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Abstract
Hierarchical clustering (HC) is an important data
analysis technique in which the goal is to recur-
sively partition a dataset into a tree-like struc-
ture while grouping together similar data points
at each level of granularity. Unfortunately, for
many of the proposed HC objectives, there exist
strong barriers to approximation algorithms with
the hardness of approximation. We consider the
problem of hierarchical clustering given auxiliary
information from natural oracles in the learning-
augmented framework. Our main results are al-
gorithms that given learning-augmented oracles,
compute efficient approximate HC trees for the
celebrated Dasgupta’s and Moseley-Wang objec-
tives that overcome known hardness barriers.

1. Introduction
Hierarchical clustering (HC) is a popular data analysis tech-
nique that recursively partitions a dataset throughout a tree-
like structure, so that similar data points are grouped to-
gether at different levels of granularity. Specifically, the
input is a set of n data points and a measure of similarity or
dissimilarity between the points, which induces a weighted
graph whose vertices represent the data points and whose
edge weights represent the pairwise measure between the
vertices. The output is a binary dendrogram, which is a
rooted tree whose leaves represent the individual data points
and whose internal nodes each represent a cluster of the data
points in its subtree, thus providing a hierarchical represen-
tation of relationships within the dataset.

Hierarchical clustering has several advantages over flat clus-
terings such as k-means or k-median, where the dataset is
partitioned into a fixed number of clusters. For example,
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the “correct” number of clusters in flat clusterings is often
a difficult question that is the focus of a sequence of works
dating back to the 1950s (Thorndike, 1953). In hierarchical
clustering, there is no fixed number of clusters that needs
to be determined in advance. Another advantage of hier-
archical clustering is that the dendrogram simultaneously
captures structure at all levels of granularity, whereas flat
clustering does not identify further structure inside each of
the clusters. Hence, hierarchical clustering arises in various
applications where data exhibits hierarchical structure, such
as biology and phylogenetics (Sneath et al., 1973; Sotiriou
et al., 2003), image and text analysis (Steinbach et al., 2000),
and community detection (Leskovec et al., 2020).

Despite a wealth of heuristics for both agglomerative
bottom-up (Ward Jr, 1963) and divisive top-down ap-
proaches (Guénoche et al., 1991), formal mathematical un-
derstanding of hierarchical clustering often stagnated due to
the absence of well-posed objectives until a relatively recent
work by Dasgupta (Dasgupta, 2016). Subsequently, addi-
tional objectives (Moseley & Wang, 2017; Cohen-Addad
et al., 2019) were proposed to quantify the performance of
dendrograms with n leaves, so that high-revenue similarity
trees and low-cost dissimilarity trees correspond to desirable
hierarchical partitions of the dataset.

For a number of these objectives, various algorithms have
been proven to achieve specific approximation guarantees.
For example, a divisive clustering algorithm based on the
sparsest cut subroutine was shown to give an O(

√
log n)

approximation (Charikar & Chatziafratis, 2017b; Cohen-
Addad et al., 2019; Deng et al., 2025) for Dasgupta’s ob-
jective (Dasgupta, 2016), while the long-used agglomer-
ative heuristic was shown to give a 2-approximation for
the dissimilarity objective proposed by (Cohen-Addad et al.,
2019) and a 1

3 -approximation for the similarity objective pro-
posed by (Moseley & Wang, 2017), i.e., the Moseley-Wang
(MW) objective. These objectives were further explored in
the contexts of better approximation factors (Chatziafratis
et al., 2020b; Alon et al., 2020), sublinear computation mod-
els (Rajagopalan et al., 2021; Assadi et al., 2022; Agarwal
et al., 2022), and graphs with special properties (Charikar
et al., 2019b; Manghiuc & Sun, 2021).

Unfortunately, (Charikar et al., 2019a) showed that average-
linkage cannot do better than 3

2 -approximation for the for-
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mer objective or better than 1
3 -approximation for the lat-

ter. More general hardness of approximation results were
given, showing the impossibility of achieving roughly 1.003-
approximation (Chatziafratis et al., 2020a) for dissimilarity
under the Unique Games Conjecture and the impossibility
of achieving (1− C)-approximation for the Moseley-Wang
objective (Chatziafratis et al., 2020b) under the Small Set
Expansion hypothesis, for a fixed constant C > 0. More-
over, for the Dasgupta objective, (Charikar & Chatziafratis,
2017a; Roy & Pokutta, 2017) showed that under the Small
Set Expansion hypothesis, there is no constant approxima-
tion in polynomial time for any constant. Thus, we seek new
practical approaches that enable better approximation guar-
antees without assumptions about the underlying dataset or
weight function.

Learning-augmented algorithms. We draw inspiration
from the recent advances in the predictive capabilities of
machine learning models. On one hand, datasets often have
additional auxiliary information that can be used to im-
prove algorithmic performance if accurate. For example,
in many applications, the input dataset can retain insight-
ful patterns exhibited by similar datasets generated from
previous instances. On the other hand, machine learning
models lack provable guarantees and can result in wildly in-
accurate predictions when generalizing to unfamiliar inputs
(Szegedy et al., 2014). Nevertheless, learning-augmented
algorithms (Mitzenmacher & Vassilvitskii, 2020) that over-
come worst-case computational limits have been designed
for a number of applications, such as warm-starts for faster
algorithms (Dinitz et al., 2021; Chen et al., 2022c; Davies
et al., 2023), data structures optimized for specific query
distributions (Kraska et al., 2018; Mitzenmacher, 2018; Lin
et al., 2022; Fu et al., 2025), online algorithms with some
“forecast” of the future (Purohit et al., 2018; Gollapudi &
Panigrahi, 2019; Lattanzi et al., 2020; Wang et al., 2020; Wei
& Zhang, 2020; Bamas et al., 2020; Im et al., 2021; Lykouris
& Vassilvitskii, 2021; Aamand et al., 2022; Anand et al.,
2022; Azar et al., 2022; Grigorescu et al., 2022; Khodak
et al., 2022; Gupta et al., 2022; Jiang et al., 2022; Antoniadis
et al., 2023; Shin et al., 2023; Benomar & Perchet, 2023),
input-sensitive sketches for more space-efficient streaming
algorithms (Hsu et al., 2019; Indyk et al., 2019; Jiang et al.,
2020; Chen et al., 2022b;a; Li et al., 2023), and classical NP
hard problems (Braverman et al., 2024; Cohen-Addad et al.,
2024; Braverman et al., 2025).

For clustering problems, (Ergun et al., 2022; Nguyen et al.,
2023; C. S. et al., 2024) introduced flat clustering algo-
rithms that use polynomial runtime and achieve approxima-
tion guarantees beyond NP hardness limits. Though their
techniques are specific to k-means and k-median clustering,
their work nevertheless serves as an important conceptual
message that demonstrates machine learning oracles can be
used to improve upon traditional techniques for cluster anal-

ysis. Furthermore, for graph-base problems, recent results
by (Cohen-Addad et al., 2024; Braverman et al., 2024; Dong
et al., 2025) have shown that natural learning-augmented or-
acles could help overcome NP-hardness constraints as well.
We thus ask whether machine learning models can be used
to provably improve (graph-based) hierarchical clustering.

1.1. Our Contributions

In this paper, we consider the problem of hierarchical clus-
tering given a possibly erroneous oracle that uses auxiliary
information, e.g., through clusterings of similar datasets, to
provide local information about the relationship between
queried data points. In particular, we consider a splitting or-
acle that, on an input query of a triplet (u, v, w) of vertices,
outputs the vertex that is first separated away from the other
two with respect to an optimal or near-optimal hierarchical
clustering tree. In other words, if the oracle is consistent
with some ground-truth tree, it will output the vertex that is
not in the same subtree as the other two vertices, under their
least common ancestor. We remark that such oracle advice
is natural due to the plethora of machine learning models
that are trained on related instances of graphs, where the
triplet relationships are already labeled.

Using triplet split-away information is common in the litera-
ture, and there have been results explored in similar settings,
e.g., tree reconstruction with accurate triplet relationships
given (Aho et al., 1981), triplets are given as constraints
(Chatziafratis et al., 2018), noisy triplet information with
fresh randomness (Emamjomeh-Zadeh & Kempe, 2018),
and algorithms with quartet information (Jiang et al., 2000;
Snir & Yuster, 2011; Alon et al., 2014). Furthermore, the
reconstruction of phylogenetic CSPs, which provides an
oracle with a similar form to ours, is an extensively studied
line of work (see, e.g., (Chatziafratis & Makarychev, 2023)).
From the machine learning perspective, it is possible to learn
such oracles in the PAC learning framework (see Appendix J
for details).

In line with existing literature on learning-augmented al-
gorithms, we investigate a stochastic and independently
responding splitting oracle, where randomness is introduced
only once. Specifically, this implies that the oracle correctly
responds with a probability of p for some constant p > 1/2,
independently across vertex triplets. Additionally, repeated
queries of the same triplet consistently yield the same (pos-
sibly erroneous) responses, which rules out basic boosting
strategies such as repeatedly making the same query to the
oracle. We remark this splitting oracle mirrors numerous
machine learning models that are trainable with data yet
exhibit inherent noise.

We now present our main results for learning-augmented
hierarchical clustering. We first show that for the Dasgupta
objective, we can use such a splitting oracle to achieve a
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constant factor approximation in polynomial time.

Theorem 1. There exists an algorithm that, given a
weighted undirected graph G = (V,E,w) and a split-
ting oracle O, with high probability, in polynomial time
and O(n3) queries computes a hierarchical clustering
tree T such that costG(T ) ≤ O(1) · OPTDas(G), where
OPTDas(G) is the cost of the optimal hierarchical clustering
tree T ∗, i.e., OPTDas(G) = costG(T ∗).

By comparison, (Charikar & Chatziafratis, 2017a; Roy &
Pokutta, 2017) showed that there is no polynomial-time
algorithm that could achieve any constant approximation
to Dasgupta’s objective, under the Small Set Expansion
hypothesis. Hence, Theorem 1 illustrates that the power of
a splitting oracle can be used to break complexity hardness
limitations. On the other hand, we remark that the runtime
of the algorithm of Theorem 1, although polynomial, is
perhaps embarrassingly large. We thus give an algorithm
that uses the splitting oracle and Õ(n3) time to achieve
approximation guarantees beyond the current state-of-the-
art oblivious algorithms.

Theorem 2. There exists an algorithm that, given a
weighted undirected graph G = (V,E,w) and a splitting
oracle O, with high probability, in O(n3 log n) time and
O(n3) queries computes a hierarchical clustering tree T
such that costG(T ) ≤ O(

√
log log n) ·OPTDas(G), where

OPTDas(G) is the cost of the optimal hierarchical clustering
tree T ∗, i.e., OPTDas(G) = costG(T ∗).

By comparison, the best-known polynomial-time oblivious
algorithm achieves O(

√
log n)-approximation (Charikar &

Chatziafratis, 2017b; Cohen-Addad et al., 2019). Thus our
algorithm that achieves O(

√
log log n) approximation gives

very competitive practical bounds – the improvement of our
algorithm is approximately 2.3 times better for n = 1010.

Turning our attention to the Moseley-Wang objective, we
similarly show that a splitting oracle can also be used to
achieve any constant factor approximation in polynomial
time.

Theorem 3. There exists an algorithm that, given a
weighted undirected graph G = (V,E,w) and a splitting
oracle O, with high probability, in O(n2 · polylogn) time
and O(n2) queries computes a hierarchical clustering tree
T such that revG(T ) ≥ (1 − o(1)) · OPTMW(G), where
OPTMW(G) is the revenue of the optimal hierarchical clus-
tering tree T ∗, i.e., OPTMW(G) = revG(T ∗).

We note that (Chatziafratis et al., 2020b) showed the APX-
hardness of the (1− C) approximation for Moseley-Wang
objective under the Small Set Expansion hypothesis, for a
fixed constant C ∈ (0, 1). As such, Theorem 3 again also
shows the power of splitting oracles to overcome impos-
sibility barriers. Since a n-vertex graph could have input

size as large as Θ(n2), the time complexity in Theorem 3 is
near-linear in the worst case.

Finally, we observe that our algorithms possess favorable
properties that are extremely amenable to sublinear algo-
rithms. As such, we can obtain the following results in the
streaming and parallel computation (PRAM) settings.
Theorem 4. In the single-pass graph streaming and the
PRAM settings, there exists:

• a single-pass (dynamic) streaming algorithm that, given
a weighted undirected graph G = (V,E,w) in a
poly(n)-length dynamic stream and an offline splitting
oracleO, with high probability, uses O(n·log3 n) bits of
space and polynomial time computes a hierarchical clus-
tering tree T such that costG(T ) ≤ O(1) ·OPTDas(G)
(Theorem 21).

• a PRAM algorithm that, given a weighted undirected
graph G = (V,E,w) and a splitting oracle O, with
high probability, in O(n2 · polylogn) work and log3 n
depth computes a hierarchical clustering tree T such
that revG(T ) ≥ (1− o(1)) ·OPTMW(G) (Theorem 22).

Our results in the sublinear settings similarly outperform
the state-of-the-art in the HC algorithms without oracle
advice. For instance, in the single-pass graph streaming
setting, (Assadi et al., 2022; Agarwal et al., 2022) designed
semi-streaming algorithms with O(1) approximation but
exponential time. By comparison, our algorithm only uses
polynomial time, leveraging the advantage of the splitting
oracle.

2. Preliminaries
We present the definition of the hierarchical clustering prob-
lem, our splitting oracle model, and the HC objectives in
this section.

2.1. The hierarchical clustering problem

We consider the hierarchical clustering problem with a split-
ting oracleO. The hierarchical clustering problem is defined
as follows. We are given an n-vertex weighted undirected
input graph G = (V,E,w), and our goal is to produce a
binary tree T whose root node corresponds to the vertex
set V and the leaves represent the singleton vertices. The
vertices set contained in the internal nodes form a Laminar
set family: suppose node x has children (y, z), it represents
a split Sx → (Sy, Sz), where Sx = Sy ∪ Sz . In this work,
we assume without loss of generality n ≥ 200 log n – the
bound holds for any n ≥ 2500, and if n is a constant we
can simply use a brute-force algorithm.

Hierarchical clustering trees only define a data structure,
and there are many ways to construct “valid” HC trees.
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What eventually matters is to construct “good” HC trees – a
notion that does not have a universal way to define. Popular
approaches include heuristics, which work well subjectively
but lack formal guarantees, and objective functions, which
provide rigorous frameworks to study the optimal trees and
the approximation algorithms. In recent years, the latter
approach has attracted considerable attention with popular
objective functions by (Dasgupta, 2016; Moseley & Wang,
2017; Cohen-Addad et al., 2019).

Notation. For each internal node x in T , we use
leavesT [x ] to denote the leaves in the induced subtree
of x. Each internal node of an HC tree can be described
by lowest common ancestor (LCA) of vertices. For two
vertices (u, v) on the leaves of T , we use LCAT (u, v) to
denote the node that is the lowest common ancestor of u
and v. We can further generalize this notion to a set of
vertices, i.e., for a set X ⊆ V , the node LCAT (X) refers to
the lowest common ancestor of all vertices in X . For a set
X , we call the induced subtree TX a maximal subtree of T
if leavesT [LCATX

(X) ] = X , i.e., the lowest common
ancestor of X in TX induces all leaves of X in T .

Let r be the root of a hierarchical clustering tree T , and for
any internal node x, we let distT (r, x) be the number of
edges on the shortest path between r and x. We say node
x on level levelT (x) is a higher level node than node y
with level levelT (y) in T if distT (r, x) > distT (r, y).
For two internal nodes x and y in T , we use x = pa (y)
to denote the relationship of x being the parent node of
y. Note that if x = pa (y), it automatically implies that
levelT (y) = levelT (x) + 1.

The split-away vertex. Note that in any hierarchical clus-
tering tree, if we look at a triplet of vertices (u, v, w), there
must exist a vertex that split away from the two others in
the optimal tree T ∗, i.e., two vertices with a LCA that is
same as the LCA of all three vertices in T ∗. Formally, for a
triplet of vertices (u, v, w), we define “w splits away from
(u, v)” as follows.

Definition 5 (Split-away vertex). Let G = (V,E,w) be a
n-vertex graph, and let T ∗ be the optimal HC tree for G.
Given a triplet of vertices (u, v, w), we say w splits away
from (u, v) (in T ∗) if LCAT ∗(w, u) (resp. LCAT ∗(w, v))
is equal to LCAT ∗({u, v, w}).

2.2. The splitting oracle model

We study the hierarchical clustering problem with a natural
oracle advice model. In particular, we assume an oracle
O : V ×V ×V → V that takes a triplet of vertices (u, v, w),
probabilistically correctly returns the vertex that “split away”
from the other two vertices in the optimal tree1. The formal

1We provide a discussion for splitting oracles with an approxi-
mately optimal HC tree in Appendix I.2.

definition is given as follows.
Definition 6 (The splitting oracle for hierarchical clustering).
Let G = (V,E) be a n-vertex graph, and let T ∗ be the
optimal hierarchical clustering tree of G. The oracle O :
V ×V ×V → V is a function that upon being queried with
a triplet of vertices (u, v, w), responds as follows

• with probability p, the correct answer on which vertex
splits away from the two others in T ∗.

