. By learning category-level characteristics from data, these methods can be readily applied
to novel objects that belong to a certain category, provided the model is trained on that category.
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However, these category-level approaches fall short when encountering objects from an unseen
category. For example, a model trained solely on ‘mug’ would be unable to estimate the pose for a
‘laptop’. The generalization capability of these methods is thus limited by a set of pre-defined object
categories, which is far from meeting the demands of practical applications.

These existing approaches inspire us to consider the following question: Can we perform category-
level object pose estimation for an unseen object category? The goal is to leverage the complementary
advantages of both types of methods to achieve generalizable object pose estimation. Category-level
estimation significantly reduces inference costs for unseen object instances by eliminating the need
for extensive scanning of textured CAD models and labor-intensive pose annotations for multi-view
reference images. Furthermore, if the method is not limited to predefined categories, it would exhibit
high generalization capability for objects in any category. Achieving this challenging goal requires
an object representation that is robust to object intra-class variation and also generalizable to novel
object categories. Recent advancements in vision and language models [19, 20, 21, 22] have shown
that their robust object representation can effectively enhance the generalization capability of various
downstream tasks [23, 24, 25, 26]. However, how could these models be applied to generalizable
object pose estimation? It is still an open question that remains underexplored.
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Figure 1: Results with pre-trained DINO-
v1 [20]. We can observe that directly
using the pre-trained DINO-v1 cannot
identify the nearest viewpoint from the
feature cosine similarity. Our proposed
feature lifting module can significantly
improve the differentiability of multi-
view object representations and identify
the most similar viewpoint precisely.

We explore this question by innovating a vision founda-
tion model based framework VFM-6D for generalizable
object pose estimation. Given a query image of the target
object, VFM-6D elaborates the scheme of object pose es-
timation into two stages: foundation model based object
viewpoint estimation and foundation model based object
coordinate map estimation. The object pose and size then
are jointly optimized based on the dense correspondences
derived from the predicted object coordinate map. To ac-
commodate to novel object categories, VFM-6D resorts to
category-level reference images for object viewpoint es-
timation and coordinate map estimation. The viewpoint of
the query object is identified by matching the query image
with multi-view references, and the query coordinate map
is estimated by matching the shape of the query object
with that of the reference. However, precisely matching
the query and its category-level references can be chal-
lenging due to potential differences in textures and shapes,
even when utilizing a vision foundation model. Taking
the pre-trained DINO-v1 model [20] as an example, as
shown in Fig. 1, the pre-trained model struggles to match
the query image with its closest reference image. The
cosine similarity derived from pre-trained DINO-v1 often
appears to be relatively indistinguishable.

In this paper, we propose to address the above issue by innovating a 2D-to-3D feature lifting module,
which leverages the 3D position embedding of objects to effectively adapt the vision foundation
model to extract view-aware object representations for precise query-reference matching and object
viewpoint estimation. In addition, to ensure reliable coordinate map estimation for a diverse range of
query objects, we further propose an effective shape-matching module. This module enhances the
object shape representation by harnessing robust semantics from the pre-trained vision foundation
model. As a result, we can effectively match the query object with the reference one, even in the
face of potential intra-class shape variations. To effectively adapt the pre-trained vision foundation
model to the task of object pose estimation, we freeze the foundation model backbone and fine-
tune the proposed feature lifting and shape-matching modules using cost-effective synthetic data.
Thanks to the elaborated two-stage framework, the robust object representation from the pre-trained
vision foundation model, and the improvement introduced by our proposed feature lifting and shape-
matching modules, VFM-6D exhibits superior generalization capabilities. As depicted in Fig. 2,
VFM-6D can be broadly applied to both instance-level unseen object pose estimation and category-
level object pose estimation for novel categories, using either scanned object shape templates or
object shapes generated via text-to-3D generation. We summarize our contributions as follows:
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Figure 2: Our proposed VFM-6D is highly generalizable. After training on cost-effective synthetic
data, it can be widely applied to instance-level unseen object pose estimation and category-level
object pose estimation for novel categories.

• We propose VFM-6D, a novel framework that elaborates object pose estimation into foundation
model based object viewpoint estimation and object coordinate map estimation, for effective and
generalizable object pose estimation.

• We propose a novel 2D-to-3D feature lifting module to improve the capability of existing vi-
sion foundation models to extract view-aware object representations for precise query-reference
matching and object viewpoint estimation.

• We present a robust shape matching module, which enhances the object shape representation by
harnessing robust semantics from the pre-trained vision foundation model and enables reliable
coordinate map estimation for a diverse range of objects in different shapes.

• We demonstrate that by training VFM-6D on cost-effective synthetic data, we can effectively apply
2D vision foundation models to the task of 6D object pose estimation. Extensive evaluations
on representative benchmark datasets Wild6D, CO3D and LINEMOD demonstrate the superior
generalization capability of VFM-6D.

2 Related Works

Unseen Object Pose Estimation. The current methods primarily employ a matching-based paradigm.
OnePose [27, 28] utilizes a video scan to reconstruct a SfM model and match the query image
to estimate the object pose. Gen6D [9] bypasses the need for SfM by using pre-posed reference
images to match the query image and refine the pose. SA6D [10] builds on Gen6D by enhancing
pose accuracy and robustness, particularly in occlusion scenarios, using RGB-D reference images.
RelPose [29, 30] samples multiple pose hypotheses and verifies the correct pose based on an energy
function conditioned on the similarity between reference and query images. Moreover, MegaPose [11]
employs the CAD model to generate reference images and estimates the pose by comparing the
rendered and observed images. FoundationPose [31] eliminates the need for CAD by using instance-
level reference images from multiple viewpoints. SAM-6D [32] establishes 3D-3D correspondences
to calculate the pose of each valid proposal identified by Segment-Anything-Model. FoundPose [33]
further resorts to bag-of-words descriptors for unseen object pose estimation. However, all these
methods require instance-level reference images or CAD models. Our method differs from them
by using category-level reference images, which can be reused for objects belonging to the same
category and significantly reduce the burden of collecting references for each new object instance.

Category-Level Object Pose Estimation. The main challenge in category-level object pose esti-
mation is the significant intra-class variation observed among different objects. Existing methods
for addressing this challenge include canonical object representation [15, 34], robust pose formula-
tion [35, 36], and category-relevant feature extraction [37, 38]. More specifically, Wang et al. [13]
propose to estimate pose parameters within a normalized object space. Tian et al. [39] leverages a
template point cloud to explicitly reconstruct the 3D shape for the novel object, and then register the
object point cloud with the reconstructed object shape for category-level object pose estimation. To
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Figure 3: An overview of the proposed VFM-6D framework for generalizable object pose estimation.

improve pose accuracy for instances with shape variations, Chen et al. [40] dynamically adjust the
template feature with instance semantics, and Lin et al. [41] use an adaptive keypoint-based method
to explicitly consider local-global geometry information. Recently, Zhang et al. [42] applied a score-
based diffusion model for accurate category-level object pose estimation and tracking. However, most
of these methods rely on category-specific training, and cannot be applied to novel object categories.

Object Pose Estimation in Robotics. As an important scheme to perceive an object’s status, object
pose estimation has wide applications in various robot scenarios. For example, Wen et al. [43] use the
object pose to transform object-centric grasping configuration from object frame to robot frame for
robotic grasping. Geng et al.[44] utilize pose information from object parts to enable generalizable
object manipulation. Morgan et al.[45] employ high-precision object pose tracking for closed-loop
vision-based robot control. An et al. [46] leverage object pose feedback to plan the robot’s motion
trajectory, ensuring accurate and efficient robot manipulation. Li et al. [47] apply object-centric
pose prediction to stimulate the reasoning ability of Multimodal Large Language Models in robot
manipulation tasks. Despite the usefulness of object pose for robot perception, its practical application
is limited by its restricted generalization capability. In this paper, our aim is to propose a novel
method that enhances the perception of object pose in a more flexible and generalizable manner.

