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ABSTRACT

Fine-tuning pre-trained large-scale text-to-image models on specialized datasets
has gained popularity for downstream image generation tasks. However, direct
fine-tuning of Stable-Diffusion on such datasets often falls short of yielding sat-
isfactory outcomes. To delve into the underlying reasons, we introduce a novel
perspective to investigate the intrinsic factors impacting fine-tuning outcomes. We
identify that the limitations in fine-tuning stem from an inability to effectively im-
prove text-image alignment and reduce text-image alignment drift. To tackle this
issue, we leverage the powerful optimization capabilities of contrastive learning
for feature distribution. By explicitly refining text feature representations during
generation, we enhance text-image alignment and minimize the alignment drift,
thereby improving the fine-tuning performance on specialized datasets. Our ap-
proach is plug-and-play, resource-efficient, and seamlessly integrates with existing
controllable generation methods. Experimental results demonstrate a significant
enhancement in fine-tuning performance achieved by our method.

1 INTRODUCTION

In recent years, fine-tuning models pre-trained on large-scale datasets has become the research
paradigm for downstream tasks (Raffel et al., 2020; |Chowdhery et al., |2022; [Zhang et al.| 2022}
Hoffmann et al.} 2022). Image generation is no exception, with newly developed large-scale text-to-
image models (e.g., Stable-Diffusion (Rombach et al., 2022)), GLIDE (Nichol et al.|2021), DALLE-
2 (Ramesh et al., [2022)) demonstrating impressive performance. Among these, Stable-Diffusion
stands out as a widely used, open-source, and arguably one of the most effective large-scale text-to-
image models.

When faced with a variety of text-to-image downstream scenarios, especially on specialized
datasets (Wah et al.; Nilsback & Zisserman, 2008) (e.g., buildings of distinct styles, unique sub-
species, specific individual faces), researchers often fine-tune Stable-Diffusion to achieve generation
effects that better capture the domain’s characteristics (Ruiz et al.,[2023; Gal et al.,|2022). However,
the performance in practical applications doesn’t always meet our expectations. In many cases,
even when optimizing the text encoder concurrently, directly fine-tuning the Stable-Diffusion on
these datasets fails to produce satisfactory results (see Figure[I)). It cannot accurately generate data
distribution and sample features consistent with the target dataset.

A natural approach is to provide more detailed control information, such as refined textual descrip-
tions or more precise positional details. However, this strategy has inherent drawbacks. Using just
text or positional information such as coordinates, dimensions, or scales often fails to encapsulate
the full complexity and nuances of an image. Moreover, it escalates the annotation costs. As a
result, the need for a more universal, straightforward, and efficient fine-tuning method has become
pressing.

To address this, we delved deeply into the intrinsic factors affecting fine-tuning performance from
the perspective of feature distribution. We introduced two indicators, text-image alignment and text-
image alignment drift, and deeply analyzed them across different data and models. We found that
although direct fine-tuning enhanced text-image alignment and reduced text-image alignment drift,
the gains were relatively limited. This suboptimal performance can be attributed to the diffusion
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model’s indirect learning approach: rather than directly learning textual feature representations, it
learns indirectly through predictions in the image space.

In light of this, we employed a contrastive learning approach (Radford et al.| 2021), leveraging its
powerful capability in feature distribution optimization. By directly optimizing textual feature repre-
sentations during generation, we substantially enhanced the text-to-image alignment and reduced the
text-to-image alignment drift. This improvement significantly boosted the fine-tuning performance
on specialized datasets.

Our contributions are as follows:

* We conducted a quantitative analysis of the fine-tuning process in text-to-image generation
models from a feature distribution perspective, uncovering the intrinsic factors affecting
fine-tuning outcomes.

* We introduced a universal fine-tuning approach for text-to-image generation models tai-
lored to specialized datasets. For scenarios emphasizing a specific niche or those with
minimal inter-class variances—which are prevalent in downstream tasks—our model of-
fers significant performance improvements.

* Qur fine-tuning strategy is plug-and-play, demanding minimal additional resources and
placing low requirements on the dataset.