• with probability (1− p), an arbitrary (adversarial) an-
swer on which vertex splits away from the two other
vertices.

The randomness is taken independently over all the queries
and is fixed across different queries on the same triplet. We
assume each query to the oracle takes O(1) time.

Assuming the correct probability of an oracle is some con-
stant p > 1/2 is very common in the literature, especially
for graph problem (Braverman et al., 2024; Cohen-Addad
et al., 2024; Dong et al., 2025). For the convenience of
presentation, we assume p = 9

10 in this paper, and we
provide a discussion about general success probabilities in
Appendix I.1. Observe that by the fixed randomness for
each triplet, there are at most

(
n
3

)
many answers that O can

have. This setting rules out trivial algorithms that simply
get the correct by querying multiple times and boosting the
success probability.

Several hierarchical clustering objectives are proved to be
hard to approximate in polynomial time under very plausible
complexity assumptions. As such, our goal is to explore
whether we can obtain better approximation guarantees with
the splitting oracle.

2.3. Objective functions for hierarchical clustering

We introduce the objective functions for hierarchical clus-
tering we are going to discuss in this paper. These in-
clude the Dasgupta minimization (cost) objective (Dasgupta,
2016) and Moseley-Wang maximization (revenue) objective
(Moseley & Wang, 2017). We start with the minimization
objective as prescribed by (Dasgupta, 2016).
Problem 1 (HC under Dasgupta’s cost function). Given
an n-vertex weighted graph G = (V,E,w) with vertices
corresponding to data points and edges measuring their
similarity, create a rooted tree T whose leaf nodes are V .
The goal is to minimize the cost of this tree T defined as

costG(T ) :=
∑

e=(u,v)∈E

w(e) · |leavesT [LCAT (u, v) ]|,

(1)

where |leavesT [LCAT (u, v) ]| is the number of leaf-
nodes in the sub-tree of T rooted at the lowest common
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ancestor of u and v. We use OPTDas(G) to denote the cost
of an optimal HC tree under Dasgupta’s cost for the graph
G.

Roughly speaking, Dasgupta’s objective accumulates the
cost on an edge (u, v) by the number of leaves inside the
subtree where u and v are first split. In contrast, the Moseley-
Wang objective focuses on the dual of Dastupta’s objective:
it gathers the revenue on an edge (u, v) by the number of
leaves outside the subtree where u and v are first split. For-
mally, the Moseley-Wang objective can be given as follows.

Problem 2 (HC under Moseley-Wang revenue function).
Given an n-vertex weighted graph G = (V,E,w) with
vertices corresponding to data points and edges measuring
their similarity, create a rooted tree T whose leaf nodes are
V . The goal is to maximize the revenue revG(T ) of a tree
T defined as∑

e=(u,v)∈E

w(e) · (n− |leavesT [LCAT (u, v) ]|)

=
∑

e=(u,v)∈E

w(e) · |non-leavesT [LCAT (u, v) ]|,

(2)

where |leavesT [LCAT (u, v) ]| is the number of leaf-
nodes in the sub-tree of T rooted at the lowest common
ancestor of u and v, and |non-leavesT [LCAT (u, v) ]|
is the number of nodes that are not among
leavesT [LCAT (u, v) ]. We use OPTMW(G) to de-
note the revenue of an optimal HC tree under Dasgupta’s
cost for the graph G.

Observe that both objectives are composeable w.r.t. edges,
i.e., it is possible to divide the total objective to objectives
induced by each (or each set of) edge(s). For any HC tree
T and any set of edge E1 ⊆ E, we use revG(T , E1) and
costG(T , E1) to denote the revenue and the cost induced
by the edges in E1.

By a straightforward calculation, one can show that for any
HC tree T , there is revG(T ) =

∑
e=(u,v)∈E w(e) · n −

costG(T ). Since
∑

e=(u,v)∈E w(e) · n is a deterministic
function of the graph G itself, the optimal HC tree T ∗ under
the two objectives are the same. However, the two objec-
tively admits vastly different approximation algorithms. In
particular, for the minimization objective, (Dasgupta, 2016)
and the following work (Roy & Pokutta, 2016; Charikar
& Chatziafratis, 2017b) showed that we can achieve an
O(
√
log n) approximation in polynomial time, and there is

no O(1) approximation in polynomial time assuming Small
Set Expansion (SSE) hypothesis. On the other hand, for the
revenue maximization objective, (Moseley & Wang, 2017)
proved that the average-linkage heuristic can achieve a 1/3
approximation in polynomial time. Therefore, we would

naturally expect different results for hierarchical clustering
with the splitting oracle with the two objectives.

3. The Definitions and Results for Partial
Hierarchical Clustering Trees

A technical backbone of our algorithms in this paper is
the partial hierarchical clustering tree. Roughly speaking,
these structures replicate the organizational framework of
the optimal HC tree, exhibiting only minor ”ambiguity”
within small subsets of vertices. In this section, we formally
define the strong and weak partial trees and give efficient
construction algorithms for them. We remark that our con-
structions of the partial HC trees are entirely based on the
vertex set V and the oracleO of the input graph, irrespective
of specific objective functions. This inherent independence
renders our partial HC trees highly versatile and potentially
of significant interest in their own right.

3.1. Partial hierarchical clustering trees

We start by showing the definition of partial hierarchical
clustering trees, which are very similar to the normal HC
trees: the internal nodes represent subsets of vertices, and
the leaves are individual vertices. However, in partial HC
trees, we allow a collection of vertices that are not too large
to have unknown local clustering, and we simply represent
the whole set of vertices as a leaf node in the tree. The
formal definition is as follows.

Definition 7 (Partial hierarchical clustering trees). A partial
hierarchical clustering tree I is a binary tree such that

1. The root represents the vertex set V .

2. For a node x with children (y, z), it represents a split
Sx → (Sy, Sz), where Sx = Sy ∪ Sz .

3. The leaves of I corresponds to

• either a singleton vertex in V .
• or a set of vertices S ⊆ V such that S ≤
50000 log n. In this case, we call the leave a super-
vertex.

Compared to the full hierarchical clustering tree, the partial
HC tree allows the leaves to be ‘contracted’ vertices with
size at most O(log n). We now define a partial tree that is
strongly consistent with a hierarchical clustering tree T .

Definition 8 (Partial tree strongly consistent with T ). Let
I be a partial hierarchical clustering tree and let T be a
(standard) hierarchical clustering tree. We say I is strongly
consistent with T if

1. (Strong contraction property) Each super-vertex in-
duces a maximal subtree in T .
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2. (Subtree preservation property) For any pair of leaves
(x, y) in I, let X and Y be the set of leaves correspond-
ing to x and y in T (recall that the leaves of I can be
super-vertices). The subtree induced by LCAI(x, y) con-
tains the exactly the same set of vertices as induced by
LCAT (X ∪ Y ).

In other words, a partial tree I is strongly consistent with
T if there exists a way to locally arrange tree structures for
every super-vertex to exactly recover T . An illustration of
the strongly consistent partial tree (w.r.t. T ) can be found in
Figure 1.

The strong partial tree is a very helpful data structure for
HC. Nevertheless, finding such a strong partial tree could
be challenging. As such, we also define partial trees that are
weakly consistent with the tree T as follows.
Definition 9 (Partial tree weakly consistent with T ). Let
I be a partial hierarchical clustering tree and let T be a
(standard) hierarchical clustering tree. We say I is weakly
consistent with T if

1. (Weak contraction property) Each super-vertex corre-
sponds to a collection of maximal subtrees in T , i.e.,
∪iVi such that each Vi satisfies

leavesT [LCAT (Vi) ] = Vi.

Furthermore, the collection ∪iVi is with out-degree at
most 2 in T such that

(a) At most one edge is connected to a node that is the
parent of the LCA of ∪iVi.

(b) At most one edge is connected to a node that is a
sibling of a maximal subtree of T induced by (a
subset of) ∪iVi.

2. (Subtree preservation property) For any pair of leaves
(x, y) in I, let X and Y be the set of leaves correspond-
ing to x and y in T (recall that the leaves of I can be
super-vertices). The subtree induced by LCAI(x, y) con-
tains the exactly the same set of vertices as induced by
LCAT (X ∪ Y ).

The difference between the weak and strong consistency is
that in weakly consistent partial trees, the “contraction” of
vertices can happen in any consecutive region of the original
tree T . An illustration of the weakly consistent partial tree
(w.r.t. T ) can be found in Figure 2.

Our goal is to use oracle O, and vertex set V to construct
a partial HC tree I∗ that is consistent with the optimal HC
tree T ∗.

3.2. Main results of partial HC trees

We now give our main results for the strong and weak partial
trees, respectively. In particular, our results include

Contains at most vertices

Figure 1. An illustration of the strongly consistent partial HC trees
as defined in Definition 8. The boxes indicate super-vertices whose
clustering is unknown in the partial HC tree.

Contains at most vertices, but not necessary from a maximal subtree

Figure 2. An illustration of the weakly consistent partial HC trees
as defined in Definition 9. The boxes indicate super-vertices whose
clustering is unknown in the partial HC tree.

• An algorithm that, with high probability, constructs a
partial tree strongly consistent with the optimal tree T ∗

in O(n3 log n) time and O(n3) queries to the splitting
oracle. Furthermore, the algorithm uses only Õ(n)
space; and

• An algorithm that, with high probability, constructs
a partial tree weakly consistent with the optimal tree
T ∗ in Õ(n2) time and queries to the splitting oracle.
Furthermore, the algorithm can be implemented in the
PRAM model with Õ(n2) work and polylogn depth.

Result for strongly consistent partial HC trees. Our main
theorem to construct strongly consistent partial HC trees is
as follows.

Theorem 10. There exists an algorithm that given a
splitting oracle O of a weighted undirected graph G =
(V,E,w), with high probability, in O(n3 log n) time and
O(n3) queries computes a partial hierarchical clustering
tree I that is strongly consistent with the optimal hierarchi-
cal clustering tree T ∗. Furthermore, the algorithm has the
following properties.

i). The runtime of the algorithm is deterministic, and
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the high probability randomness is over the correctness
guarantee.

ii). The algorithm can be implemented in O(n log n)
space.

While the algorithm outlined in Theorem 10 necessitates
O(n3) queries to the oracle O, rendering it less efficient,
the overall running time of Õ(n3) is tolerable, especially
considering the hardness of HC.

Result for weakly consistent partial HC trees. We now
show our algorithmic results for the weakly consistent par-
tial HC trees, which enjoy much better efficiency in both
the running time and the number of oracle queries.

Theorem 11. There exists an algorithm that given a
splitting oracle O of a weighted undirected graph G =
(V,E,w), with high probability, in O(n2 · polylogn) time
and O(n2) queries computes a partial hierarchical clus-
tering tree I that is weakly consistent with the optimal
hierarchical clustering tree T ∗.

We note that since the number of longest dependent calls
for our weak partial tree is at most O(log3 n), Theorem 11
implies a PRAM algorithm with O(n2 · polylogn) work
and O(log3 n) depth. The formal statement is as follows.

Corollary 12. There exists a PRAM algorithm that given
a graph G = (V,E) and a splitting oracle O, with high
probability, in O(n2 · polylogn) work and O(log3 n) depth
computes a partial hierarchical clustering tree I that is
weakly consistent with the optimal HC tree T ∗.

We suspect that by modifying some subroutines of the algo-
rithm in Theorem 11, we could possibly bring the number
of time and queries to Õ(n). The study of a sublinear-time
algorithm is an interesting future problem.

A (very) high-level technical summary of the partial
trees. As we will discuss in Appendix B, simply following
the oracle advice does not lead to any valid outputs. The
construction of the partial trees requires a careful aggrega-
tion of the split-away information to recover subtrees with
sizes Ω(log n). One observation here is that if we are lucky
to select a vertex u from the smaller side of the first binary
partition, we could determine the correct “side” for each ver-
tex v ∈ V in the first partition of the optimal tree with high
probability. We could then recursively recover the partition
in the optimal tree T ∗. However, getting a vertex from the
smaller side of the first partition is not easy, and we would
need to test multiple vertices and use the size of the resulting
set as the indicator for correctness. This includes careful
design and analysis of different algorithmic subroutines,
which is the main technical challenge. A detailed technical
overview could be find in Appendix B.

We present the HC algorithms using the results for partial

HC trees for the rest of the main paper. We defer the detailed
analysis of the partial trees to Appendices F to H.

4. Polynomial Time Algorithms for Dasgupta’s
Hierarchical Clustering Objective

We introduce our polynomial time algorithms for Dasgupta’s
HC objective in this section. These results include an
O(1)-approximation algorithm in polynomial time (albeit
some large constant on the exponent) and an O(

√
log log n)-

approximation algorithm in Õ(n3) time. Our algorithms
crucially rely on the strongly consistent partial tree in Theo-
rem 10.

4.1. A Polynomial-time Algorithm for
O(1)-approximation on Dasgupta’s HC Objective

We now introduce our algorithm that finds an HC tree with
O(1)-approximation to Dasgupta’s objective in polynomial
time. One can find the formal statement of the result in
Theorem 1. The algorithm of Theorem 1 is as Algorithm 1.

Algorithm 1 A polynomial-time algorithm for the Das-
gupta’s HC objective
Input: Input graph G = (V,E,w); Splitting oracle O
Output: A hierarchical clustering tree T
Run the strong partial tree approximation algorithm in The-

orem 10 to obtain partial tree I
for each super-vertex in I do

On input vertex set S, exhaustively search the sparsest
cut (A,B) on the induced subgraph G[S]
Partition the vertices as S → (A,B), and recurse on
G[A] and G[B]

end

We now prove the efficiency and the approximation guar-
antees for Dasgupta’s objective. The following lemma pro-
vides the efficiency for Algorithm 1.

Lemma 4.1. Algorithm 1 runs (deterministically) in
O(n50002) time and uses O(n3) queries.

Proof. By Theorem 10, the first step of the algorithm that
computes the strong partial tree takes Õ(n3) time and O(n3)
queries. Note that we only take queries in this step.

For the second step, when the input size is s, an exhaustive
search on the sparsest cut takes O(2s) time. As such, let X
be the set of induced vertices for a single super-vertex of I,
since we have |X| ≤ 50000 log n, it only takes O(n50000)
time to find the sparsest cut. Similarly, we can show that in
each recursive call, the runtime is at most O(n50000). By
Fact A.1, there are at most O(log n) nodes in a binary tree
with O(log n) leaves. As such, the recursive sparsest cut for
a single super-vertex in I takes O(n50000·log n) time. There
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are at most O(n) super-vertices in the tree; therefore, the
total runtime of the second step takes O(n50000 · log n ·n) =
O(n50002) time.

Combining the efficiency of the two steps gives us the de-
sired efficiency bound.

The main lemma for the approximation guarantees of Algo-
rithm 1 is as follows.
Lemma 4.2. Conditioning on the high probability guaran-
tees of Theorem 10, Algorithm 1 outputs an HC tree T that
achieves O(1)-approximation to the Dasgupta’s objective.

Proof. For any partial tree I, we first partition the edges in
to Ecross and Esame based on whether the edge (u, v) ∈ E
crosses different partial trees, i.e.,

1. (u, v) ∈ Ecross iff u ∈ X and v ∈ Y for some super-
vertices X ̸= Y in I.

2. (u, v) ∈ Esame iff u, v ∈ X for some super-vertex X in
I.

Since E = Ecross ∪ Esame, by using Observation 1, we
can show that OPTDas = costG(T ∗) = costG(T ∗, E1) +
costG(T ∗, E2). We now analyze the costs w.r.t. to E1 and
E2, respectively.

1. For Ecross, we argue that costG(T , Ecross) =
costG(T ∗, Ecross). To see this, note that if u and v are of
different super-vertices, by the definition of partial HC
trees that are strongly consistent with the optimal tree
T ∗, there is

leavesT [LCAT (u, v) ] = leavesT ∗ [LCAT ∗(u, v) ].

As such, we have costG(T , Ecross) = costG(T ∗, Ecross)
by the definition of the cost function.

2. For Esame, we argue that costG(T , Esame) ≤ O(1) ·
costG(T ∗, Esame). Formally, for each super-vertex X ,
we can use Proposition 17 on G[X] to argue that the
costG(T , Esame[X]) ≤ O(1) · costG(T ∗, Esame[X]),
where Esame[X] stands for the set of edges in Esame with
both endpoints in X . Therefore, we can apply this calcu-
lation to every super-vertex to get the desired approxima-
tion factor.

We now use Observation 1 again on Ecross and Esame to
bound that

costG(T ) = costG(T , Ecross) + costG(T , Esame)

≤ costG(T ∗, Ecross) +O(1) · costG(T ∗, Esame)

≤ O(1) · (costG(T ∗, Ecross) + costG(T ∗, Esame))

= O(1) · costG(T ∗) = O(1) ·OPTDas,

as desired.

Combining Theorem 10, Lemma 4.2, and Lemma 4.1 leads
to the proof of Theorem 1 (see Appendix C for a more
formal version).