Vision Foundation Model. By pre-training at scale, the recent vision foundation model manages to
produce quite robust and expressive representations for diverse objects, significantly boosting the
generalization performance of various vision tasks, including recognition [23, 48], detection [49, 24],
and segmentation [50, 25, 26]. In the context of object pose estimation, Zhang et al. [51] use a
pre-trained DINO to extract consistency constraints from images in the wild for self-supervised
category-level object pose estimation. Goodwin et al.[52] empirically select features from DINO
layers to match sparse keypoints for zero-shot category-level object pose estimation. Chen et al. [53]
directly fuse the object-specific hierarchical geometric features with semantic DINO-v2 features
to enhance the robustness of category-level pose estimation. OV9D [54] uses DINO-v2 and a
text-to-image diffusion model to infer the object coordinate map and estimate the pose of a target
instance via pose fitting. In this work, we also hope to leverage the robust representation from the
foundation model. Moreover, we explore a cost-effective way to further adapt the pre-trained feature
with task-specific data and we demonstrate that it can significantly improve the performance for
generalizable object pose estimation.

3 Methodolody

3.1 Overview of VFM-6D

We present VFM-6D, which aims to tackle the problem of generalizable object pose estimation via
category-level object pose estimation for novel object categories. To achieve this challenging target,
VFM-6D is built upon DINO-v2 [21] and elaborates the object pose estimation scheme into two
stages: object viewpoint estimation and object coordinate map estimation. VFM-6D jointly leverages
object RGB image and partial point cloud derived from depth map for object pose estimation. In
the first stage, we determine the initial object 3D rotation with respect to the camera frame. In the
second stage, we estimate a coordinate map for the object, which establishes dense correspondences
between the object and camera frames for object pose estimation. Inspired by [9, 12, 55], both
stages exploit a reference-based design. Let Oq = (Iq,Xq) be the query object observation1, and

1I and X respectively represent the object image and the object point cloud.

4



{Oi
r = (Ii

r,X i
r)}ki=1 be its corresponding multiview references with known poses {Ri

r|tir}ki=1. As
shown in Fig. 3, VFM-6D identifies the object viewpoint by image-level matching between Oq

and {Oi
r}ki=1. Then, VFM-6D further leverages point-level shape matching between the query and

reference objects for coordinate map estimation. Without loss of generality, we exploit the coordinate
map defined in the normalized object coordinate space (NOCS [13]) in this work.

Recall that VFM-6D is designed for category-level object pose estimation of novel object categories.
It aims to address the challenge of intra-class variation in query-reference matching by utilizing
the robust object representations derived from the vision foundation model. In this regard, we first
introduce a novel foundation feature lifting module in Sec. 3.2 for image matching and viewpoint
estimation. Based on the estimated object orientation and the matched reference image, we subse-
quently present a foundation feature-based object shape representation in Sec. 3.3, which resorts
to object semantics from foundation models for robust shape matching and NOCS coordinate map
estimation across diverse object categories. Finally, in Sec. 3.4, we present how to fine-tune the
VFM-6D framework with cost-effective synthetic data for generalizable object pose estimation.

3.2 Query-reference Image Matching for Object Viewpoint Estimation
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Figure 4: 2D-to-3D foundation fea-
ture lifting for view-aware object
representation.

VFM-6D estimates the viewpoint of Oq by identifying the clos-
est reference image from {Oi

r}ki=1. Following [56], the image
distance is measured based on the cosine similarity of object
features extracted from the corresponding images. In order to
handle a variety of novel object categories, VFM-6D leverages
the robust object representation provided by the vision founda-
tion model. However, this model falls short when it comes to
estimating the viewpoint of an object. As depicted in Fig. 1,
the query image often exhibits a very similar cosine similarity
with its multiview reference images, making it challenging to
effectively identify the closest reference for Oq. This scenario
underscores the limited 3D representation capabilities of the
visual foundation model pre-trained with 2D image and text
data. Such models tend to extract features that are less sensitive
to changes in viewpoint, for the sake of semantic robustness. To address this issue, we propose an
effective foundation feature lifting module for object viewpoint estimation. As depicted in Fig. 4,
the feature lifting module is designed to enhance the discriminative capacity of the foundation
model’s object representation. It is accomplished by lifting the object representation from 2D to
3D, utilizing the 3D positional information encapsulated within object point clouds. Specifically,
let F represent the pre-trained object representation from the vision foundation model. The feature
lifting module begins by encoding the 3D object position from X using a two-layer MLP, thereby
encapsulating valuable 3D position information along with contextual details. Following this, it lifts
F by integrating the extracted 3D position embedding into F via a Transformer encoder block as
F ′ = TransformerEncoder(F + MLP(X )). Based on the lifted object feature, we match the query
image with the reference image that has the highest cosine similarity.

3.3 Query-reference Shape Matching for Coordinate Map Estimation

Let Or be the matched reference for Oq, and {Rr|tr} be the reference object pose. In this section,
we perform point-level shape matching between Oq and Or to estimate the NOCS coordinate map
for Oq . Overall, the coordinate map estimation is carried out in two steps: foundation feature based
object shape representation and shape matching for coordinate map estimation. We denote the
query and reference object shape as Xq ∈ Rn×3 and Xr ∈ Rm×3, which are two partial object
point clouds derived from the corresponding depth map. Xq and Xr would vary dramatically in the
camera space. In order to effectively model object shape from them, inspired by [57], we propose
to first use the object viewpoint Rr that we have estimated in Sec. 3.2 to focalize Xq and Xr into a
canonical and normalized coordinate space. Specifically, the focalization step could be formulated as
X ′

(q,r) = R−1
r × X(q,r)−X̄(q,r)

max∥X(q,r)−X̄(q,r)∥
, where X̄ denotes the center of the original partial point cloud in

the camera frame. Based on the focalized object point cloud, we then integrate the point cloud based
shape encoding with the robust image semantics of the vision foundation model for object shape repre-
sentation. As shown in Fig. 5, we use a point cloud Transformer (PCT) [58] for object shape encoding.
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ture based object shape
representation.

The PCT will first patchify the forcalized point clouds with K nearest
neighbor points and then exploit a Transformer-based encoder-decoder
to extract geometry features for point cloud based shape encoding. Then,
we further integrate the pre-trained image feature with the point cloud
encoding via a Transformer encoder block. Usually, the pre-trained image
feature from the vision foundation model exhibits high robustness for
objects in the same category. For example, object patches in the same
semantics would have similar embeddings [20]. Our proposed shape
representation module therefore leverages this robust semantic relation-
ship to bridge the shape gap between query and reference and enhances
their point cloud based representations for robust shape matching. Let
Gq ∈ Rn×d and Gr ∈ Rm×d be the pointwise shape embedding of Oq

and Or respectively. The NOCS coordinates for the query are then esti-
mated by Mq = Softmax(Gq × G⊤

r )×Mr, where Mr ∈ Rm×3. Note
that Mr represents the NOCS coordinates for the reference object. It is
generated based on the template object shape and ground-truth pose for
each reference image, which is assumed to be available in VFM-6D.

3.4 Training VFM-6D with Cost-effective Synthetic Data

In this section, we present training details of VFM-6D. Specifically, we freeze the vision foundation
model backbone and only train the proposed 2D-to-3D foundation feature lifting module and the
foundation feature based object shape representation module.

Synthetic data generation. We customized the synthetic data generation pipeline from [59] to utilize
Blender for generating photorealistic synthetic data, which we then employed for cost-effective model
training. To ensure diversity in the synthetic training data, we collected 20 categories of objects from
ShapeNet [60]. Each category contains 6 unique object instances, resulting in a total of 120 distinct
object assets. For each category, one object instance was randomly selected to synthesize a total of
10K RGBD images. Concurrently, the object mask and ground-truth object coordinate map were
generated for each image. In total, the synthetic training dataset comprises 200K RGBD images. For
more detailed information about the synthetic training data, please refer to the appendix.

Training objective for viewpoint estimation. For each object category, we randomly select one
object instance as the shape template and take the remaining five instances as query objects during
training. For object viewpoint estimation, we adopt the pose-aware contrastive loss in [56], which
considers the negativeness of each reference image and fully harnesses the positive and negative
query-reference pairs to train the foundation feature lifting module:

Lview = −log
exp(fq · fr+/τ)∑k

i=1 d(Rq,Ri
r)exp(fq · f i

r/τ)
, (1)

where fq,r = AvgPool(F ′
q,r) denotes the global object representation after feature lifting, r+

indicates the closest reference image to the query one, τ is a temperature parameter. Moreover, d(·)
is defined as the normalized viewpoint difference between query and reference, which is computed as

d(Rq,R
i
r) = arccos(

tr(R⊤
q Ri

r)−1

2 )/π. We also follow [61] to handle symmetrical objects.