Indigo Bunting Red-winged Blackbird

Figure 1: Images showcasing the Indigo Bunting and Red-winged Blackbird—two bird species from
the CUB dataset. ‘SD’ is short for Stable-Diffusion, ‘FT” is short for fine-tuning. ‘FT-unet’ implies
that the text encoder is frozen, and only the unet is optimized. The generation results of pre-trained
large-scale text-to-image models on these specialized datasets are often lacking, underscoring the
need for fine-tuning. Traditional fine-tuning methods, whether focusing solely on the unet or jointly
with the text encoder, fail to yield satisfactory outcomes. For illustration, while the Indigo Bunting
is distinctively recognized by its vibrant blue hue, the produced image doesn’t accurately reflect
this characteristic color. Likewise, the emblematic red patches on the wings of the Red-winged
Blackbird are misrepresented in terms of their placement by the fine-tuned model.
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2 RELATED WORK

2.1 LARGE-SCALE TEXT-TO-IMAGE DIFFUSION MODELS

Building upon the ADM (Dhariwal & Nichol,2021) architecture, GLIDE (Nichol et al.,2021) incor-
porated a text encoder and established a 3.5 billion parameter text-conditional diffusion model using
classifier free guidance (Ho & Salimans, [2022). Its performance significantly surpasses previous
diffusion models. Subsequently, Stable-Diffusion (Rombach et al., 2022) trains within the VAE’s
latent space and utilizes cross-attention to fuse text and image features, achieving highly realistic
image generation. While models like DALLE2 (Ramesh et al.l |2022) and Imagen (Saharia et al.,
2022)) also achieve comparable results, Stable-Diffusion, as an open-source model, has been widely
adopted in downstream tasks and comes with a plethora of applications.

2.2 FINE-TUNING TEXT-TO-IMAGE MODEL

Since Stable-Diffusion is an open source model, most applications of text-to-image models are
designed based on it. The Dreambooth method (Ruiz et al., [2023) has recently garnered signifi-
cant attention in few shot image generation. Innovatively, Dreambooth uses rare tokens as unique
identifiers, associates them with specific subjects, and fine-tunes the backbone and text encoder in
Stable-Diffusion to synthesize relevant, photorealistic images. Notably, the Dreambooth method
only addresses scenarios where the training set consists of a single object type. When the training
set encompasses multiple categories or objects (for instance, the CUB dataset contains 200 bird
species), Dreambooth requires training a separate generator for each category or object, which is
highly inefficient.

In addition, |Guo et al.|(2023)) achieve zero-shot image generation by learning the feature represen-
tation of text. Furthermore, a series of studies have explored various fine-tuning techniques with
an emphasis on extending the model’s functionalities (Zhang & Agrawala), |2023; Mou et al., [2023).
These methods typically incorporate and optimize additional network structures while keeping the
original text-to-image model frozen. This adaptation allows the model to accept alternative input
forms, such as canny edge or user sketching.

Additionally, some research efforts have delved into fine-tuning diffusion models from the perspec-
tive of improving computational efficiency. For instance, the Low Rank Approximation (LORA)
approach aims to alleviate the computational demands of training large-scale models and has been
demonstrated to be effectively applied in the fine-tuning of text-to-image models.

3 IMPACT OF FINE-TUNING THE DIFFUSION MODEL ON FEATURE
REPRESENTATIONS

In this section, we explore the impact of fine-tuning on Stable-Diffusion from the perspectives of
text-image alignment and text-image alignment drift, both grounded in feature distribution analysis.
Subsequently, leveraging these two indicators, we conducted a quantitative analysis on both real and
generated data to evaluate the impact of fine-tuning on feature distributions. We choose CLIP as
our multimodal feature extractor, which consists of a text encoder and an image encoder. Notably,
the CLIP text encoder happens to be a component of Stable-Diffusion, therefore, fine-tuning Stable-
Diffusion will also correspondingly alter the feature representation capability of the text encoder
within it.

Throughout this paper, ’fine-tuning Stable-Diffusion’ refers to jointly optimizing UNet and the text
encoder, as opposed to solely optimizing UNet. Prior works indicate that joint optimization yields
superior results, albeit with higher computational demands. This phenomenon is also illustrated in

Figure
3.1 TEXT-IMAGE ALIGNMENT
For the pre-trained CLIP model, the features extracted by the text encoder and image encoder from

different modalities are aligned. The alignment of text and image features in the CLIP model enables
a deeper semantic understanding between visuals and text, facilitates cross-modal tasks, and ensures
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consistent and broad generalization across tasks. The contrastive loss function can be a indicator to
assess this alignment between image and text data.

We found that the alignment of text and image features also affects the quality of generation (See
Figure [2a). We used Stable-Diffusion to generate an image for each prompt on the CUB test set.
Afterward, we randomly selected multiple categories and calculated the clip contrastive loss and
FID for the generated results of each category. As can be observed from FigurgZ2a| there is a clear
positive correlation between FID and clip contrastive loss.

