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Abstract

As smartphones become people’s primary cameras to
take photos, the quality of their cameras and the associated
computational photography modules has become a de facto
standard in evaluating and ranking smartphones in the con-
sumer market. We conduct so far the most comprehensive
study of perceptual quality assessment of smartphone pho-
tography. We introduce the Smartphone Photography At-
tributes and Quality (SPAQ) database, consisting of 11,125
pictures taken by 66 smartphones, where each image is at-
tached with so far the richest annotations. Specifically, we
collect a series of human opinions for each image, including
image quality, image attributes (brightness, colorfulness,
contrast, noisiness, and sharpness), and scene category la-
bels (animal, cityscape, human, indoor scene, landscape,
night scene, plant, still life, and others) in a well-controlled
laboratory environment. The exchangeable image file for-
mat (EXIF) data for all images are also recorded to aid
deeper analysis. We also make the first attempts using the
database to train blind image quality assessment (BIQA)
models constructed by baseline and multi-task deep neu-
ral networks. The results provide useful insights on how
EXIF data, image attributes and high-level semantics in-
teract with image quality, how next-generation BIQA mod-
els can be designed, and how better computational pho-
tography systems can be optimized on mobile devices. The
database along with the proposed BIQA models are avail-
able at https://github.com/h4nwei/SPAQ.

1. Introduction

Perceptual image quality assessment (IQA) aims to
quantify human perception of image quality. IQA methods
can be broadly classified into two categories: subjective and
objective IQA [35]. Although time-consuming and expen-
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sive, subjective IQA offers the most reliable way of evaluat-
ing image quality through psychophysical experiments [30].
Objective IQA, on the other hand, attempts to create com-
putational models that are capable of automatically predict-
ing subjective image quality [3]. In the past decades, there
have been a significant number of studies on both direc-
tions [1, 12, 17], most of which focus on synthetic distor-
tions, with the assumption that the original undistorted im-
ages exist and can be used as reference [37].

In recent years, there has been a fast development of
smartphone photography technologies. From a hardware
perspective, dual-camera systems prevail, representing ma-
jor advancements for the unprecedented photography expe-
rience. From a software perspective, computational meth-
ods play a more and more important role, introducing novel
features such as digital zoom, HDR, portrait and panorama
modes. It could be argued that the camera system along
with the integrated computational photography module has
become a crucial part and one of the biggest selling points of
smartphones. Nevertheless, the vast majority of pictures are
taken by inexperienced users, whose capture processes are
largely affected by lighting conditions, sensor limitations,
lens imperfections, and unprofessional manipulations. Ar-
guably it is often challenging for professional photogra-
phers to acquire high-quality pictures consistently across a
variety of natural scenes, especially in low-light and high-
dynamic-range (HDR) scenarios [7]. As a result, real-world
smartphone photos often contain mixtures of multiple dis-
tortions, which we call realistic camera distortions (as op-
posed to distortions such as JPEG compression that may be
synthesized). Therefore, if the visual quality of the captured
images could not be quantified in a perceptually meaning-
ful way, it is difficult to develop next-generation smartphone
cameras for improved visual experience.

In this paper, we carry out so far the most comprehen-
sive study of perceptual quality assessment of smartphone
photography. Our contributions include:

• A large-scale image database, which we name Smart-
phone Photography Attributes and Quality (SPAQ)
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Database # images # cameras Type of cameras Subjective # image # scene # EXIF
environment attributes categories tags

BID 585 1 DSLR Laboratory N/A N/A N/A
CID2013 480 79 DSLR/DSC/Smartphone Laboratory 4 N/A N/A
LIVE Challenge 1,162 15∗ DSLR/DSC/Smartphone Crowdsourcing N/A N/A N/A
KonIQ-10k 10,073 N/A DSLR/DSC/Smartphone Crowdsourcing 4 N/A 3
SPAQ 11,125 66 Smartphone Laboratory 5 9 7

Table 1. Comparison of IQA databases of camera distortions. DSLR: Digital single-lens reflex camera. DSC: Digital still camera. N/A:
Not applicable. ∗ LIVE Challenge Database provides the number of manufacturers only.

database, consisting of 11, 125 realistic pictures taken
by 66 mobile cameras from eleven smartphone manu-
facturers. To aid comparison among different cameras,
a subset of 1, 000 pictures in SPAQ are captured under
the same visual scenes by different smartphones [33].
Each image comes with EXIF data, which provide use-
ful information about the scene being captured (e.g.,
time and brightness) and the camera settings (e.g., ISO
and f-number) [32].