4.2. An Õ(n3) Time Algorithm for
O(
√
log log n)-approximation on Dasgupta’s HC

Objective

One drawback of the algorithm we have in Section 4.1 is
that the efficiency is “theoretical only” – after all, a runtime
of O(n50002) is nowhere near being practical. Observe that
the subroutine that leads to the very large exponent is the
exhaustive search of the optimal sparsest cut. Therefore, we
can hope to use some more efficient approximation for spars-
est cuts while not sacrificing too much on the approximation
guarantee. This intuition leads us to Algorithm 2.

Algorithm 2 An Õ(n3) time algorithm for the Dasgupta’s
HC objective
Input: Input graph G = (V,E,w); Splitting oracle O
Output: A hierarchical clustering tree T
Run the strong partial tree approximation algorithm in The-

orem 10 to obtain partial tree I
for each super-vertex in I do

On input vertex set S, find an O(
√
log |S|)-

approximation of the sparsest cut (A,B) on the in-
duced subgraph G[S] using the algorithm of Proposi-
tion 18
Partition the vertices as S → (A,B), and recurse on
G[A] and G[B]

end

The main lemmas for the efficiency and approximation guar-
antees for Algorithm 2 are as follows.

Lemma 4.3. With high probability, Algorithm 2 runs in
O(n3 log n) time and uses O(n3) queries.

Lemma 4.4. Conditioning on the high probability guaran-
tees of Theorem 10, Algorithm 2 outputs an HC tree T that
achieves O(

√
log log n)-approximation to the Dasgupta’s

objective.

The proof of Lemma 4.3 and Lemma 4.4 could be found in
Appendix C.

5. Near-linear Time Algorithms for
Moseley-Wang Hierarchical Clustering
Objective

We introduce our algorithm for the Moseley-Wang HC ob-
jective in this section. The algorithm is based on the weakly
consistent trees as in Theorem 11, which could be imple-
mented in near-linear time. The algorithm is described as
Algorithm 3.
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Algorithm 3 A near-linear time algorithm for the Moseley-
Wang HC objective
Input: Input graph G = (V,E,w); Splitting oracle O
Output: A hierarchical clustering tree T
Run the weak partial tree approximation algorithm in Theo-

rem 11 to obtain partial tree I
for each super-vertex in I do

partition the leaves arbitrarily to obtain an HC tree T
end

Since each super-vertex contains O(log n) vertices, we can
always partition the super-vertices in polylogn time2. There
are at most O(n/ log n) such super-vertices, and the total
runtime overhead is at most O(n · polylogn).

Our analysis for Algorithm 3 is more involved compared to
the results in Section 4 – it requires careful handling of the
contributions of the ‘less significant edges’ to the Moseley-
Wang objective. In particular, we could prove the following
structural result. Let I be any partial HC tree that is weakly
consistent with the optimal tree T ∗, we show that the set of
edges (u, v) such that

a). has at most O(log2 n) non-leaves in T ∗; and

b). let X and Y be corresponding super-vertices that con-
tain u and v in I; there is leavesT ∗ [LCAT ∗(X) ] ∩
leavesT ∗ [LCAT ∗(Y ) ] ̸= ∅.

can contribute to at most an o(1) fraction of the optimal cost.
To the best of our knowledge, the structural result was not
known before.

6. Learning-augmented Sublinear Algorithms
for Hierarchical Clustering

In this section, we explore sublinear algorithms for hierar-
chical clustering with the splitting oracle. Among these is a
semi-streaming algorithm, capable of computing an O(1) ap-
proximation of Dasgupta’s HC objective within polynomial
time. Additionally, we introduce a PRAM algorithm that
achieves a (1− o(1)) approximation of the Moseley-Wang
objective, utilizing Õ(n2) work and polylogn depth. From
a technical standpoint, these algorithms represent straight-
forward extensions of the results outlined in Theorems 1
to 3. Despite their simplicity, these algorithms demonstrate
the advantages of the splitting oracle in modern sublinear
computation models. Specifically, we compare our sublinear
algorithms with previous results as follows:

1. In the streaming setting, (Assadi et al., 2022; Agar-
wal et al., 2022) designed single-pass streaming al-

2Arbitrary balanced partitions requires O(logn·log log n) time

gorithms that achieve Õ(n) memory usage and O(1)-
approximation to Dasgupta’s objective, albeit in expo-
nential time. By improving the time efficiency to polyno-
mial time, our streaming result echoes a similar narrative
in the offline setting, demonstrating significantly more
efficient constructions with the splitting oracle.

2. For the parallel setting, (Agarwal et al., 2024) (cf. (Agar-
wal et al., 2022)) provided parallel algorithms (in the
PRAM and the similar MPC settings, see Appendix A.3
for details of these models) for Dasgupta’s objective with
Õ(n2) work and polylogn depth that achieve polylogn
approximation. Since the objectives are different, their
result is not directly comparable to ours; however, the
conceptual message here is still that the splitting ora-
cle is able to significantly improve the approximation
guarantee and the efficiency.

Due to space limits, we only give the algorithms as in Al-
gorithm 4 and Algorithm 5, and defer their proofs to Ap-
pendix E.

Algorithm 4 A polynomial-time single-pass semi-streaming
algorithm for the Dasgupta’s HC objective
Input: Input graph G = (V,E,w); Splitting oracle O
Output: A hierarchical clustering tree T
Before the start of the stream, run the strong partial tree
approximation algorithm in Theorem 10 to obtain partial
tree I
for each edge (u, v) with during the insertion/deletion
stream do

If u, v ∈ X for any super-vertex X in I, update (u, v)
with the same insertion/deletion update
Otherwise, ignore the edge

end
for each super-vertex in I after the stream, run recursive

sparsest cut as follows do
On input vertex set S, exhaustively search the sparsest

cut (A,B) on the induced subgraph G[S].
Partition the vertices as S → (A,B), and recurse on
G[A] and G[B].

end

Algorithm 5 A near-linear work, poly-logarithmic depth
PRAM algorithm for the Moseley-Wang HC objective
Input: Input graph G = (V,E,w); Splitting oracle O
Output: A hierarchical clustering tree T
Run the PRAM weak partial tree approximation algorithm

in Corollary 12 to obtain partial tree I
for each super-vertex in I do

Partition the leaves arbitrarily to obtain an HC tree T
end
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A. Additional Technical Preliminaries
A.1. Concentration inequalities

We now present the standard concentration inequalities used in our proofs. We start from the following standard variant of
Chernoff-Hoeffding bound.

Proposition 13 (Chernoff-Hoeffding bound). Let X1, . . . , Xn be n independent random variables with support in [0, 1].
Define X :=

∑n
i=1 Xi. Then, for every δ ∈ (0, 1], there is

Pr (|X − E [X]| > δ · E [X]) ≤ 2 · exp
(
−δ2 E [X]

3

)
.

Furthermore, for every δ > 0, there is

Pr (|X − E [X]| > δ · E [X]) ≤ 2 · exp
(
−δ2 E [X]

2 + δ

)
.

A.2. Standard results for trees

Fact A.1. Any binary tree T with n leaves contains at most n internal nodes.

Proof. Consider the collection of the internal nodes that are the parents of the leaves. Since the tree is binary, there are
at most n/2 such nodes. Contract all these internal nodes with the leaves, and we can obtain a new tree T ′ such that the
number of leaves is n/2. As such, we can again count an upper bound for the number of the parents for the leaves in T ′ as
n/4. We can continue this until we only have the root, and the number of internal nodes is at most

n∑
i=1

n

2i
≤

n∑
i=∞

n

2i
= n,

as desired.

A.3. The PRAM and the Massively Parallel Computation (MPC) Models

We briefly introduce the parallel models we investigate for the Moseley-Wang objective. In particular, we investigated the
classical PRAM model and the Massively Parallel Computation model in our work.

The PRAM model. The Parallel Random Access Machine (PRAM) model is a widely used theoretical framework in
parallel computing. It provides a simplified abstraction of a parallel computer system, where multiple processors work
simultaneously to solve a computational problem. In the PRAM model, each processor has direct access to a common
memory space (RAM), and communication between processors and the RAM is instantaneous (“parallel” RAM). Processors
can read from and write to any memory location in parallel, hence the term “Random Access”.

In the PRAM model, there are usually two objectives for algorithm designers to optimize: the total work, defined as the total
number of elementary operations, and the depth, defined as the length of the longest dependent call in the algorithm. In the
theoretical abstract version of PRAM, we do not care about the number of processors we use in the algorithm.

The MPC model. The Massively Parallel Computation (MPC) model is a theoretical framework used to analyze algorithms
designed for modern parallel computing architectures, e.g., the MapReduce framework. In this model, communications are
conducted in synchronized rounds, and a machine can communicate with any other machine in a round. Furthermore, each
machine can do unlimited local computation between the rounds. Unlike traditional CONGEST models, the communication
here is limited only by the memory size – a size s machine cannot send or receive more than s bits of information.

For graph problems, suppose each machine has size s, we typically use Õ(n2/s) machines, where O(n2) is the worst-case
input size (alternatively, one can also target the more instance-optimal Õ(m/s) machines).

Our goal in the MPC model is to minimize two objectives: i). the memory size s of each machine; and ii). the number of
parallel rounds. In particular, if our algorithm works with s = O(nδ) memory for any δ ∈ (0, 1), we call the algorithm fully
scalable in the MPC model. Typically, the best MPC algorithms would ask for fully scalable memory and polylogn rounds.
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A reduction between the PRAM and the MPC algorithms. The PRAM and the MPC models share a great deal of
similarities. And indeed, the following reduction is known.

Proposition 14. Suppose there exists a PRAM algorithm that computes a function f with w(n) work and d(n) depth,
where n is the input size of f . Then, there exists a fully scalable MPC algorithm that computes f with O(w(n)) total
memory and O(d) rounds. The memory per machine can be made O(nδ) for any δ ∈ (0, 1), and the number of machines is
O(W (n)

nδ · polylogn).

A.4. Existing Techniques for Dasgupta’s Objective

We discuss some known techniques for Dasgupta’s minimization HC objective in this section. We will use these techniques
in our hierarchical clustering algorithms for Dasgupta’s objective.

OPTIMAL HIERARCHICAL CLUSTERING TREES

We first give an observation that characterizes the “composability” of HC costs with respect to the edges under Dasgupta’s
objective.

Observation 1 ((Dasgupta, 2016)). Let G be any graph, and let E1 and E2 be two disjoint subsets of edges in G. For any
HC tree T , let costG(T , E1) and costG(T , E2) be the HC costs induced by edges in E1 and E2, respectively. Then,

costG(T ) = costG(T , E1) + costG(T , E2).

Observation 1 shows that to bound the total cost of the HC tree under Dasgupta’s objective, it suffices to bound the edges
split by the internal nodes.

APPROXIMATE HC TREES WITH RECURSIVE BALANCED MIN-CUTS AND SPARSEST CUTS

Dasgupta’s work proved that finding the optimal trees for the hierarchical clustering function is NP-hard (Dasgupta, 2016).
Consequently, significant attention has been directed towards developing approximation algorithms for efficient hierarchical
clustering on the graph. A well-known approach involves obtaining an approximation of the optimal hierarchical clustering
by iteratively employing sparsest cuts on the graph, e.g., (Dasgupta, 2016; Deng et al., 2025). Formally, we can define the
sparsest cuts and the HC trees created by recursively applying the sparsest cuts on the induced subgraphs as in Definition 15
and Definition 16.

Definition 15 (Sparsest Cuts). For any parameter β such that 0 < β < 1, we say that a cut (A∗, B∗) is a sparsest cut if its
sparsity (edge expansion) is minimized, i.e.

w(A∗, B∗)

min{|A∗| , |B∗|}
≤ w(A,B)

min{|A| , |B|}

for any cut (A,B) of G.

Definition 16 (Recursive Sparsest Cut Procedure). We say an HC tree T is obtained by the recursive sparsest procedure
on G if for each non-leaf node z of T , the cut(T [z]) is obtained by a (possibly approximate) sparsest cut (A,B) on the
subgraph induced by T [z]. We call an HC tree obtained by recursively applying (approximate) sparsest cuts on induced
subgraphs as a recursive sparsest cut HC tree.

Previous work (see, e.g. (Charikar & Chatziafratis, 2017b; Assadi et al., 2022)) proved that if one applies the procedure in
Definition 16, we can get an O(1) approximation of the optimal HC tree.

Proposition 17 ((Charikar & Chatziafratis, 2017b; Assadi et al., 2022)). For any graph G = (V,E,w), let Tsparse be an
HC tree obtained by the recursive sparsest cut procedure in Definition 16, there is

costG(Tsparse) ≤ O(1) ·OPT(G).

Note that finding the exact sparsest cut for Proposition 17 is NP-hard. The first way to circumvent this issue is to use
approximation algorithms, especially for the best-known O(

√
log n) approximation for sparsest cut in polynomial time

(Arora et al., 2004). The formal guarantee is as follows.
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Proposition 18 ((Arora et al., 2004)). There exists a randomized algorithm that given a graph G = (V,E,w), with high
probability, in Õ(|V |2) time finds a partition A ∪B = V such that

w(A,B)

min{|A| , |B|}
≤ O(

√
log |V |) · w(A∗, B∗)

min{|A∗| , |B∗|}
,

where (A∗, B∗) is the sparsest cut of G.

We cannot immediately massage Proposition 18 with Proposition 17 since Proposition 17 does not state what will happen
for approximate sparsest cuts. Fortunately, by the results in (Charikar & Chatziafratis, 2017b; Assadi et al., 2022), we can
indeed obtain an O(α)-approximation algorithm for OPT(G) by recursively applying the α-approximate sparsest cut.

Proposition 19 ((Charikar & Chatziafratis, 2017b; Assadi et al., 2022)). Let T be a recursive sparsest cut tree obtained by
recursively applying α-approximation sparsest cuts on the induced subgraphs (as in Definition 16). Then, we have

costG(T ) ≤ O(α) ·OPT(G).

There is another way to deal with the NP-hardness issue of the sparsest cut. If we can reduce the input size, we can possibly
obtain the exact optimal cuts on induced subgraphs of size O(log n). This strategy allows us to leverage our strong partial
tree whose ‘unknown’ clustering is only restricted to the induced subgraphs with O(log n) size.

B. Technical Overview
In this section, we give a high-level overview of our techniques. We also provide intuition on our algorithmic design choices,
including a number of potential pitfalls, as well as a number of natural other approaches and why they do not work.

B.1. Why not simply follow the oracle (or other related strategies)?

At first glance, one might wonder whether the splitting oracle trivializes the problem. A natural question is whether it is
possible to simply follow the oracle to recover the optimal tree T ∗. Since the oracle only returns the relative information
among a triplet of vertices (u, v, w), it is not immediately clear how to translate the answers from the oracle to a partition of
vertices. After taking a closer look at the problem, we could observe issues with a handful of straightforward approaches.

The first natural approach is to pretend the oracle is always correct and construct a tree from the “splitting-away” information
between the triplets. Unfortunately, due to the error probability and adversarial answers, there may not exist an underlying
tree consistent with the answers to the queries. As such, it is unclear how the algorithm could produce a definitive answer.

The second approach we could try is to frame the problem as a phylogenetic reconstruction problem, e.g., take all the
“splitting away” for triplets as constraints, and try to construct an HC tree that satisfies as many constraints as possible.
However, such an approach has two issues: i). by a recent result of (Chatziafratis & Makarychev, 2023), the phylogenetic
reconstruction problem is itself UG-hard; and ii). the HC tree we constructed may prioritize a small number of wrong
answers from the oracle that happen to induce very large additive error.

A more involved idea is to “aggregate” the oracle answers to construct the HC tree’s partitions. To this end, an algorithm to
determine the partition of a vertex v is to fix u in the smaller subtree and look into the number of vertices t ∈ V that split
away from (u, v). More concretely, consider the split of the tree on the root V → (S1, S2), and suppose we know a vertex u
that is on the smaller subtree of the root partition (this is a big “suppose” as we will see later). Then for any vertex v that is
in the same subtree of u, we can get many vertices t ∈ V from O with the answer “t split away from (u, v)”. On the other
hand, for a vertex v that is in the opposite subtree of u, only a few vertices t from O would answer “t ∈ V split away from
(u, v)”. The gap is large enough to apply concentration inequalities and find a separation between the cases. As such, we
can recursively apply the above procedure and produce the optimal tree T ∗.

Unfortunately, the above idea only works for the idealized case where we indeed know a vertex u from the smaller part of
the root partition. For the general case, the algorithm requires a surprising amount of new ideas and technical work. In
particular, note that the aforementioned algorithm faces two major challenges: (1). as the partition goes deep down the HC
tree, the sizes of the subtrees become too small for high-probability guarantees; and (2). it is not clear how to find a “good”
vertex u that induces the root cut. To elaborate on challenge (1), note that when the subtree induces o(log n) leaves, it is
generally not possible for us to guarantee correctness for the subsequent partitions. As such, we must handle some form
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of “ambiguity” when dealing with subtrees induced on vertex sets with smaller sizes. Our approach to this challenge is to
forgo the guarantees inside each leaf with o(log n) vertices and work with the respective objective functions to show that the
additive error is tolerable. In particular, we use the notion of partial hierarchical clustering trees that approximately capture
the structure of the optimal HC tree T ∗ until the size of the induced vertex set becomes too small. In particular, we require
specific structural properties of the costs of HC trees under Dasgupta’s and the Moseley-Wang objectives. We provide more
details about partial HC trees and how to use them to overcome challenge (1) in Appendix B.2.