Then, we examine if fine-tuning can enhance the alignment between image and text data. For both
the unfine-tuned and fine-tuned Stable-Diffusion, we extract the text encoder and pair it with the
image encoder from CLIP to form a multimodal feature extractor, then use the contrastive loss
function as a indicator to assess the alignment between text and image data. By randomly selecting
ten batches of data, we compute the intra-batch contrastive loss.

The results are shown in Figure Given CLIP’s extensive pre-trained on large datasets, there
remains room for optimizing its alignment on specific downstream datasets like CUB. However, the
decrease in fine-tuned Stable-Diffusion (green lines) is not significantly distinct from the unfine-
tuned model (yellow lines). It means that although fine-tuning in greupdated the weights of the text
encoder, there was no significant improvement in the text-image alignment.
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(a) Text-image alignment and FID (b) Result on generated data.

Figure 2: Left: The relationship between text-image alignment and FID. The regression line was
obtained using the method of least squares. Right: ‘SD’ is short for unfine-tuned ‘Stable-Diffusion’,
‘SD-FT” is short for ‘fine-tuned Stable-Diffusion’. For each model, we conducted an analysis based
on the real data and its generated data.

Conclusion: Fine-tuning Stable-Diffusion doesn’t significantly aid the text encoder in aligning text
and image data.

3.2 TEXT-IMAGE ALIGNMENT DRIFT

After examining the alignment between the text feature x and image feature y for each model, we
now turn our attention to the relationship between their respective changes, Ax and Ay. We refer
to this relationship as the fext-image alignment drift. Consistent drift implies that altering the input
text would consistently modify the generated image, a property beneficial for semantic interpolation
(Song et al.,[2020) and image editing (Hertz et al., 2022).

For each model, We still extract its text encoder and pair it with CLIP image encoder as a multi-
modal feature extractor. Then we randomly select two categories, and compute the Fréchet Distance
between the text feature of the two categories as Ax;, and the Fréchet Distance between the image
feature of the two categories as Ay;. After repeating the above process N times, we obtain the data
{(Az;, Ay;)} Y |. We visualize the results using t-SNE and plot them in Figure

To intuitively discern the data distribution across different models, we visualize each model’s data
separately using contour plots, as illustrated in Figure
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Figure 3: T-SNE result of feature alignment drift. SD-real: the unfine-tuned model on the real
data. SD: the unfine-tuned model on corresponding generated data. SD-FT: the fine-tuned model
on corresponding generated data. OQurs: our model on corresponding generated data.
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Figure 4: KDE of different models.

It’s evident that the data of unfine-tuned Stable-Diffusion (yellow) is predominantly in the top-right
corner, substantially deviating from the real data (blue). Even after fine-tuning, the data (green)
remains considerably off from real data. This partially explains the challenge in fine-tuning the gen-
erated images by merely adjusting the text since the correlation between text and image alterations
becomes disrupted. The red data points represent our method, elaborated in the subsequent section.

Conclusion: Fine-tuning struggles to capture the inherent alignment drift between text and image
features.

4 CONTRASTIVE GENERATION

The analysis in the previous section revealed that direct fine-tuning on specialized datasets does
not significantly improve the two indicators related to feature distribution that influence the gener-
ation effect. Therefore, during the training of our generative model, we fully exploit the ability of
contrastive learning to optimize feature distributions, directly enhance the textual feature represen-
tation, rectify the two factors affecting the fine-tuning results, and thereby improve the fine-tuning
performance.

Multimodal contrastive learning often operates on a sample-level basis. For image-text pairs (z;, ¢;),
we construct positive and negative samples (x;,¢;). When ¢ = j, x; and ¢; are positive samples
for each other, otherwise, they are negative samples for each other. However, in real-world sce-
narios, specialized datasets might only have category names without captions. Thus, besides in-
tegrating sample-level contrastive learning with the generation process, we also emulate scenarios
with datasets lacking captions and introduce category-level contrastive learning where images and
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texts within the same category mutually serve as positive samples. The overview of our approach is
illustrated in Figure[3]

Stable-Diffusion Sample-level Category-level
P o
| S VAE
Encoder

* Frozen
\ i ----> Skip Connection
T T ==> Cross Attention }
I Err(i;((;er [ Encoder Hidden States ]—-‘ Projector Postive Pair
/ Negetive Pair

Figure 5: Overview of our approach.