• A large subjective experiment conducted in a well-
controlled laboratory environment. We carefully de-
sign our experimental protocols to collect the mean
opinion score (MOS) for each image and verify its re-
liability. Additionally, each image is annotated with
five image attributes that are closely related to percep-
tual quality [9]. We also classify the images into nine
scene categories by content information to facilitate a
first exploration of the interactions between perceptual
quality and high-level semantics.

• An in-depth analysis of the relationship between EXIF
tags, image attributes, scene category labels and image
quality based on subjective data. Moreover, the cam-
eras of different smartphones are compared and ranked
according to our subjective study.

• A family of objective BIQA models for smartphone
pictures based on deep multi-task learning [10]. This
allows us, for the first time, to investigate how EXIF
tags, image attributes and scene labels affect quality
prediction from a computational perspective. More
importantly, the results shed light on how to create bet-
ter photography systems for smartphones.

2. Related Work
In this section, we review representative IQA databases

and BIQA models, with emphasis on realistic camera dis-
tortions.

2.1. Databases for IQA

Databases have played a critical role in scientific re-
search [27]. In IQA, the creation of the LIVE database [30]

validates the perceptual advantages of the structural sim-
ilarity (SSIM) index [37] and the visual information fi-
delity (VIF) measure [29] over the widely used mean
squared error (MSE). The introduction of the CSIQ [16] and
TID2013 [25] databases allows objective IQA models to
be compared in cross-database and cross-distortion settings,
which highlights the difficulties of distortion-aware BIQA
methods in handling unseen distortions. The release of the
Waterloo Exploration Database [19] along with the group
maximum differentiation (gMAD) competition methodol-
ogy [18] probes the generalizability of BIQA models to
novel image content. The above-mentioned databases fa-
cilitate IQA research on how humans and machines assess
the perceptual quality of images during processing, com-
pression, transmission, and reproduction, where the degra-
dations can be synthesized. However, they become less rel-
evant when we study smartphone captured images, whose
distortions are realistic, complex, and hard to simulate.

There has been limited work studying subjective IQA for
realistic camera distortions. Ciancio et al. [2] made one of
the first steps and built a small dataset of 585 realistically
blurred pictures taken by a digital single-lens reflex cam-
era. Toni et al. [33] constructed a database that spans eight
visual with a number of mobile devices. Ghadiyaram and
Bovik created the LIVE Challenge Database [5], which con-
tains 1, 162 images by 15 mobile cameras. The MOSs were
crowdsourced via a web-based online user study. The cur-
rent largest IQA database - KonIQ-10k [9] includes 10, 073
images selected from YFCC100M [32]. The perceptual
quality of each image was also annotated via crowdsourcing
together with four image attributes. By contrast, the pro-
posed SPAQ database is specifically for smartphone pho-
tography with stringent hardware constraints on sensors and
optics. Along with EXIF data, each image in SPAQ has
image quality, attribute annotations, and high-level scene
category labels collected in a well-controlled laboratory
environment. Table 1 summaries and compares existing
databases for realistic camera distortions.

2.2. Objective BIQA Models

Computational models for BIQA do not require an
undistorted reference image for quality prediction of a test



image [36]. Early BIQA models [4, 20–23, 39] mainly
focus on synthetic distortions, which have been empiri-
cally shown to generalize poorly to realistic camera distor-
tions [5, 41]. This is a consequence of domain shift, and
is also referred to as the cross-distortion-scenario challenge
in IQA [42]. For BIQA of realistic camera photos, Ghadi-
yaram and Bovik [6] extracted a bag of natural scene statis-
tics (NSS). Zhang et al. [41] proposed a deep bilinear model
to handle both synthetic and realistic distortions. Later, they
introduced a training strategy [42] that is able to learn a
unified BIQA model for multiple distortion scenarios. The
BIQA models proposed in this paper emphasize more on
exploiting additional information such as EXIF tags, image
attributes, and semantic labels to aid quality prediction.

3. SPAQ Database
In this section, we first describe the construction of

the proposed SPAQ database for smartphone photography.
Next, we present the subjective assessment environment for
collecting human annotations, including MOSs (for image
quality), image attribute scores, and scene category labels.