Challenge (2) is even trickier and requires more care. Observe that in the example of root cut V → (S1, S2), if u is in the
bigger side of the partition, the argument may not work. However, since we only have access to the triplet split information,
retrieving whether a vertex u is on the smaller side of a particular tree split seems to be too much to ask. In particular,
consider an example that the optimal tree T ∗ first makes two splits of small subtrees of size n0.99, as illustrated in Figure 3.
Here, if we use u2 as the “baseline” vertex to perform the split, we can still get a valid partition. However, the structure
of the obtained tree is very different from T ∗, and the additive error could be huge. Furthermore, since the actual tree
T ∗ is hidden from us, it is not immediately clear how could we distinguish a partition obtained by using u1 vs. u2. The
problem becomes even more intriguing when we want to obtain near-linear time efficiency. We will discuss the intuition and
techniques to handle challenge (2) in Appendix B.3.

Figure 3. An illustration of the hard example that the straightforward majority voting does not work. Left: the optimal HC tree T ∗; Right:
the outcome of the tree if we use u2 as the baseline to perform the partition we discussed.

B.2. Partial hierarchical clustering trees and HC

We now delve into more details about the definition of partial trees and how we use them to obtain low additive errors in
Dasgupta’s and the Moseley-Wang objectives.

The definition of partial hierarchical clustering trees. As discussed, a central element of our techniques is the notion of
partial hierarchical clustering (HC) trees. The generic definition of the partial HC tree is similar to the normal HC tree, with
the root representing the entire vertex set and the internal nodes representing the subsets of vertices. However, on the leaf
level, we allow the leaves of partial HC trees to contain multiple vertices, up to O(log n) many vertices, and contract them
into a single leaf, which we call “super-vertices”. The partial HC tree is then allowed to be oblivious of the clustering inside
each leaf node.

A partial HC tree is only useful if it can somehow capture the optimal tree T ∗. To this end, we introduce the strongly
consistent and weakly consistent partial HC trees. Roughly speaking, a partial HC tree I is said to be strongly consistent
with the optimal tree T ∗ if it follows every partition of the optimal tree in a top-down manner until the induced size of
vertices is of size less than O(log n), in which case we simply collapse the leaf into a super-vertex. Note that in the strongly
consistent partial HC trees, every super-vertex induces a maximal tree in T ∗ – here, a maximal tree means a tree where
its induced vertices are exactly the leaves of their lowest common ancestor. By comparison, the weakly consistent partial
HC tree allows vertices that do not necessarily form maximal trees to collapse into a single super-vertex. For instance, if
there are O(log n) vertices in multiple subtrees in T ∗, and suppose the LCAs of these subtrees are close to the root and
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form a consecutive segment in T ∗, the weakly consistent partial HC tree can still collapse all of the vertices into a single
super-vertex. We provide illustrations of the weakly and strongly consistent partial trees in Figure 1 and Figure 2, and one
can refer their formal definition to Definitions 8 and 9 in Section 3.

We will eventually show that, given the splitting oracle, we can efficiently construct both the strongly and the weakly
consistent partial trees regardless of the input graph and the objective functions. However, for now, we first discuss why
partial HC trees are useful for our HC objectives.

Using partial HC trees for hierarchical clustering. Intuitively, if we can obtain a partial HC tree that is consistent with
the optimal tree T ∗, we can build an actual HC tree by “fixing” the clustering of the super-vertices locally to obtain a good
approximation. Indeed, we note that if a partial HC tree is strongly consistent with T ∗, we can straightforwardly obtain
approximation algorithms for both Dasgupta’s and the Moseley-Wang objectives. For Dasgupta’s objective, we can run
the optimal or approximate recursive sparsest cuts for the subgraphs induced by the super-vertices. Note that since the
subgraphs are only of size O(log n), we can even afford to find the exact optimal recursive sparsest cuts in polynomial time.
The case for the Moseley-Wang objective is even easier: since the number of leaves outside each super-vertex is at least
n−O(log n), any arbitrary partition of the super-vertices can still give us a (1− o(1)) approximation.

Unfortunately, as we will see shortly, the strongly consistent partial tree can only be implemented in Õ(n3) time – a tolerable
yet far-from-optimal efficiency. As such, for the Moseley-Wang objective, we further investigate the algorithm that only
uses the weakly consistent partial HC trees, which we can build in near-linear time. In this case, for two vertices that are in
the same super-vertex, we can replicate the argument for the strongly consistent partial HC trees again to get a (1− o(1))
approximation. However, challenges arise when the two vertices (u, v) are in different super-vertices of the partial HC tree.
Here, the number of induced leaves can differ by an O(log n) additive factor, but the number of non-leaves induced by (u, v)
can be very small in T ∗ (say, o(log n)). As such, the O(log n) difference on the size of non-leaves might lead to infinity
multiplicative gap in the revenue, which makes controlling the overall approximation factor hard. To tackle this issue, we
prove some new structural results for HC trees under the Moseley-Wang objective: we show for all the edges (u, v) that only
induce a very small number of non-leaves and are “far away” from each other in the optimal tree, the contribution of such
edges to the optimal objective can only be an o(1) fraction. As such, we can simply ignore the approximation guarantees on
these edges and obtain an (1− o(1)) approximation of the Moseley-Wang objective.

B.3. The construction of the partial HC trees

We now come back to the efficient construction of the partial HC trees that are strongly and weakly consistent with the
optimal HC tree. For simplicity, we slightly abuse the notation to let V always denote the vertex set in the high-level
discussion, even if we are talking about a subset of vertices3.

B.3.1. STRONGLY CONSISTENT PARTIAL HC TREES

We first discuss the case for the strongly consistent HC tree, which only requires top-down splits. As we have discussed
before, for any fixed partition, since we do not have any information about which side a vertex u is on, it is generally very
hard for us to know which obtained partition is actually consistent with the split in T ∗. To address this challenge, introduce
the small-tree splitting order, which, roughly speaking, is a thought process that recursively draws the smaller side of the
subtree in T ∗. For instance, in the tree T ∗ prescribed in Figure 3, the first n0.99 vertices form the first small tree V small

1 , the
second n0.99 vertices form the second small tree V small

2 , and so on.

We shall show that if u is among the first few small trees in the small-tree splitting order, we can recover the set of vertices
as the sibling of the small tree4. For example, if we select u2 in Figure 3, we can recover the subtree on the right but not the
subtree that contains u1. Our strategy is as follows: for a fixed vertex u and a vertex v whose split is to be determined, in
addition to testing how many vertices t ∈ V such that t splits away from (u, v), we also test the number of vertices t ∈ V
such that v splits away from (u, t). To see why this additional test helps, let us again look at the example in Figure 3. With
the additional subroutine, if we use u2 as the fixed vertex, the vertices in V small

1 will split away from many (u2, t) pairs. On
the other hand, for every vertex v on the sibling subtree of V small

2 , it splits away from (u, t) only if t ∈ V small
2 , which creates

a clear signal. By careful handling of cases, we could argue that the algorithm works for general cases as long as u belongs
to an “early enough” small tree.

3In the formal analysis of Appendices G and H, we use Ṽ as the set of vertices of the current recursion level.
4Since “sibling” is a generic word, we call this set “counterpart” in our formal description in Appendices G and H to avoid confusion.
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The above strategy provides a new way to identify a “good” u: it suffices to only look at the size of the set of vertices
we recover. In particular, if u is among the root cut, it surely induces the largest size on the set of the recovered vertices.
As such, a simple exhaustive search can find such a vertex u and the corresponding set T . Since there are n vertices to
be tested, and each test requires O(n2) time, the total time for each partition is at most O(n3). We can then recursively
run this procedure, which will lead to a partial tree that is strongly consistent in O(n4) time. Furthermore, using a simple
sampling trick, we could reduce the time for each test to O(n log n) time and queries, which brings the total number of time
and queries to Õ(n3). Furthermore, since we only need to maintain counters for each vertex, the entire algorithm can be
implemented in O(n log n) space.

B.3.2. WEAKLY CONSISTENT PARTIAL HC TREES

The exhaustive search subroutine in the above idea inevitably leads to Θ̃(n3) time and queries on the splitting oracle. This
gives us a new, and perhaps more intriguing challenge: if we only want to get partial trees that are weakly consistent with
the optimal tree, can we improve the efficiency? Note that if we target a near-linear running time, we cannot always hope to
get a u from the smaller side of the root partition. For a concrete example, let us look at the tree T ∗ in Figure 3 again. Here,
before we “hit” a vertex in the first small tree of size n0.99, we will not be able to produce a root cut. However, by the size
of the first small tree, we will need to test at least n0.01 vertices if we sample vertices uniformly at random. The overhead
can be further enlarged: suppose the root cut splits the vertices into n − 1 vertices and a single vertex, and suppose this
process continues for n0.99 levels; then, it is entirely unclear how to avoid the n0.99 overhead.

The vertical split idea. The above hard instance inspires us to resort to “vertical” splits of the tree – that is, instead
of finding a vertex u on the split of the root, we use a vertex u that is “sufficiently early” in the small-tree split order.
To elaborate, we can efficiently find a vertex u that is among the union of smaller subtrees that collectively induced at
least n/polylogn leaves. In this way, we can still recover a maximal subtree whose induced leaves T is of size at least
(n− n/polylogn) – a size reduction that is significant enough for the entire algorithm to converge in polylogn iterations.
Finally, our algorithm will guarantee that V is a composable set from a single maximal tree, which implies that T and V \ T
are composable sets, which allow us to recurse on both sides.

The use of “horizon sets”. There is yet another subtle issue in the above idea: we have to ensure both parts of the split
always maintain the weak consistency property. Specifically, it is crucial to maintain super-vertices with an out-degree of at
most 2, where each is linked to at most one parent node in T ∗ and one sibling node in T ∗. Within our vertical split concept,
as T invariably forms a single composable set, achieving this is straightforward. However, in the residual part of the split
algorithm—here, V \ T—sustaining weak consistency becomes notably more complex. There can be two cases for such a
guarantee to hold: either a). V \ T itself is a single composable set, which happens when V is a split on the root vertex, or
b). V \ T has some “orphaned” vertices – the sibling vertices of the subtree induced by T in V (see Definition 28 for the
formal definition).

Our approach to handle both the a) and b) cases is to use a semi-invariant horizon set VH ⊇ V . The idea here is that instead
of finding T on V , we find it on VH, which is roughly defined as the set of vertices for us to find the partition T on before a
split on the root node. In particular, suppose the set of orphaned vertices is of relatively small size in V . We can always find
a vertex u ∈ V such that u is split earlier than the orphaned vertex set in the small-tree split order of VH. Therefore, we can
make sure that the set T to be found in the new iteration will include the orphaned vertices in V . In this way, we always
keep at most one edge connecting to the sibling of the orphaned vertices in the current iteration. An illustration of the role
of the horizon set can be shown as Figure 9 in Appendix H.

The candidate vertex and root test. The above analysis assumed the size of orphaned vertices is relatively small in V .
However, what if the size of orphaned vertices becomes large in V ? In this scenario, one of two sub-cases must happen:
either we run into a root split, or we have a large set of vertices which is not on the root of VH, but occupies a large fraction
among the remaining V . (Note that in case of a root split, the entire set of V \ T is an orphaned set.) The challenge here is
that we should update VH in the former case while keep using the same VH in the latter case, which requires us to distinguish
the cases.

To this end, we employ a new idea to select a “candidate vertex” that splits away from the orphaned set to address this
challenge. Concretely, since the set of orphaned vertices is sufficiently large, when doing random sampling, we can get
a vertex u′ from the orphaned set. Then, we use VH to test whether there exist vertices that split away from (u′, t) for
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sufficiently many t ∈ VH. The idea here is that if u′ is in the orphaned set, and there still exists a vertex u that splits earlier
than u′ in (the small-tree split order of) VH, then u should split away from many (u′, t) pairs. On the other hand, if u′ is on
the smaller side of the root cut of VH, there is only a small number of t that any u ∈ V can split away from. As such, we can
make progress by either identifying the “right” candidate vertex that splits earlier than u′, or by switching the horizon VH
and recurse on the root cut.

Merging of two weakly consistent partial trees. In the case of strongly consistent partial trees, the merging of subtrees
is very straightforward: since the splits always follow the top-down order of internal nodes, we can easily merge the two
subtrees with a common parent node. In the case of weakly consistent partial trees, the story is much more complicated. For
the merge to be correct, we have to correctly identify the “orphaned” subtree in the previous recursion; however, since we
only have access to the splitting oracle, and the actual optimal tree structure is hidden from us, it is not immediately clear
how could we identify the “correct” internal node to merge the trees.

Fortunately, we could utilize the “good vertex” from the previous recursion to identify the “orphaned” set of vertices V orphan.
In particular, let u be the “good vertex” we used to split the tree; since u also belongs to V orphan, for each vertex v, we can
test how many times v splits away from (u, t) for t ∈ T , where T is the single maximal tree to be merged in the level of
recursion. If v ∈ V orphan, such a vertex should not split away from (u, t); otherwise, if v ̸∈ V orphan, v should split away from
(u, t). Since the size of T is large enough, we could identify V orphan correctly with high probability, and perform the merge
correctly. An illustration for this idea to identify V orphan is in Figure 10 in Appendix H.

The complexity of the algorithm for weakly consistent trees. Similar to the case for the strongly consistent trees, the
subroutine that gives the sibling of a small tree for a fixed vertex u takes O(n2) time. However, in the new algorithm, we only
need to sample and test O(log n) vertices u for each iteration. Similarly, the root test and the tree merging subroutines both
use O(log n) vertices and Õ(n2) time. Furthermore, since we can roughly reduce the instance size by a (1− 1/polylogn)
factor every iteration, the entire process converges in polylogn iterations. As such, we could argue that the total running
time is Õ(n2), and the longest chain of dependent calls is polylogn. This would imply a near-linear time offline algorithm
and a parallel algorithm with near-linear work and poly-logarithmic depth.

C. Missing Proofs of Section 4 (Dasgupta’s Objective)
We give the proofs we skipped in Section 4 in this section.

C.1. Missing proofs of Section 4.1

Formal proof of Theorem 1. With Algorithm 1, we can obtain the poly-time efficiency from Lemma 4.1. Furthermore,
since the strong partial tree algorithm of Theorem 10 succeeds with high probability, the approximation guarantee of
Lemma 4.2 holds with high probability as well. This concludes the proof.

C.2. Missing proofs of Section 4.2

Proof of Lemma 4.3. The first step of the algorithm that computes the strong partial tree takes O(n3 log n) time and O(n3)
queries by Theorem 10. We need to argue that the second step takes at most O(n3 log n) time as well. Note that by
Proposition 18, the algorithm, with high probability, runs in Õ(s2) time and finds an O(

√
log s)-approximation of the

sparsest cut (A,B), where s is the input size. In our case, for a single super-vertex of I with |X| ≤ 50000 log n, the running
time is therefore O(log2 n) only. By Fact A.1, there are at most O(log n) nodes in a binary tree with O(log n) leaves, which
implies O(log3 n) running time for a single super-vertex. Finally, with at most O(n) super-vertices in the tree, the second
step only takes O(n · log3 n) = O(n3 log n) time, as desired.

Proof of Lemma 4.4. Similar to the proof of Lemma 4.2, for any partial tree I, we first partition the edges in to Ecross and
Esame based on whether the edge (u, v) ∈ E crosses different partial trees, i.e.,

1. (u, v) ∈ Ecross iff u ∈ X and v ∈ Y for some super-vertices X ̸= Y in I.

2. (u, v) ∈ Esame iff u, v ∈ X for some super-vertex X in I.
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Again, by using Observation 1, we can show that OPTDas = costG(T ∗) = costG(T ∗, E1) + costG(T ∗, E2). The costs
w.r.t. to E1 and E2 are therefore as follows.

1. For Ecross, we have that costG(T , Ecross) = costG(T ∗, Ecross) by using the same argument of Lemma 4.2.

2. For Esame, we argue that costG(T , Esame) ≤ O(
√
log log n) · costG(T ∗, Esame). Formally, since algorithm in Proposi-

tion 18 finds an O(
√
log s)-approximation for each super-vertex X , we can use Proposition 17 on G[X] to argue that the

costG(T , Esame[X]) ≤ O(
√
log log n) · costG(T ∗, Esame[X]) since s = O(log n). Therefore, we can apply the same

argument to every super-vertex to get the desired approximation factor.

We now use Observation 1 again on Ecross and Esame to bound that

costG(T ) = costG(T , Ecross) + costG(T , Esame)

≤ costG(T ∗, Ecross) +O(
√
log log n) · costG(T ∗, Esame)

≤ O(
√
log log n) · (costG(T ∗, Ecross) + costG(T ∗, Esame))

= O(
√
log log n) · costG(T ∗) = O(

√
log log n) ·OPTDas,

as desired.

D. Missing Details of Section 5 (Moseley-Wang Objective)
We now prove the approximation guarantee of Theorem 3. To this end, we will show the following technical lemma that
lower bounds the number of non-leaves between T and T ∗.
Lemma D.1. Let T be a hierarchical clustering tree obtained by Algorithm 3, and let u, v ∈ V be any two vertices. Then,
conditioning on the high probability event that I is a partial tree that is weakly consistent with T ∗, there is

• If u and v are in the same super-vertex X of I, then, there is

|non-leavesT [LCAT (u, v) ]| ≥ n− 50000 log n.