Training objective for coordinate map estimation. For coordinate map estimation, we compare
the predicted query coordinate map with the ground-truth one. For symmetrical objects, we adopt
the Chamfer Distance loss to constrain the predicted coordinate map: Lcoor = CD(Mq,Mgt). For
asymmetrical objects, we measure the coordinate map distance via a smooth L1 loss:

Lcoor =
∑
p1,p2

{
0.5(p1 − p2)

2/β, if |p1 − p2| < β,

|p1 − p2| − 0.5× β, otherwise,
(2)

where p1 ∈ Mq and p2 ∈ Mgt respectively.

The total training loss is L = Lview + Lcoor. By training VFM-6D with the synthetic data, we
effectively adapt the existing vision foundation model to generalizable object pose estimation without
incurring heavy costs related to real-world data collection and pose annotation.
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Table 1: Category-level object pose estimation results
on 5 novel categories of Wild6D.

Method Unseen 5◦2cm 5◦5cm 10◦2cm 10◦5cm

SPD [39] % 2.6 3.5 9.7 13.9
SGPA [40] % 20.1 27.8 29.0 39.4
DualPoseNet [66] % 17.8 22.8 26.3 36.5
GPV-Pose [67] % 14.1 21.5 23.8 41.1

PoseContrast [56] " 2.3 4.7 5.5 10.1
ZSP [52] " 9.6 12.1 16.6 23.0
Ours " 19.3 21.6 34.9 44.2

Figure 6: Qualitative results of VFM-6D on
‘mug’ and ‘laptop’ of Wild6D.

4 Experiments

4.1 Dataset and Setup

We mainly evaluated VFM-6D on two category-level benchmark datasets Wild6D [62] and CO3D [63],
to investigate its generalization capability for category-level object pose estimation of novel object
categories. Wild6D testing data consists of 162 different object instances in 5 typical table-top object
categories (i.e., ‘laptop’, ‘camera’, ‘mug’, ‘bottle’, and ‘bowl’). CO3D is more comprehensive, which
covers thousands of object instances in 50 categories varying from vehicles (e.g., ‘motorcycle’ and
‘bicycle’) to daily necessities (e.g., ‘backpack’ and ‘handbag’). Apart from category-level evaluation,
we wonder whether VFM-6D is also applicable to the setting of instance-level unseen object pose
estimation. We therefore further evaluated VFM-6D on LINEMOD [64], which is a representative
instance-level dataset involving 13 textureless object instances.

For the experiment on CO3D, we followed [52] to evaluate VFM-6D on 20 categories with unified
and precise object pose labels. It is worth noting that all object categories involved in evaluation
are not used during the training stage. For the category-level benchmark evaluation, we collected
the corresponding untextured category-level shape templates from the publicly available 3D object
assets [60] ,or generated the shape template via text-to-3D [65] based on the category name. For the
evaluation of instance-level unseen object pose estimation, we took each object instance as a category
and leveraged its instance-level CAD model as the shape template. To synthesize the multiview
reference images required by VFM-6D, we normalized the shape template to a unit diameter. We
then uniformly sampled k camera viewpoints from the sphere’s surface centered on the template and
rendered an RGB-D reference image at each viewpoint using Blender.

4.2 Evaluation Metrics
We followed the evaluation protocols that have been used on different benchmark datasets to evaluate
the object pose estimation accuracy of VFM-6D. Specifically, we followed [62, 51] to report the
mean Average Precision for different thresholds of a◦bcm to evaluate the performance on Wild6D.
Considering that the size of objects in CO3D varies greatly, from several meters (e.g., ‘car’ and
‘motorcycle’) to a few centimeters (e.g., ‘remote’ and ‘mouse’), we followed [52] to focus on the
evaluation of object rotation and reported the accuracy for different rotation thresholds (i.e., ACC.15◦
and ACC.30◦). We followed [68, 69, 70] to exploit a model-based evaluation metric ADD for
instance-level experiments on LINEMOD, and reported the recall of ADD that is smaller than 0.1 of
the object diameter (i.e., ADD-0.1d).

4.3 Main Results

Wild6D. Table 1 presents the evaluation results of category-level object pose estimation on Wild6D.
Specifically, we first compared VFM-6D with four conventional category-level approaches. Since
these conventional methods necessitate training on target categories, we trained their models on
NOCS 2 dataset [13] and then assessed their performance on Wild6D. In addition, we compared
VFM-6D with two category-agnostic approaches, PoseContrast [56] and ZSP [52]. As shown in
Table 1, without training on the 5 target categories, our proposed VFM-6D significantly surpasses
the competing two category-agnostic methods. Moreover, it achieves a comparable or even superior
pose accuracy when compared with conventional methods, which however are heavily dependent on
category-specific training. Fig. 6 showcases qualitative pose prediction results of VFM-6D across
different object categories of Wild6D.

2NOCS is a mixture of synthetic and real-world dataset, covering the 5 object categories depicted in Wild6D.
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Table 2: Category-level object pose estimation results on 20 unseen categories of CO3D dataset. We
report Acc.15◦ / Acc.30◦ averaged across all 20 categories. We also report results for an illustrative
subset of categories. Please refer to the appendix for full per-category results.

Method Motorcycle Backpack Bicycle Teddybear Car Chair Average

LoFTR [71] 4.2 / 10.9 1.1 / 2.8 2.2 / 7.8 12.5 / 18.9 30.0 / 36.2 8.9 / 15.2 8.4 / 13.7
LightGlue [72] 4.2 / 11.8 0.5 / 4.9 14.4 / 27.0 8.2 / 19.5 7.5 / 13.8 3.5 / 8.2 5.9 / 12.7
GeDi [73] 4.3 / 11.5 0.5 / 2.7 5.6 / 17.6 9.4 / 25.7 0.5 / 3.0 10.5 / 23.0 5.3 / 13.4
ZSP [52] 25.0 / 49.2 4.4 / 13.0 27.0 / 49.3 23.7 / 43.4 61.8 / 69.3 30.0 / 41.6 27.1 / 44.7

Ours 56.4 / 76.3 30.6 / 47.4 46.5 / 59.2 25.2 / 54.4 55.6 / 74.4 72.1 / 86.8 50.2 / 67.4

Table 3: Instance-level object pose estimation results measured by ADD-0.1d on LINEMOD dataset.
We report average score over all instances and per-instance score for an illustrative subset of instances.
Please refer to the appendix for full per-instance results.

Method ape bench. camera can cat driller duck Average

LatentFusion [68] 88.0 92.4 74.4 88.8 94.5 91.7 68.1 87.1
OSOP [69] 86.1 94.6 69.3 80.4 88.0 79.5 92.7 82.0
FS6D [70] 78.0 88.5 91.0 89.5 97.5 92.0 75.5 91.5
Ours 88.5 91.9 97.2 74.9 96.4 85.1 88.0 90.3

CO3D. We conducted more comprehensive evaluation on CO3D. Table 2 presents comparative
results against typical category-agnostic approaches, including two image feature point matching
methods LoFTR [71] and LightGlue [72], one point cloud registration method GeDi [73], and the
recent vision foundation model based method ZSP [52]. For all the competing methods, we exploited
the same category-level reference images for object pose estimation. For LoFTR, LightGlue and
ZSP, the object point cloud are further leveraged to lift the extracted 2D matches into 3D for object
pose estimation. As shown in Table 2, both image feature point matching and point cloud registration
methods fall short when being applied to match objects in different textures and shapes. We also
observed that the matching results of ZSP are spatially biased, concentrating on some specific parts,
e.g., the wheels of the bicycle and the wings of the toyplane. Its incomplete and noisy matches
limit the final pose accuracy. In contrast, our proposed VFM-6D achieves a higher accuracy and
consistently outperforms all competing methods by a large margin. Please refer to the appendix for
qualitative results of VFM-6D on CO3D.

