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Abstract

Certified robustness is a desirable property for deep neural networks in safety-
critical applications, and popular training algorithms can certify robustness of a
neural network by computing a global bound on its Lipschitz constant. However,
such a bound is often loose: it tends to over-regularize the neural network and de-
grade its natural accuracy. A tighter Lipschitz bound may provide a better tradeoff
between natural and certified accuracy, but is generally hard to compute exactly
due to non-convexity of the network. In this work, we propose an efficient and
trainable local Lipschitz upper bound by considering the interactions between
activation functions (e.g. ReLU) and weight matrices. Specifically, when comput-
ing the induced norm of a weight matrix, we eliminate the corresponding rows
and columns where the activation function is guaranteed to be a constant in the
neighborhood of each given data point, which provides a provably tighter bound
than the global Lipschitz constant of the neural network. Our method can be used
as a plug-in module to tighten the Lipschitz bound in many certifiable training
algorithms. Furthermore, we propose to clip activation functions (e.g., ReLU and
MaxMin) with a learnable upper threshold and a sparsity loss to assist the network
to achieve an even tighter local Lipschitz bound. Experimentally, we show that
our method consistently outperforms state-of-the-art methods in both clean and
certified accuracy on MNIST, CIFAR-10 and TinyImageNet datasets with various
network architectures.

1 Introduction

With the ever-growing deployment of deep neural networks, formal robustness guarantees are needed
in many safety-critical applications. Strategies to improve robustness such as adversarial training
only provide empirical robustness, without formal guarantees, and many existing adversarial defenses
have been successfully broken using stronger attacks [1]. In contrast, certified defenses give formal
robustness guarantees that any norm-bounded adversary cannot alter the prediction of a given network.

Bounding the global Lipschitz constant of a neural network is a computationally efficient and scalable
approach to provide certifiable robustness guarantees [2–4]. The global Lipschitz bound is typically
computed as the product of the spectral norm of each layer. However, this bound can be quite loose
because it needs to hold for all points from the input domain, including those inputs that are far away
from each other. Training a network while constraining this loose bound often imposes to high a
degree of regularization and reduces network capacity. It leads to considerably lower clean accuracy
in certified training compared to standard and adversarial training [5, 6].

A local Lipschitz constant, on the other hand, bounds the norm of output perturbation only for
inputs from a small region, usually selected as a neighborhood around each data point. It produces a
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Figure 1: Illustration of tighter (local) Lipschitz constant with bounded ReLU.

tighter bound by considering the geometry in a local region and often yields much better robustness
certification [7, 8]. Unfortunately, computing the exact local Lipschitz constant is NP-complete
[9]. Obtaining reasonably tight local Lipschitz bounds via semidefinite programming [10] or mixed
integer programming [11] is typically only applicable to small, previously trained networks since
it is difficult to parallelize the optimization solver and make it differentiable for training. On the
other hand, many existing certified defense methods have achieved success by using a training-based
approach with a relatively weak but efficient bound [12–14]. Therefore, to incorporate local Lipschitz
bound in training, a computationally efficient and training-friendly method must be developed.

Our contributions: We propose an efficient method to incorporate a local Lipschitz bound in
training deep networks, by considering the interactions between an activation layer such as a Rectified
Linear Unit (ReLU) layer and a linear (or convolution) layer. Our bound is computed for each
data point and this translates to different types of outputs from the activation function: constant or
varying under input perturbations. If the outputs of some activation neurons are constant under local
perturbation, we eliminate the corresponding rows in the previous weight layer and the corresponding
columns in the next weight layer, and then compute the spectral norm of the reduced matrix.

Our main insight is to use training to make the proposed local Lipschitz bound tight. This is different
from existing works that find local Lipschitz bound for a fixed network [8, 10, 11]. Instead, we aim to
enable a network to learn to tighten our proposed local Lipschitz bound during training. To achieve
this, we propose to clip the activation function with an individually learnable threshold ✓. Take ReLU
for example, the output of a “clipped” ReLU becomes a constant when input is greater than this
threshold (see Figure 1). Once the input of the ReLU is greater than the threshold or less than 0, then
this ReLU neuron does not contribute to the local Lipschitz constant, and thus the corresponding row
or column of weight matrices can be removed. We also apply this method to non-ReLU activation
functions such as MaxMin [15] to create constant output regions. Additionally, we also use a hinge
loss function to encourage more neurons to have constant outputs. Our method can be used as a
plug-in module in existing certifiable training algorithms that involve computing Lipschitz bound.
Our contributions can be summarized as:

• To the best of our knowledge, we are the first to incorporate a local Lipschitz bound during training
for certified robustness. Our bound is provably tighter than the global Lipschitz bound and is also
computationally efficient for training.