3.1. Database Construction

We collect a total of 11, 125 realistically distorted pic-
tures. To support comparison among smartphones, a sub-
set of 1, 000 images are captured by different cameras un-
der a few challenging scenes, including night, low-light,
high-dynamic-range, and moving scenes. SPAQ represents
a wide range of realistic camera distortions, including sen-
sor noise contamination, out-of-focus blurring, motion blur-
ring, contrast reduction, under-exposure, over-exposure,
color shift, and a mixture of multiple distortions above.
Sensor noise often occurs in night scenes or indoor scenes
with low-light conditions, where high ISO must be applied.
Out-of-focus blur can be created deliberately or uninten-
tionally, and it does not necessarily lead to visual quality
degradation [34]. Motion blur appears when camera shakes
or object moves rapidly in the scene. Global and local con-
trast may not be fully reproduced for scenes under poor
weather conditions or with high dynamic ranges. Color
shift may result from incorrect white balance or other com-
putational methods for post-processing. An important fact
of smartphone photography is that mixtures of distortions
frequently occur, making the images substantially different
from those created by synthetic distortions.

The images are initially saved with high resolution, typ-
ically in the order of six megapixels and more. The gigan-
tic image size poses a challenge to existing BIQA mod-
els, whose computational complexities are generally high.
Therefore, we choose to downsample the raw pictures such
that the shorter side is 512, and stored them in PNG format.
Sample images in SPAQ can be found in Figure 1.

Each image in SPAQ is associated with
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Figure 1. Sample images in SPAQ. (a) Animal. (b) Cityscape. (c)
Human. (d) Indoor scene. (e) Landscape. (f) Night scene. (g)
Plant (h) Still life. (i) Others. All images are cropped for neat
presentation.

• EXIF tags, including 1) focal length, 2) f-number
(inversely proportional to aperture size), 3) exposure
time, 4) ISO (light sensitivity of sensor), 5) brightness
value (brightness of focus point in the scene), 6) flash
(flash fired or not), 7) time (when image was recorded).
Since the brightness value is not provided by some
smartphone manufacturers, we make an educated es-
timation using the exposure equation [11].

• MOS, a continuous score in [0, 100] to represent the
overall quality of the image. A higher score indicates
better perceived quality.

• Image attribute scores, including 1) brightness, 2) col-
orfulness, 3) contrast, 4) noisiness, and 5) sharpness.
Similar to MOS, each attribute is represented by a con-
tinuous score in [0, 100] (see Figure 2 (a)).

• Scene category labels, including 1) animal, 2)
cityscape, 3) human, 4) indoor scene, 5) landscape,
6) night scene, 7) plant, 8) still life, and 9) others.
The category of still life refers to images that contain
salient static objects (not living things); the category
of “others” includes images from which human anno-
tators find difficulty in recognizing the visual content
due to abstract nature or extremely poor quality. It is
worth noting that one image may have multiple labels
(see Figure 2 (b)).
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Figure 2. Graphical user interfaces used in our subjective experi-
ments. (a) Quality rating. (b) Scene classification.

3.2. Subjective Testing

MOSs and Image Attribute Scores We invite more than
600 subjects to participate in this subjective test. To ob-
tain consistent and reliable human ratings, the experiment
is conducted in a well-controlled laboratory environment.
Figure 2 (a) shows the graphical user interface. Subjects
are asked to rate the quality of an image on a continuous
scale in [0, 100], evenly divided and labeled by five qual-
ity levels (“bad”, “poor”, “fair”, “good”, and “excellent”).
Additionally, we ask the subjects to provide five other con-
tinuous scores from 0 to 100, representing the degrees of
brightness, colorfulness, contrast, noisiness, and sharpness,
respectively.

Scene Category Labels Participants are invited to pro-
vide scene category labels for each image in SPAQ using
a multi-label method, including animal, cityscape, human,
indoor scene, landscape, night scene, plant, still life, and
others. The graphical user interface for scene labeling is
given in Figure 2 (b), where an image can be labeled by one
or more categories.

We refer the interested readers to the supplementary file
for a complete description of the subjective experiment re-
garding the testing environment, the training and testing
phases, the outlier removal and the reliability of subjective
data.
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Figure 3. Sample images in SPAQ. (a) ISO = 1, 600. (b) ISO =
2, 000. (c) exposure time = 0.03s. (d) exposure time = 0.06s. (e)
f-number = 2.2. (f) f-number = 1.6. (g) and (h) f-number = 2.2,
exposure time = 0.059s, and ISO = 1, 757.