LINEMOD. Table 3 presents the comparative results against three baseline approaches. LatentFu-
sion [68] and OSOP [69] are two zero-shot methods for instance-level unseen object pose estimation.
FS6D is a few-shot method, which requires finetuning on the LINEMOD dataset using a limited
number of instance samples (i.e., 16 shots). As can be observed, although our proposed VFM-6D is
designed for category-level object pose estimation, it is also applicable to the instance-level setting, if
we take each object instance as one object category. VFM-6D outperforms two zero-shot baselines
and achieves comparable performance to the few-shot baseline. This experiment highlights the
practicality of VFM-6D. It is capable of leveraging the precise instance-level CAD models for object
pose estimation. Assuming that the agent encounters a novel object in the environment, VFM-6D is
able to estimate the object pose based on its CAD model when it is available. Otherwise, VFM-6D
can estimate the object pose based on its category information.

4.4 Ablation Studies
Effects of individual modules. To assess the efficacy of each module within VFM-6D, we conducted
evaluations using different design alternatives. First, we substituted the proposed 2D-to-3D feature
lifting module with foundation feature-based template matching [74] for object viewpoint estimation.
Second, we eliminated the proposed object foundation model-based shape representation module and
employed a similar method to [52] to directly estimate the query coordinate map based on pixel-wise
foundation feature similarity. We replaced the original module of VFM-6D separately and evaluated
the performance on CO3D. Table 4 displays the average accuracy over a subset of five categories
from CO3D. For a more detailed view of the results, please refer to the appendix. As we can see,
both modules contribute substantially to enhancing pose accuracy. Compared with conventional
template matching, our proposed foundational feature lifting module demonstrates superior precision
and robustness in object viewpoint estimation. The proposed shape representation module effectively
aligns the query and reference object shapes, thereby refining the accuracy of the predicted query
coordinate map used for object pose estimation.
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Figure 7: Comparison between VFM-6D and two training-from-scratch alternatives.

Table 4: Ablation study of individual
modules of VFM-6D. The average accu-
racy over ‘motorcycle’, ‘bicycle’, ‘chair’,

‘toyplane’, and ‘toytrain’ are reported.
Settings Acc.15◦ Acc.30◦

w/o feature lifting 48.8 62.9
w/o shape module 48.6 66.7
w/o both 35.2 53.0
Ours 58.4 73.8

CLIP MVP DINOv1 DINOv2
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Figure 8: Results of VFM-6D with different vision
foundation models.

Effects of vision foundation model. In this experiment, we aim to answer the following two
questions: (1) Does the pre-trained vision foundation model improve the performance of generalizable
object pose estimation? (2) How about the performance when applying different vision foundation
models to VFM-6D? To answer the first question, we compared VFM-6D with two additional
alternatives: (i) Training the whole VFM-6D from scratch. (ii) Replacing the adopted vision
foundation model with a point cloud Transformer (PCT) [58], and training the whole framework
from scratch. Note that the training of two alternatives is based on the same synthetic data as training
VFM-6D. Fig. 7 presents the evaluation results. As can be observed, in training-from-scratch setting,
the point cloud based alternative (i.e., +PCT) exhibits a higher generalization capability. By pre-
training at scale, the vision foundation model produces robust semantic features for various objects,
which is important for generalizable object pose estimation.

To answer the second question, we evaluated VFM-6D with additional vision foundation models,
including CLIP [19], MVP [75], and DINO-v1 [20]. For each vision foundation model, we also
compared its performance with the corresponding baseline without our proposed feature lifting and
shape matching modules. Fig. 8 depicts the evaluation results. As can be observed, our proposed
VFM-6D can generally boost the object pose estimation performance, utilizing object representations
from different vision foundation models. Thanks to the advanced pre-training strategies adopted in
DINO-v2, this model produces high-quality visual feature maps, which also help to improve the pose
accuracy and achieve the best performance.

Effects of number of reference images. We conducted experiments with different numbers of
reference images varying from 16 to 96, and compared the object pose accuracy before and after the
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Number of reference images

Figure 9: Results with different
number of reference images.

query-reference object shape matching and coordinate map
based object pose estimation. Fig. 9 depicts the evaluation
results on a subset of five categories from CO3D (i.e., ‘mo-
torcycle’, ‘bicycle’, ‘chair’, ‘toyplane’, and ‘toytrain’). In
Fig. 9, ‘baseline’ indicates the object pose accuracy after object
viewpoint estimation (the first stage of VFM-6D). It is highly
relevant to the density of the sampled reference images within
the SO(3) rotation space. As shown in Fig. 9, the baseline
accuracy is relatively sensitive to the number of reference im-
ages. In contrast, VFM-6D is relatively stable with respect to
the number of reference images.

4.5 VFM-6D in Open-world Scenarios
VFM-6D exhibits high generalization capability to handle various open-world scenarios. As shown in
Fig. 10, based on the visual understanding capability of vision-language models (e.g., GPT-4V [78])
and the generation capability of existing text-to-3D generative models (e.g., Meshy [65]), VFM-6D
can effectively exploit the generated category-level shape to parse precise object poses for novel
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Figure 10: VFM-6D application in scenarios from D3Fields (top) [76] and RH20T (bottom) [77].

objects that the agent encounter in open-world environments. This process does not require heavy
instance-level data collection and labeling, and it is not confined to a pre-defined set of object
categories. Moreover, VFM-6D exhibits the potential for parsing sequential object poses from the
robotic manipulation video, further demonstrating its wide application scenarios for robot learning.

5 Conclusion and Discussion
In this paper, we introduce VFM-6D, a new approach for generalizable object pose estimation.
VFM-6D incorporates a feature lifting module for viewpoint estimation and a shape representation
module for robust shape matching. These modules, built on the vision foundation model, allow for
joint estimation of object pose and size through correspondence-based optimization. VFM-6D has
demonstrated superiority in evaluations, with high generalization for application in both instance-level
and category-level pose estimation. Furthermore, its integration with vision-language and generative
models allows effective handling of various open-world scenarios, showcasing its potential to boost
3D understanding capability of multimodal large language models.

VFM-6D has a few limitations that future work can improve. First, since the visual occlusion
affects the pre-trained object representation from the vision foundation model, VFM-6D would
also be affected by severe occlusions. Please refer to the appendix for the performance evaluation
under different occlusion rates. Note that for the robot manipulation scenario, this problem could
be addressed by active perception [46] and mobile manipulation [79] to find the occlusion-free
viewpoint. Second, VFM-6D requires both RGB images and depth data, limiting its applicability to
large-scale internet data, where depth information is often unavailable. In future work, we plan to
explore integrating VFM-6D with depth foundation models [80, 81] to enhance generalizable object
pose estimation. Additionally, RGB-based implicit object shape representations [82, 83] may provide
a promising alternative to eliminate the need for depth data.

Acknowledgements. This project is supported in part by the Shenzhen Portion of Shenzhen-Hong
Kong Science and Technology Innovation Cooperation Zone under HZQB-KCZYB-20200089, in
part by the InnoHK Clusters of the Hong Kong SAR Government via the Hong Kong Centre for
Logistics Robotics, and in part by the National Natural Science Foundation of China (Project No.
62322318). Pieter Abbeel holds concurrent appointments as a Professor at UC Berkeley and as an
Amazon Scholar. This paper describes work performed at UC Berkeley and is not associated with
Amazon.