• We propose to use activation functions with learnable threshold to encourage more fixed neurons
during training, which assists the network to learn to tighten our bound. We show that more than
45% rows and columns can be removed from weight matrices.

• We consistently outperform state-of-the-art Lipschitz based certified defense methods for `2 norm
robustness. On CIFAR-10 with perturbation ✏ = 36

255 , we obtain 54.3% verified accuracy with
ReLU activation function and 60.7% accuracy with MaxMin [15], outperforming the SOTA
baselines, and also achieve better clean accuracy. Our code is available at https://github.
com/yjhuangcd/local-lipschitz.

2 Related work

Bounds on Local Lipschitz Constant A sound upper bound of local Lipschitz constant (simply
referred to as “local Lispschitz bound” in our paper) is a crucial property to determine the robustness
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of a classifier. Finding an exact local Lipschitz constant for a neural network is generally NP hard [16],
so most works focus on finding a sound upper bound. Hein and Andriushchenko [7] derived an
analytical bound for 2 layer neural networks and found that local Lipschitz bounds could be much
tighter than the global one and give better robustness certificates. RecurJac [8] is a recursive algorithm
that analyzes the local Lipschitz constant in a neural network using a bound propagation [14] based
approach. FastLip [17] is a special and weaker form of RecurJac. Fazlyab et al. [10] used a stronger
semidefinite relaxation to compute a tighter bound of local Lipschitz constant. Jordan and Dimakis
[11] formulated the computation of Lipschitz as an mixed integer linear programming (MILP)
problem and they were able to solve the exact local Lipschitz constant. Although these approaches
can obtain reasonably tight and sound local Lipschitz constants, none of them have been demonstrated
effective for training a certifiably robust network, where high efficiency and scalability are required.
Note that although an empirical estimate of local Lipschitz constant can be easily found via gradient
ascent (e.g., the local lower bounds reported in [4]), it is not a sound bound and does not provide
certifiable robustness guarantees.

Certifiably Robust Training using Lipschitz constants The Lipschitz constant plays a central
role in many works on training a certifiably robust neural network, especially for `2 norm robustness.
Since naturally trained networks usually have very large global Lipschitz constant bounds [18], most
existing works train the network to encourage small a Lipschitz bound. Cisse et al. [2] designed
networks with orthogonal weights, whose Lipschitz constants are exactly 1. As this can be too
restrictive, later works mostly use power iteration to obtain per-layer induced norms, whose product
is a Lipschitz constant. Lipschitz Margin Training (LMT) [19] and Globally-Robust Neural Networks
(Gloro) [4] both upper bound the worst margin via global Lipschitz constant with different loss
functions. LMT constructs a new logit by adding the worst margin to all its entries except the ground
truth class. Gloro construct a new logit with one more class than the original logit vector, determines
whether the input sample can be certified. However, these approaches did not exploit the available
local information to tighten Lipschitz bound and improve certified robustness. Box constrained
propagation (BCP) [20] achieves a tighter outer bound than global Lipschitz based outer bound, by
taking local information into consideration via interval bound (box) propagation. They compute
the worst case logit based on the intersection of a (global) ball and a (local) box. Although box
propagation considers local information, the ball propagation still uses global Lipschitz constant, and
its improvement is still limited with low clean accuracy.

Other Certified Defenses Besides using Lipschitz constants, one of the most popular certifiable
defense against `1 norm bounded inputs is via the convex outer adversarial polytope [21, 22]. [13]
takes a similar approach via abstract interpretation. These methods uses linear relaxations of neural
networks to compute an outer bound at the final layer. However, because the convex relaxations
employed are relatively expensive, these methods are typically slow to train. A simple and fast
certifiable defense for `1 norm bounded inputs is interval bound propagation (IBP) [12, 13]. Since
the IBP bound can be quite loose for general networks, its good performance relies on appropriate
hyper-parameters. CROWN-IBP [14] outperforms previous methods by combining IBP bound in a
forward bounding pass and a tighter linear relaxation bound in a backward bound pass. [23] improved
IBP with better initialization to accelerate training. Additionally, randomized smoothing [24–26] is a
probabilistic method to certify `2 norm robustness with arbitrarily high confidence. The prediction
of a randomized smooth classifier is the most likely prediction returned by the base classifier that is
fed by samples from a Gaussian distribution. Salman et al. [27] further improves the performance of
randomized smoothing via adversarial training.