4. Subjective Data Analysis

In this section, we analyze the collected subjective data
in SPAQ to reveal the relationships between EXIF tags, im-
age attributes, scene category labels and image quality. We
then rank several smartphone cameras based on the subjec-
tive results.

4.1. Interactions between Perceptual Image Quality
and Various Factors

EXIF Tags To explore the relationship between the EXIF
tags and image quality, we present some sample images
captured with different camera settings in Figure 3. When
playing with ISO, we find that higher ISO numbers yield
brighter images but with a significant amount of noise (see
Figure 3 (a) and (b)). This shows that ISO is predictable
of image quality especially for night scenes. When playing
with exposure time, we find that if camera shakes or object
is moving fast, motion blurring occurs even for a relatively
short exposure (see Figure 3 (c)), and over-exposure also
arises if we double the exposure time (see Figure 3 (d)). It



Attribute Image attribute scores
from humans by MT-A

Brightness 0.784 0.704
Colorfulness 0.844 0.760
Contrast 0.874 0.786
Noisiness 0.893 0.832
Sharpness 0.958 0.904

Table 2. SRCC results between MOSs and image attribute scores
from humans and MT-A (our proposed computational model), re-
spectively.

is well-known that different aperture sizes lead to different
depths of field. Generally, with a smaller aperture size, the
range of distance in focus is larger, and therefore out-of-
focus blur is less likely to happen (see Figure 3 (e) and (f)).
Finally, the two different visual scenes in Figure 3 (g) and
(h) are captured with the same camera setting, where we
see that they suffer from a similar combination of distor-
tions, leading to similar perceptual quality. In summary, the
EXIF tags convey rich side information that may be helpful
for predicting image quality. As will be clear in Section 5.2,
computational models that make proper use of EXIF infor-
mation greatly boost quality prediction performance.

Image Attribute Scores To investigate how each image
attribute affects perceived quality, we compute the Spear-
man’s rank correlation coefficient (SRCC) between MOSs
and attribute scores, as listed in Table 2. We find that
sharpness and noisiness have higher correlations with im-
age quality compared to brightness and colorfulness. This is
consistent with the hypothesis that the human eye is highly
adapted to extract local structures [37], and is less sensitive
to global brightness change.

Scene Category Labels We draw the MOS distribution
(discretized to five quality levels) for each scene category
in Figure 4, from which we have some interesting obser-
vations. First, the MOSs of the “others” category concen-
trate at low quality levels. This is expected because im-
ages in this category are unrecognizable largely due to poor
visual quality. Second, images of night scenes generally
exhibit poor quality with large under-exposed and noisy re-
gions (see Figure 3 (g) and (h)), emphasizing the challenges
for low-light photography. Finally, images with different
scene categories have noticeable MOS distributions, sug-
gesting high-level semantic effect on visual perception of
image quality.

4.2. Smartphone Camera Comparison

At the beginning, it is important to note that this study
is independent of any telecommunication device manufac-
tures or service providers. In SPAQ, a subset of 1, 000 im-
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Figure 4. Discretized MOS distributions of images with different
scene categories. See Figure 2 (a) for the specification of the five
quality levels.

Top-5 cameras Bottom-5 cameras

Type # scenes Type # scenes
Apple iPhone 6s Plus 22 Meitu M6 21

Huawei PRA-AL00 19 Vivo X7 17

Oppo A33m 17 Samsung SM-G9006V 16

Oppo R9 Plusm A 16 Xiaomi MI 6 15

Xiaomi MIX 2 15 Apple iPhone SE 14

Table 3. The top and bottom performing smartphone cameras
based on image quality.

ages containing 50 visual scenes are captured by 20 smart-
phone cameras for performance comparison. Many images
are taken under tough conditions to challenge the smart-
phone photography systems, including low-light, high-
dynamic-range, and moving scenes.

For the 50 visual scenes, we count the number of top-5
and bottom-5 pictures that belong to each smartphone cam-
era based on image quality. The results are listed in Table 3,
where we find that Apple iPhone 6s Plus achieves the best
results with 22 scenes at the top-5, while Meitu M6 is at
the bottom among 20 smartphone cameras. The success of
Apple iPhone 6s plus may result from its stabilization and
noise reduction post-processing methods, which help im-
prove the quality of images captured under less ideal condi-
tions. More information about the visual scenes and the
smartphone camera ranking samples can be found in the
supplementary.