Prompt Design A well-structured prompt format lays the foundation for optimizing textual fea-
tures. Initially, the common prompt format for multimodal models was ““a photo of [class].”(Radford
et al.}2021). Additionally, in the design of prompts for diffusion models, the concept of an indicator
has proven to be a successful approach (Ruiz et al.| [2023). The primary idea is to utilize a specific
token as a hint for a batch of data, allowing the model to learn the specific data set through that hint.
However, for scenarios with numerous categories, it’s challenging to allocate a rare token for each
category simultaneously. Hence, we sought a more universal solution.

We turned our attention to the characteristics of the tokenizer’s vocabulary. Tokenizers are widely
recognized to exhibit three distinct characteristics: (i) Mapping low-frequency words to larger IDs;
(i1) Assigning newly encountered tokens to newly generated IDs; and (iii) Avoiding the splitting of
pure numbers. Given these insights, we adopted the strategy of using the category index incremented
by 50,000 as the hint. This approach resonates with the peculiarities of specific datasets (such as
face databases), wherein each entity or category is uniquely pinpointed by an index.

In summary, for datasets with captions, we employ the sample-level approach, and the prompt is
designed as “[id of class] + 50000, a photo of [class], [caption]”. for those without captions, we
employ the category-level approach, the prompt is designed as “[id of class] + 50000, a photo of
[class]”.

Sample-level Contrastive Generation We use the bidirectional contrastive loss in CLIP model,
which aimed at aligning image and text representations in a mutual embedding space. Given an
image representation v and a text representation ¢, the similarity between them is measured as:

.
vt
sim(v,t) = ————. (1)
) = T,

The objective of the loss is to augment the similarity between matching image-text pairs and dimin-
ish the similarity with negative samples. Formally, for a given image v; and its corresponding text
description ¢;, the loss considering both directions is:

exp(sim(vi, t;)/7) exp(sim(v;, t;)/7)
~ - lo ~ - ,
> j—1 exp(sim(v;, ;) /7) > j—1 exp(sim(v;, t;)/7)

where 7 is a temperature parameter and [V is the batch size.

LCtr(Uiv ti) = - 10g

2

Category-level Contrastive Generation At this point, the matching relationship between positive
and negative samples has changed. Within the same category, images and texts are both considered
as positive samples for each other. Accordingly, the contrastive loss is modified as follows:
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ZtrePi exp(Sim(viv tT’)/T) + szeQi eXp(Sim(via tr)/'r)
Z;V:l exp(sim(v;, t;)/7)
> i ep, exp(sim(vs, t;)/7) + szeQi exp(sim(vs, t;)/7)

N R
>_i—1 exp(sim(v;, t;)/7)
where P; represents the set of texts in the batch that belong to the same category as the image v;,
and @; represents the set of images in the batch that belong to the same category as the text ¢;.

Lctr('Uia ti) = —log

3)
— log

)

Overall Optimization The total loss is:
L = Laigf + ALctr, “)

where where L ;¢ is the diffusion loss. The structure of our model is shown in Figure 3, where the
image encoder is frozen and is used to guide the learning of the text encoder during the generation
process.

5 EXPERIMENTAL

Datasets Experiments are conducted on the CUB (Wah et al.) and Oxford Flowers (Nilsback &
Zisserman, 2008)) datasets. We consider two types of experiments: in the first, the original cap-
tions of the datasets are preserved, while in the second, we remove these captions, relying solely
on category labels to mimic datasets used in downstream tasks without captions. The CUB dataset
comprises images of 200 bird species, while the Oxford Flowers dataset covers 102 flower cate-
gories.

Evaluation Metrics We report the widely-used Fréchet Inception Distance (FID) (Heusel et al.,
2017) and Inception Score (IS) (Salimans et al., 2016) metrics. In addition, following (Sinha et al.,
2021)) we report the linear classification accuracy (Acc., measured in percentage) to more intu-
itively quantify the model’s confusion regarding finer categorizations, which is an important metric
for datasets like CUB, where the class differences are subtle. FID measures the distributional dis-
crepancy between generated and real images, with a lower value indicating closer resemblance of
generated images to real ones. IS evaluates the quality and diversity of generated images; a higher
IS value typically signifies superior image quality and variety. Both metrics utilize the Inception net-
work as a feature extractor. Some literature (Ye et al.,|2023; Zhang et al.,[2018) suggests that since
the Inception network is trained on ImageNet, its IS metric might not be optimal for evaluations on
other datasets. Therefore, for the CUB and Oxford Flowers datasets, we follow Zhang et al.|(2018),
using an Inception model fine-tuned on these datasets for feature extraction.

