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ABSTRACT

Unsupervised learning of node representations from knowledge graphs is criti-
cal for numerous downstream tasks, ranging from large-scale graph analysis to
measuring semantic similarity between nodes. This study presents gGN as a
novel representation that defines graph nodes as Gaussian distributions. Unlike
existing representations that approximate such distributions using diagonal covari-
ance matrices, our proposal approximates them using low-rank perturbations. We
demonstrate that this low-rank approximation is more expressive and better suited
to represent complex asymmetric relations between nodes. In addition, we provide
a computationally affordable algorithm for learning the low-rank representations in
an unsupervised fashion. This learning algorithm uses a novel loss function based
on the reverse Kullback-Leibler divergence and two ranking metrics whose joint
minimization results in node representations that preserve not only node depths but
also local and global asymmetric relationships between nodes. We assessed the
representation power of the low-rank approximation with an in-depth systematic
empirical study. The results show that our proposal was significantly better than
the diagonal approximation for preserving graph structures. Moreover, gGN also
outperformed 17 methods on the downstream task of measuring semantic similarity
between graph nodes.

1 INTRODUCTION

To represent facts about the world, knowledge bases use triplets in which a fact is defined as a well-
defined relationship between two entities. For example, WordNet (Miller, 1995), Freebase (Bollacker
et al., 2008), and Wikidata (Vrandečić & Krötzsch, 2014) are knowledge bases widely exploited in
diverse applications (Khodak et al., 2017; Martin et al., 2017; Barz & Denzler, 2019). Another impor-
tant example is the Gene Ontology (GO) (Ashburner et al., 2000; Consortium, 2019a) that is widely
used for studies aimed at elucidating the diverse roles that genes play in cell biology (Consortium,
2019b; Mi et al., 2019). Knowledge bases are frequently represented as graphs, where triplets are
labeled directed edges between nodes. To exploit such graphs effectively, recent efforts have proposed
to use neural networks to represent graph nodes as point vector representations (embeddings) that
preserve graph features as much as possible in a low-dimensional space (Wu et al., 2020). However,
because the underlying graph is generally assumed to be undirected, the learned representations are
unable to properly preserve asymmetric relationships in directed graphs (Vendrov et al., 2015; Ou
et al., 2016; Athiwaratkun & Wilson, 2018) and also struggle to model hierarchical structures (Vulić
et al., 2017; Bojchevski & Günnemann, 2017; Nickel & Kiela, 2017; Kim et al., 2021). At the end,
this leads to suboptimal node representations, negatively impacting in downstream tasks.

This study proposes gGN as a novel representation for graph nodes that uses Gaussian distributions
to map nodes not only to point vectors (means) but also to ellipsoidal regions (covariances). In
contrast to point vectors, the use of distributions enables expressing asymmetric relationships more
naturally (Athiwaratkun & Wilson, 2018). Being inspired by previous works (Vilnis & McCallum,
2014; Bojchevski & Günnemann, 2017), the proposed approach built upon them to make three
novel contributions. First, the proposed Gaussian distributions are not parameterized by classical
diagonal matrices but rather by low-rank covariance matrices, so far underexplored in existing works
proposing word or node representations. Unlike diagonal matrices, low-rank covariance matrices
have much more flexibility to express dependencies between embedding dimensions (Dorta et al.,
2018a;b), enabling the representation of more complex graphs. Although non-diagonal covariance
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matrices generally scale quadratically with the number of nodes, the low-rank form has a tractable
computational cost (Monteiro et al., 2020). Second, we propose a novel loss function based on the
reverse Kullback-Leibler (KL) divergence. Besides the KL is well suited for capturing asymmetric
local structures, the reverse KL additionally leads to Gaussian distributions whose entropies properly
preserve the information contents of nodes. Such preservation not only provides a strong link
with classic studies on measuring word similarity based on information theory (Lin et al., 1998;
Resnik, 1999), but also enables us to measure the semantic similarities between nodes in a novel way
through the divergences of their corresponding representations. Third, to capture asymmetric global
structures, the loss function also incorporates two ranking-based components aimed to asymmetrically
preserve the distances between nodes, given by their shortest path lengths. We made the code of
gGN publicly available (https://github.com/blindcosmos/ggn) as an easily installable
Python package, which can be used for learning node embeddings from scratch.

2 RELATED WORK

Many different unsupervised approaches have been proposed for learning representations of graph
nodes (Bronstein et al., 2017; Cai et al., 2018; Wu et al., 2020). They are generally divided into two
main categories: matrix factorization and random-walk based approaches. Matrix factorization-based
methods, such as GraRep (Cao et al., 2015), construct a high-order proximity matrix that is factorized
to obtain low-dimensional node embeddings. A limitation of these methods is that they are not easy to
scale up for large graphs. In contrast, this is not a limitation for random walk-based methods, such as
DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015), node2vec (Grover & Leskovec, 2016) and
VERSE (Tsitsulin et al., 2018), which describe the neighborhood of each node as random walk paths
that are jointly preserved by a point-vector embedding using an objective like skip-gram (Mikolov
et al., 2013).

Contrasting with the aforementioned approaches, which represent nodes as point vectors, there are a
few methods that are able to represent nodes as probability distributions. One of the first attempts is
word2gauss (Vilnis & McCallum, 2014) that uses Gaussian distributions as representations. Since
this neural network was specifically designed for words, representations are optimized such that
the divergence between them preserves word co-occurrences. Once learned, the resulting mean
vectors represent the semantics of words, while the covariance matrices describe the uncertainty
of meanings. Interestingly, these Gaussian embeddings can very naturally encode asymmetric
relationships between words through embedding encapsulation patterns (Athiwaratkun & Wilson,
2018), which can effectively express semantic orderings between meanings (e.g. mammal ≺ Homo
sapiens). Recent works have extended these Gaussian embeddings with a Bayesian strategy to
perform automatic word sense disambiguation (Bražinskas et al., 2017), and with linear combinations
of Gaussian distributions to represent subwords (Qian et al., 2021). Interestingly, word2gauss has been
also extended to general graphs in an approach known as Graph2Gauss (Bojchevski & Günnemann,
2017), where embeddings representing graph nodes are learned by employing unsupervised and
supervised strategies. This approach has also shown to be effective as an explanatory tool for
analyzing complex real-world graphs (Xu et al., 2020). Notably, all these approaches based on
Gaussian embeddings have in common that covariance matrices are diagonal, hampering the correct
representation of some structures.

3 LOW-RANK GAUSSIAN EMBEDDINGS

3.1 REPRESENTATION

Given an unweighted directed graph with n nodes, the aim is to map every node i to a Gaussian
distribution Ni = N (µi,Σi), where µi ∈ Rd is the mean with d dimensions and Σi ∈ Rd×d

is the covariance matrix. To make computations affordable, the covariance matrix is commonly
approximated as a diagonal matrix Σi = Di. While attractive for its simplicity, this diagonal
assumption comes at the cost of overly limiting the range of density forms, preventing complex
hierarchical structures from being modeled properly. To overcome these limitations and to preserve
computational tractability, this study proposes to approximate the covariance matrix with a low-rank
perturbation
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Σi = Di + PiP
T
i , (1)

where the diagonal covariance matrix Di for the node i is perturbed with a r-rank covariance factor
Pi ∈ Rd×r. The outer product of the covariance factor with its transpose adds off-diagonal entries
to the diagonal matrix. Interestingly, such a perturbation can naturally express richer hierarchical
structures through correlations between the embedding dimensions, enabling Gaussian distributions
to rotate their densities. Although the cost of the low-rank approximation is higher than the diagonal
approximation, it is substantially lower than its full-rank counterpart if r � d.

To learn these low-rank Gaussian distributions, we propose a neural network consisting of a hidden
layer in Rn×d(r+2). Given as input a one-hot vector in {0, 1}n for node i, it is projected into the
hidden layer to obtain Ni. The embedding Ni contains the flattened parameters of a Gaussian
distribution: the first d dimensions are the mean vector µi, the following d dimensions are the
diagonal matrix Di, and the remaining dimensions are the covariance factor Pi.