5. Objective Quality Models
Based on the proposed SPAQ database, we train a deep

neural network (DNN) to predict the perceptual quality of



smartphone captured images and three variants that make
use of EXIF tags, image attributes, and scene category la-
bels, respectively.

5.1. Baseline Model

We adopt ResNet-50 [8] as the backbone to construct our
baseline model - BL. We change the final fully connected
layer to one output, and drop the softmax function. The pa-
rameters of BL are collectively denoted bywB. The training
mini-batch consists of {x(i), q(i)}mi=1, where x(i) is the i-th
input color image and q(i) is the corresponding MOS. We
exclude pre-processing that would dramatically alter image
quality such as global mean removal and contrast normal-
ization. The output of BL is a scalar q̂(i), representing the
predicted quality score of x(i). We replace the cross en-
tropy function for image classification with `1-norm as the
empirical loss

`1(wB) = ‖q − q̂‖1 =

m∑
i=1

|q(i) − q̂(i)|. (1)

In our experiments, we find that fine-tuning ResNet-50 [8]
from pre-trained weights performs better than training the
network from scratch or starting from other pre-trained net-
work architectures (e.g., AlexNet [15] and VGG16 [31]),
which is consistent with the observations in [14].

5.2. Multi-Task Learning from EXIF Tags

We train a variant of the baseline model, namely MT-
E, by incorporating EXIF data using multi-task learning.
Specifically, each image has seven EXIF tags, among which
focal length, f-number and ISO are categorical variables,
exposure time and brightness are continuous, flash is binary,
and time (image was recorded) is periodic. The input mini-
batch samples are formed as {x(i), o(i), q(i)}mi=1, where o(i)

is a feature vector containing the encoded EXIF tags of x(i).
MT-E consists of two sub-networks. The first sub-network
is the same as BL, which takes x(i) as input and regresses a
“generic” quality score ĝ(i). The second sub-network com-
prises a simple fully connected layer, which accepts o(i)

and produces an offset b̂(i) [26], with parameters denoted
by wE. The final quality prediction is computed by

q̂(i) = ĝ(i) + b̂(i), (2)

where we interpret b̂(i) as a learned bias added to the generic
score. When EXIF data are not present as in the case of
many Internet images, MT-E reduces gracefully to BL. We
train MT-E by optimizing a naı̈ve weighted sum of two `1-
norm losses

`2(wB, wE) = α1‖q − ĝ‖1 + α2‖q − q̂‖1, (3)

where α1 and α2 are non-negative task weightings, satisfy-
ing α1+α2 = 1. Since ĝ and q̂ have the same measurement
scale, we simply set α1 = α2 = 0.5.

5.3. Multi-Task Learning from Image Attributes

Besides subjective quality ratings, we also collect five
image attribute scores, including brightness, colorfulness,
contrast, noisiness, and sharpness. To explore the influence
of image attributes on image quality, we extend BL to MT-
A by learning to predict image attributes jointly. Built upon
the baseline model, we let the final fully connected layer
output six scalars, representing the overall image quality
and the degrees of image attributes, respectively. That is,
the six tasks share the computation up to the last fully con-
nected layer. The parameters for estimating image attributes
are represented by wA. We denote the input mini-batch by
{x(i), r(i), q(i)}mi=1, where r(i) is a five-dimensional vec-
tor that stores the ground truth image attribute scores of
x(i). Similarly, we use a naı̈ve weighted sum of six `1-norm
losses to train MT-A

`3(wB, wA) = β1‖q − q̂‖1 +
β2
5

5∑
j=1

‖rj − r̂j‖1, (4)

where r̂j is anm-dimensional vector that stores the j-th im-
age attribute predictions of the current mini-batch. β1 and
β2 are non-negative task weightings, satisfying β1+β2 = 1.
By default we give the five attribute prediction tasks the
same weight. According to our subjective experiment, all
tasks are measured in the same scale. We take advantage of
this fact and sample β1 linearly from [0, 1].