• If u and v are in different super-vertices X and Y of I, then, there is

|non-leavesT [LCAT (u, v) ]| ≥ |non-leavesT ∗ [LCAT ∗(u, v) ]| − 50000 log n.

Furthermore, if
leavesT ∗ [LCAT ∗(X) ] ∩ leavesT ∗ [LCAT ∗(Y ) ] = ∅,

then, we additionally have

|non-leavesT [LCAT (u, v) ]| = |non-leavesT ∗ [LCAT ∗(u, v) ]| .

Proof. We prove the two cases separately as follows.

• u and v are in the same super-vertex X of I. By our construction, every leaf that is outside the subtree induced by
leavesT [LCAT (X) ] counts as a non-leave of (u, v). As such, since |X| ≤ 50000 log n, it is straightforward to get that

|non-leavesT [LCAT (u, v) ]| ≥ n− 50000 log n.

• u and v are in different super-vertices X,Y of I. Suppose w.log. that u ∈ X and v ∈ Y . By the subtree preserving
property, we have leavesT [LCAT (u, v) ] = leavesT ∗ [LCAT ∗(X ∪ Y ) ]. We now discuss further two sub-cases:

a). If leavesT ∗ [LCAT ∗(X) ] and leavesT ∗ [LCAT ∗(Y ) ] are disjoint. In this case, we have exactly
leavesT ∗ [LCAT ∗(X ∪ Y ) ] = leavesT ∗ [LCAT ∗(u, v) ], which implies leavesT [LCAT (u, v) ] =
leavesT ∗ [LCAT ∗(u, v) ]. Therefore, we have

|non-leavesT [LCAT (u, v) ]| = |non-leavesT ∗ [LCAT ∗(u, v) ]| .

This proves the “furthermore” part of the second case.
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b). If leavesT ∗ [LCAT ∗(X) ] and leavesT ∗ [LCAT ∗(Y ) ] have intersections. In this case, note that by
the weak contraction property, we must have inclusion relationship between leavesT ∗ [LCAT ∗(X) ]
and leavesT ∗ [LCAT ∗(Y ) ]. Suppose without loss of generality, that leavesT ∗ [LCAT ∗(X) ] ⊇
leavesT ∗ [LCAT ∗(Y ) ], the differences between leavesT ∗ [LCAT ∗(X ∪ Y ) ] and leavesT ∗ [LCAT ∗(u, v) ]
is at most the set of X . Since |X| ≤ 50000 log n, we have

|non-leavesT [LCAT (u, v) ]| ≥ |non-leavesT ∗ [LCAT ∗(u, v) ]| − 50000 log n,

as desired.

This concludes the proof of Lemma D.1.

To prove the approximation guarantee of Theorem 3, we will need a handful of structural observations for the optimal HC
trees in the Moseley-Wang objective. We first observe that for any optimal HC tree T ∗ necessarily has a “monotone edge
weight” property between an internal node and its descendants.

......

Other leaves

Figure 4. An illustration of the edge weights and leaves described in Claim D.2.

Claim D.2. Let z1 and z2 be any two internal nodes of the optimal HC tree T ∗ under the Moseley-Wang objective, and let
z2 be a descendant node of z1. We use w1 and w2 to denote the total weights of the edges induced by z1 and z2, respectively.
Furthermore, let w3 be the total weights of the edges induced on the internal nodes between z1 and z2.

Suppose the partition induced by z1 is S → (A,S \ A), and let B and C be the set of vertices induced by z2 such that
B ∪ C ⊆ S \A. Furthermore, let D = (S \A) \ (B ∪ C), and suppose max{|B| , |C|} ≥ |A|. Then, there is

w1 − ( |A|
|D| + 1) · w3

|A|+ |D|
≤ w2

max{|B| , |C|}
.

An illustration of the edges and leaves used in the statement can be found in Figure 4.

Proof. The claim is similar in spirit to the “switching lemma” under Dasgupta’s objective as proved in (Høgemo et al., 2021).
Suppose w.log. that |B| ≥ |C|. For the purpose of this proof (and also that of Claim D.3), we let revG(T , E1) be the revenue
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induced by a subset of edges E1 with T being the HC tree of G. We further observe some useful relationships between the
weights w1, w2, w3 and the weights w(A,B), w(A,C), w(A,D), w(B,C), w(B,D), and w(C,D) as follows.

w1 = w(A,D) + w(A,B) + w(A,C) w2 = w(B,C) w3 ≥ w(B,D) + w(C,D).

We first prove a self-contained structural claim that the edge weights between A and B cannot be too much bigger than w3.
More formally, the claim is as follows.

Claim D.3. Let A, B, C, and D be the set of vertices and w1, w2, and w3 be the edge weights as prescribed in Claim D.2.
Furthermore, let E(A,B) be the edges between A and B, and w(A,B) be the weights of E(A,B). Then, there is

w(A,B) ≤ |A|
|D|
· w3.

Proof. As consistent with the proof of Claim D.2, we assume w.log. that |B| ≥ |C|. Let us construct a tree T (1) based on
T ∗ by switching the subtrees induced by A and D. Note that in such change of HC tree, the only edges that will have a
changed revenue are E(A,B), E(A,C), E(A,D), E(B,C), and edges accounted by w3, which we call E3 (including but
not limited to E(B,D) and E(C,D)), and edges in. We list these changes as follows.

1. E(A,B): we have that revG(T (1), EA,B)− revG(T ∗, EA,B) ≥ |D| · w(A,B).

2. E(A,C): we have that revG(T (1), EA,C)− revG(T ∗, EA,C) ≥ |D| · w(A,C).

3. E(A,D): we have that revG(T (1), EA,D)− revG(T ∗, EA,D) = 0.

4. E(B,C): we have that revG(T (1), EB,C)− revG(T ∗, EB,C) = 0.

5. E3: we have that revG(T (1), E3)− revG(T ∗, E3) ≥ −w3 · |A|.

To maintain the optimality of T ∗, there should be revG(T (1))− revG(T ∗) ≤ 0. As such, we have

0 ≥ revG(T (1))− revG(T ∗)

=
(

revG(T (1), EA,B)− revG(T ∗, EA,B)
)
+
(

revG(T (1), EA,C)− revG(T ∗, EA,C)
)

+
(

revG(T (1), EA,D)− revG(T ∗, EA,D)
)
+
(

revG(T (1), EB,C)− revG(T ∗, EB,C)
)

+ revG(T (1), E3)− revG(T ∗, E3)

≥ (w(A,B) + w(A,C)) · |D| − w3 · |A| .

As such, we can move the terms around, and obtain that

w(A,B) ≤ w(A,B) + w(A,C) ≤ |A|
|D|
· w3,

as desired. Claim D.3 □

We now use Claim D.3 to prove Claim D.2. We again construct a tree T (2) based on T ∗ by switching the subtrees induced
by A and B (note that this is different from the proof of Claim D.3). Observe again that only the edges that have different
revenue contribution in T (2) vs. T ∗ are E(A,B), E(A,C), E(A,D), E(B,C), and edges accounted by w3. We again list
all the changes of revenue induced on these edges.

1. E(A,B): we have that revG(T (2), EA,B)− revG(T ∗, EA,B) = 0.

2. E(A,C): we have that revG(T (2), EA,C)− revG(T ∗, EA,C) ≥ (|B|+ |D|) · w(A,C).

3. E(A,D): we have that revG(T (2), EA,D)− revG(T ∗, EA,D) ≥ |B| · w(A,D).

4. E(B,C): we have that revG(T (2), EB,C)− revG(T ∗, EB,C) ≥ −(|A|+ |D|) · w(B,C).
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5. E3: we have that revG(T (2), E3)− revG(T ∗, E3) ≥ − |A| · w3.

Therefore, by the optimally of T ∗, there should be revG(T (2))− revG(T ∗) ≤ 0. As such, we have

0 ≥ revG(T (2))− revG(T ∗)

=
(

revG(T (2), EA,B)− revG(T ∗, EA,B)
)
+
(

revG(T (2), EA,C)− revG(T ∗, EA,C)
)

+
(

revG(T (2), EA,D)− revG(T ∗, EA,D)
)
+
(

revG(T (2), EB,C)− revG(T ∗, EB,C)
)

+
(

revG(T (2), E3)− revG(T ∗, E3)
)

≥ (|B|+ |D|) · w(A,C) + |B| · w(A,D)− (|A|+ |D|) · w(B,C)− w3 · |A| .

As such, by moving the terms around, we can get that

|B| · (w(A,C) + w(A,D)) ≤ (|B|+ |D|) · w(A,C) + |B| · w(A,D)

≤ (|A|+ |D|) · w(B,C) + |A| · w3.

We can use the observation that w1 = w(A,B) + w(A,C) + w(A,D) to obtain that

|B| · w1 = (w(A,C) + w(A,B) + w(A,D))

≤ (|A|+ |D|) · w(B,C) + |A| · w3 + |B| · w(A,B)

by adding |B| · w(A,B) on both sides. Now, we can apply Claim D.3 to obtain that

|B| · w1 ≤ (|A|+ |D|) · w(B,C) + |A| · w3 + |B| ·
|A|
|D|
· w3

≤ (|A|+ |D|) · w(B,C) + |B| · w3 + |B| ·
|A|
|D|
· w3 (using |A| ≤ |B|)

Note that w(B,C) = w2. As such, the above implies that

|B| ·
(
w1 − (1 +

|A|
|D|

)w3

)
≤ (|A|+ |D|) · w2.

Moving the turns around in the above inequality gives us the desired bound. Claim D.2 □

We now use Claim D.2 to show that the set of edges (u, v) such that

a). has at most O(log2 n) non-leaves in T ∗; and

b). let X and Y be corresponding super-vertices that contain u and v in a weakly consistent partial tree I; there is
leavesT ∗ [LCAT ∗(X) ] ∩ leavesT ∗ [LCAT ∗(Y ) ] ̸= ∅.

can contribute to at most an o(1) fraction of the optimal cost. This means that our estimation with non-leaves using
Lemma D.1 would lead to a good approximation. The formal statement is as follows.

Lemma D.4. Let I be an arbitrary partial HC tree that is weakly consistent with the optimal HC tree T ∗ under the
Moseley-Wang objective. Define Elow(I) ⊆ V × V as the edges such that for any (u, v) ∈ Elow(I), there is

a). |non-leavesT ∗ [LCAT ∗(u, v) ]| ≤ 50000 · log2 n.

b). Let X and Y be corresponding super-vertices that contain u and v in I; there is

leavesT ∗ [LCAT ∗(X) ] ∩ leavesT ∗ [LCAT ∗(Y ) ] ̸= ∅.
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Then, for sufficiently large n, the total contribution of revenue from the edges in Elow(I) is at most 50000 · log
4 n
n fraction of

OPTMW, i.e., ∑
e=(u,v)∈Elow(I)

w(e) · |non-leavesT ∗ [LCAT ∗(u, v) ]| ≤ O(
log4 n

n
) ·OPTMW.

Proof. For any two super-vertices X and Y in the partial HC tree I, by the weak contraction property, if
leavesT ∗ [LCAT ∗(X) ] ∩ leavesT ∗ [LCAT ∗(Y ) ] is not empty, the only possible case is to have inclusion relation-
ships between the two sets of leaves. Suppose w.log. that leavesT ∗ [LCAT ∗(X) ] ⊇ leavesT ∗ [LCAT ∗(Y ) ]. Let Ỹ be
the set of vertices induced by the sibling node of X in I, and it is straightforward to see that Y ⊆ Ỹ . We further let Y ′ be
the larger immediate child of the tree induced by Ỹ .

By the conditions of i). |non-leavesT ∗ [LCAT ∗(u, v) ]| ≤ 50000 · log2 n, ii). |X| ≤ 5000 log n, and iii). the inclusion
relationship between the leaves, there is∣∣∣Ỹ ∣∣∣ ≥ n− 50000 · (log2 n+ log n); |Y ′| ≥ n− 50000 · (log2 n+ log n)

2
.

We now use Claim D.2 inductively to bound the weights of w(E1) for the sets of edges E1 ⊆ Elow that are split by some
internal nodes of X . Let E2 be the set of edges that is split in the subtree induced by Y ′, and let X̃ be vertices that are split
by E1 and as the sibling of Ỹ . Our induction hypothesis is that

w(E1) <
C · log n · w(E2)

n− 50000 · (log2 n+ log n)

for some absolute constant C.

To prove this statement, we first look at the base case. By the size bound on X , it is straightforward to see that

|X| −
∣∣∣X̃∣∣∣ ≤ 50000 log n.

In the base case, we pick edges E1 ⊆ Elow such that E2 is split immediately after E1, i.e., E1 are the edges between X̃ and
Ỹ . Now, we can use Claim D.2 with A← X̃ , B ← Y ′, and D ← ∅ (w3 = 0) to argue that

w(E1)

|X|
≤ w(E1)∣∣∣X̃∣∣∣ <

w(E2)

|Y ′|
.

By the size upper bound of X and the size lower bound of Y ′, the above inequality implies that

w(E1)

50000 log n
<

2 · w(E2)

n− 50000 · (log2 n+ log n)
<

C · log n · w(E2)

n− 50000 · (log2 n+ log n)

for any C > 2, which proves the base case.

For the inductive step, let us suppose the statement holds until some internal node z, and we look into E1 ⊆ Elow that is
induced on pa (z). We again use Claim D.2 by letting A← X̃ , B ← Y ′, and D ← X \ X̃ . Define E3 as the set of edges
that are split between z and LCAT ∗(Ỹ ). By the induction hypothesis, for every node between z and LCAT ∗(Ỹ ), the total
induced weights is at most

C · log n · w(E2)

n− 50000 · (log2 n+ log n)
.

Furthermore, since |X|
|X̃| ≤ |X| ≤ 50000 log n, and z and pa

(
LCAT ∗(Ỹ )

)
are in the same X of I, we can bound the total

weights in E3 as follows

w(E3) ≤ 50000 · log n · C · log n · w(E2)

n− 50000 · (log2 n+ log n)
.
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Furthermore, by the size upper bound of X , we have |A|+ |D| ≤ 50000 · log n in Claim D.2. Combining the above gives
us that for sufficiently large n, we have

1

2
· w(E1)

|X|
≤ w(E1)− (50000 log n+ 1) · w(E3)

|X|
≤

w(E1)− ( |X|
|X̃| + 1) · w(E3)

|X|
<

w(E2)

|Y ′|
,

where the first inequality follows from the fact that w(E3) = O( log
2 n
n ) · w(E2), the second inequality follows from that

|X| /
∣∣∣X̃∣∣∣ ≤ |X| ≤ 50000 log n, and the last inequality follows from Claim D.2. Therefore, we can again obtain that

w(E1)

100000 log n
<

4 · w(E2)

n− 50000 · (log2 n+ log n)
,

which means w(E1) <
C·logn·w(E2)

n−50000·(log2 n+logn)
for a sufficiently large constant C (C = 400000 suffices). This concludes our

inductive proof for the weight bound of any E1 ⊆ Elow in any X .

Using w(E1) ≤ C·logn
n−50000·(log2 n+logn)

· w(E2) for any (u, v) ∈ Elow, we note that a trivial lower bound of the optimal
revenue is

OPTMW = Ω(log n · w(E2)),

since this is the revenue induced on the edge set E2 only. On the other hand, since we need the inclusion relationship
between the leaves, and by the fact that the number of non-leaves is at most log2 n, there are at most 50000(log2 n+ log n)
edges in Elow, i.e.,

|Elow| ≤ 50000(log2 n+ log n).

Therefore, the total contribution of revenue by Elow is at most

∑
e=(u,v)∈Elow(I)

w(e) · |non-leavesT ∗ [LCAT ∗(u, v) ]|

≤
∑

e=(u,v)∈Elow(I)

w(e) · log2 n (by the number of non-leaves)

≤ max{w(E1) | E1 ⊆ Elow} · 50000(log2 n+ log n) · log2 n (uniform upper bound)

≤ C · log n
n− 50000 · (log2 n+ log n)

· w(E2) · 50000(log2 n+ log n) · log2 n

(by the relationship between w(E2) and w(E1) for E1 ⊆ Elow)

≤ O(
log4 n

n
·OPTMW), (by the lower bound of OPTMW)

as desired.

Finalizing the proof of Theorem 3. We have discussed that the algorithm enjoys Õ(n2) running time and
O(n2) query efficiency. For the approximation guarantee, note that each edge (u, v) gains a revenue of wu,v ·
|non-leavesT ∗ [LCAT ∗(u, v) ]| in the optimal tree T ∗. For edges (u, v) ̸∈ Elow, let Esame

high be the set of edges where u

and v are in the same super-vertex, and Ediff
high be the set of edges where u and v are in different super-vertices. We now have

• For edges in Esame
high , we have |non-leavesT [LCAT (u, v) ]| ≥ n − 50000 log n that by Lemma D.1. On the other
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hand, any vertex pair has at most n non-leaves in the graph. Therefore, we have that

revG∩Esame
high

(T ) =
∑

e∈Esame
high

w(e) · |non-leavesT [LCAT (u, v) ]|

≥
∑

e∈Esame
high

w(e) · n− 50000 log n

≥
∑

e∈Esame
high

w(e) · n · (1− 50000 log n

n
)

≥ (1− 50000 log n

n
) · revG∩Esame

high
(T ∗).