3.2 LOSS FUNCTION

To learn the weights of the aforementioned neural network, we propose a loss function L that is
calculated from a matrix S ∈ Rn×n

+ . Each entry Sij is the length of the shortest path from node i to
node j, where Sij =∞ if both nodes are unreachable. Given S built from an input directed graph,
the loss function is locally defined as

L(S) =

n∑
i

Le
i(S) + L≺i (S) + L�i (S), (2)

whose components aim to preserve the entailment relationships between nodes (Le
i), as well as the

topology of ancestors (L≺i ) and descendants (L�i ).

In this function, the first loss component is

Le
i(S) =

∑
j 6=i |Sij=1

E2
ij +

∑
j 6=i |ST

ij∈{1,∞}

e−Eij (3)

and involves two summations. The left summation is over the parents (Sij = 1) of node i, whereas
the right summation is over both its immediate descendants (ST

ij = 1) and its remaining unreachable
nodes (ST

ij = ∞). Eij is a function that assigns a scalar energy (LeCun et al., 2006) to the node
pair, which is defined based on the Gaussian distributions Ni and Nj as will be explained in §3.3.
Consequently, when minimizing the loss function, this component quadratically reduces the energy
between node i and their parents, but exponentially pushes node i apart from their immediate
descendants and remaining unreachable nodes. This loss component is thus capturing the local
structure of a node by preserving its first-order proximities.

The second loss component is defined as a typical mean squared error

L≺i (S) =
∑

j |Sij>0,Sij 6=∞

(
Sij

Sik
− Eij

Eik

)2

, (4)

where k = argmaxj Sij , and Sik is then the longest shortest path starting from node i. Here, the
summation is over the ancestors of i (i.e., Sij > 0, Sij 6= ∞). This component assesses how well
the energies between nodes i and j preserve the topology of the ancestors of i. This topology is
defined by ranking the ancestors according to the lengths of their shortest paths from node i. Note
that both shortest path lengths and energies are normalized by using Sik and Eik, respectively,
to effectively express rankings relative to i. This loss component enables embeddings to capture
high-order proximity information of each node.
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Analogous to the previous one, the last loss component is also a mean squared error

L�i (S) =
∑

j |ST
ij>0,ST

ij 6=∞

(
ST
ij

ST
ik

− Eij

Eik

)2

, (5)

where k = argmaxj S
T
ij , and ST

ik is then the longest shortest path ending at node i. The summation
here is over the set of descendants of node i. Consequently, in contrast to L≺, L� assesses how
well the energies between nodes i and j preserve the topology of the descendants of i. This loss
component also enables embeddings to capture high-order proximity information asymmetrically
with respect to L≺.

3.3 ENERGY FUNCTION

In the loss function, the energy between nodes is concretely defined as the KL divergence between
the Gaussian distributions representing these nodes. This divergence has a closed form for such
distributions (Duchi, 2007)

Eij = KL(Nj‖Ni) =
1

2

(
log
|Σi|
|Σj |

+ tr(Σ−1i Σj) + (µi − µj)
T Σ−1i (µi − µj)− d

)
. (6)

The KL divergence is non-negative and equals zero if both distributions are equal. Although this
divergence is not a metric, it generalizes the Pythagoras’ theorem for square distances (Amari,
2016). KL is high when, for example, there is a region where the density Ni is low but Nj is
high. Minimizing the KL will thus promote situations where the density Nj is encapsulated within
the region where Ni is high, while opposite situations will be penalized. The computation cost of
the KL is dominated by the calculation of the determinant and inverse of the d-by-d covariance
matrices. However, it can be largely reduced by exploiting the low-rank form through the use of
the matrix determinant lemma (Ding & Zhou, 2007) and the Woodbury matrix identity (Petersen
et al., 2008) (details in §A). Calculations boil down to apply a Cholesky decomposition, with time
complexity O(r3), and then calculating the inverse (forward substitution) and determinant of the
resulting Cholesky factor, requiring O(r2) and O(r) time, respectively.

In contrast to existing approaches (Vilnis & McCallum, 2014; Bojchevski & Günnemann, 2017;
Athiwaratkun & Wilson, 2018), this study defines the energy Eij not as the forward KL, KL(Ni‖Nj),
but rather by the reverse KL, KL(Nj‖Ni). The forward KL leads to Gaussian distributions whose
dispersions reflect how abstract the represented concepts are (Vilnis & McCallum, 2014; Athiwaratkun
& Wilson, 2018). For example, an abstract concept such as animal has high dispersion because
it includes multiple more specific concepts with lower dispersions, such as mammal, feline and
nematode. In contrast, the reverse KL proposed here has the opposite approach, which is consistent
with the perspective of information theory. Since the entropy of a Gaussian distribution is a function
of its dispersion, distributions providing more information exhibit high entropy, and vice versa.
Interestingly, because the entropy is formally defined as the expected information content of a
random variable (Cover, 1999), the higher the entropy, the richer its information content. That is, the
deeper a node is, the higher its information content, and thus greater its dispersion and entropy are.
Consequently, the use of the reverse KL is in line with previous works where the information content
of words is similarly defined (Wu & Palmer, 1994; Jiang & Conrath, 1997; Lin et al., 1998; Resnik,
1999).

4 EXPERIMENTS

We performed four sets of experiments to evaluate the performance of gGN. The first one studies
the node representations that it learned from toy graphs, to clearly illustrate the representational
benefits of the low-rank approximation. The second set of experiments assesses the benefits of the
low-rank approximation using real-world graphs, and its ability for preserving topologically-relevant
graph features. The third set of experiments carries out an ablation study to demonstrate the impact
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Figure 1: Gaussian embeddings. The nodes of four toy graphs (A-D) are represented through
Gaussian embeddings (top). Bars plot the entropy of each embedding (bottom).

that the three loss components have on obtaining meaningful node representations. The last set of
experiments evaluates the performance of low-rank Gaussian embeddings on the important task of
measuring the semantic similarity between graph nodes.

4.1 A CASE STUDY ON TOY GRAPHS

To clearly illustrate the representational benefits of using low-rank Gaussian embeddings, 4 directed
graphs were defined to showcase common structural features. They were fed into gGN to learn
2-dimensional Gaussian embeddings of rank 2. Figure 1A depicts a chain graph along with its
learned embeddings (top). Here, each (confidence) ellipse depicts the region of a Gaussian embed-
ding/distribution containing points within one standard deviation of the mean. The graph hierarchical
relationships are captured through patterns of encapsulation between embeddings such that the
densities of parents are within regions in which their children assign high density. Expectedly, the
most inner distribution corresponds to the root.

To quantify the aforementioned result, Figure 1 also shows the entropies of the embeddings (bottom).
Since the entropy of a Gaussian distribution is a function of its covariance matrix, large ellipses
are associated with high-entropy distributions, and vice versa. Interestingly, in Figure 1A, since
low-entropy distributions correspond to nodes near the root, the entropy is preserving information
about node depth. Moreover, because the entropy is defined as the expected information content for a
random variable, low-entropy distributions convey low information contents, and thus their nodes
can be interpreted as representing more abstract concepts. Notably, Figure 1B shows that similar
results are reached when using a more complex graph. Here, encapsulations between embeddings
can successfully preserve the two different branches of the new graph.

The role that covariance matrices play can be clearly appreciated in Figure 1C and 1D, where nodes
are represented by low-rank (left) and diagonal (right) covariance matrices. In graph C, unlike the
diagonal case, the low-rank ellipsoids of the children nodes display varying degrees of rotation. This
leads to rather homogeneous entropies among children that are also higher than that of the root.
Similar tendencies can be observed from the embeddings in Figure 1D. These results highlight the
meaningful role that low-rank covariance matrices have in representing nodes.