10



References
[1] Kentaro Wada, Stephen James, and Andrew J Davison. Safepicking: Learning safe object extrac-

tion via object-level mapping. In 2022 International Conference on Robotics and Automation
(ICRA), pages 10202–10208. IEEE, 2022. 1

[2] Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang, and Yang Gao. Copa: General
robotic manipulation through spatial constraints of parts with foundation models. arXiv preprint
arXiv:2403.08248, 2024. 1

[3] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. Pose estimation for augmented reality:
a hands-on survey. IEEE transactions on visualization and computer graphics, 22(12):2633–
2651, 2015. 1

[4] Yongzhi Su, Jason Rambach, Nareg Minaskan, Paul Lesur, Alain Pagani, and Didier Stricker.
Deep multi-state object pose estimation for augmented reality assembly. In 2019 IEEE Interna-
tional Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pages 222–227.
IEEE, 2019. 1

[5] Toon Van de Maele, Tim Verbelen, Ozan Çatal, and Bart Dhoedt. Embodied object representa-
tion learning and recognition. Frontiers in Neurorobotics, 16:840658, 2022. 1

[6] Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world.
arXiv preprint arXiv:2311.12871, 2023. 1

[7] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu, Li Fei-Fei, and Silvio
Savarese. Densefusion: 6d object pose estimation by iterative dense fusion. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 3343–3352, 2019.
1

[8] Jun Zhou, Kai Chen, Linlin Xu, Qi Dou, and Jing Qin. Deep fusion transformer network with
weighted vector-wise keypoints voting for robust 6d object pose estimation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 13967–13977, 2023. 1

[9] Yuan Liu, Yilin Wen, Sida Peng, Cheng Lin, Xiaoxiao Long, Taku Komura, and Wenping Wang.
Gen6d: Generalizable model-free 6-dof object pose estimation from rgb images. In European
Conference on Computer Vision, pages 298–315. Springer, 2022. 1, 3, 4

[10] Ning Gao, Vien Anh Ngo, Hanna Ziesche, and Gerhard Neumann. Sa6d: Self-adaptive few-shot
6d pose estimator for novel and occluded objects. In 7th Annual Conference on Robot Learning,
2023. 1, 3

[11] Yann Labbé, Lucas Manuelli, Arsalan Mousavian, Stephen Tyree, Stan Birchfield, Jonathan
Tremblay, Justin Carpentier, Mathieu Aubry, Dieter Fox, and Josef Sivic. Megapose: 6d pose
estimation of novel objects via render & compare. arXiv preprint arXiv:2212.06870, 2022. 1, 3

[12] Chen Zhao, Tong Zhang, and Mathieu Salzmann. 3d-aware hypothesis & verification for
generalizable relative object pose estimation. arXiv preprint arXiv:2310.03534, 2023. 1, 4

[13] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J Guibas.
Normalized object coordinate space for category-level 6d object pose and size estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2642–2651, 2019. 1, 3, 5, 7

[14] Jiaze Wang, Kai Chen, and Qi Dou. Category-level 6d object pose estimation via cascaded
relation and recurrent reconstruction networks. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4807–4814. IEEE, 2021. 1

[15] Guanglin Li, Yifeng Li, Zhichao Ye, Qihang Zhang, Tao Kong, Zhaopeng Cui, and Guofeng
Zhang. Generative category-level shape and pose estimation with semantic primitives. In
Conference on Robot Learning, pages 1390–1400. PMLR, 2023. 1, 3

11



[16] Hao-Shu Fang, Chenxi Wang, Hongjie Fang, Minghao Gou, Jirong Liu, Hengxu Yan, Wenhai
Liu, Yichen Xie, and Cewu Lu. Anygrasp: Robust and efficient grasp perception in spatial and
temporal domains. IEEE Transactions on Robotics, 2023. 1

[17] Charles Sun, Jdrzej Orbik, Coline Manon Devin, Brian H Yang, Abhishek Gupta, Glen Berseth,
and Sergey Levine. Fully autonomous real-world reinforcement learning with applications to
mobile manipulation. In Conference on Robot Learning, pages 308–319. PMLR, 2022. 1

[18] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. In 7th Annual
Conference on Robot Learning, 2023. 1

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021. 2, 9

[20] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021. 2, 6, 9

[21] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023. 2, 4

[22] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers
need registers. 2024. 2

[23] Renrui Zhang, Xiangfei Hu, Bohao Li, Siyuan Huang, Hanqiu Deng, Yu Qiao, Peng Gao, and
Hongsheng Li. Prompt, generate, then cache: Cascade of foundation models makes strong
few-shot learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15211–15222, 2023. 2, 4

[24] Lewei Yao, Jianhua Han, Xiaodan Liang, Dan Xu, Wei Zhang, Zhenguo Li, and Hang Xu.
Detclipv2: Scalable open-vocabulary object detection pre-training via word-region alignment.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 23497–23506, 2023. 2, 4

[25] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong
Wang. Groupvit: Semantic segmentation emerges from text supervision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18134–18144,
2022. 2, 4

[26] Huaishao Luo, Junwei Bao, Youzheng Wu, Xiaodong He, and Tianrui Li. Segclip: Patch
aggregation with learnable centers for open-vocabulary semantic segmentation. In International
Conference on Machine Learning, pages 23033–23044. PMLR, 2023. 2, 4

[27] Jiaming Sun, Zihao Wang, Siyu Zhang, Xingyi He, Hongcheng Zhao, Guofeng Zhang, and
Xiaowei Zhou. Onepose: One-shot object pose estimation without cad models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6825–6834,
2022. 3

[28] Xingyi He, Jiaming Sun, Yuang Wang, Di Huang, Hujun Bao, and Xiaowei Zhou. Onepose++:
Keypoint-free one-shot object pose estimation without cad models. Advances in Neural Infor-
mation Processing Systems, 35:35103–35115, 2022. 3

[29] Jason Y Zhang, Deva Ramanan, and Shubham Tulsiani. Relpose: Predicting probabilistic
relative rotation for single objects in the wild. In European Conference on Computer Vision,
pages 592–611. Springer, 2022. 3

[30] Amy Lin, Jason Y Zhang, Deva Ramanan, and Shubham Tulsiani. Relpose++: Recovering 6d
poses from sparse-view observations. arXiv preprint arXiv:2305.04926, 2023. 3

12



[31] Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose
estimation and tracking of novel objects, 2024. 3

[32] Jiehong Lin, Lihua Liu, Dekun Lu, and Kui Jia. Sam-6d: Segment anything model meets
zero-shot 6d object pose estimation, 2024. 3

[33] Evin Pınar Örnek, Yann Labbé, Bugra Tekin, Lingni Ma, Cem Keskin, Christian Forster, and
Tomas Hodan. Foundpose: Unseen object pose estimation with foundation features. arXiv
preprint arXiv:2311.18809, 2023. 3

[34] Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. Catgrasp: Learning category-
level task-relevant grasping in clutter from simulation. In 2022 International Conference on
Robotics and Automation (ICRA), pages 6401–6408. IEEE, 2022. 3

[35] Jiehong Lin, Zewei Wei, Yabin Zhang, and Kui Jia. Vi-net: Boosting category-level 6d object
pose estimation via learning decoupled rotations on the spherical representations. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 14001–14011, 2023. 3

[36] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, Linlin Shen, and Ales Leonardis. Fs-net:
Fast shape-based network for category-level 6d object pose estimation with decoupled rotation
mechanism. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1581–1590, 2021. 3

[37] Linfang Zheng, Chen Wang, Yinghan Sun, Esha Dasgupta, Hua Chen, Aleš Leonardis, Wei
Zhang, and Hyung Jin Chang. Hs-pose: Hybrid scope feature extraction for category-level
object pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 17163–17173, 2023. 3

[38] Lu Zou, Zhangjin Huang, Naijie Gu, and Guoping Wang. Gpt-cope: A graph-guided point
transformer for category-level object pose estimation. IEEE Transactions on Circuits and
Systems for Video Technology, 2023. 3

[39] Meng Tian, Marcelo H Ang, and Gim Hee Lee. Shape prior deformation for categorical 6d
object pose and size estimation. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pages 530–546. Springer, 2020.
3, 7

[40] Kai Chen and Qi Dou. Sgpa: Structure-guided prior adaptation for category-level 6d object pose
estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2773–2782, 2021. 4, 7

[41] Xiao Lin, Wenfei Yang, Yuan Gao, and Tianzhu Zhang. Instance-adaptive and geometric-aware
keypoint learning for category-level 6d object pose estimation, 2024. 4

[42] Jiyao Zhang, Mingdong Wu, and Hao Dong. Genpose: Generative category-level object pose
estimation via diffusion models. arXiv preprint arXiv:2306.10531, 2023. 4

[43] Hongtao Wen, Jianhang Yan, Wanli Peng, and Yi Sun. Transgrasp: Grasp pose estimation
of a category of objects by transferring grasps from only one labeled instance. In European
Conference on Computer Vision, pages 445–461. Springer, 2022. 4