• For edges in Ediff
high, we have

|non-leavesT [LCAT (u, v) ]| ≥ |non-leavesT ∗ [LCAT ∗(u, v) ]| − 50000 log n

≥ (1−O(
1

log n
)) · |non-leavesT ∗ [LCAT ∗(u, v) ]| ,

where the first inequality follows from Lemma D.1, and the second inequality is from the fact that
|non-leavesT ∗ [LCAT ∗(u, v) ]| ≥ 50000 · log2 n for every (u, v) ̸∈ Elow. As such, we have that

revG∩Ediff
high
(T ) =

∑
e∈Ediff

high

w(e) · |non-leavesT [LCAT (u, v) ]|

≥
(
1−O(

1

log n
)

)
·
∑

e∈Ediff
high

w(e) · |non-leavesT ∗ [LCAT ∗(u, v) ]|

=

(
1−O(

1

log n
)

)
· revG∩Ediff

high
(T ∗).

Therefore, by additionally using Lemma D.4, we have that

revG(T ) ≥ revG∩Esame
high

(T ) + revG∩Ediff
high
(T )

≥ (1−O(
1

log n
)) · revG∩Esame

high
(T ∗) + revG∩Ediff

high
(T ∗)

≥ (1−O(
1

log n
)) ·
(

revG∩Esame
high

(T ∗) + revG∩Ediff
high
(T ∗)

)
≥ (1−O(

1

log n
)) ·
(
1−O(

log4 n

n
)

)
· revG(T ∗) (using Lemma D.4)

≥ (1− o(1)) · revG(T ∗),

as desired.
Remark 20. We can observe that if we run Algorithm 3 with the strongly consistent partial HC tree, we can get a similar
(and even stronger) approximation guarantee, albeit with worse efficiency (Õ(n3) time). Concretely, note that if we use
the strongly consistent partial HC tree, the additive error again only happens on Esame, and we do not need Lemma D.4 to
bound the contributions of the edges in Elow(I) (since = ∅). In this way, we can further decrease the o(1) term to O( logn

n ).
However, the sacrifice of the running time is too significant, and we skip the details of this algorithm.

E. Missing Details of Section 6 (Sublinear Algorithms)
We discuss the analysis of the algorithms and their analysis for the rest of this section.

E.1. A single-pass semi-streaming HC algorithm for Dasgupta’s objective

We present our algorithm for the semi-streaming algorithm in this part. To begin with, we need to define the model for
streaming hierarchical clustering with the splitting oracle.
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Graph streaming with offline splitting oracle. We focus on the (dynamic) graph streaming model with the offline
splitting oracle. In this model, the edges of the graph are inserted and deleted (together with their edge weights), and the
algorithm is asked to output an HC tree by the end of the stream. Additionally, the algorithm is given an offline splitting
oracle O before the graph stream, and the algorithm is allowed to make unlimited computations before the stream starts.
The total memory cost is the total number of bits the algorithm maintains at any point, including those dedicated to edge
representation and those generated through offline computations.

For polynomial-time efficiency, we assume that the stream itself is of poly(n) length since otherwise, the stream itself will
take super-polynomial time to complete. Under the above model and setting, the formal statement of our result is as follows.

Theorem 21. There exists a single-pass (dynamic) streaming algorithm that given a weighted undirected graph G =
(V,E,w) in a poly(n)-length dynamic stream and an offline splitting oracle O, with high probability, in O(n · log3 n) (bits)
space and polynomial time computes a hierarchical clustering tree T such that costG(T ) ≤ O(1) · OPTDas(G), where
OPTDas(G) is the cost of the optimal hierarchical clustering tree T ∗, i.e., OPTDas(G) = costG(T ∗).

Proof. The algorithm is to simply first construct a strong partial tree I with the algorithm of Definition 8 before the stream
starts, and store edges only inside the same super-vertices during the stream. By the end of the stream, we compute recursive
sparsest cuts on the vertices induced on super-vertices of I, and output in the same manner of Algorithm 1. The formal
description is as Algorithm 4.

We first prove the time and space efficiency. Essentially, Algorithm 4 computes a strong partial tree I before the stream starts,
and only main edges inside each super-vertex of O(log n) size. By Theorem 10, the pre-processing part takes polynomial
(O(n3 log n)) time and O(n log n) space. Furthermore, for each super-vertex, we maintain at most O(log2 n) edges; each
edge could have at most poly(n) updates, which means an additive space of O(log n) bits suffices for each edge. Therefore,
we record at most O(log n) bits for each edge. There are at most n super-vertices, which means the algorithm maintains the
information of O(n log2 n) edges, which takes O(n log3 n) bits. After the stream, we partition the super-vertices with the
edges stored, and write down the rest of the HC tree. The time efficiency of the post-processing part is exactly as Lemma 4.1.

For the approximation guarantee, note that we are essentially simulating Algorithm 1 with the same input and output
guarantees. As such, we can simply use Lemma 4.2 to argue the approximation guarantee.

E.2. Parallel HC algorithms for Moseley-Wang Objective

We now move the PRAM hierarchical clustering algorithm for the Moseley-Wang objective with near-linear Õ(n2) work
and polylog (n) depth. The formal statement of the algorithm is as follows.

Theorem 22. There exists a PRAM algorithm that given a weighted undirected graph G = (V,E,w) and a splitting oracle
O, with high probability, in O(n2 · polylogn) work and polylogn depth computes a hierarchical clustering tree T such
that revG(T ) ≥ (1− o(1)) ·OPTMW(G), where OPTMW(G) is the revenue of the optimal hierarchical clustering tree T ∗,
i.e., OPTMW(G) = revG(T ∗).

Proof. The algorithm is to run the PRAM weak partial tree algorithm in Corollary 12 to obtain I, and arbitrarily partition
the vertices in the super-vertices of I. The formal description of the algorithm is as Algorithm 5.

By Corollary 12, the first step that computes the weak partial tree I only takes Õ(n2) work and polylogn depth. For
the second step, since the partition is arbitrary, we can simply perform arbitrary balanced cuts on the vertices for each
super-vertex X . For an individual X , this procedure can be done in O(log n · log log n) work and O(log log n) depth. By
accounting for all the super-vertices, we blow up the work by at most an O(n) factor and the depth remains the same since
we can partition super-vertices in parallel. Therefore, the second step takes O(n · log2 n) work and O(log log n) depth.
Therefore, the entire procedure takes Õ(n2) work and polylogn depth.

The output of Theorem 22 follows exactly the same rules of Algorithm 3; therefore, the approximation guarantee follows
from Theorem 3.

Remark 23. By the reduction of Proposition 14, the result of Theorem 22 also implies a fully-scalable Massively Parallel
Computation (MPC) algorithm that computes the HC tree T with (1− o(1)) ·OPTMW(G) revenue in Õ(n2) total memory
and polylogn depth. The memory on each machine here is allowed to be O(nα) for any α ∈ (0, 1), and we use Õ(n2−α)
total machines in the MPC algorithm.
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F. Preliminaries for Partial HC Tree Algorithms
We will discuss the construction of partial HC trees for the rest of this paper (Appendices F to H). In this section, we first
introduce the several notions that are essential in the analysis of the partial HC tree algorithms. We use these notions
extensively in the analysis of both Theorem 10 (Appendix G) and Theorem 11 (Appendix H).

In the high-level overview, we slightly abused the notation to use V to denote the subset of vertices. In our formal description
of the algorithms, we will use Ṽ ⊆ V as the set of vertices of the current recursion step, and use ñ =

∣∣∣Ṽ ∣∣∣ as the size of the
set.

F.1. Composable vertex sets and restricted subtrees

To continue, we first introduce the notions of composable vertex sets for a graph and the HC tree restricted to the sets.

Definition 24 (Composable vertex sets). Let G = (V,E) be a n-vertex graph and T be a hierarchical clustering of G. For
a subset Ṽ ⊆ V , we say Ṽ is a composable (vertex) set of (G, T ) if Ṽ can be written in a disjoint union of the leaves of
maximal trees, i.e., a union of vertices Ṽ = ∪iṼi, such that all Ṽi satisfies that

leavesT [LCAT (Ṽi) ] = Ṽi.

In the special case, we say Ṽ is a single composable (vertex) set if there is only one such maximal tree, i.e.,
leavesT [LCAT (Ṽ ) ] = Ṽ .

In other words, if a vertex set Ṽ is composable, it means if we only look at the leaves of Ṽ , they still form subtrees of T . An
illustration of composable sets can be found in Figure 5.

......

Single Composable Sets (Vertices of Maximal Subtrees)

General Composable Sets but Nota Maximal Subtree

Figure 5. An illustration of the composable vertex sets and maximal trees as in Definition 24.

We can define the HC tree restricted to composable subsets of vertices as follows.

Definition 25 (Hierarchical clustering tree restricted to subset). Let G = (V,E) be a n-vertex graph and T be a hierarchical
clustering of G. For any composable subset S ⊆ V such that |S| ≥ 2, we call T (S) as T restricted to S if T (S) is a new
binary tree constructed with the following process
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1. Extract T ′ from T by taking the induced subtree of the internal node LCAT (S).

2. Remove all subtrees whose leaves contain only vertices not in S from T ′.

3. If there exists an internal node x that only has a single child, contract x and its child to one node. Repeat until all
internal node has two children nodes.

Note that the algorithm in Definition 25 is a thought process, and it only serves the purpose of analysis. The third line
eventually terminates since there exists at least one subtree with two leaves for any composable set S with at least two
vertices. An illustration of HC trees restricted to subsets can be shown in Figure 6.

Figure 6. An illustration of the HC tree T to be restricted on a subset of vertices S.

We now provide the following observation that the new tree T (S) preserves the relative order of split away vertices of T .

Observation 2. For any triplet of vertices (u, v, w), the orders of split-away for (u, v, w) are the same in T (S) and T , i.e.,
w splits away from (u, v) in T (S) if and only if w splits away from (u, v) in T .

Proof. We first observe that the orders of split away for any triplet (u, v, w) are the same in T and T ′ since T ′ is a subtree
of T . Furthermore, since S is a conposeable set, every subtree we remove from T ′ is necessarily a maximal subtree, i.e., fix
the removed vertex set S, the leaves of LCAT ′(S) is S itself.

Let x be the lowest common ancestor of (u, v) in T ′, and x′ be the lowest common ancestor of (u, v, w) in T ′. By our
definition, we have levelT ′(x′) > levelT ′(x). In T (S), if none of x and x′ is contracted in line 3, then the order of
splits away trivially remains the same as in T ′.

On the other hand, if at least one of x and x′ is contracted, and let the new internal nodes be y and y′, we claim that there is
still levelT (S)(y

′) > levelT (S)(y). This is simply because every removed tree is a maximal tree, and the only case that
y and y′ are merged is that the induced vertices of y′ become empty, which contradicts the fact that (u, v) is not removed.
Therefore, the split order between (w, u, v) is the same as in T ′, which in turn is the same in T .

F.2. Small-tree splitting order

We now introduce the following notion of small-tree split order, which we frequently use in our analysis.

Definition 26 (Small-tree split order). Consider any subset S ⊆ V and the hierarchical clustering tree T ∗(S) restricted to
S, and consider the following process that divides the leaves of S:
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1. Starting from the root r, let the split be S → (S1
l , S

1
r ), and assume w.log.

∣∣S1
l

∣∣ ≤ ∣∣S1
r

∣∣. Let V small
1 be the vertices

(leaves) induced by the “smaller subtree” S1
l .

2. Starting from the lowest common ancestor of S1
r , recursively define V small

ℓ as the vertices contained in the “smaller
subtree” of level ℓ (by splitting from the “larger subtree” of level ℓ− 1).

For the convenience of notation, we define V small
ℓ = ∅ when ℓ is larger than the depth of the tree. For any integer N ∈ [0, nH ],

we can define the first N vertices in the small-tree split order by taking the first N vertices in the order of V small
1 , V small

2 , etc..
Inside each set V small

i , we pick vertices in an arbitrarily fixed order. We use the notation V small(≤ N) to denote the first N
vertices in the small-tree split order, and we use V small(≥ −N) to denote the last N vertices in the small-tree split order.

Intuitively, we can think of the small-tree split order as we always write the “smaller” tree on the left-hand side, and recurse
on the “larger” tree for this procedure, then take leaves from the left-most vertices. Note that every vertex has to belong to
V small
i for some i. An illustration can be found in Appendix F.2.

Based on the notion of small-tree split order, we can define the notion of induced leaves of the first or last N vertices in the
small-tree split order as follows.

Definition 27 (Induced leaves of the N first split vertices). Let T ∗(S) and S be the hierarchical clustering tree and the set
of leaves. For any integers N ∈ [0, nH ], we define the induced leaves of V small(≤ N) as the union of the ∪ℓi=1V

small
i , where

ℓ is the maximum level such that V small
ℓ contains at least one vertex in V small(≤ N).

An illustration of the induced leaves in Definition 27 can be found in Appendix F.2.

......

......

......

......

Figure 7. An illustration of the notion of small-tree split order Definition 26 and the Induced leaves of the N first split vertices Definition 27.

G. The Algorithm for the Strongly Consistent Partial HC Tree: Proof of Theorem 10
We now give an algorithm for partial trees that are strongly consistent with the optimal HC tree T ∗. We first remind the
readers of our main result on the algorithm for strongly consistent partial HC trees as follows.

Theorem 10. There exists an algorithm that given a splitting oracle O of a weighted undirected graph G = (V,E,w), with
high probability, in O(n3 log n) time and O(n3) queries computes a partial hierarchical clustering tree I that is strongly
consistent with the optimal hierarchical clustering tree T ∗. Furthermore, the algorithm has the following properties.

i). The runtime of the algorithm is deterministic, and the high probability randomness is over the correctness guarantee.

ii). The algorithm can be implemented in O(n log n) space.

We refer the readers to Appendix B for a high-level overview of the algorithm. We directly give the algorithm and the
analysis in this section.
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The algorithm. We introduce our main algorithm for the construction of strongly consistent partial HC trees. To begin
with, we give a ‘helper function’ counterpart-tester-strong as follows. As we have discussed in the high-level
overview, this function tests the ‘sibling vertices’ of a small tree that is ‘early enough’ in the small-tree splitting order.

Algorithm 6 counterpart-tester-strong(O,Vinput)(u, t, threshold1, threshold2): an algorithm to test whether t is
among the “counterpart” of u
Input: Vertex set Vinput; the splitting oracle O; baseline vertex u; test vertex v; threshold1 ∈ (0, ñ), threshold2 ∈ (0, ñ)
Output: Whether v is a “counterpart” of u
Initialize counters c1 ← 0, c2 ← 0 for Every vertex t ∈ Vinput do

If v splits away from (u, t), increase c1 by 1 If t splits away from (u, v), increase c2 by 1
end
if c1 ≤ threshold1 and c2 ≤ threshold2 then

Return “v is a counterpart of u”.
end

Our main algorithm for the strongly consistent partial HC tree construction is as follows.

Algorithm 7 strong-partial-treeO(Ṽ ): an algorithm for strongly consistent partial tree

Input: Vertex set Ṽ of size ñ; the splitting oracle O; parameter ε < 1 a sufficiently small constant
Output: A partial tree TṼ that is strongly consistent with T ∗(Ṽ )

if
∣∣∣Ṽ ∣∣∣ ≤ 50000 log n then

Return a super-vertex
end
for Each u ∈ Ṽ do

Initialize T ← ∅ Sample a set S of s = 20 log n/ε2 vertices from Ṽ for v ∈ Ṽ do
Run counterpart-tester-strong(O,S)(u, v, (3/5−ε) ·s, (1/6−ε) ·s) Add v to T if v is a “counterpart”

of u
end
Record the size |T | for this choice of u

end
Pick (T ∗, Ṽ \ T ∗) such that T ∗ ← T is with the largest size (breaking ties arbitrarily) Recursively call

TṼ \T∗ ← strong-partial-treeO(Ṽ \ T ∗) TT∗ ← strong-partial-treeO(T ∗).

Connect the two trees with a common ancestor as the root

We first observe that the algorithm takes at mostÕ(n3) queries to O and Õ(n3/ε2) time. The formal statement and analysis
are as follows.

Lemma G.1. The algorithm strong-partial-treeO(V ) takes at most O(n3) queries to O and Õ(n3 log n/ε2)
running time.

Proof. The O(n3) query upper bound is trivial since there are at most
(
n
3

)
such comparisons, and the algorithm can store

the answers for reuse. For the running time, we claim that each recursive call on strong-partial-treeO(Ṽ ) with∣∣∣Ṽ ∣∣∣ = ñ vertices takes at most O(ñ2 log ñ) time. To see this, note that each call of Line 7 takes at most O(log n/ε2) time,

and there are at most O(ñ2) calls of the counterpart-tester-strong function. By Fact A.1, there are at most O(n)
such recursion calls induced on internal nodes, which results in at most O(n3 log n/ε2) running time.

We now prove the correctness of the algorithm. To this end, we first establish the split-away relationships between the vertex
set Ṽ and the sampled set S.