4.2 LOSS CONVERGENCE FOR THE LOW-RANK APPROXIMATION

To investigate the learning stability of the low-rank approximation, we analyzed the loss curves
yielded by gGN when learning 10-dimensional Gaussian embeddings using spherical, diagonal
and low-rank covariance matrices, with rank values ranging from 1 to 4. This analysis used three
real-world graphs (DAGs) obtained from the GO (Ashburner et al., 2000): Biological Process (BP),
Cellular Component (CC) and Molecular Function (MF). These graphs were selected because their
complexity, despite being not trivial, is suited for systematic in-depth analysis with our computational
budget. Data and training details are provided in §B.

The obtained loss curves are shown in Figure 2 and, regardless of the graph, a dramatic drop
is observed when using the diagonal instead of the spherical approximation, demonstrating the
importance of the covariance matrix in model optimization. Similarly, the curves of the low-rank
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Figure 2: Loss curves for different covariance matrices on three real-world directed graphs. Curves
depict the average values and shaded regions show the dispersion for different seeds. Zoom-in figures
better visualize differences among ranks.
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Figure 3: Impact of embedding dimensionality. Loss curves for different embedding dimensions d.
The green-shaded region depicts curves yielded by spherical and diagonal embeddings, whereas blue
curves are rank-1 embeddings.

approximations (blue) are significantly better than those of the spherical and diagonal approximations
(green). Moreover, the curves also show that the higher the rank is, the lower the loss values are,
underlining the benefits that the low-rank covariance matrix has during learning. Interestingly, higher
rank values tend to give modest or marginal loss improvements. Since computations are cheaper for
lower ranks (see §C), this result highlights that good and stable loss curves can be obtained with a
low computational cost.

Since Gaussian distributions showed very stable loss curves at very low ranks, we further investigated
whether this tendency was still held for higher embedding dimensionalities. To this aim, we analyzed
the loss curves yielded when learning spherical, diagonal and rank-1 approximations on BP, CC and
MF by ranging the embedding dimension d from 10 to 50. Figure 3 shows the resulting curves, where
the losses of the rank-1 embeddings (blue) are always better than those of the spherical and diagonal
ones (green), regardless of the embedding dimensionality. For example, the spherical and diagonal
embeddings with the highest number of dimensions (d = 50) are completely unable to obtain better
losses than all rank-1 embeddings, even than those using the lowest number of dimensions (d = 10).
On the other hand, among the rank-1 embeddings, small loss gains are observed when dimension d is
higher than 10, indicating that the embedding dimensionality is not a significant factor. Based on
these results, d = 10 was selected as an experimentally appropriate and computationally affordable
embedding dimension for the following experiments.

4.3 PRESERVATION OF GRAPH FEATURES

To assess the quality of the Gaussian embeddings learned by gGN from the real-world graphs, we
evaluated whether they were able to preserve two important graph features of nodes: the lengths of
the shortest paths between them and their depths. To contextualize this evaluation, we also included
the node embeddings learned by Graph2Gauss (Bojchevski & Günnemann, 2017), which is a strong
baseline as it uses Gaussian distributions as representations.
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Table 1: Graph features preserved by Gaussian embeddings. The two best values are first boldfaced
and then underlined, respectively.

Pearson correlation (↑)

Shortest path length� Shortest path length≺ Node depth

Model BP CC MF BP CC MF BP CC MF

Spherical 0.77±0.00 0.77±0.10 0.68±0.01 0.83±0.06 0.72±0.08 0.84±0.08 0.48±0.06 0.07±0.08 -0.2±0.06
Diagonal 0.34±0.09 0.73±0.06 0.85±0.01 0.81±0.03 0.65±0.19 0.83±0.01 0.66±0.01 0.58±0.01 0.58±0.03
Rank 1 0.80±0.02 0.71±0.05 0.87±0.01 0.91±0.00 0.90±0.00 0.95±0.00 0.74±0.01 0.72±0.00 0.68±0.01
Rank 2 0.84±0.01 0.78±0.01 0.88±0.01 0.92±0.00 0.92±0.00 0.94±0.00 0.76±0.01 0.76±0.01 0.72±0.01
Rank 3 0.87±0.01 0.81±0.01 0.91±0.01 0.93±0.00 0.93±0.00 0.95±0.00 0.76±0.01 0.76±0.01 0.69±0.01
Rank 4 0.87±0.01 0.80±0.01 0.91±0.00 0.94±0.00 0.94±0.00 0.96±0.00 0.75±0.01 0.78±0.02 0.66±0.02
Graph2Gauss 0.71±0.01 0.69±0.00 0.75±0.02 0.73±0.01 0.72±0.01 0.79±0.01 0.43±0.03 0.27±0.07 0.42±0.06

First, to assess whether the shortest path lengths were properly preserved by embeddings, we measured
how correlated such lengths between nodes were with the KLs between their corresponding Gaussian
embeddings. Since the KL is asymmetric, this correlation was also measured after inverting the
directions of all graph edges. In the following, we will use� to indicate results with the original graph
directions and ≺ to indicate the results with the inverted directions. Correlations were quantified by
calculating the Pearson coefficient (shown in Table 1). As expected, all embeddings show a strong
positive correlation: the longer the length of the shortest path between two nodes, the higher the
KL between their corresponding node representations (detailed plots are provided in §D). More
importantly, this positive correlation is held for both directions of the KL (� and ≺), indicating that
the global structure is asymmetrically preserved. In general, the diagonal Gaussians are statistically
similar to or better than the spherical ones, in particular for node depth. However, there is a case
where the spherical Gaussians outperform the diagonal ones (for � on BP). This can be expected
because, as it will be shown in the ablation study below, preserving node depth information has a
higher impact on the loss function than preserving the shortest path lengths, and diagonal models
are better suited to preserve the former one. Therefore, when the parameters allow the model to
maximize performance on node depth, all the expressiveness of the Gaussian distribution is used for
preserving the most important loss component, at the cost of neglecting the other two ones. Notably,
on the three graphs the highest correlations are obtained by the low-rank approximations proposed
here. In particular, low-rank models showed to be much better than Graph2Gauss on node depth.
These results indicate that the asymmetric relationships between nodes, measured by the divergences
between their embeddings, are effectively preserving the asymmetric topology of the directed graphs,
as defined by the shortest path lengths.

Second, to assess whether node depths were properly preserved, we measured how well such depths
were correlated with the entropies of their corresponding embeddings. Here, the depth of a node was
defined as the number of its ancestors. Correlations were also quantified by computing the Pearson
coefficient. The results in Table 1 reveal that almost all the embeddings show a positive correlation on
the three graphs: the higher the depth of a node, the higher the entropy of its embedding. Interestingly,
the low-rank Gaussian embeddings achieve the highest correlations, indicating that they are better in
preserving depth information.

Last, we compared the performance of the diagonal and rank-1 Gaussian embeddings when using the
same number of parameters per node. The results showed that the performance of both embeddings
was similar for preserving the shortest path lengths (Table 6), even though the rank-1 ones were lower-
dimensional. Nevertheless, the higher-dimensional diagonal embeddings were unable to preserve
node depth information as accurately as the lower-dimensional rank-1 embeddings. This comparative
analysis demonstrates again the representational advantages of the low-rank approximation.

4.4 ABLATION STUDY ON THE LOSS COMPONENTS

We conducted an ablation study to gain a deeper understanding on the contribution of the three
components of the loss function shown in Eq. 2. To this aim we used gGN to learn node embeddings,
from each real-world graph, by turning off one of the three loss components during the whole training
process. The resulting Gaussian embeddings were then used to calculate how well correlated they
were with respect to the structural features analyzed in §4.3. Next, the correlations obtained from
the ablated embeddings were compared with those obtained from the original ones, which were

7



Under review as a conference paper at ICLR 2023

previously reported in Table 1. We expected that if a loss component had a role in capturing one of
the structural features, the embeddings learned when this component is turned-off should show a
lower correlation in comparison to the original one. The three covariance approximations studied
here (spherical, diagonal and low-rank) were included in this analysis.