3 Method

We begin with notations and background for Lipschitz bound. We introduce our method for local
Lipschitz bound computation in Section 3.2. Then we introduce how to incorporate our efficient local
Lipschitz bound in robust training (Section 3.3).
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3.1 Notation and Background

Notations. We denote the Euclidean norm of a vector x as kxk and kAk is the spectral norm of
matrix A. Subscript of vector x denotes element, i.e., xi is the i-th element of x. We use LBl and
UBl to denote lower bounds and upper bounds of pre-ReLU activation values for layer l.
Definition 1. The Lipschitz constant of a function f : Rd ! Rm over an open set X is defined as,

L(f,X ) := sup
x,y2X ,x 6=y

||f(y)� f(x)||
||x� y|| ,

If L(f,X ) exists and is finite, we say that f is Lipschitz continuous over X . Suppose X = dom(f),
L(f,X ) is the global Lipschitz constant of f ; if X is defined as the ✏-ball at point x, i.e., X :=
{x0|||x� x0||  ✏}, then L(f,X ) is the local Lipschitz constant of f at x.

Global Lipschitz bound in existing works Consider a L-layer ReLU neural network which maps
input x to output zL+1 = F (x;W ) using the following architecture, for l = 1, ..., L� 1

z1 = x; zl+1 = �(W lzl); zL+1 = WLzL (1)
where W = {W 1:L} are the parameters, and �(·) = max(·, 0) is the element-wise ReLU activation
functions. Here we consider the bias parameters to be zero because they do not contribute to the
Lipschitz bound. Since the Lipschitz constant of ReLU activation �(·) is equal to 1, a global Lipschitz
bound of F is,

Lglob  ||WL|| · ||WL�1|| · · · ||W 1|| (2)
where ||W l|| equals the spectral norm (maximum singular value) of the weight matrix W l. However,
the global Lipchitz bound ignores the highly nonlinear property of deep neural networks. In what
follows, we introduce our method that considers the interaction between ReLU and linear layer to
obtain a tighter local Lipchitz bound in a computationally efficient way, that allows us to train a
certifiably robust network using local Lipschitz bounds.

3.2 Our Approach for Efficient Local Lipschitz Bound

In this section, we use ReLU as an example to describe how we compute our efficient local Lipschitz
bound. We will discuss how to apply our method on other types of activation functions in Section 3.3.
To exploit the piece-wise linear properties of ReLU neurons, we discuss the outputs of ReLU case by
case. Intuitively, if the input of a ReLU neuron is always less or equal to zero, its output will always
be zero, which is a constant and not contributing to Lipschitz bound. If the input of a ReLU’s can
sometimes be greater than zero, the ReLU output will vary based on the input.

We define diagonal indicator matrices I lV(zl) to represent the entries where the ReLU outputs are
varying and I lC(z

l) for entries where the ReLU outputs are constant under perturbation. Here zl 2 Rdl

denotes the feature map of input x at layer l. Throughout this paper, unless otherwise mentioned, the
indicator matrix is a function of the feature value zl, evaluated at a given input x.

Given an input perturbation kx0 � xk  ✏, suppose zl(x0) is bounded element-wise as LBl 
zl(x0)  UBl, we define diagonal matrix I lV and I lC as:

I lV(i, i) =

⇢
1 if UBl

i > 0
0 otherwise

, I lC(i, i) =

⇢
1 if UBl

i  0
0 otherwise

(3)

By this definition, the ReLU output can either be constant or vary with respect to input perturbation.
Hence we have I lV + I lC = I , where I is the identity matrix. LB and UB can be obtained cheaply
from interval bound propagation [12] or other bound propagation mechanisms [21, 28].