5.4. Multi-Task Learning from Scene Labels

To explore the effectiveness of incorporating semantic
information into quality prediction, we train another model,
namely MT-S, using multi-task learning. Conceptually,
scene classification and quality assessment appear to be
competing tasks - the former requires feature representa-
tions to be insensitive to image quality degradation, while
the latter desires the opposite. To address this problem,
MT-S splits BL into two sub-networks carefully for the
two tasks. The input mini-batch samples are denoted by
{x(i), p(i), q(i)}mi=1, where p(i) is a nine-dimensional vector
with c non-zero entries, each set to 1/c corresponding to
the c ≥ 1 scene labels for x(i). For scene classification, we
let the last fully connected layer to produce nine continuous
activations ŝ(i), followed by softmax nonlinearity to convert
them into probabilities p̂(i). The cross entropy function is
then used as the loss

`4(wS) = −
∑
i,j

p
(i)
j log p̂

(i)
j , (5)

where wS denotes the parameters associated with the scene
classification task. For quality regression, we use Eq. (1) as
the empirical loss.

It remains to combine the two losses for joint learning,
which is nontrivial as they live in substantially different



scales. Grid-based manual tuning for a reasonable weight-
ing is expensive, especially in the context of deep learning.
Inspired by [10], we choose to learn the optimal weight-
ing as task-dependent uncertainty. In regression, we define
the likelihood function as a Laplace distribution with mean
given by the network output and an observation noise scalar
σ1:

p(q(i)|wB) ∼ Laplace(q̂(i), σ1). (6)

In classification, we define the likelihood as a scaled version
of the model output ŝ(i) through a softmax function [10]

p(s(i)|wS) ∼ Softmax

(
1

σ2
ŝ(i)
)
, (7)

where σ2 is a positive scalar, governing how uniform the
induced discrete distribution is. It is straightforward to show
that the expected negative log likelihood as the joint loss
function can be approximated by

`5(wB, wS) =
`1(wB)

σ1
+
`4(wS)

σ2
+m log σ1 +

m

2
log σ2.

(8)

The above loss discourages high task uncertainty through
the two log terms. MT-S can learn to ignore noisy tasks, but
is penalized for that [10]. Eq (8) also discourages very low
task uncertainty. For example, a low σ1 will exaggerate the
contribution of `1. σ1 and σ2 are estimated along with the
model parameters {wB, wS}.

5.5. Performance Evaluation

For the baseline model BL and its variants, we adopt
the same training strategy, repeat the training processes five
times, and report the average results to reduce any bias in-
troduced during training. Specifically, we randomly sam-
ple 80% of the images in SPAQ for training and leave the
rest for testing. The backbone ResNet-50 [8] is initialized
with the pre-trained weights for object recognition on Ima-
geNet [28]. We set the mini-batch size to 16 and the epoch
number to 30. We use the Adam stochastic optimization
package [13] with the initial learning rate of 10−3 and a de-
cay factor of 0.1 for every 10 epochs. The input images are
randomly cropped to 224×224×3. For the first 10 epochs,
we only train the final fully connected layers by freezing the
rest parameters in the networks. For the next 20 epochs, we
fine-tune the whole networks by optimizing the respective
losses.

During testing, we crop 224 × 224 × 3 patches from a
test image with a stride of 112. The final quality and at-
tribute scores are computed by averaging all patch predic-
tions. The dominant scene class is determined by majority
vote among all top-1 predictions, which is considered cor-
rect if it matches one of multiple ground truth labels.

We compare the proposed methods with seven existing
BIQA models, including BRISQUE [22], DIIVINE [24],
CORNIA [39], QAC [38], ILNIQE [40], FRIQUEE [6], and
DB-CNN [41]. These cover a wide range of design philoso-
phies, including NSS-based [6, 22, 24, 40], codebook-
based [38, 39], and DNN-based [41] models. The imple-
mentations of the competing models are obtained from the
respective authors. We re-train BRISQUE, FRIQUEE, and
DB-CNN using the same training set. As for DIIVINE and
CORNIA, we directly use the learned models due to the
lack of publicly available training codes and the complexity
of reproducing the training procedures. Note that QAC [38]
and ILNIQE [40] do not require MOSs for training.