Figure 4: Ablation study to assess each individual loss
component.

Figure 4 visually compares the Pearson cor-
relations obtained from the original embed-
dings (x-axis) and the ablated ones (y-axis).
Rows show the evaluated three graph fea-
tures whereas each column indicates which
loss component was ablated. Therefore,
each dot indicates the correlation values ob-
tained by one of the Gaussian embeddings
(spherical, diagonal and low-rank) learned
from a particular graph when a given loss
component is ablated or not. Since the
main diagonal represents cases where ab-
lated and original embeddings obtain the
same correlations, dots falling below the
main diagonal indicate that the correlations
obtained by the original embeddings were
better (higher) than the ablated ones. The
results show that when the loss component
Le is ablated, almost all the embeddings
face difficulties in correctly capturing the
three graph features, and particularly in pre-
serving node depths. This is expected as
this loss component is preserving the local
structures around each node. Next, when
ablating the loss components L≺ and L�, moderate negative impacts are observed on capturing
the shortest path length with the normal (≺) and the inverted (�) directions, respectively. This
demonstrates the role of these two components in preserving the shortest path lengths between nodes.
Moreover, note that ablating a loss component may have impact on a specific structural feature but
not on others, reflecting the relevance of each loss component in capturing specific graph information.
For example, ablating the loss component aimed at capturing the shortest path lengths of descendants
(L�) has almost no impact on capturing shortest path lengths of ancestors (�) but a mild impact
on capturing node depths. All these results indicate that the three loss components are needed for
learning Gaussian embeddings capable of properly preserving meaningful graph features.

4.5 KL DIVERGENCE FOR MEASURING SEMANTIC SIMILARITY

Since the KL divergence between the distributions encoded by the embeddings captures the length
of the shortest path between the corresponding nodes, we further analyzed whether this divergence
could be used as a way of measuring the semantic similarity between nodes (Pesquita et al., 2008;
Dessimoz & Škunca, 2017; Makrodimitris et al., 2020). This task is fundamental for comparing the
functional relatedness of gene products based on their annotated GO terms, and lies at the heart of
automating annotation of protein functions (Radivojac et al., 2013; Zhou et al., 2019; Bileschi et al.,
2022).

Given a graph, we evaluated whether the KL divergences (i.e., semantic similarities) calculated from
a particular node i to all the others were able, on their own, to discriminate between the ancestors (A)
and descendants (D) of i. By performing this systematically for all nodes, we ultimately measured
whether the resulting semantic similarities could discriminate between the groups A and D. To
quantify such discrimination, the Davies-Bouldin index (Davies & Bouldin, 1979) was used, as it
measures the level of overlapping between two distributions. The lower the Davies-Bouldin index is,
the less overlapped two distributions are. Thus, lower indices indicate better discriminations between
the groups A and D. In this evaluation, we included the well-known methods used for measuring
semantic similarities, as well as methods that learn node representations, which calculate semantic
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similarities through cosine similarities between embeddings. More experimental details are provided
in §E.

DaviesBouldin index (↓)

Method BP CC MF

Lin ∞ ∞ ∞
Resnik ∞ ∞ ∞

AIC ∞ ∞ ∞
Wang 452.0 11.8 12.6

GOGO 225.5 8.8 12.6

GraRep 172.5 6.7 12.4
AROPE 394.2 27.3 21.8
SVD-anc 69.2 11.5 15.5
SVD-des 290.3 23.2 37.6

DeepWalk 1465.8 6.8 12.9
LINE 39.3 8.4 19.3

node2vec 505.1 21.1 35.1
VERSE 301.9 8.4 14.3

onto2vec 282.6 8.2 13.0
anc2vec 46.5 10.0 21.3

neig2vec 66.3 11.4 37.8

Graph2Gauss 5.0 3.6 39.7
Spherical 2.7 13.2 2.2
Diagonal 1.6 1.9 1.7

Rank 1 1.0 0.9 0.8
Rank 2 0.9 0.8 0.7
Rank 3 0.8 0.7 0.7
Rank 4 0.8 0.7 0.7

Table 2: Davies-Bouldin indexes between
groups A and D.

Table 2 shows the Davies-Bouldin indexes calcu-
lated from the semantic similarities obtained for
each method on each real-world graph. In general,
methods not using distributions as node represen-
tations show important difficulties (high indexes)
to discriminate between ancestors and descendants.
For example, the indexes of Lin, Resnik and AIC
are infinite on the three graphs, indicating a com-
plete overlap between the semantic similarities of
ancestors (group A) and descendants (group D).
This is expected since they calculate the seman-
tic similarity between two nodes based on their
common ancestors (Lin et al., 1998; Resnik, 1999;
Song et al., 2013). Better discriminations between
both groups (low indices) are obtained by methods
that learn node representations, such as LINE and
onto2vec, but in particular those that learn Gaus-
sian distributions. In the latter, the performance
of gGN is the best one, even when using diago-
nal covariance matrices. Notably, the best indices
are obtained by the low-rank approximations, and
they get better as the rank is higher. Taken to-
gether, these results clearly demonstrate not only
the advantages of using the proposed Gaussian rep-
resentations but also that the KL divergence is a
powerful approach for measuring the semantic sim-
ilarity between nodes.

5 CONCLUSION

This work presents gGN as a novel representation for graph nodes based on low-rank Gaussian
distributions. The main benefits of the proposed approach stems from not approximating covariance
matrices with diagonal matrices as is usually done. Instead, our proposal uses low-rank covariance
matrices that, unlike diagonal ones, are capable of representing correlations between the dimensions
of an embedding space. We demonstrated here that such correlations are crucial for expressing
hierarchical structures in knowledge graphs. Since estimating non-diagonal covariance matrices
has a quadratic cost, we used a low-rank approximation to make such estimation computationally
affordable. In addition, a novel loss function is introduced to learn in an unsupervised manner the
low-rank representations such that they preserve both node depths and asymmetric relationships
between nodes. Empirically, our results show that the proposed representation is better than existing
approaches in capturing hierarchical structures and in semantics similarity tasks.

A promising direction for future work is learning low-rank node representations using an alternative
input matrix for the lengths of the shortest paths between nodes. Classically, such matrices are
calculated with Dijkstra’s and Floyd-Warshall’s algorithms. Even though the matrix of lengths is
calculated only once for each graph in our approach, the aforementioned algorithms are limited
to relatively small networks due to their high computational complexity, which is O(n3) time.
Nevertheless, both algorithms are parallelizable and there exist GPU implementations (Harish &
Narayanan, 2007; Taştan et al., 2017). Alternatively, approximate methods with acceptable accuracy
have been also proposed for scaling up computations to graphs with millions of edges (Zhao &
Zheng, 2010; Rizi et al., 2018). Among them, a promising approach is the so-called landmark-based
methods (Zhao & Zheng, 2010). It selects a fixed set of landmark nodes from which their shortest
paths to all other nodes are precomputed. By exploiting geometric properties among landmarks, one
can approximately compute the shortest path between any two nodes, with a cost in the order of the
number of landmarks.
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A KL divergence between low-rank Gaussian distributions

Let Ni and Nj be two multivariate Gaussian distributions N (µi,Σi) and N (µj ,Σj) where µ ∈ Rd

and Σ ∈ Rd×d are the mean and covariance matrix, respectively. Let assume that each covariance
matrix is represented by a low-rank form

Σi = PiP
T
i +Di,

where Di is a diagonal matrix in Rd×d and P ∈ Rd×r. The (reverse) KL divergence betweenNi and
Nj has the following closed form (Duchi, 2007)
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KL(Nj |Ni) =
1

2

log
|Σi|
|Σj |︸ ︷︷ ︸

Term 1

+ tr(Σ−1i Σj)︸ ︷︷ ︸
Term 2

+ (µi − µj)
T Σ−1i (µi − µj)︸ ︷︷ ︸
Term 3

− d

 . (7)

Its computational cost can be substantially reduced by exploiting the low-rank forms of the first three
terms.