A crucial observation is that to compute the local Lipschitz bound, we only need to consider the ReLU
neurons which are non-fixed. The fixed ReLU neurons are always zero (locally, in the prescribed
neighborhood around x) and thus have no impact to final outcome. We define a diagonal matrix
DV to represent the ReLU outputs that are varying. Then, a neural network function (denoted as
F (x;W )) can be rewritten as:

F (x;W ) = WLDL�1
V WL�1 · · ·D1

VW
1x

= (WLIL�1
V )DL�1

V (IL�1
V WL�1IL�2

V ) · · ·D1
V(I

1
VW

1)x (4)
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where

Dl
V(i, i) =

⇢
(ReLU(zli) > 0) if I lV(i, i) = 1

0 if I lV(i, i) = 0
, (5)

where denotes an indicator function.

Note here that we ignore bias terms for simplicity. Based on (4), an important insight used in our
approach is that by combining the ReLU function with weight matrix, we have the opportunity to
tighten Lipschitz bound by considering I lVW

lI l�1
V as a whole based on whether there are ReLU

outputs stay at constant under perturbation. Importantly, since Dl
V depends on UB, (4) only holds in

a local region of x, which leads to a local Lipschitz constant bound at input x:

Llocal(x)  kWLIL�1
V kkIL�1

V WL�1IL�2
V k · · · kI1VW 1k (6)

The following theorem states that the local Lipchitz bound calculated via (6) is always tighter than
the global Lipchitz bound in Eq (2), for all inputs.
Theorem 1 (Tighter Lipchitz Bound). For any input x 2 Rn and L-layer ReLU neural network
F (x;W ), the local Lipchitz bound calculated via (6) in any neighborhood of x is no larger than the
global Lipchitz bound in Eq (2), i.e., 8x, Llocal(x)  Lglob.

The proof of Theorem 1 leverages the following proposition.
Proposition 1. If a column and/or row is added to a matrix, then the matrix spectral norm (maximum
singular value) will be no less than the spectral norm of the original matrix. That is, given matrix
A 2 Rm⇥n, and y 2 Rm, z 2 Rn, then

�max([A|y]) � �max(A) ,�max(


A
z

�
) � �max(A). (7)

Proof of Proposition 1. Let A0 =


A
z

�
. The singular value of A0 is defined as the square roots of the

eigenvalues of A0TA0, where A0TA0 = ATA+zT z � ATA, that simply imply ||A0|| = �max(A0) �
�max(A) = ||A||. Similar holds for A0 = [A|y].

By Proposition 1, it is straightforward to show that kIL�1
V WL�1IL�2

V k  kWL�1k since the left
hand side is the spectral norm of the reduced matrix, after removing corresponding rows/columns
in WL�1 where the neuron output under local perturbation is constant. Therefore, the product of
spectral norm of the reduced matrices is no larger than the product of the spectral norm of raw weight
matrices, which leads to 8x, Llocal(x)  Lglob.

3.3 Training for Tight Local Lipschitz

To encourage the network to learn which rows and columns need to be eliminated to make local
Lipschitz bound tighter, we combine our local Lipschitz bound computation with certifiably robust
training. This is different from existing works leveraging optimization tools to find local Lipschitz
bound for a fixed network [10, 11]. By training with the proposed local Lipschitz bound, we can
achieve good certified robustness on large neural networks.

More precisely, using our local Lipschitz bound, we can obtain the worst case logit z⇤ that is used
to form a robust loss for training: E(x,y)⇠DL(z⇤(x), y), where L is the cross entropy loss function,
(x, y) is the image and label pair from the training datasets. A simple way to compute the worst logit
is z⇤i = zi +

p
2✏LLocal for i 6= y, z⇤y = zy (see [19]). Our approach is also compatible with tighter

bounds on the worst case logit, such as the one used in BCP [20]. To give the network more capability
to learn to tighten our proposed local Lipschitz bound, we propose the following approaches:

Allowing More Eliminated Rows via ReLU✓ The key to tighten our local Lipschitz bound is to
delete rows and columns in weight matrices that align with singular vectors corresponding to the
largest singular value. To encourage more rows and columns to be deleted, we need to have more
ReLU outputs to be at constant under perturbation. Standard ReLU is only lower bounded by zero,
but is not upper bounded. If we can set an “upper bound” of ReLU output, we can have more neurons
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have fixed outputs at this upper bound. An upper bounded ReLU unit called ReLU6 is proposed in
[29], where the maximum output is set to a constant 6. Different from ReLU6 that sets a constant
maximum output threshold, we make the threshold to be a learnable parameter. We name the new
type of activation function ReLU✓ , which is defined as:

ReLU✓ (zi; ✓i) =

8
<

:

0, if zi <= 0
zi, if 0 < zi < ✓i
✓i, if zi >= ✓i

(8)

where ✓i is a learnable upper bound of the ReLU output.