Experimental results are shown in Table 4, from which
we have several interesting observations. First, BIQA
models designed for synthetic distortions (e.g., QAC [38]
and DIIVINE [24]) generally do not work well for re-
alistic camera distortions, which is no surprise because
there is a significant discrepancy between the two data
distributions. Second, verified on the LIVE Challenge
Database [5], FRIQUEE [6] delivers superior performance
on SPAQ, which verifies the effectiveness of the handcrafted
features at capturing the characteristics of realistic distor-
tions. Third, BRISQUE [22] also obtains comparable per-
formance, suggesting that the locally normalized pixel in-
tensities may reveal useful attributes of realistic distortions.
Fourth, by bilinearly pooling two sets of features, DB-
CNN [41] outperforms all BIQA approaches, including the
proposed BL based on ResNet-50. This suggests that DNNs
successfully learn hierarchical features sensitive to realistic
distortions, and that a more advanced backbone (such as
DB-CNN) offers additional performance gains. Finally, the
performance of the proposed baseline and its variants are
among the best, verifying our training and multi-task learn-
ing strategies.

Now, we take a close look at the multi-task learning re-
sults. When we add EXIF tags as additional inputs, MT-
E achieves a significant improvement compared with BL.
This emphasizes the importance of EXIF data to quality
prediction of smartphone captured images, which, however,
has not been paid much attention by the IQA community.
Next, jointly predicting image attributes positively impacts
the accuracy of quality prediction, and the results are ro-
bust to different task weightings (see Table 5). In addition,
the predicted attribute scores by MT-A have high correla-
tions with MOSs, as shown in the second column of Ta-
ble 2. This indicates that the five image attributes play key
roles in determining image quality, and the MT-A model
has learned the inherent relationships between image at-
tributes and the overall quality. Lastly and perhaps more
interestingly, we observe improved performance of quality
prediction in MT-S when jointly trained with scene classi-
fication. From Table 6, we find that the approximately op-



Model
QAC DIIVINE CORNIA ILNIQE BRISQUE FRIQUEE DB-CNN

BL MT-E MT-A MT-S
[38] [24] [39] [40] [22] [6] [41]

SRCC 0.092 0.599 0.709 0.713 0.809 0.819 0.911 0.908 0.926 0.916 0.917
PLCC 0.497 0.600 0.725 0.721 0.817 0.830 0.915 0.909 0.932 0.916 0.921

Table 4. Average SRCC and PLCC results of our methods across five sessions against seven BIQA models on SPAQ.

Task weights SRCC PLCC
β1 β2
0.9 0.1 0.917 0.919
0.8 0.2 0.917 0.918
0.7 0.3 0.917 0.918
0.6 0.4 0.916 0.917
0.5 0.5 0.916 0.916

Table 5. Average SRCC and PLCC results of MT-A across five
sessions as a function of task weighting. The default setting is
highlighted in bold.

Splitting position SRCC PLCC Accuracy
Conv1 0.915 0.918 0.702
Conv10 0.916 0.918 0.687
Conv22 0.916 0.919 0.673
Conv40 0.917 0.921 0.673
Conv49 0.915 0.916 0.670

Table 6. Average SRCC, PLCC and accuracy results of MT-S
across five sessions as a function of splitting positions. Conv# in-
dicates the splitting happens right after the #-th convolution layer
and there are a total of 49 convolution layers in MT-S.

timal splitting for quality regression is at the 40-th convo-
lution layer. However, the scene classification task prefers
to split at the first convolution layer (measured by classi-
fication accuracy), which suggests two separate networks
without sharing weights. This provides indirect evidence
that the two tasks compete with each other. Nevertheless,
MT-S is able to exploit semantic information to boost the
quality prediction performance. These insightful findings
inspire further research on how to extract semantic infor-
mation (e.g., in the form of dense semantic segmentation
maps) and how to incorporate it into IQA, with the goal of
benefiting both tasks.

6. Conclusion

We build so far the most comprehensive database for
perceptual quality assessment of smartphone photography,
where each image is attached with rich annotations, includ-
ing not only quality ratings (in the form of MOSs), but also
a series of EXIF, attribute, and semantic information. In
SPAQ, 1, 000 images are captured repeatedly by different
smartphones of the same scenes, facilitating head-to-head
comparisons of smartphone cameras.

We also construct four BIQA models using DNNs to ex-
ploit the influence of EXIF tags, image attributes, and high-
level semantics on perceived quality of smartphone pic-
tures. Our results suggest that all such side information may
be useful in improving prediction accuracy of the BIQA
models. We believe that the current database, together with
the proposed DNN-based computational models, lay the
groundwork for the development of next-generation BIQA
methods for smartphone photography, which in turn will
impact the future design of smartphone cameras and the in-
tegrated computational photography systems.
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