A.1 CALCULATING KL TERM 1

This term basically involves calculating the determinant of a covariance matrix Σ. The determinant
of a low-rank form is

log|Σ| = log|D + PPT |. (8)

This form enables us to use the matrix determinant lemma

log|D + PPT | = log
(
|D||I + PTD−1P |

)
(9)

= log|D|+ log|I + PTD−1P︸ ︷︷ ︸
capacitance matrix C

| (10)

= log|D|+ log|C|. (11)

Here, log|D| = log
∏

kDkk =
∑

k logDkk. On the other hand, by using the Cholesky decomposi-
tion, the determinant of the capacitance matrix C ∈ Rr×r is

log|C| = log|LLT |, (12)

where L ∈ Rr×r is a lower triangular matrix. Here, calculating the Cholesky decomposition takes
O(r3) time, where r � d. Thus, the determinant can be calculated as follows

log|LLT | = log|L|2 (13)
= 2 log|L| (14)

= 2 log
∏
k

Lkk (15)

= 2
∑
k

logLkk. (16)

Taken together, Term 1 can be expressed as

log
|Σi|
|Σj |

= log|Σi| − log|Σj | (17)

= log|Di|+ log|Ci| − (log|Dj |+ log|Cj |) (18)
= log|Di|+ 2 log|Li| − (log|Dj |+ 2 log|Lj |) . (19)

This formula shows that computing the determinant of both covariance matrices boil down to
computing the determinants of diagonal and triangular matrices, as simply the product of their
diagonal values.
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A.2 CALCULATING KL TERM 2

Now, let us see how to compute the second term:

tr(Σ−1i Σj) = tr[(Di + PiP
T
i )−1(Dj + PjP

T
j )] (20)

= tr[(Di + PiIP
T
i )−1(Dj + PjP

T
j )], (21)

using the Woodbury matrix identity, the first factor can be re-written

= tr[(D−1i −D
−1
i Pi(I + PT

i D
−1
i Pi︸ ︷︷ ︸

Ci

)−1PT
i D

−1
i )(Dj + PjP

T
j )] (22)

= tr[(D−1i −D
−1
i PiC

−1
i PT

i D
−1
i )(Dj + PjP

T
j )], (23)

now, we can re-used the Cholesky decomposition of Ci

= tr[(D−1i −D
−1
i Pi(LiL

T
i )−1PT

i D
−1
i )(Dj + PjP

T
j )] (24)

by algebraically manipulating the factorization of Ci, a symmetric structure (A) can be exposed

= tr[(D−1i −D
−1
i PiL

−T
i︸ ︷︷ ︸

AT

L−1i PT
i D

−1
i︸ ︷︷ ︸

A

)(Dj + PjP
T
j )] (25)

= tr[(D−1i −A
TA)(Dj + PjP

T
j )] (26)

= tr[(D−1i Dj +D−1i PjP
T
j −ATADj −ATAPjP

T
j )]. (27)

Due to the linearity of the trace operator, the latter equation is equivalent to

= tr(D−1i Dj) + tr(D−1i PjP
T
j )− tr(ATADj)− tr(ATAPjP

T
j ), (28)

to further simplify this expression, we can use the Cholesky decomposition of some diagonal matrices

= tr(D−1i Dj) + tr(D
− 1

2
i D

− 1
2

i PjP
T
j )− tr(ATAD

1
2
j D

1
2
j )− tr(ATAPjP

T
j ). (29)

By using the cyclic property of the trace operator

= tr(D−1i Dj) + tr(D
− 1

2
i PjP

T
j D

− 1
2

i )− tr(D
1
2
j A

TAD
1
2
j )− tr(APjP

T
j A

T ) (30)

= tr(D−1i Dj) + tr(D
− 1

2
i Pj︸ ︷︷ ︸
E

(D
− 1

2
i Pj)

T︸ ︷︷ ︸
ET

)− tr(D
1
2
j A

T︸ ︷︷ ︸
Z

(D
1
2
j A

T )T︸ ︷︷ ︸
ZT

)− tr(APj︸︷︷︸
K

(APj)
T︸ ︷︷ ︸

KT

)

= tr(D−1i Dj) + tr(EET )− tr(ZZT )− tr(KKT ).

Therefore, this KL term is reduced in applying the trace operator on four matrix multiplications.
However, since the matrix multiplications involve transposed matrices, operations can be further
reduced. Note that tr(XXT ) =

∑
k`X

2
k`.

A.3 CALCULATING KL TERM 3

Since the difference between means can be thought of as a displacement ∆, we can use it to re-write
the third term for making the notation easier

(µi − µp)T Σ−1i (µi − µp) = ∆T Σ−1i ∆ (31)

= ∆T (Di + PiP
T
i )−1∆ (32)

= ∆T (Di + PiIP
T
i )−1∆. (33)
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The intermediate factor can be re-expressed using the Woodbury matrix identity

∆T (Di + PiIP
T
i )−1∆ = ∆T (D−1i −D

−1
i Pi(I + PT

i D
−1
i Pi)

−1PT
i D

−1
i )∆ (34)

= ∆T (D−1i −D
−1
i PiC

−1
i PT

i D
−1
i )∆ (35)

= ∆T (D−1i −D
−1
i PiL

−T
i L−1i PT

i D
−1
i )∆ (36)

= ∆T (D−1i −A
TA)∆ (37)

= ∆TD−1i ∆−∆TATA∆ (38)

= ∆TD
− 1

2
i D

− 1
2

i ∆−∆TATA∆ (39)

= (D
− 1

2
i ∆)TD

− 1
2

i ∆− (A∆)TA∆. (40)

This last line is cheap to compute as it involves diagonal matrices and the matrix A, which was
previously computed for KL Term 2.

B Data and training details

For the experiments, we used the three directed acyclic graphs obtained from the GO (Ashburner
et al., 2000) (release 2020-10-06). Each was constructed from the is-a relationships defined by one of
the three sub-ontologies: BP (Biological Process), CC (Cellular Component) and MF (Molecular
Function). Relevant features of these graphs are shown in Table 3. For each graph, a matrix
S containing the shortest path lengths was constructed using the Floyd-Warshall algorithm as
provided by SciPy (Virtanen et al., 2020). The resulting matrix S was then used as input to gGN
(https://github.com/blindcosmos/ggn) to learn the node embeddings by using three
different seeds, for analyzing learning variability.

Table 3: Relevant features of the directed acyclic graphs that compose the GO.
GO graphs

Statistic BP CC MF

Number of nodes 28,888 4,196 11,177
Number of edges 67,238 6,904 13,604
Avg number of parents 2± 1 2± 1 1± 1
Max number of parents 9 5 6
Avg shortest path length 4± 2 3± 2 3± 2
Network diameter 13 10 11
Avg number of ancestors 24± 17 11± 6 7± 3
Max number of ancestors 146 40 32
Avg clustering coefficient 4.01e−10 2.64e−02 7.00e−04

Although all technical details about gGN are available in its code, it is worth mentioning the following
points. To learn each embedding Ni, the mean µi and covariance factor Pi were initialized randomly
using a normal distribution with mean 0 and variance 1, while the diagonal matrix Di was initialized
with 1s, following previous recommendations (Athiwaratkun & Wilson, 2018). Since each covariance
matrix Σi needs to be positive definite (|Σi| > 0), the diagonal matrix Di was clipped to lie within
the hypercube [0.01,∞]d each time before computing the loss function. This lower upper bound was
chosen through numerous experimental analyses that demonstrated that such value made the learning
process very stable by preventing the determinants of the covariance matrices from reaching zero.
In all cases, the training process was performed during 1,000 epochs using batches of 128 random
nodes and the Adam optimizer (Kingma & Ba, 2014) with default parameters. Following standard
methodologies (Mikolov et al., 2013; Smaili et al., 2018), no test and validation sets were used since
the aim here is to learn node embeddings that completely fit the graph structure. All experiments
were run on an i7-5960X processor equipped with eight 3-GHz dual cores in a server with 64GB of
RAM and a single Nvidia Titan X GPU.