[44] Haoran Geng, Helin Xu, Chengyang Zhao, Chao Xu, Li Yi, Siyuan Huang, and He Wang.
Gapartnet: Cross-category domain-generalizable object perception and manipulation via gener-
alizable and actionable parts. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7081–7091, 2023. 4

[45] Andrew S Morgan, Bowen Wen, Junchi Liang, Abdeslam Boularias, Aaron M Dollar, and
Kostas Bekris. Vision-driven compliant manipulation for reliable, high-precision assembly
tasks. arXiv preprint arXiv:2106.14070, 2021. 4

[46] Boshi An, Yiran Geng, Kai Chen, Xiaoqi Li, Qi Dou, and Hao Dong. Rgbmanip: Monocu-
lar image-based robotic manipulation through active object pose estimation. arXiv preprint
arXiv:2310.03478, 2023. 4, 10

13



[47] Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang,
Jiaming Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for
object-centric robotic manipulation. arXiv preprint arXiv:2312.16217, 2023. 4

[48] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7492–7501, 2022. 4

[49] Zhenyu Wang, Yali Li, Xi Chen, Ser-Nam Lim, Antonio Torralba, Hengshuang Zhao, and
Shengjin Wang. Detecting everything in the open world: Towards universal object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11433–11443, 2023. 4

[50] Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L Crowley, and Dominique Vaufreydaz.
Self-supervised transformers for unsupervised object discovery using normalized cut. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14543–14553, 2022. 4

[51] Kaifeng Zhang, Yang Fu, Shubhankar Borse, Hong Cai, Fatih Porikli, and Xiaolong Wang.
Self-supervised geometric correspondence for category-level 6d object pose estimation in the
wild. In The Eleventh International Conference on Learning Representations, 2023. 4, 7

[52] Walter Goodwin, Sagar Vaze, Ioannis Havoutis, and Ingmar Posner. Zero-shot category-level
object pose estimation. In European Conference on Computer Vision, pages 516–532. Springer,
2022. 4, 7, 8, 19

[53] Yamei Chen, Yan Di, Guangyao Zhai, Fabian Manhardt, Chenyangguang Zhang, Ruida Zhang,
Federico Tombari, Nassir Navab, and Benjamin Busam. Secondpose: Se(3)-consistent dual-
stream feature fusion for category-level pose estimation, 2024. 4

[54] Junhao Cai, Yisheng He, Weihao Yuan, Siyu Zhu, Zilong Dong, Liefeng Bo, and Qifeng Chen.
Ov9d: Open-vocabulary category-level 9d object pose and size estimation, 2024. 4

[55] Chen Zhao, Tong Zhang, Zheng Dang, and Mathieu Salzmann. Dvmnet: Computing relative
pose for unseen objects beyond hypotheses. arXiv preprint arXiv:2403.13683, 2024. 4

[56] Yang Xiao, Yuming Du, and Renaud Marlet. Posecontrast: Class-agnostic object viewpoint
estimation in the wild with pose-aware contrastive learning. In 2021 International Conference
on 3D Vision (3DV), pages 74–84. IEEE, 2021. 5, 6, 7

[57] Xingyu Liu, Gu Wang, Yi Li, and Xiangyang Ji. Catre: Iterative point clouds alignment for
category-level object pose refinement. In European Conference on Computer Vision, pages
499–516. Springer, 2022. 5

[58] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu, Yonghong Tian, and Li Yuan. Masked
autoencoders for point cloud self-supervised learning. In European conference on computer
vision, pages 604–621. Springer, 2022. 5, 9

[59] Maximilian Denninger, Martin Sundermeyer, Dominik Winkelbauer, Dmitry Olefir, Tomas
Hodan, Youssef Zidan, Mohamad Elbadrawy, Markus Knauer, Harinandan Katam, and Ahsan
Lodhi. Blenderproc: Reducing the reality gap with photorealistic rendering. In 16th Robotics:
Science and Systems, RSS 2020, Workshops, 2020. 6, 17

[60] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015. 6, 7, 17

[61] Giorgia Pitteri, Michaël Ramamonjisoa, Slobodan Ilic, and Vincent Lepetit. On object sym-
metries and 6d pose estimation from images. In 2019 International conference on 3D vision
(3DV), pages 614–622. IEEE, 2019. 6

[62] Yang Fu and Xiaolong Wang. Category-level 6d object pose estimation in the wild: A semi-
supervised learning approach and a new dataset. In Advances in Neural Information Processing
Systems, 2022. 7

14



[63] Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler, Luca Sbordone, Patrick Labatut,
and David Novotny. Common objects in 3d: Large-scale learning and evaluation of real-life
3d category reconstruction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10901–10911, 2021. 7

[64] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt Konolige, Nassir
Navab, and Vincent Lepetit. Multimodal templates for real-time detection of texture-less objects
in heavily cluttered scenes. In 2011 international conference on computer vision, pages 858–865.
IEEE, 2011. 7

[65] Creat stunning 3d models with ai. https://www.meshy.ai/, 2024. 7, 9

[66] Jiehong Lin, Zewei Wei, Zhihao Li, Songcen Xu, Kui Jia, and Yuanqing Li. Dualposenet:
Category-level 6d object pose and size estimation using dual pose network with refined learning
of pose consistency. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 3560–3569, 2021. 7

[67] Yan Di, Ruida Zhang, Zhiqiang Lou, Fabian Manhardt, Xiangyang Ji, Nassir Navab, and
Federico Tombari. Gpv-pose: Category-level object pose estimation via geometry-guided point-
wise voting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6781–6791, 2022. 7

[68] Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter Fox. Latentfusion: End-to-end
differentiable reconstruction and rendering for unseen object pose estimation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 10710–10719,
2020. 7, 8, 20

[69] Ivan Shugurov, Fu Li, Benjamin Busam, and Slobodan Ilic. Osop: A multi-stage one shot object
pose estimation framework. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6835–6844, 2022. 7, 8, 20

[70] Yisheng He, Yao Wang, Haoqiang Fan, Jian Sun, and Qifeng Chen. Fs6d: Few-shot 6d pose
estimation of novel objects. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6814–6824, 2022. 7, 8, 20

[71] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr: Detector-free
local feature matching with transformers. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8922–8931, 2021. 8, 19

[72] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Pollefeys. Lightglue: Local feature
matching at light speed. International Conference on Computer Vision, 2023. 8, 19

[73] Fabio Poiesi and Davide Boscaini. Learning general and distinctive 3d local deep descriptors
for point cloud registration. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(3):3979–3985, 2022. 8, 19

[74] Van Nguyen Nguyen, Yinlin Hu, Yang Xiao, Mathieu Salzmann, and Vincent Lepetit. Tem-
plates for 3d object pose estimation revisited: Generalization to new objects and robustness
to occlusions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 6771–6780, 2022. 8

[75] Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
Real-world robot learning with masked visual pre-training. In Conference on Robot Learning,
pages 416–426. PMLR, 2023. 9

[76] Yixuan Wang, Zhuoran Li, Mingtong Zhang, Katherine Rose Driggs-Campbell, Jiajun Wu,
Li Fei-Fei, and Yunzhu Li. D3fields: Dynamic 3d descriptor fields for zero-shot generalizable
robotic manipulation. In Towards Generalist Robots: Learning Paradigms for Scalable Skill
Acquisition@ CoRL2023, 2023. 10

[77] Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu, Junbo Wang, Haoyi Zhu, and Cewu
Lu. Rh20t: A robotic dataset for learning diverse skills in one-shot. In RSS 2023 Workshop on
Learning for Task and Motion Planning, 2023. 10

15

https://www.meshy.ai/


[78] Gpt-4v(ision) system card. https://openai.com/index/gpt-4v-system-card/, 2023. 9

[79] Jiazhao Zhang, Nandiraju Gireesh, Jilong Wang, Xiaomeng Fang, Chaoyi Xu, Weiguang Chen,
Liu Dai, and He Wang. Gamma: Graspability-aware mobile manipulation policy learning based
on online grasping pose fusion. arXiv preprint arXiv:2309.15459, 2023. 10

[80] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 12179–
12188, 2021. 10

[81] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. arXiv preprint
arXiv:2401.10891, 2024. 10, 17, 21

[82] Chen Zhao, Tong Zhang, and Mathieu Salzmann. 3d-aware hypothesis & verification for general-
izable relative object pose estimation. In International Conference on Learning Representations,
2024. 10