Experimental Details We use Stable-Diffusion-2.1-base as our base model. The CLIP model we
adopt is CLIP-ViT-H-14. We replace the text encoder without projection layers in SD with a text
encoder that has projection layers. The image encoder also has a projection layer. Adam optimizer
is used to train the network with base learning rates of le-5 for the generator and le-6 for the text
encoder. We use a batch size of 24 and train the model for only 5 epochs, which approximately
takes 3 hours on a single A100 GPU for the CUB dataset. A contrast coefficient of 0.1 is employed.
During testing, we randomly select prompts from the test set and generate images from them. Each
image in test set might correspond to multiple text descriptions; in such cases, we randomly choose
one. For the fine-tuning of the Inception network, following the method in (Ye et al.,2023)), we use
the Adam optimizer with a learning rate of le-4, only fine-tuning the last layer.

5.1 COMPARISONS

Text-image Alignment and Text-image Alignment Drift As Figure [2b]shows, our method (red)
directly enhances the alignment between text and image. As evident from Figure [2a] this improved
alignment facilitates the learning of the generator. Figure [3|and Figure [4] reveal that the text-image
alignment drift of our model closely resembles the alignment drift observed in the real data. This
could imply that when the text features change, the generation results from our model are more
stable and controllable.
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Quantitative Results For the captioned CUB and Oxford Flowers datasets, we utilize an instance-
level contrastive generation approach. Conversely, for the non-captioned CUB* and Oxford Flow-
ers* datasets, we employ a class-level contrastive generation technique. As seen in Table[2] we have
significantly enhanced the quality of generated images. Additionally, the observed improvement
in the Acc. metric is indicative of our model’s enhanced capability to capture the unique features
intrinsic to each subclass, allowing for more precise categorizations.

Table 1: Quantitative results on captioned datasets.

Model \ CUB | Oxford Flowers

| FID IS Acc | FID IS  Acc
SD 18.97 5.35 56.24 | 22.14 3.95 40.32
SD-FT-unet | 13.64 5.75 59.71 | 16.88 4.27 4281
SD-FT 1283 582 60.02 | 16.12 431 4299
Ours 10.51 598 6391 | 14.02 442 46.07

Table 2: Quantitative results on non-captioned datasets.

Model \ CUB* | Oxford Flowers*

| FID IS Acc | FID IS  Acc
SD 18.16 547 57.81 | 21.50 4.10 41.08
SD-FT-unet | 14.55 570 59.40 | 17.72 426 4277
SD-FT 14.04 575 5994 | 17.24 429 4283
Ours 12.15 5.81 64.02 | 1550 4.36 46.75

Qualitative Results As Figure [I] shows (the bottom row), for the class ‘Indigo Bunting’, it is
characterized by its blue hue, yet only the bird generated by our method match this coloration.
Similarly, for the class ‘Red-winged Blackbird’, only specific areas on its wings manifest in red.
Our model approximates the correct position of the red-wing, whereas other models do not.

In fact, we believe this result is notably significant, as we did not provide any additional detailed
annotations (e.g., the position of the red-wing). Yet, the generated outcome shows more refined im-
provements. This might be attributed to our model’s ability to better capture the feature distribution
of the text during fine-tuning, leveraging the contrastive approach, and fully harnessing the potent
capabilities of the pre-trained model.

5.2 ABLATION STUDY

For the multi-objective loss function, we analyze the impact of the balancing coefficient A on CUB
datasets.

Table 3: Ablation study on \.

A \ FID 1S Acc

0.75 | 12.14 5.80 63.87
0.1 12.15 581 64.02
0.3 1527 548 60.05
1.0 | 20.72 4.88 4545

6 CONCLUSION

In order to investigate the factors affecting the fine-tuning performance of text-to-image models
on specialized datasets, we conducted quantitative experimental analysis from the perspective of
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feature distribution. We identified text-image alignment and text-image alignment drift as indicators
influencing fine-tuning outcomes. Based on these findings, we employed contrastive learning to
directly optimize text features, leading to improvements in both text-image alignment and text-image
alignment drift, thereby enhancing fine-tuning quality.

Given that Stable-Diffusion is not only the sole open-source large-scale text-to-image model but
also arguably the most effective image generation model available, we conducted our experiments
exclusively on Stable-Diffusion. However, since the text encoder is an essential component of text-
to-image models, our method is also applicable to fine-tuning other architectures of text-to-image
models.
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