In all the experiments involving comparison among the different Gaussian distributions (i.e., spherical,
diagonal and low-rank), all the embeddings were learned by using latent spaces with the same
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Figure 5: Time complexity curves. Time spent by gGN when learning 10-dimensional Gaussian
embeddings with different types of covariance matrices.

dimensionality. This is because all models are single-layered without activations and thus, an attempt
to set an equal number of parameters per node would directly change the space dimensionality. For
instance, a less expressive Gaussian model (e.g., diagonal) with a latent space with more dimensions
than the space of a more expressive Gaussian model (low-rank) can prevent us from determining
whether differences on model performance are due to space dimensionality or Gaussian types.

C Time complexity of learning Gaussian embeddings

The time curves in Figure 5 show the time spent by gGN when learning embeddings using different
covariance matrices on the three graphs evaluated here. When comparing the curves among them,
it can be seen that the higher time consumption occurs on BP followed by MF, with CC displaying
the lowest times. This is expected as the time complexity linearly depends on the number of nodes,
and BP and MF have the largest number of nodes (Table 3). Regardless of the graph, the curves also
show that the lowest computational cost is obtained by the spherical and diagonal approximations,
with essentially the same time complexity since they have the same number of parameters. The next
lowest times are obtained by the rank-1 approximations. The higher the rank is, the higher the time
complexity is, which is expected as the time complexity grows as a function of the rank.

Table 4: Time differences between approximations of covariance matrices.
Fold difference

Model comparison BP CC MF

Diagonal Spherical 0.99 0.99 0.99
Rank 1 Diagonal 3.75 2.98 3.74
Rank 2 Rank 1 1.61 1.45 1.59
Rank 3 Rank 2 1.13 1.12 1.14
Rank 4 Rank 3 1.09 1.08 1.09

Table 4 quantitatively shows how many folds higher it is the time consumed by a model with respect
to another. We can see more clearly that the time complexity of spherical and diagonal embeddings
are almost the same. Among the low-rank approximations, the time spent by the rank 2 is 1.6-fold
higher than the rank 1, and this time difference between ranks tends to reduce as both consecutive
ranks are higher.

We also investigated how the time complexity scales as a function of the graph size by comparing the
time spent to learn the Gaussian models on 1000 epochs. The results show that the time increases
as the graph size increases (Fig. 6). This result also showed that, regardless of the type of Gaussian
model, the time complexity per-node is proportional to the number of nodes of the graph.
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Figure 6: Time complexities in function of the graph.

D Graph features preserved by Gaussian embeddings

We evaluated whether the Gaussian embeddings were preserving both the shortest path lengths
between nodes and the depth of nodes. To this aim, we computed the KL divergence between Gaussian
embeddings and then we compared it against the shortest path lengths between the corresponding
nodes (§D.1). Similarly, to evaluate that the node depths were preserved, we calculated the entropy of
each Gaussian embedding and then we compared it against the depth of its node (§D.2). Since the KL
divergence and entropy are not normalized, hampering comparative analyses through visualizations,
both measures were normalized for each type of embedding (spherical, diagonal and low-rank) on
each graph. More concretely, given the KL divergences (or entropies) calculated from embeddings
learned from a graph, these values were normalized by subtracting the minimum value and then
dividing them by the difference between the maximum and minimum values.

D.1 KL PRESERVES SHORTEST PATH LENGTH

Figure 7 shows the resulting KL divergences between embeddings when grouped according to the
shortest path lengths between the nodes, which range from 1 to 13 (BP), 1 to 10 (CC) and 1 to 11
(MF). Each group is showing the distribution of KL divergences calculated between embeddings
representing pairs of nodes sharing the same shortest path lengths. Such distributions are depicted
as violins and their different quartile values as boxes. The results show that for all embeddings
the KL divergence is positively correlated with the shortest path length. This was quantified more
precisely by calculating how linearly correlated both variables were and plotted as red dashed lines.
The highest correlations were notably achieved by the low-rank embeddings, indicating that they are
properly preserving the graph topology.

Since the KL divergence is asymmetric, we also evaluated whether the previous positive correlation
was also held when inverting the directions of all edges in each graph. The results are shown in
Figure 8. As expected, it shows that the KL is strongly correlated with the length of the shortest paths
obtained from inverting directions. In particular, the highest correlations are obtained by the low-rank
embeddings.
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Figure 7: Shortest paths lengths (�) between nodes and KL divergence between their Gaussian
embeddings.
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Figure 8: Shortest paths lengths (≺) between nodes and KL divergence between their Gaussian
embeddings.
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Figure 9: The number of ancestors of a node and the entropy of its corresponding Gaussian embedding.
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Figure 10: The shortest path length of a node to the root and the entropy of its corresponding Gaussian
embedding.

D.2 ENTROPY PRESERVES NODE DEPTH

To this evaluation, we defined the depth of a node as its number of ancestors. To calculate the entropy,
we took advantages that embeddings are Gaussian distributions and used the following closed form
formula:

H(Ni) =
d

2
(1 + log(2π)) +

1

2
log|Σi| (41)

where |·| is the determinant. Figure 9 shows the results of comparing the node depths with the
entropies of their corresponding embeddings. Entropies calculated from nodes sharing the same
depth are grouped and represented as violins, whereas the quantiles are depicted as boxes inside the
violins. In almost all embeddings, the node depth is positively correlated with the entropy. However,
this correlation is not observed for the spherical embeddings on CC and MF. This is expected as
the spherical embeddings can only represent overly limited density shapes, which seem to be not
sufficient for properly encoding node depths through patterns of encapsulation between embeddings.
The level of correlation was quantitatively measured by calculating how linearly correlated the depth
and the entropy were for each method on each graph. The resulting correlations are shown as red
dashed lines. The highest correlations are achieved by the low-rank embeddings, indicating that they
are better suited for preserving depth information.

Since the graphs used in the experiments are DAGs, we defined the node depth alternatively as the
length of the shortest path between a node and its root. Next, we measured how correlated this new
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Table 5: Correlation between the alternative definition of node depth and embedding entropy.
Pearson correlation (↑)

Model BP CC MF

Spherical 0.16 ± 0.08 -0.18 ± 0.11 -0.04 ± 0.17
Diagonal 0.26 ± 0.04 0.47 ± 0.03 0.46 ± 0.03
Rank 1 0.34 ± 0.01 0.58 ± 0.03 0.54 ± 0.02
Rank 2 0.30 ± 0.02 0.57 ± 0.03 0.62 ± 0.01
Rank 3 0.27 ± 0.01 0.52 ± 0.01 0.61 ± 0.01
Rank 4 0.30 ± 0.03 0.54 ± 0.01 0.59 ± 0.03
Graph2Gauss -0.13 ± 0.08 -0.13 ± 0.11 -0.02 ± 0.01

definition was with the embedding entropy. The results are shown in Figure 10. Here, we can see
that the low-rank embeddings achieve the highest correlations, as indicated by the linear correlations
plotted as red dashed lines. Table 5 shows these results more clearly by listing all the Pearson
correlation coefficients obtained for each method on each graph. This high correlation achieved by
the low-rank embeddings demonstrates that depth information is successfully preserved.

Table 6: Performance of representations with the same number of parameters per node. Significant
correlations are boldfaced.