Lemma G.2. Consider quantities c1, c2, c̃1, and c̃2 obtained by the following processes of running Algorithm 6:
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• Let c1 and c2 be the counter returned by counterpart-tester-strong(O,S)(u, v, (3/5− ε) · s, (1/6− ε) · s)
(i.e., by running line 7).

• Let c̃1 and c̃2 be the counter obtained by running counterpart-tester-strong(O,Ṽ )(u, v, 3ñ/5, ñ/6).

Then, with high probability, the following statements are true.

• If c̃1 ≥ 3ñ/5 and c̃2 ≥ ñ/6·, then c1 ≥ (3/5− ε) · s and c2 ≥ (1/6− ε) · s.

• If c̃1 < (3/5− 2ε) · ñ and c̃2 < (1/6− 2ε) · ñ, then c1 < (3/5− ε) · s and c2 < (1/6− ε) · s.

Proof. The lemma is a direct application of Chernoff bound, and we prove the quantities for c1 and c̃1 only since the
relationships between c2 and c̃2 follow from the same argument. For each fixed pair of (u, v) as the inputs to Algorithm 6,
let T̃ ⊂ Ṽ be the set of vertices in Ṽ reporting “v splits away from (u, t)”. It is clear that

∣∣∣T̃ ∣∣∣ = c̃1. Furthermore, define Xt

as the indicator random variable for the sampled vertex t ∈ T̃ ∩ S and X as the total number of answers reporting “v splits
away from (u, t)” in S. We have E [X] =

∑
x∈S Pr(Xt = 1) = s·c̃1

ñ .

If c̃1 ≥ 3ñ/5, we have that E [X] ≥ 3s
5 , and X is summation of independent indicator random variables. Therefore, by

Chernoff bound we have

Pr
(
X < (

3

5
− ε) · s

)
≤ Pr (X − E [X] < ε · s) ≤ exp

(
−2 · ε

2s2

s

)
≤ exp (−40 log n) ≤ 1

10
· 1

n3
,

where the third inequality is by the choice that s = 20 log n/ε2. On the other hand, if c̃1 < (3/5− 2ε) · ñ, we have that
E [X] < (3/5− 2ε) · s. Therefore, by Chernoff bound, we have

Pr
(
X ≥ 3s

5

)
≤ Pr (X − E [X] ≥ ε · s) ≤ exp

(
−2 · ε

2s2

s

)
≤ exp (−40 log n) ≤ 1

10
· 1

n3
,

where the third inequality is by the choice that s = 20 log n/ε2.

Using Lemma G.2, we now present the following key lemma for the behavior of the “counterpart-test” of Algorithm 7.

Lemma G.3. For any composable Ṽ such that
∣∣∣Ṽ ∣∣∣ ≥ 50000 log n, let ℓ∗ be the maximal level that V small

ℓ∗ contains a vertex

in V small(≤ ñ/5). With high probability, Line 7 in Algorithm 7 satisfies the following properties.

a). For any vertex u ∈ ∪∞i=ℓ∗+1V
small
i , there is

• No vertex v ∈ ∪∞i=ℓ∗+1V
small
i can be added to T by Line 7 of Algorithm 7.

• No vertex v ∈ ∪ℓ
∗−1
i=1 V small

i can be added to T by Line 7 of Algorithm 7.

b). For every level ℓ ≤ ℓ∗ and vertices u ∈ V small
ℓ , with high probability, there is

• No vertex v ∈ V small
ℓ can be added to T by Line 7 of Algorithm 7.

• No vertex v ∈ V small
k for k < ℓ can be added to T by Line 7 of Algorithm 7.

c). There exists a ℓ̃ ≤ ℓ∗ such that
∣∣∣∪ℓ̃i=1V

small
i

∣∣∣ ≥ ñ
25 , and for any ℓ ≤ ℓ̃ and any vertex u ∈ V small

ℓ , with high

probability, all vertices v ∈ V small
k for k > ℓ are added to T by Line 7 of Algorithm 7.

Proof. By Lemma G.2, we only need to prove the split-away properties on Ṽ , and the split-away properties on S follows.
Let ℓ∗ be the maximal level that the V small

ℓ∗ contains a vertex in V small(≤ ñ/5), and suppose the split on this level results in
(Sℓ∗

l , Sℓ∗

r ). We assume w.log. that
∣∣Sℓ∗

l

∣∣ ≤ ∣∣Sℓ∗

r

∣∣ so that Sℓ∗

l becomes V small
ℓ∗ . We first observe a structural property.

Observation 3. The size of the vertices in VH \ V small(≤ ñ/5) (and equivalently ∪∞i=ℓ∗+1V
small
i ) satisfies

2ñ

5
<
∣∣∪∞i=ℓ∗+1V

small
i

∣∣ ≤ 4ñ

5
.
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Proof. The upper bound follows from
∣∣V small(≤ ñ/5)

∣∣ ≥ ñ/5, as otherwise V small(≤ ñ/5) will not have enough vertices.
For the lower bound, note that by level ℓ∗ − 1, the size there are still more than 4ñ

5 vertices remain to be decided. Also, note
that ∪∞ℓ∗+1V

small
i collectively forms the ‘larger subtree’ w.r.t. V small

ℓ∗ . As such, its size has to be more than 1
2 ·

4ñ
5 = 2ñ

5 .

Note that by the definition of small trees, we also have
∣∣V small

ℓ

∣∣ ≤ ñ
2 for any ℓ. We now proceed one-by-one to the proofs of

Item a)., Item b)., and Item c)..

Proof of Item a). Fix any vertex u ∈ ∪∞i=ℓ∗+1V
small
i . For the first statement, note that for every v ∈ ∪∞i=ℓ∗+1V

small
i , all

the vertices in ∪ℓ∗i=1V
small
i are splitting away from (u, v). Define Xu,v,t as the indicator random variable answered by O

as “t splits away from (u, v)”, and define Xu,v =
∑

t∈Ṽ Xu,v,t as the total number of vertex split away from (u, v). By
Observation 3, the expected number of split away reported by oracle O is at least

E [Xu,v] ≥
9

10
· ñ
5
=

9

50
· ñ.

Note also that Xu,v is a summation of 0/1 independent random variables. As such, we can apply Chernoff bound to get that

Pr
(
Xu,v ≤

ñ

6

)
= Pr

(
Xu,v ≤

25

27
· E [Xu,v]

)
≤ exp

(
− (2/27)2

3
· E [Xu,v]

)
≤ 1

10
· 1

n3
. ( 9

50 · ñ ≥ 9000 log n using the lower bound on the size of Ṽ )

For the second statement, note that for any t ∈ ∪∞i=ℓ∗V
small
i , v actually splits away from (u, t). As such, there is at least

4ñ
5 vertices such that “v splits away from (u, t)” – this is because the LCA between (u, v) has to be higher than the LCA

between (u, t) for any t ∈ ∪∞i=ℓ∗V
small
i . As such, define Yu,v as the number of total answers of “v splits away from (u, t)”

by O, we again have

E [Yu,v] ≥
9

10
· 4ñ
5

=
18

25
· ñ.

As such, we again have

Pr
(
Yu,v ≤

3ñ

5

)
= Pr

(
Yu,v ≤

15

18
· E [Xu,v]

)
≤ 1

10
· 1

n3
. ( 9

50 · ñ ≥ 9000 log n using the lower bound on the size of Ṽ )

By a union bound over at most n vertices, no vertex v ∈ ∪ℓ
∗−1
i=1 V small

i or v ∈ ∪∞i=ℓ∗+1V
small
i can pass the test and be recorded

as a ‘counterpart’. Furthermore, by Lemma G.2, if Xu,v > ñ/6 and Yu,v > 3ñ/5, then such u cannot pass the test on the
sampled set S, which is as desired. This part of the proof can be visualized as in Figure 8(a).

Proof of Item b).. We now show that vertices v ∈ ∪ℓi=1V
small
i cannot pass the “counterpart” test. For vertices in v ∈ V small

ℓ ,
we claim that there are too many vertices t that split away from (u, v). To see this, let us define Au,v as the total number of
answers of “t splits away from (u, v)” answered by O. Note that for any vertex t ∈ ∪∞i=ℓ∗+1V

small
i , the answer is always

“yes” since ℓ∗ ≥ ℓ̃ ≥ ℓ. Therefore, we can lower bound the expectation of Au,v with E [Au,v] ≥ 2
5 ñ ·

9
10 ≥

9
25 · ñ. Therefore,

we can apply Chernoff bound to get

Pr
(
Au,v ≤

ñ

6

)
≤ exp

(
− (1/2)2

3
· E [Au,v]

)
≤ 1

10
· 1

n3
.

We now turn to the vertices that are in ∪ℓ−1
i=1V

small
i . Note that by definition, there is

∣∣∪∞i=ℓV
small
i

∣∣ ≥ ∣∣∪∞i=ℓ∗V
small
i

∣∣ ≥ 4
5 · ñ.

For any t ∈ ∪∞i=ℓ∗V
small
i , v splits away from (u, t). As such, define Bu,v as the number of answers by O with “v splits away
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from (u, t)”, there is E [Bu,v] ≥ 18
25 · ñ. Once again, by applying Chernoff bound, there is

Pr
(
Bu,v ≤

3ñ

5

)
≤ exp

(
− (1/5)2

3
· E [Bu,v]

)
≤ 1

10
· 1

n3
.

Applying a union bound over the cases and all ñ ≤ n vertices and using Lemma G.2 would lead to the desired statements.
This part of the proof can be visualized as in Figure 8(b).

Proof of Item c).. We fix ℓ̃ as the minimum level such that the union of ∪ℓ̃i=1V
small
i has at least ñ/25 vertices. Let ℓ ≤ ℓ̃,

and for any vertex v in V small
k for k > ℓ, define the following two random variables: Xu,v as the number of answers that “t

splits away from (u, v)”, and Yu,v as the number of answers that “v splits away from (u, t)”. We shall show that both terms
are not large and v can always pass the test. (Note that X and Y are overloaded and are not related to their meaning in the
proof of Line b)..)

Note that by definition, we have
∣∣∣∪ℓ̃−1

i=1V
small
i

∣∣∣ < ñ
25 . Since ℓ ≤ ℓ̃, for any vertex u ∈ ∪ℓi=1V

small
i , only vertices t ∈

∪ℓ−1
i=1V

small
i are actually splitting away from (u, v) for v ∈ ∪∞i=ℓV

small
i . As such, we have E [Xu,v] ≤ ( 1

10 + 1
25 ) · ñ = 7

50 · ñ
by the correct probability of O. For Xu,v, we also note that if the answer is at most (30000 − 100000ε) · log n, then by
Lemma G.2, the vertex passes the test with high probability. Therefore, we assume Xu,v ≥ E [Xu,v] ≥ (8000− 100000ε) ·
log n, and we again apply Chernoff for the tail bound:

Pr (Xu,v ≥ (1/6− 2ε) · ñ) ≤ exp

(
−50 · (2/75− 2ε)2

7 · 3
· E [Yu,v]

)
≤ 1

10
· 1

n3
. (using E [Yu,v] ≥ (8000− 100000ε) · log n and pick ε sufficiently small)

For Yu,v, note that only t ∈ V small
ℓ̃

can report “v splits away from (u, t)” since the LCA between (u, t) is at least ℓ̃ for any
other v. Therefore, the number of signals we can possibly get is ñ/2 plus the noise induced by the oracle O. As such, we
again have E [Yu,v] ≤ 11ñ/20. Also, note that if Yu,v is less than (30000− 100000ε) · log n, the vertex v would always
pass the test, which allows us to assume w.log. that E [Yu,v] ≥ (30000− 100000ε) · log n. Therefore, we can again apply
Chernoff bound to show

Pr
(
Yu,v ≥ (

3

5
− 2ε) · ñ

)
≤ exp

(
−20 · (1/20− 2ε)2

3
· E [Yu,v]

)
≤ 1

10
· 1

n3
. (using E [Zu,v] ≥ (30000− 100000ε) · log n and pick ε sufficiently small)

Therefore, we could apply Lemma G.2 to argue that with high probability, the vertex v would pass the test. This part of the
proof can be visualized as in Figure 8(c).

Combining the analysis of Item a)., Item b)., and Item c). gives us the desired proof of Lemma G.3.

Using Lemma G.3, we can now argue that with high probability, the algorithm always correctly identifies the vertex split
from the root as long as the size is at least 50000 log n. More formally, we have

Lemma G.4. For any composable Ṽ such that
∣∣∣Ṽ ∣∣∣ ≥ 50000 log n, let T ∗(Ṽ ) be the optimal HC tree restricted to Ṽ , and

suppose the root split of T ∗(Ṽ ) is (S∗
l , S

∗
r ). Then, the output (T ∗, Ṽ \ T ∗) of Line 7 is exactly (S∗

l , S
∗
r ).

Proof. Assume without the loss the generality that S∗
l ≤ S∗

r . Note that for any vertex u ∈ S∗
l , it is also among the vertex of

V small(≤ ñ/25). As such, by Lemma G.3, the entire vertex set of S∗
r is returned. On the other hand, for any vertex u ∈ S∗

r ,
we claim the induced set T is necessarily smaller than S∗

r . To see this, note that by Lemma G.3, the only possible case for
Line 7 to not return a subset of S∗

r is if u ∈ V small
ℓ such that ℓ > ℓ∗ and ℓ∗ = 1. However, in such a case, the algorithm can

at most return the set S∗
l , which is necessarily smaller than the size of S∗

r . As such, the maximum size of the set is attained
by picking the vertex from S∗

l , which implies that the return rule of Line 7 gives the partition (S∗
l , S

∗
r ).

In essence, Lemma G.4 is the very natural consequence of Lemma G.3. This can be visualized in Figure 8(d) of Figure 8 –
the T with the largest size is always the set of vertices induced by u1, which is exactly what we want.
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splits away from

splits away from

(a) Illustration of Item a). of Lemma G.3 with
u ∈ ∪∞

i=ℓ∗+1V
small
i .

splits away from

splits away from

splits away from

(b) Illustration of Item b). of Lemma G.3 with u ∈ V small
ℓ for

some ℓ ≤ ℓ∗.

(only) such that

splits away from

(only) such that

splits away from

(c) Illustration of Item c). of Lemma G.3 with u ∈ V small
ℓ for

ℓ ≤ ℓ̃ as prescribed in Lemma G.3.

(d) The “counterpart” trees generated by vertices u1, u2, and
u3. We can simply take the largest partition to guarantee the

root cut.

Figure 8. An illustration of the analysis we used in the proof of Lemma G.3.
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Conditioning on the high probability event, any super-vertex has to induce a maximal subtree in T ∗, which satisfies the
requirement for the tree to be strong consistent with T ∗. By Lemma G.1, Algorithm 7 deterministically takes at most O(n3)
queries and O(n3 log n/ε2) = O(n3 log n) time by the choice of ε = Θ(1).

Finally, we observe that Algorithm 7 only takes O(n log n) memory to implement. To see this, observe that for any recursive
call of Algorithm 7, for any fixed u and v, the subroutine counterpart-tester-strong can be implemented in
O(n log n) bits of space; furthermore, the space can be re-used for different u and v vertices. As such, we only need to
maintain the set T and its size for every u, which takes O(n log2 n) space. In fact, we can maintain this in O(n log n) space
by keeping the set T with the largest size and re-using the space on the fly. After each recursive call, we can free up the
space of Ṽ to store Ṽ \ T ∗ and T ∗ instead. On a separate O(n log n)-sized space, we can keep writing down the HC tree
with

i). A name of the node that takes O(log n) bits of memory;

ii). The set of vertices induced by this node.

In each recursion, we re-use the space of ii) by erasing the set of vertices induced by an internal node x once the children of
x are written down. In the end, the sets of vertices are only written on the super-vertices. As such, the entire partial HC tree
can be stored in O(n log n) memory as well.

H. The Algorithm for the Weakly Consistent Partial HC Tree: Proof of Theorem 11
We present the considerably more involved algorithm for the weakly consistent partial tree construction in near-linear time.
We first remind the readers of the main theorem of this result.

Theorem 11. There exists an algorithm that given a splitting oracle O of a weighted undirected graph G = (V,E,w),
with high probability, in O(n2 · polylogn) time and O(n2) queries computes a partial hierarchical clustering tree I that is
weakly consistent with the optimal hierarchical clustering tree T ∗.

Our main effort is to show the algorithm that satisfies the guarantee of Theorem 11. As we have discussed in the high-level
overview, the algorithm is divided into the “split” and the “merging” parts. We first show an algorithm that given a
composable subset of vertices Ṽ ⊆ V such that

∣∣∣Ṽ ∣∣∣ ≥ Ω(log n), return a set T that induces a maximal subtree in T (Ṽ ). As

such, we can recurse on T and Ṽ \ T to gradually reduce the sizes to at most O(log n). Then, in the second part, we show
how to ‘glue’ the subtrees together to eventually form a partial tree that is consistent with T ∗. The overall structure of the
algorithm can be shown as Algorithm 8.