Similar to (3), the indicator matrices for the varying outputs of ReLU✓ are

I lV(i, i) =

⇢
1 if UBl

i > 0 and LBl
i < ✓i

0 otherwise
(9)

Depending on the ReLU✓ activation status, the output of a ReLU✓ neural network is,

F (x;W, ✓) = WL(DL�1
V WL�1 · · · (D1

VW
1x+D1

✓) · · ·+DL�1
✓ ) , (10)

where Dl
✓ denotes the ReLU output fixed at the maximum output value,

Dl
✓(i, i) =

⇢
✓i if I l✓(i, i) = 1
0 if I l✓(i, i) = 0

, I l✓(i, i) =

⇢
1 if LBl

i � ✓i
0 otherwise

(11)

The local Lipchitz bound is still calculated as (6). However, the bound can be potentially learned
tighter because we encourage ReLU outputs to be constant in both directions, and there could be less
varying outputs in Eq (9) than in Eq (3).

Extension to non-ReLU activation functions Our local Lipschitz bound can be applied on non-
ReLU activation functions. The key is to create constant output regions for the activation function
and delete the corresponding rows or columns in the weight matrices. Since the MaxMin activation
function [15] has been shown to outperform ReLU on certified robustness [4, 30], we take MaxMin
as an example to explain how to apply our local Lipschitz bound. Let x1 and x2 be two groups
of the input, the output of MaxMin is max(x1, x2),min(x1, x2). To exploit local Lipschitz, we
created a clipped version of MaxMin, similar to ReLU✓. The output of the clipped MaxMin
is min(max(x1, x2), a),max(min(x1, x2), b), where a is a learnable upper threshold for the max
output in MaxMin and b is a learnable lower threshold for the min output in MaxMin. Box propagation
rule through MaxMin is straightforward to derive, so we can get the box bound on each entry after
MaxMin. If the lower bounds of the Max entries are bigger than the upper threshold a, or the upper
bounds of the Min entries are smaller than the lower threshold b, we can delete the corresponding
columns in the successive matrix (similar to the procedure for ReLU networks).

Encouraging Fixed Neurons via a Sparsity Loss To encourage more rows and columns to be
deleted in the weight matrices, We design a sparsity loss to regularize the neural network towards
this goal. For a ReLU neural network, assuming that the i-th entry of the feature map at layer l is
bounded by LBl

i  zli  UBl
i, we hope the neural network can learn to make as many UBi to be

smaller than zero and LBi to be larger than ✓i without sacrificing too much of classification accuracy.
For a MaxMin neural network, let LBmax be the lower bounds of the Max entries, and UBmin be the
upper bounds of the Min entries. We hope the neural network can learn to make as many LBmax to be
larger than the upper threshold a and UBmin to be smaller than the lower threshold b. The sparsity
losses for ReLU and MaxMin networks are as follows:

LReLU
sparsity = max(0,UBl

i)+max(0, ✓i�LBl
i) , LMaxMin

sparsity = max(0,UBmin�b)+max(0, a�LBmax)
(12)

Finally, our full training procedure is presented in Algorithm 1.

Computational cost To obtain the local Lipschitz bound, we must perform power iterations to
compute the spectral norm of reduced weight matrices for every input and its feature maps at each
layer. Compared to other methods that use optimization tools (e.g., SDP, MILP) to bound local
Lipschitz, our method is computationally efficient since only matrix vector multiplication is used.
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Algorithm 1: Local Lipchitz based Certifiably Robust Training
Input : Training data (x, y) ⇠ D, perturbation size ✏, number of iterations for power method n, a

neural network with L layers.
repeat

Compute the box outer bound [LBl,UBl] for layers 1 to L ;
Compute indicator matrix IV using Eq (9) ;
// Compute local Lipcthiz bound L(x) for every input x using Eq (6)
for layer from 1 to L do