Pearson correlation (↑)

30 params per node 40 params per node 50 params per node

Feature Graph Diag (d=30) Rank1 (d=15) Diag (d=40) Rank1 (d=20) Diag (d=50) Rank1 (d=25)

Path length� BP 0.90±0.01 0.88±0.01 0.91±0.01 0.90±0.01 0.91±0.01 0.90±0.01
CC 0.85±0.01 0.79±0.02 0.87±0.01 0.81±0.02 0.86±0.02 0.81±0.03
MF 0.88±0.01 0.87±0.01 0.88±0.01 0.87±0.01 0.89±0.01 0.86±0.01

Path length≺ BP 0.93±0.01 0.93±0.01 0.93±0.01 0.93±0.01 0.93±0.01 0.94±0.01
CC 0.90±0.01 0.90±0.02 0.89±0.01 0.91±0.02 0.91±0.02 0.91±0.02
MF 0.93±0.01 0.96±0.01 0.93±0.01 0.96±0.01 0.93±0.01 0.96±0.01

Node deph BP 0.66±0.02 0.73±0.03 0.63±0.02 0.71±0.01 0.59±0.02 0.70±0.02
CC 0.63±0.02 0.70±0.02 0.64±0.01 0.69±0.01 0.62±0.02 0.69±0.03
MF 0.62±0.05 0.67±0.05 0.58±0.02 0.68±0.01 0.63±0.02 0.68±0.02

In addition, we compared the diagonal and rank-1 embeddings when using the same number of
parameters per node. For representing a graph node, a diagonal embedding of dimension d uses the
same number of parameters than a rank-1 embedding of dimension d/2. This comparison evaluated
the performance of both embeddings on preserving shortest path lengths and node depths. The results
are shown in Table 6. In general, the performance of the diagonal and rank-1 embeddings is similar.
Nevertheless, the low-rank embeddings are better than the diagonal ones on preserving node depths,
even when the latter used the double of dimensions.

E Semantic similarity task

To evaluate node representations on the task of measuring semantic similarity between nodes, we
extracted all possible pairs of nodes of a given directed graph and then labeled them according to the
relationships held between both nodes in each pair. More concretely, for a given node i, the other
nodes in a directed graph can be partitioned into three groups: ancestors, descendants or neither
of them, as is schematically shown in Figure 11. Hence, each pair between node i and node j can
be labeled into one of these three groups. Therefore, the task consisted on analyzing whether the
semantic similarities calculated from the (Gaussian) representations of two nodes were able, on their
own, to discriminate among the three groups of node pairs.

E.1 SELECTED METHODS FOR THE SEMANTIC SIMILARITY TASK

For the task of measuring semantic similarity between nodes, we selected a number of representative
baseline methods. Some of them were specifically designed for this task while others are well-known
methods that have been proposed for learning node representations from graphs. Table 7 lists the
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Ancestors
Descendents
Rest

Figure 11: Groups of node pairs based on graph partitioning. Given any node (black), it can be
used as a reference to partition a directed graph into three disjoint sets of nodes: its ancestors, its
descendants and the rest of the nodes.

Table 7: Methods used on the task of measuring semantic similarity.
Method Category Year Repository

Lin Classic 1998 -
Resnik Classic 1999 -
AIC Classic 2013 -
Wang Classic 2007 https://github.com/tanghaibao/goatools
GOGO Classic 2018 https://github.com/zwang-bioinformatics/GOGO

GraRep Matrix factorization 2015 https://github.com/benedekrozemberczki/GraRep
AROPE Matrix factorization 2018 https://github.com/ZW-ZHANG/AROPE
SVD-anc Matrix factorization - -
SVD-des Matrix factorization - -

DeepWalk Random walk 2014 https://github.com/phanein/deepwalk
LINE Random walk 2015 https://github.com/tangjianpku/LINE
node2vec Random walk 2016 https://github.com/aditya-grover/node2vec
VERSE Random walk 2018 https://github.com/xgfs/verse.git

onto2vec Neural network 2018 https://github.com/bio-ontology-research-group/onto2vec
anc2vec Neural network 2022 https://github.com/sinc-lab/anc2vec
neigh2vec Neural network 2022 https://github.com/sinc-lab/anc2vec

Graph2Gauss Gaussian 2017 https://github.com/abojchevski/graph2gauss

selected methods that are grouped into five wide categories according to their computational approach,
indicated in the column Category. The next columns indicate corresponding year and repository.
On top, the classic methods are Lin (Lin et al., 1998), Resnik (Resnik, 1999), AIC (Song et al.,
2013), Wang (Wang et al., 2007), and GOGO (Zhao & Wang, 2018). They stem from ideas based
on information theory previously applied on the WordNet hierarchy. The other four categories
exclusively include methods that learn node representations from a given graph.

In the matrix factorization category, the methods selected are GraRep (Cao et al., 2015),
AROPE (Zhang et al., 2018), and DeepWalk (Perozzi et al., 2014). They first define a high-
dimensional matrix in which structural features of each node are described. Next, the dimensionality
of this matrix is reduced in order to obtain low-dimensional (dense) representations of nodes. This
group includes two additional methods named SVD-anc and SVD-des that are specially prepared for
the semantic similarity task (technical details of these methods are provided in §E.2).

The next category contains methods based on random walks: LINE (Tang et al., 2015),
node2vec (Grover & Leskovec, 2016), and VERSE (Tsitsulin et al., 2018). These methods per-
form random walks starting from a given node to define its neighborhood stochastically, in order to
use it in a self-supervised learning task for building the representation of the node. Here, methods
generally follow very tightly the self-supervised objectives proposed by word2vec (Mikolov et al.,
2013), such as the skip-gram objective where the aim is to predict the neighborhood of a given node
by using noise contrastive estimation (Gutmann & Hyvärinen, 2010). LINE optimizes similarities
between pairs of node embeddings such that first and second order proximities are preserved. Instead,
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VERSE builds node embeddings such that the similarities between nodes have low KL divergence
with respect to the dot products between their corresponding embeddings (Tsitsulin et al., 2018).

The neural network category includes: onto2vec (Smaili et al., 2018), anc2vec (Edera et al., 2022),
and neigh2vec (Edera et al., 2022) .These methods that use diverse neural networks architectures
aimed at building node representations through self-supervised objectives proposed for capturing
relevant structural features of a graph. Finally, the last category includes a method that builds node
representations using Gaussian distributions whose covariance matrices are approximated by diagonal
matrices instead of low-rank matrices like gGN.

E.2 TRAINING DETAILS FOR LEARNING NODE EMBEDDINGS

For all classic methods, we used default parameters as proposed by their authors. All methods that
learned embeddings used 200 dimensions. For GrapRep, 20 orders were used, each of them with
10 dimensions. For AROPE, default parameters were used and 49 dimensions for each order. For
SVD-anc (and SVD-desc), an r-dimensional embedding was obtained for each node by truncating
the left singular matrix U at dimension r, and multiplying it by the truncated diagonal matrix D:
U1:rD1:k,1:k. The matrices D and U were obtained by computing the SVD decomposition (Petersen
et al., 2008) M = UDV T ; here, M is the matrix of ancestors (SVD-anc) or descendants (SVD-desc),
which were built from BP, CC and MF, respectively. For DeepWalk, 80 random walks per node with a
maximum length of 40 were extracted. To construct embeddings, the extracted walks were treated as
sentences, and nodes were treated as words, to be used as input to word2vec (https://github.
com/tmikolov/word2vec) using the skip-gram objective with parameters: window=5, min-
count=0 and iter=200. For LINE, we used 2 orders, 5 negatives, 100 samples and ρ = 0.025. In
node2vec, p = 1 and q = 1 were used. We used VERSE with α = 0.85 and 3 samples. From the
axioms extracted by onto2vec, it was given as input to word2vec using the skip-gram objective with
parameters: window=5, min-count=0 and iter=200. The node embeddings of anc2vec and neigh2vec
were downloaded from their public repositories. For Graph2Gauss, we used as input an adjacency
matrix built for each graph to learn node embeddings with default parameters.