[83] Francesco Di Felice, Alberto Remus, Stefano Gasperini, Benjamin Busam, Lionel Ott, Federico
Tombari, Roland Siegwart, and Carlo Alberto Avizzano. Zero123-6d: Zero-shot novel view
synthesis for rgb category-level 6d pose estimation. arXiv preprint arXiv:2403.14279, 2024. 10

[84] Shinji Umeyama. Least-squares estimation of transformation parameters between two point
patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence, 13(04):376–380,
1991. 18

[85] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of the
ACM, 24(6):381–395, 1981. 18

[86] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and Carsten
Rother. Learning 6d object pose estimation using 3d object coordinates. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceed-
ings, Part II 13, pages 536–551. Springer, 2014. 20

16

https://openai.com/index/gpt-4v-system-card/


Appendix

In this appendix, we provide additional results and implementation details that are not included in the
main paper due to the space limit: (A) More detailed information for the synthetic data that we used
for VFM-6D training. (B) Implementation details for the development and training of VFM-6D. (C)
Qualitative comparison results for object viewpoint estimation. (D) More detailed quantitative and
qualitative results on the CO3D dataset. (E) Quantitative evaluation results on all 13 object instance
of LINEMOD and the corresponding qualitative results. (F) Object pose estimation results under
different occlusion rates. (G) Object pose estimation results with the depth map predicted by a depth
estimation foundation model [81].

A. Synthetic Data for VFM-6D Training

Figure 11: 20 object categories used for generating the synthetic data and their example images.

The synthetic dataset utilized for the training of VFM-6D, as depicted in Fig. 11, was generated using
Blender. This dataset encompasses twenty frequently encountered object categories. For each of these
categories, six distinct instances varying in shape were gathered from ShapeNet [60]. To enhance
the diversity of the synthetic training data, we introduced randomness in several aspects during the
Blender simulation. These include the pose and texture of the object, the texture of the background,
the conditions of lighting, and the viewpoints of the camera. Similar to [59], two aspects of pose
sampling are adopted to generate synthetic data with diverse object poses: (1) object on-surface
sampling. The object would be placed upright onto a plane of the synthetic scene, and the in-plane
position and orientation of the object would be randomly sampled. (2) camera pose sampling. The
camera location is first sampled around the object using the "uniform_elevation" sampling strategy.
Then, the camera rotation is further determined by a point of interest which is randomly sampled
from the scene, plus a sampled camera in-plane rotation within a specified range. For each category,
an object instance was randomly selected and used to synthesize a total of 10K RGBD images.
Concurrently, the object mask and ground-truth object coordinate map were synthesized for each
image. The synthetic training data comprises 200K RGBD images. It is important to note that the
object categories employed for VFM-6D training do not overlap with any evaluation data utilized in
the experiments.
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Query (a) (b) (c)

Figure 12: Comparative results for object viewpoint estimation. We present the top-2 reference
images found by different approaches.(a) results w/o the proposed foundation feature lifting module.
(b) results of training from scratch + PCT. (c) results of proposed VFM-6D.

B. Implementation Details

We developed VFM-6D based on DINOv2-s. Both query and reference images are cropped and
resized to 224 × 224, and are tokenized with a patch size of 14 before being fed into the vision
foundation model backbone for feature extraction. We set n = m = 1024. It means that for both
query and reference images, we randomly sample 1024 object pixels based on the object mask.
These pixels are further lifted into object point clouds based on the depth map and camera intrinsic
parameters. For the proposed 2D-to-3D foundation feature lifting module, we set N1 = 1, and the 3D
position embedding layer adopts a 2-layer MLP. For the shape representation module, we set N2 = 4.
We set τ = 0.05 for the pose-aware contrastive loss, and β = 0.1 for the smooth L1 loss. Unless
specifically pointed out, we use k = 64 reference images for query-reference matching and object
pose estimation. Please refer to Sec.F for results with different numbers of reference images. During
training, we use Adam optimizer with a base learning rate of 1× 10−4 and halved every 3 epochs.
The total training epoch is set to 15 with a batch size of 8. All experiments were conducted on a
server with two NVIDIA-A40-48GB GPUs. Given the predicted NOCS coordinate map and object
point cloud, we exploit Umeyama algorithm [84] to jointly optimize object pose and size parameters.
RANSAC [85] was applied to VFM-6D and all other correspondence-based competing methods for
robust estimation.

C. Results for Object Viewpoint Estimation

Fig. 12 compares the object viewpoint estimation results of different approaches. More specifically,
we compare VFM-6D with two approaches. The first one is VFM-6D without our proposed 2D-to-3D
foundation feature lifting module, which estimate object viewpoint by foundation-feature-based
template matching and corresponds to ‘w/o feature lifting’ or ‘w/o both’ in Table 4 of the main
paper. The second one is the method that replaces the adopted vision foundation model with a point
cloud Transformer and training the whole framework from scratch, which corresponds to ‘training
from scratch+PCT’ in Fig. 7 of the main paper. We provide comparative results to facilitate the
understanding of their performance drop when compared with VFM-6D. As can be observed in
Fig. 12, foundation-feature-based template matching suffers from the shape variation between query
and reference images and associates the query image with very distant references. Although PCT
boosts the performance in the setting of ‘training from scratch’, it still suffer a limited generalization
capability and would fail to match the query image with its correct reference. In contrast, VFM-6D is
much more robust in object viewpoint estimation.
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D. More Results on CO3D

As shown in Table 5, we present detailed comparative results for all 20 object categories. We show
qualitative results of VFM-6D in Fig. 13. It can be observed that our proposed VFM-6D can precisely
associate the query image with its close reference image. Moreover, VFM-6D can robustly match
the query object shape with the reference one, and can estimate object pose and size accurately for a
wide range of objects in different textures and shapes.

Table 5: Category-level object pose estimation results on 20 unseen categories of CO3D dataset. We
report per-category and average Acc.15◦ / Acc.30◦ for quantitative evaluation.

Method Motorcycle Backpack Bicycle Teddybear Book Car Chair

LoFTR [71] 4.2 / 10.9 1.1 / 2.8 2.2 / 7.8 12.5 / 18.9 0.1 / 1.3 30.0 / 36.2 8.9 / 15.2
LightGlue [72] 4.2 / 11.8 0.5 / 4.9 14.4 / 27.0 8.2 / 19.5 1.0 / 3.0 7.5 / 13.8 3.5 / 8.2
GeDi [73] 4.3 / 11.5 0.5 / 2.7 5.6 / 17.6 9.4 / 25.7 0.6 / 1.7 0.5 / 3.0 10.5 / 23.0
ZSP [52] 25.0 / 49.2 4.4 / 13.0 27.0 / 49.3 23.7 / 43.4 1.5 / 3.2 61.8 / 69.3 30.0 / 41.6

Ours 56.4 / 76.3 30.6 / 47.4 46.5 / 59.2 25.2 / 54.4 41.9 / 43.5 55.6 / 74.4 72.1 / 86.8

Method Handbag Hydrant Keyboard Mouse Toaster Hairdryer Laptop

LoFTR [71] 5.8 / 12.6 17.7 / 39.1 7.2 / 12.7 3.4 / 5.2 7.2 / 12.9 4.6 / 8.4 40.3 / 47.0
LightGlue [72] 10.8 / 28.0 8.0 / 22.1 8.0 / 15.8 0.4 / 3.2 5.7 / 9.7 0.5 / 3.7 26.2 / 30.6
GeDi [73] 5.7 / 15.3 19.6 / 52.8 6.4 / 15.0 1.9 / 10.5 0.2 / 0.8 6.4 / 16.7 7.7 / 13.4
ZSP [52] 23.6 / 49.9 38.1 / 88.9 21.7 / 29.8 18.1 / 40.7 26.1 / 36.0 33.9 / 63.5 80.7 / 86.4

Ours 75.5 / 89.5 35.4 / 91.6 57.1 / 57.1 38.3 / 57.3 44.2 / 47.7 63.0 / 85.2 96.8 / 97.5