// Power method
Initialize ul with the updated ul from the previous training episode ;
for i < n do

If layer is conv:
v  I lVconv(W l, I l�1

V ul)/kI lVconv(W l, I l�1
V ul)k

u I l�1
V conv|(W l, I lVv)/kI l�1

V conv|(W l, I lVv)k
If layer is linear:
v  I lVW

lI l�1
V ul/kI lVW lI l�1

V ulk
u I l�1

V W l|I lVv/kI l�1
V W l|I lVvk

end
If layer is conv: �l(x) vlI lVconv(W l, I l�1

V ul)
If layer is linear: �l(x) vlI lVW

lI l�1
V ul

end
Compute the worst logits using our local Lipschitz bound ;
Update model parameters based on some loss functions (e.g., Cross-entropy loss).

until training ends;
return Parameters of a robust neural network

During training, compared to methods that only uses global Lipschitz bound, the local Lipcshitz
bound varies based on the inputs. For global Lipschitz bound, a common practice is to keep track of
the iterate vector u in power iteration, and use it to initialize the power iteration in the next training
batch. With this initialization, only a few number of iterations is performed during training (typically
the number of iterations is between 1 to 10 [20, 4]). To extend the initialization strategy for u to
compute local Lipschitz, we need to keep track of the iterate vectors based on every input and its
feature maps for every layer. Fortunately, this vector only provides an initialization for power iteration
so it does not need to be stored accurately, and can be stored using low precision tensors. Further
extensions could use dimension reduction or compression methods to store these vectors, or learn a
network along the way to predict a good initializer for power iteration. An alternative approach is to
random initialize u in every mini-batch, but we find that more power iterations need to be performed
during training for this approach to have comparable performance as the using saved u.

During evaluation, to minimize the extra computational cost, we can avoid bound computation for
two types of inputs: inputs that can already be certified using global Lipschitz bound or can be
attacked by adversaries (e.g., a 100-step PGD attack). In practice, this typically rules out more than
80% samples on CIFAR-10 or larger datasets, and greatly reduce computational cost required to
compute local Lipschitz constants. In Section 4 we will show more empirical results on this aspect.

4 Experiment

In this section, we first show our method achieves tighter Lipschitz bounds in neural networks. When
combined with certifiable training algorithms such as BCP [20] and Gloro [4], as well as training
algorithms using orthogonal convolution and MaxMin activation function [30], our method achieves
both higher clean and certified accuracy.

Experiment setup We train with our method to certify robustness within a `2 ball of radius 1.58 on
MNIST [31] and 36/255 on CIFAR-10 [32] and Tiny-Imagenet 1 on various network architectures.

1https://tiny-imagenet.herokuapp.com
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We denote neural network architecture by the number of convolutional layers and the number of
fully-connected layers. For instance, 6C2F indicates that there are 6 convolution layers and 2 fully-
connected layers in the neural network. Networks have ReLU activation function unless mentioned
otherwise. For more details and hyper-parameters in training, please refer to Appendix C. Our code
is available at https://github.com/yjhuangcd/local-lipschitz.

Tighter Lipschitz bound We compared the training process of our method and BCP [20] in Figure
2 (a-c). During training, our method uses local Lipschitz bound while BCP uses global Lipschitz
bound for robust loss. We also tracked the global Lipschitz bound during our training and the average
local Lipschitz bound (computed by our method) during BCP training for comparison. We can
see from Figure 2 (a) that our local Lipschitz bound is always tighter the global Lipschitz bound.
Furthermore, it is crucial to incorporate our bound in training to enable the network to learn to tighten
the bound. We can see that if we directly apply our method to a BCP trained network after training,
the local Lipschitz bound has much less improvement over global Lipschitz bound. In addition, a
tighter local Lipschitz bound by our method allows the neural networks to have larger global Lipschitz
bound in the beginning of training. This potentially provides larger model capacity and eases the
training in the early stage. As a consequence, we see a large improvement of both clean loss (Figure
2 (b)) and also robust loss (Figure 2 (c)) throughout the training.