E.3 SEMANTIC SIMILARITY COMPUTATION

Classic methods define the similarity between nodes by combining structural features from the
hierarchical graph and the information contents of nodes that are calculated from an annotation cor-
pus (Camon et al., 2003). However, if different corpuses of annotations are used, information contents
may differ and thus lead to semantic incongruencies, which can negatively impact downstream tasks.
To overcome this, the information content was calculated using the intrinsic technique (Seco et al.,
2004). The intrinsic information content (IC) of a given term/node i is

IC(i) = 1− log(desc(i) + 1)

log n
(42)

where desc(i) is the set of descendants of i and n is the total number of nodes in the graph.

For the methods that build node representations, we calculated the most commonly used semantic
similarity as the cosine (Smaili et al., 2018; Zhong et al., 2019). Given two node representations, vi
and vj in Rd, the cosine similarity is

scos(vi, vj) =
〈vi, vj〉
|vi||vj |

(43)

where the dot product of the vectors vi and vj is divided by the product of their Euclidean norms.
It returns values within the interval [−1,+1], where −1 and +1 indicate total dissimilarity and full
similarity, respectively. Since the cosine similarity does not depend on the magnitudes of the vectors,
it is totally governed by their angle, and thus scos(i, j) = scos(j, i). For Graph2Gauss, the semantic
similarity was calculated by using the forward KL divergence for diagonal covariances
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Figure 12: Semantic similarity between pairs of nodes labeled as Ancestors, Descendants and Rest.

KL(Ni‖Nj) =
1

2

(
log
|Dj |
|Di|

tr(D−1i Dj) + (µj − µi)
TD−1j (µj − µi)− n

)
(44)

where the determinant log |D| =
∑

k logDkk, and the inverse of the diagonal matrix is D−1 =[
1

Dkk

]
kk

.

E.4 RESULTS OF THE SEMANTIC SIMILARITY TASK

The semantic similarities obtained for each method are shown in Figure 12 in the y-axis. They are
shown by method on the x-axis according to their performance on the ancestors (red), descendants
(blue) and rest (green) for the 3 ontologies: BP (top), CC (middle) and MF (bottom). Groups of
semantic similarities are plotted using standard boxplots. Because the semantic similarities (KL di-
vergences) calculated from Gaussian embeddings are in an exponential space, due to the loss function
used for their optimization, their boxplots are in a log scale to enhance visualization. Similarly, since
the obtained semantic similarities vary largely across methods, hampering comparative analyses
through visual inspection, they were normalized for each method on each graph. Note that these
transformations do not alter the analysis since they do not distort the relative positioning of the
semantic similarities obtained by a given method on a particular graph.

If the semantic similarities calculated by a method are good discriminating between two groups
(e.g., ancestors and descendants), it is expected for the semantic similarities belonging to these two
groups to be poorly overlapped. Since groups of semantic similarities are represented as boxes,
no overlapping between boxes is expected, in particular in their most dense regions, which are
indicated by the interquartile ranges. Based on this expectation, and analyzing the results in Figure 12,
almost all methods show groups overlapped, indicating a poor discriminatory power. Nevertheless,
the Gaussian embeddings show higher discriminatory power, since groups are here only slightly
overlapped. However, note that this good discriminatory power of the Gaussian embeddings is not
general but specific to some embeddings. For example, Graph2Gauss and spherical embeddings
show groups of ancestors and descendants with a moderate degree of overlap, whereas the diagonal
embeddings show it to a lesser extent. Remarkably, this overlap is not observed among the low-rank
embeddings, clearly showing their capability to properly discriminate between groups.
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Table 8: Davies-Bouldin indexes measuring the level of overlap between the ancestors (A), descen-
dants (D) and rest (R). The two best values are first boldfaced and then underlined, respectively.

DaviesBouldin index (↓)

BP CC MF

Method A vs R D vs R A vs R D vs R A vs R D vs R

Lin 1.0 1.0 1.9 1.9 1.2 1.2
Resnik 1.3 1.3 2.6 2.6 1.4 1.4

AIC 0.9 0.9 1.2 1.2 0.9 0.9
Wang 2.0 2.0 4.8 3.0 2.0 1.6

GOGO 1.4 1.4 2.0 1.4 1.3 1.1

AROPE 1.7 1.7 2.2 2.0 1.6 1.5
GraRep 335.4 355.4 13.6 13.4 23.5 26.6

SVD-anc 2.3 2.4 8.7 4.5 4.6 3.4
SVD-des 1.5 1.5 1.7 1.6 1.8 1.8

DeepWalk 401.1 548.4 12.4 16.1 26.5 25.3
LINE 96.4 27.9 8.8 162.5 9.6 19.4

node2vec 4.2 4.1 3.6 3.1 3.4 3.2
VERSE 1.3 1.3 2.0 1.4 1.5 1.3

onto2vec 7.7 7.8 23.8 12.3 9.4 29.0
anc2vec 2.2 2.4 25.1 6.5 4.8 3.8

neig2vec 3.2 3.4 14.6 47.2 12.0 18.2

Graph2Gauss 0.8 0.7 1.1 0.8 0.7 0.7
Spherical 1.2 0.7 1.2 1.0 2.3 0.8
Diagonal 1.1 0.6 1.2 0.7 0.9 0.6

Rank 1 1.0 0.5 1.6 0.5 0.9 0.4
Rank 2 1.0 0.4 1.5 0.4 0.9 0.3
Rank 3 1.0 0.4 1.3 0.4 0.9 0.3
Rank 4 1.1 0.4 1.4 0.4 0.9 0.3

E.4.1 QUANTIFYING DISCRIMINATORY POWER

To quantify the aforementioned results shown in Figure 12, we used the Davies-Bouldin (DB) index
to measure the degree of overlapping between two distributions of semantic similarities. Given two
clusters Ci and Cj , the Davies-Bouldin (DB) index is

DBij =
si + sj
dij

(45)

where si is the average distance between each point of cluster Ci and its centroid, and dij is the
distance between the centroids of clusters Ci and Cj . In our experiment, the two clusters are defined
as two different distributions of semantic similarities whose centroids correspond to their mean values.
The lower DB index is, the more separated the two distributions/clusters are. The lowest possible
DB index is zero. Therefore, an DB index close to zero indicates well-separated clusters and thus
poorly overlapped distributions. For our experiment, we used the public implementation available in
Scikit-learn (Pedregosa et al., 2011).

Table 8 shows the DB indexes calculated from the results in Figure 12. Here, the low-rank embeddings
obtained the best indexes (lowest). Notably, the low-rank embeddings are even able to discover
that the groups A and R are weakly related. This is because node pairs labeled as R are indeed
weak ancestors (A), as any two nodes in a DAG share a common ancestor at some point, see
Figure 12. Finally, it is worth noting that, in comparison to classical techniques especially designed
for calculating the semantic similarities between GO nodes (Lin, Resnik, AIC, Wang and GOGO),
the Gaussian embeddings are able to obtain much better results, demonstrating the advantages of
using the KL divergence between low-rank Gaussian distributions for measuring semantic similarity.

28


	Introduction
	Related work
	Low-rank Gaussian embeddings
	Representation
	Loss function
	Energy function

	Experiments
	A case study on toy graphs
	Loss convergence for the low-rank approximation
	Preservation of graph features
	Ablation study on the loss components
	KL divergence for measuring semantic similarity

	Conclusion
	KL divergence between low-rank Gaussian distributions
	Calculating KL OrangeRedTerm 1
	Calculating KL GreenTerm 2
	Calculating KL NavyBlueTerm 3

	Data and training details
	Time complexity of learning Gaussian embeddings
	Graph features preserved by Gaussian embeddings
	KL preserves shortest path length
	Entropy preserves node depth

	Semantic similarity task
	Selected methods for the semantic similarity task
	Training details for learning node embeddings
	Semantic similarity computation
	Results of the semantic similarity task
	Quantifying discriminatory power