Method Remote Toilet Toybus Toyplane Toytrain Toytruck Average

LoFTR [71] 4.8 / 8.9 2.4 / 8.5 2.1 / 7.1 6.1 / 2.1 5.9 / 11.1 2.0 / 4.9 8.4 / 13.7
LightGlue [72] 2.9 / 4.6 0.3 / 1.5 3.9 / 13.1 3.5 / 9.5 6.2 / 15.4 2.5 / 8.3 5.9 / 12.7
GeDi [73] 4.1 / 10.6 1.1 / 4.3 5.0 / 12.4 6.0 / 13.8 7.6 / 12.2 2.1 / 4.3 5.3 / 13.4
ZSP [52] 13.2 / 23.6 8.4 / 25.0 14.9 / 43.3 34.9 / 49.5 41.2 / 57.2 14.2 / 30.5 27.1 / 44.7

Ours 33.3 / 36.8 47.1 / 75.1 24.8 / 53.4 55.1 / 66.6 61.9 / 80.2 43.4 / 67.8 50.2 / 67.4

Figure 13: Qualitative results of VFM-6D on ‘bicycle’, ‘mouse’, ‘toyplane’, and ‘toaster’ of CO3D.
From left to right, the 1st and 5th columns are matched reference images, the 2nd and 6th columns
are coordinate maps of reference images, the 3rd and 7th columns are predicted coordinate maps for
the query image, and the 4th and 8th columns are object pose estimation results.

E. More Results on LINEMOD

As shown in Table 6, we present detailed comparative results for all 13 object instances in LINEMOD.
As can be observed, VFM-6D is also applicable to the instance-level setting, if we take each
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object instance as one object category. VFM-6D outperforms two zero-shot baselines and achieves
comparable performance to the few-shot baseline. Fig. 14 depicts qualitative results on LINEMOD.

Table 6: Instance-level object pose estimation results measured by ADD-0.1d on LINEMOD dataset.
We report average score over all instances and per-instance score for an illustrative subset of instances.
Please refer to the appendix for full per-instance results.

Method ape bench. camera can cat driller duck

LatentFusion [68] 88.0 92.4 74.4 88.8 94.5 91.7 68.1
OSOP [69] 86.1 94.6 69.3 80.4 88.0 79.5 92.7
FS6D [70] 78.0 88.5 91.0 89.5 97.5 92.0 75.5

Ours 88.5 91.9 97.2 74.9 96.4 85.1 88.0

Method eggbox glue holep. iron lamp phone Avg.

LatentFusion [68] 96.3 94.5 82.1 74.6 94.7 91.5 87.1
OSOP [69] 98.2 69.5 92.7 99.4 48.5 66.1 82.0
FS6D [70] 99.5 99.5 96.0 87.5 97.0 97.5 91.5

Ours 97.1 99.1 91.2 97.5 77.0 89.8 90.3

Figure 14: Qualitative results of VFM-6D on LINEMOD. For each object instance, the left image is
the reference image found by VFM-6D. The right image is the corresponding query image, on which
the object pose estimation results are overlayed.

F. Object Pose Estimation Results under Occlusions

To investigate this problem, we first evaluated VFM-6D under different levels of occlusion on the
LINEMOD-Occlusion dataset [86]. Moreover, we also conducted more comprehensive evaluations
on the CO3D dataset. Since scenes from CO3D are generally occlusion-free, we randomly masked
out different percentages of image regions to mimic the effect of object occlusion. Table 7 and Table 8
report the quantitative evaluation results. These results show that VFM-6D is relatively robust to
small and moderate occlusion rates, and would suffer an apparent performance drop when facing
severe occlusions larger than 60% occlusion rate.
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Table 7: Object pose estimation results on LINEMOD and LINEMOD-Occlusion datasets.

No occlusion <30% 30%-60% >60%

ADD-0.1d 90.3 87.4 69.4 32.4

Table 8: Object pose estimation results on 5 representative object categories of the CO3D dataset.

No occlusion <30% 30%-60% >60%

Motorcycle 56.4 / 76.3 54.9 / 70.1 43.3 / 64.1 32.3 / 51.0
Chair 72.1 / 86.8 68.2 / 82.0 55.3 / 74.1 38.4 / 57.7
Bicycle 46.5 / 59.2 45.9 / 60.5 42.9 / 61.6 39.0 / 60.2
ToyPlane 55.1 / 66.6 53.0 / 64.3 44.8 / 56.4 45.0 / 55.5
ToyTrain 61.9 / 80.2 61.6 / 77.1 46.3 / 76.6 40.9 / 71.1

G. Object Pose Estimation Results with Depth Anything

To investigate the performance of VFM-6D in some RGB-only scenarios, we input the RGB image
into the pre-trained depth-anything [81] model to recover the corresponding metric depth. Then,
we input the RGB image and the recovered depth into our VFM-6D for object pose estimation.
Without any additional training, Table 9 reports the evaluation results on the CO3D dataset. As can
be observed, VFM-6D can effectively leverage the depth map estimated from the RGB image for
generalizable object pose estimation. Note that in the context of category-level object pose estimation,
we usually jointly estimate object size and pose parameters. Based on the estimated metric depth
map, our method can recover object rotation precisely and can recover object size and translation up
to a global scale factor. The RGB-only variant achieves comparable rotation accuracy on average
when compared with the original RGBD-based performance. Please also refer to Fig. 15 for detailed
qualitative pose prediction results.

Table 9: Object pose estimation results with Depth-anything model on the CO3D dataset.

Method Motorcycle Backpack Bicycle Teddybear Book Car Chair

RGB-D 56.4 / 76.3 30.6 / 47.4 46.5 / 59.2 25.2 / 54.4 41.9 / 43.5 55.6 / 74.4 72.1 / 86.8

RGB-only 49.7 / 68.4 26.4 / 48.5 44.6 / 52.5 29.0 / 56.9 38.5 / 39.7 43.1 / 63.3 81.5 / 94.4

Method Handbag Hydrant Keyboard Mouse Toaster Hairdryer Laptop

RGB-D 75.5 / 89.5 35.4 / 91.6 57.1 / 57.1 38.3 / 57.3 44.2 / 47.7 63.0 / 85.2 96.8 / 97.5

RGB-only 40.2 / 77.3 61.2 / 98.9 29.4 / 48.8 23.9 / 52.5 39.1 / 43.9 52.8 / 70.6 85.2 / 98.2

Method Remote Toilet Toybus Toyplane Toytrain Toytruck Average

RGB-D 33.3 / 36.8 47.1 / 75.1 24.8 / 53.4 55.1 / 66.6 61.9 / 80.2 43.4 / 67.8 50.2 / 67.4
RGB-only 22.5 / 39.2 53.5 / 80.1 21.3 / 46.9 46.0 / 63.2 51.9 / 79.5 37.7 / 62.0 43.9 / 64.2

H. Discussion on Broader Impacts

In this work, we present a generalizable object pose estimation framework VFM-6D for instance-
level unseen object pose estimation and category-level object pose estimation for novel categories.
VFM-6D is crucial for the development of safe and reliable robotic manipulation processes. By
accurately parsing the novel object pose in the scene, VFM-6D enables robots to perceive and interact
with objects in their environment with increased accuracy and confidence. This capability empowers
robots to handle delicate or complex novel objects, reducing the risk of damage or errors during
manipulation tasks. The precise and adaptable pose estimation provided by VFM-6D facilitates
informed decision making, improves safety measures, and supports sustainable practices.
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‘Motorcycle’ ‘Backpack’ ‘Bicycle’ ‘ToyPlane’

‘Car’ ‘Chair’ ‘Handbag’ ‘Laptop’

Figure 15: Qualitative results of VFM-6D + Depth-anything model on the CO3D dataset. For each
pair of results, the left image depicts the predicted depth map and the right image visualizes the
predicted object pose.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clarify our contributions in Sec. 1, and experimentally verify them in
Sec. 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec. 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Sec. 4 and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
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• While we encourage the release of code and data, we understand that this might not be
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
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versions (if applicable).
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results?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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material.
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• The assumptions made should be given (e.g., Normally distributed errors).

25

https://vfm-6d.github.io/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Sec. 4 and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully read NeurIPS Code of Ethics and ensure it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use Wild6D, CO3D, LINEMOD, ShapeNet, D3Fields, and RH20T datasets,
and cite their papers.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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