Sparsity of varying ReLU outputs We examine our 6C2F model trained on CIFAR-10 and report
the proportion of varying (non-constant) ReLU outputs at all layers except the last fully-connected
layer (Figure 3). We compared the proportion with that of a standard CNN (trained with only cross
entropy loss on unperturbed inputs) and a robust CNN trained by BCP. As we can see, the standard
neural networks has the most varying ReLU neurons, indicating that dense varying ReLU outputs may
provide larger model capacity for clean accuracy but reduce robustness. Our method has more varying
ReLU outputs than BCP, while achieving tighter local Lipschitz bound than BCP. This indicates
that our training method encourages the neural network to learn to delete rows and columns that
contribute most to local Lipschitz constant during training, while keeping ReLUs for other rows or
columns varying to obtain better natural accuracy.

a) b) c)

zoom in

Figure 2: Certifiable training with our method and BCP on CIFAR-10. a) Global and average local
Lipschitz bound during training. Cross entropy loss b) on natural and c) on the worst logits.

Figure 3: Proportion of ReLU neurons that vary
(ReLU outputs are not constants, see definition in
Section 3.2) under perturbation.

Mean=137

Figure 4: Histogram for the number of power
iterations to ensure convergence for the second
last linear layer of the 6C2F CIFAR-10 network.

Certified robustness Our method can be used as a plug-in module in certifiable training algorithms
that involves using `2 Lipschitz constant such as BCP [20] and Gloro [4]. We use Local-Lip-G and
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Local-Lip-B to denote our method trained with the Gloro loss and BCP loss respectively (detailed
formulation for each loss can be found in Appendix B). We compare the performance of our method
against competitive baselines on both ReLU neural networks [20, 4, 19, 12, 22, 33] and MaxMin
neural networks [4, 30]. For each method, we report the clean accuracy (accuracy on non-perturbed
inputs), the PGD accuracy (accuracy on adversarial inputs generated by PGD attack [6]), and the
certified accuracy (the proportion of inputs that can be correctly classified and certified within ✏-ball).
For PGD attack, we use 100 steps with step size of ✏/4. In our experiments, we use box propagation
(as done in BCP) to obtain the lower bound and upper bound of every neuron. With our tighter
Lipchitz bound, we further improve clean, PGD, and certified accuracy upon BCP and Gloro, and
achieve the state-of-the-art performance on certified robustness (Table 2). On CIFAR-10 with ReLU
activation function, we improved certified accuracy from 51.3% (SOTA) to 54.3%. When MaxMin
activation function is used, our local Lipschitz training approach also consistently improves clean,
PGD and verified accuracy over baselines on both CIFAR-10 and TinyImageNet datasets.

To demonstrate the effectiveness of incorporating our bound in training, we also use our local bound
to directly compute certified accuracy for pretrained models using BCP. Our bound improves the
certified accuracy of a pretrained BCP model from 51.3% (reported in Table 2) to 51.8%. The
improvement is less than training with our bound (54.3% in Table 2). Therefore, it is crucial to
incorporate our bound in training to gain non-trivial robustness improvements.

Initialization strategy for power method We used two initialization strategies for singular vectors
u in power method during training. One option is to store u for all the inputs and feature maps and
initialize u in the current training epoch with u from the previous epoch, which requires storage.
The other option is to random initialize u. Table 1 shows the performance of these two approaches
on CIFAR-10 with the 6C2F architecture. The number of power iterations during training is listed
in the bracket. Although random initialization is memory-efficient, it needs more power iterations
during training to achieve comparable performance compared to the approach of storing u. Too few
iterations tend to cause inaccurate singular value and overfitting, resulting in lower certified accuracy.

Method Clean (%) PGD (%) Certified (%)

Random init. (2 iters) 76.7 69.0 0.5
Random init. (5 iters) 73.7 66.8 46.0
Random init. (10 iters) 72.0 65.8 51.6
Using saved u (2 iters) 70.7 64.8 54.3

Table 1: Influence of initialization strategy used in power method. All numbers are accuracy of the
6C2F architecture on CIFAR-10.

Computational cost during evaluation time Since local Lipschitz bound needs to be evaluated
for every input and global Lipschitz bound does not depend on the input, our method involves
additional computation cost during certification. Let u(t) be the singular vector computed by power
iteration at iteration t, we stop power iteration when ||u(t + 1) � u(t)||  1e�3. To analyze the
computational cost during evaluation time, we plot the histogram of number of iterations for power
method to converge for the second last layer in the 6C2F model in Figure 4. The average number
of iterations for convergence is 137. The histograms for other layers are in Appendix C. To reduce
the computational cost, we only need to compute local Lipschitz bound for samples that cannot
be certified by global Lipschitz bound or cannot be attacked by adversaries. The proportion of
those samples is (100% � PGD Err � Global Certified Acc). For the 6C2F model on CIFAR-10,
the proportion of samples that can be certified using global Lipschitz bound is 51.0%, and the error
under PGD attack is 35.2%. Hence we only need to evaluate local Lipschitz bounds on the remaining
13.8% samples, which greatly reduces the overhead of computing the local Lipschitz bounds.
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Method Model Clean (%) PGD (%) Certified(%)

MNIST (✏ = 1.58)

Standard 4C3F 99.0 45.4 0.0
LMT [19] 4C3F 86.5 53.6 40.5
CAP [21] 4C3F 88.1 67.9 44.5
CROWN-IBP* [14] 4C3F 82.3 80.4 41.3
GloRo [4] 4C3F 92.9 68.9 50.1
Local-Lip-G (ours) 4C3F 96.3 78.2 55.8
BCP [20] 4C3F 92.4 65.8 47.9
Local-Lip-B (ours) 4C3F 93.0 66.7 48.7

CIFAR-10 (✏ = 36/255)

Standard 4C3F 85.3 41.2 0.0
IBP [12] 4C3F 34.5 31.8 24.4
LMT [19] 4C3F 56.5 49.8 37.2
CAP [21] 4C3F 60.1 55.7 50.3
CROWN-IBP* [14] 4C3F 54.2 52.7 41.9
ReLU-Stability† [33] 4C3F 57.4 52.4 51.1
GloRo [4] 4C3F 73.2 66.3 49.0
Local-Lip-G (ours) 4C3F 75.7 68.6 49.7
BCP [20] 4C3F 64.4 59.4 50.0
Local-Lip-B (ours) 4C3F 70.1 64.2 53.5
Standard 6C2F 87.5 32.5 0.0
IBP [12] 6C2F 33.0 31.1 23.4
LMT [19] 6C2F 63.1 58.3 38.1
CAP [21] 6C2F 60.1 56.2 50.9
CROWN-IBP* [14] 6C2F 53.7 52.2 41.9
GloRo [4] 6C2F 70.7 63.8 49.3
Local-Lip-G (ours) 6C2F 76.4 69.2 51.3
BCP [20] 6C2F 65.7 60.8 51.3
Local-Lip-B (ours) 6C2F 70.7 64.8 54.3
GloRo + MaxMin [4] 6C2F 77.0 69.2 58.4
Caylay + MaxMin [30] 6C2F 75.3 67.7 59.2
Local-Lip-B + MaxMin (ours) 6C2F 77.4 70.4 60.7

Tiny-Imagenet (✏ = 36/255)

Standard 7C1F 35.9 19.4 0.0
GloRo [4] 7C1F 31.3 28.2 13.2
Local-Lip-G (ours) 8C2F 37.4 34.2 13.2
BCP [20] 8C2F 28.7 26.6 20.0
Local-Lip-B (ours) 8C2F 30.8 28.4 20.7
Gloro + MaxMin [4] 8C2F 35.5 32.3 22.4
Local-Lip-B + MaxMin (ours) 8C2F 36.9 33.3 23.4

* CROWN-IBP was originally designed for `1 norm certified defense but its released
code also supports `2 training. We use the same hyperparameters as `1 training setting.
†

[33] was designed for `1 norm with a MIP verifier. We extend it to the `2 norm setting
and verify its robustness using the SOTA alpha-beta-CROWN verifier (see Section C.2).

Table 2: Comparison to other certified training algorithms. Best numbers are highlighted in bold.

5 Conclusion
In this work, we propose an efficient way to incorporate local Lipschitz bound for training certifiably
robust neural networks. We classify the outputs of activation function as being constant or varying
under input perturbations and consider them separately. Specifically, we remove the redundant rows
and columns corresponding to the constant activation outputs in the weight matrix to get a tighter local
Lipschitz bound. We propose a learnable bounded activation and the use of a sparsity encouraging
loss during training to assist the neural network to learn to tighten our local Lipschitz bound. Our
method consistently outperforms state-of-the-art Lipschitz based certified defend methods for `2
norm robustness. We see no immediate negative societal impact in the proposed approach.
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