Algorithm 8 weak-partial-treeO(Ṽ , VH): an algorithm for partial tree construction

Input: Input vertex set Ṽ ; input horizon vertex set VH; a splitting oracle O as prescribed in Definition 6
Output: A partial hierarchical clustering tree for Ṽ .
Initialize Ṽ = V , VH = V . If

∣∣∣Ṽ ∣∣∣ < 50000 log n, return a super-vertex (defined as in Definition 7). Get the partition of T

such that TT is a complete subtree, i.e. (T, Ṽ \ T, u∗, VH)← vertex-splitO(Ṽ , VH) (Algorithm 12) Recurse on T

and Ṽ \ T , i.e.,

TT ← weak-partial-treeO(T, T ); TṼ \T ← weak-partial-treeO(Ṽ \ T, VH)

for the respective HC trees Run the merging algorithm TṼ ← tree-mergeO(TT , TṼ \T , u
∗) (Algorithm 13).

We will introduce and analyze the splitting and the merging algorithms in the subsequent sections.

H.1. An algorithm to split the vertices

We first discuss our algorithm that produces complete subtrees for a given set of vertices Ṽ . For the clarity of presentation,
we use ñ to denote the size of Ṽ , i.e., ñ =

∣∣∣Ṽ ∣∣∣.
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H.1.1. THE ALGORITHM

We now present the actual algorithm. We first give two “tester” subroutines that serves as a more general version of the
counterpart-tester-strong algorithm we used in Algorithm 7.

Algorithm 9 counterpart-tester(O,VH)(u, t, threshold1, threshold2): an algorithm to test whether t is among the
“counterpart” of u
Input: Vertex set VH; a splitting oracle O; baseline vertex u; test vertex v; threshold1 ∈ (0, ñ), threshold2 ∈ (0, ñ)
Output: Whether v is a “counterpart” of u
Initialize counters c1 ← 0, c2 ← 0 for Every vertex t ∈ VH do

If v splits away from (u, t), increase c1 by 1 If t splits away from (u, v), increase c2 by 1
end
if c1 ≤ threshold1 and c2 ≤ threshold2 then

Return “v is a counterpart of u”.
end

Algorithm 9 is very similar to Algorithm 6, and the difference is that instead of testing on Ṽ set, we query on the VH set
instead. This is more than a simple notation change: it allows us to separate the vertices “to be tested” (e.g., vertices in Ṽ )
vs. the set we “used in the tests” (e.g., vertices in VH).

Next, we introduce the tester that given vertices u ∈ V small
ℓ1

and t ∈ V small
ℓ2

, returns whether ℓ2 < ℓ1, i.e., whether t is “split
earlier” in the small-tree split order of u.

Algorithm 10 predecessor-tester(O,VH)(u, t, threshold): an algorithm to test whether t is among the “predecessor”
of u
Input: Vertex set VH; a splitting oracle O; baseline vertex u; test vertex t; threshold ∈ (0, ñ)
Output: Whether t is a “predecessor” of u
Initialize counters c← 0 for Every vertex s ∈ VH do

If t splits away from (u, s), increase c by 1
end
if c ≥ threshold then

Return “t is a predecessor of u”.
end

Note that unlike Algorithm 9, the vertex t passes the test in Algorithm 10 if the number of “split away” is lower-bounded.
With the predecessor-tester(O,VH)(u, t, threshold) algorithm, we can now define the following algorithm that tests
whether a root split has happened in the previous iteration.

We now continue to the presentation of our tree-split algorithm. The full algorithm is as Algorithm 12.
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Algorithm 11 test-orphan-predecessor(O,VH,Ṽ ): an algorithm to obtain any vertex that is split earlier than the
orphaned vertex set in the small-tree split order

Input: Vertex set Ṽ of size ñ; the horizon set VH of size nH ; a splitting oracle O
Output: Vertex X∗ that is either empty or contain “predecessor” of orphaned sets
Sample a set U ′ of 100 log n vertices from Ṽ using fresh randomness for u′ ∈ U ′ do

for v ∈ VH do
if nH ≤ 3ñ then

threshold-pred← 3ñ/2
end
else

threshold-pred← 2nH/3
end
Add x to X if predecessor-tester(O,VH)(u, v, threshold-pred) (Algorithm 10) reports “v is a predecessor

of u”
end
Record the size |X| for this choice of u′

end
Return X∗ as the largest size of X

Algorithm 12 vertex-splitO(Ṽ , VH): an algorithm that splits Ṽ to T and Ṽ \ T
Input: Vertex set Ṽ of size ñ; the horizon set VH of size nH ; a splitting oracle O
Output: Vertex sets T , Ṽ \ T ; new horizon set VH

Sample a set U of 500 log n vertices from Ṽ for u ∈ U do
Initialize T ← ∅ for v ∈ VH do

Run counterpart-tester(O,VH)(u, v, 3nH/5, nH/6) Add v to T if v is a “counterpart” of u
end
Record the size |T | for this choice of u

end
Pick (T ∗, Ṽ \ T ∗) such that T ∗ ← T is with the largest size if T ∗ ∩ Ṽ = ∅ then

// Test whether a root split happened in the last iteration X∗ ← test-orphan-predecessor(O,VH,Ṽ ) (using
Algorithm 11) if X∗ ̸= ∅ then

// The case of non-root split Pick an arbitrary u∗ ∈ X∗ Initialize T ∗ ← ∅ for v ∈ VH do
Run counterpart-tester(O,VH)(u∗, v, 3nH/5, nH/6) Add v to T ∗ if v is a “counterpart” of u∗

end
Output with the same rules of the T ∗ ∩ Ṽ ̸= ∅ case

end
else

// Case for root split Let VH ← Ṽ , run and output with vertex-splitO(Ṽ , Ṽ ) Enforce a single level of
recursion call (return “FAIL” if Ṽ = VH and the algorithm enters the above line again with Ṽ = VH)

end
end
else

// Keep the current horizon Output (T ∗ ∩ Ṽ , Ṽ \ T ∗) as the partition and keep the same VH Output u∗ as the vertex
u ∈ U corresponding to the output T ∗

end
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Note that in Line 12, we sample 500 log n as opposed to 500 log ñ vertices (this is on purpose as opposed to being a typo).
The formal guarantee of the tree split algorithm is as follows.

Lemma H.1. Suppose Ṽ is a composable set with size ñ that satisfies the weak contraction property as prescribed in
Definition 9, and suppose ñ ≥ 50000 log n. Furthermore, let VH be a single composable set (e.g., VH induces a maximal
tree in T ∗) of nH vertices, and suppose

Ṽ = ∪ℓi=1V
small
i

for some ℓ in the small-tree split order of VH. Then, given a splitting oracle O with correct probability at least 9/10,
Algorithm 12 with high probability outputs composable sets T ∗ ∩ Ṽ and Ṽ \ T ∗ and a vertex u∗ such that

1. T ∗ induces a single maximal subtree in T ∗(Ṽ ).

2. Ṽ \ T ∗ satisfies the weak contraction property as prescribed in Definition 9, and in particular, the subtrees induced by
Ṽ \ T ∗ have

(a) one edge connected to the node pa
(
LCAT ∗(Ṽ )

)
(if it exist).

(b) one edge connected to the node that induces T ∗ in T ∗.

3. The lowest common ancestor between the nodes in T is an (immediate) child node of the lowest common ancestor
between T ∪ {u∗} in T ∗(Ṽ ), i.e.,

LCAT ∗(Ṽ )(T ∪ {u
∗}) = pa

(
LCAT ∗(Ṽ )(T )

)
.

4. Size properties: at least one of the following guarantees hold.

(a) The new set Ṽ \ T ∗ has at least 99
100 fraction of vertices that are orphaned vertices, i.e., the new V orphan set accounts

of at least 99
100 fraction of vertices in Ṽ \ T ∗;

(b) The size of T ∗ satisfies the following properties:
i. The size of T ∗ ∩ Ṽ is at least 1

200 · ñ, i.e., ∣∣∣T ∗ ∩ Ṽ
∣∣∣ ≥ 1

200
· ñ.

ii. If VH = Ṽ , the size of T ∗ ∩ Ṽ is at most (1− 1
10000 log2 ñ

) · ñ, i.e.,∣∣∣T ∗ ∩ Ṽ
∣∣∣ ≤ (1− 1

10000 log2 ñ
) · ñ.

Furthermore, case Item 4b always happens if VH = Ṽ , and the algorithm runs in time O(n2
H · log n).

We now proceed to the analysis to prove Lemma H.1.

THE ANALYSIS

To begin with, we define the notion of orphaned vertices from our split procedure.

Definition 28 (Orphaned vertices). Let Ṽ be a composable set of vertices, and let T = ∪∞i=ℓ+1V
small
i . We call V small

ℓ ⊆ Ṽ

the set of orphaned vertices in V small
ℓ with respect to T . We denote the orphaned set of vertices as V orphan

T,ℓ , and we write
V orphan as the simplified notation when the context is clear.

One can refer to Figure 9 for a visualization of the orphaned vertices (we used V as opposed to Ṽ in the figure). When
the context is clear, we ignore the dependence on V small

ℓ and T when talking about orphaned vertices, and simply denote
the orphaned vertices as V orphan. In our proof of correctness, we will show “inductively” that the set Ṽ only has a single
orphaned set V orphan – a key to guarantee property Item 2 of Lemma H.1.

We now proceed with the relatively straightforward analysis of the running time of a single level of recursion.
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Figure 9. An illustration of how horizon sets help maintain weak consistency. With the same u, the reason for the different outcomes is
that on the top, the small-tree split order restricted on V has changed compared to the last iteration. The use of the horizon set helps keep
the small-tree split order invariant before a root cut happens.

Lemma H.2. The algorithm vertex-splitO(Ṽ , VH) runs in time O(n2
H · log n).

Proof. Each run of the counterpart-tester takes O(nH) time. As such, the procedure that finds u∗ takes O(n2
H ·

log n) time since it involves O(nH log n) calls of counterpart-tester. Similarly, the procedure that finds X∗ takes
at most O(nH log n) calls of predecessor-tester, which again result in O(n2

H · log ñ) time. Furthermore, if X∗ ̸= ∅,
we only make nH number of counterpart-tester calls, which takes O(n2

H) time. On the other hand, if X∗ = ∅,
since we insist on a single level of recursion call, the runtime overhead is at most O(n2

H · log ñ). Adding up the time
complexity of the above two procedures gives us the desired bound.

We proceed with the proof of correctness for the algorithm. To this end, we first observe that by Observation 2 and since
VH is composable, the answers for the splitting oracle O on (u, v, w) ∈ VH is fully preserved in T ∗(VH). We now give a
technical lemma that characterizes the return set T by running counterpart-tester on different sets of vertices –
this is essentially the same argument we used in Lemma G.3, albeit we switched Ṽ to VH. We provide the lemma and the
analysis for the purpose of completeness.

Lemma H.3 (Cf. Lemma G.3). For any composable VH such that |VH| ≥ 50000 log n, let ℓ∗ be the maximal level that
V small
ℓ∗ contains a vertex in V small(≤ nH/5). With high probability, Line 12 in Algorithm 12 satisfies the following properties.

a). For any vertex u ∈ ∪∞i=ℓ∗+1V
small
i , there are

• No vertex v ∈ ∪∞i=ℓ∗+1V
small
i can be added to T by Line 12 of Algorithm 12.

• No vertex v ∈ ∪ℓ
∗−1
i=1 V small

i can be added to T by Line 12 of Algorithm 12.

b). For every level ℓ ≤ ℓ∗ and vertices u ∈ V small
ℓ , with high probability, there are

• No vertex v ∈ V small
ℓ can be added to T by Line 12 of Algorithm 12.

• No vertex v ∈ V small
k for k < ℓ can be added to T by Line 12 of Algorithm 12.
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c). There exists a ℓ̃ such that
∣∣∣∪ℓ̃i=1V

small
i

∣∣∣ ≥ nH

25 , and for any ℓ ≤ ℓ̃ and any vertex u ∈ V small
ℓ , with high probability, all

vertices v ∈ V small
k for k > ℓ are added to T by Line 12 of Algorithm 12.

Proof. Let ℓ∗ be the maximal level that the V small
ℓ∗ contains a vertex in V small(≤ nH/5), and suppose the split on this

level results in (Sℓ∗

l , Sℓ∗

r ). We again assume w.log. that
∣∣Sℓ∗

l

∣∣ ≤ ∣∣Sℓ∗

r

∣∣, which means Sℓ∗

l becomes V small
ℓ∗ . The bounds in

Observation 3 still hold with parameter nH , i.e., 2nH

5 <
∣∣∪∞i=ℓ∗+1V

small
i

∣∣ ≤ 4nH

5 . We now proceed to the proofs of Item a).,
Item b)., and Item c)., respectively.

Proof of Item a). Fix any vertex u ∈ ∪∞i=ℓ∗+1V
small
i . For the first statement, note that for every v ∈ ∪∞i=ℓ∗+1V

small
i , all

the vertices in ∪ℓ∗i=1V
small
i are splitting away from (u, v). Define Xu,v,t as the indicator random variable answered by O

as “t splits away from (u, v)”, and define Xu,v =
∑

t∈Ṽ Xu,v,t as the total number of vertex split away from (u, v). By
Observation 3, the expected number of split away reported by oracle O is at least

E [Xu,v] ≥
9

10
· nH

5
=

9

50
· nH .

Note also that Xu,v is a summation of 0/1 independent random variables. As such, we can apply Chernoff bound to get that

Pr
(
Xu,v ≤

nH

6

)
= Pr

(
Xu,v ≤

25

27
· E [Xu,v]

)
≤ exp

(
− (2/27)2

3
· E [Xu,v]

)
≤ 1

10
· 1

n3
. ( 9

50 · nH ≥ 9000 log n using the lower bound on the size of VH)

For the second statement, note that for any t ∈ ∪∞i=ℓ∗V
small
i , v actually splits away from (u, t). As such, there is at least

4nH

5 vertices such that “v splits away from (u, t)” – this is because the LCA between (u, v) has to be higher than the LCA
between (u, t) for any t ∈ ∪∞i=ℓ∗V

small
i . As such, define Yu,v as the number of total answers of “v splits away from (u, t)”

by O, we again have

E [Yu,v] ≥
9

10
· 4nH

5
=

18

25
· nH .

As such, we again have

Pr
(
Yu,v ≤

3nH

5

)
= Pr

(
Yu,v ≤

15

18
· E [Xu,v]

)
≤ 1

10
· 1

n3
. ( 9

50 · nH ≥ 9000 log n using the lower bound on the size of VH)

By a union bound over at most n vertices, no vertex v ∈ ∪ℓ
∗−1
i=1 V small

i or v ∈ ∪∞i=ℓ∗+1V
small
i can pass the test and be recorded

as a ‘counterpart’.

Proof of Item b).. We now show that vertices v ∈ ∪ℓi=1V
small
i cannot pass the “counterpart” test. For vertices in v ∈ V small

ℓ ,
we claim that there are too many vertices t that split away from (u, v). To see this, let us define Au,v as the total number of
answers of “t splits away from (u, v)” answered by O. Note that for any vertex t ∈ ∪∞i=ℓ∗+1V

small
i , the answer is always

“yes” since ℓ∗ ≥ ℓ̃ ≥ ℓ. Therefore, we can lower bound the expectation of Au,v with E [Au,v] ≥ 2
5nH · 9

10 ≥
9
25 · nH .

Therefore, we can apply Chernoff bound to get

Pr
(
Au,v ≤

nH

6

)
≤ exp

(
− (1/2)2

3
· E [Au,v]

)
≤ 1

10
· 1

n3
.

We now turn to the vertices that are in ∪ℓ−1
i=1V

small
i . Note that by definition, there is

∣∣∪∞i=ℓV
small
i

∣∣ ≥ ∣∣∪∞i=ℓ∗V
small
i

∣∣ ≥ 4
5 · nH .

For any t ∈ ∪∞i=ℓ∗V
small
i , v splits away from (u, t). As such, define Bu,v as the number of answers by O with “v splits away

from (u, t)”, there is E [Bu,v] ≥ 18
25 · nH . Once again, by applying Chernoff bound, there is

Pr
(
Bu,v ≤

3nH

5

)
≤ exp

(
− (1/5)2

3
· E [Bu,v]

)
≤ 1

10
· 1

n3
.

Applying a union bound over the cases and all nH ≤ n vertices gives us the desired statements.
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Proof of Item c).. We fix ℓ̃ as the minimum level such that the union of ∪ℓ̃i=1V
small
i has at least nH/25 vertices. Let ℓ ≤ ℓ̃,

and for any vertex v in V small
k for k > ℓ, define the following two random variables: Xu,v as the number of answers that “t

splits away from (u, v)”, and Yu,v as the number of answers that “v splits away from (u, t)”. We shall show that both terms
are not large and v can always pass the test. (Note that X and Y are overloaded and are not related to their meaning in the
proof of Line a)..)

Note that by definition, we have
∣∣∣∪ℓ̃−1

i=1V
small
i

∣∣∣ < nH

25 . Since ℓ ≤ ℓ̃, for any vertex u ∈ ∪ℓi=1V
small
i , only vertices

t ∈ ∪ℓ−1
i=1V

small
i are actually splitting away from (u, v) for v ∈ ∪∞i=ℓV

small
i . As such, we have E [Xu,v] ≤ ( 1

10 + 1
25 ) · nH =

7
50 · nH by the correct probability of O. For Xu,v, we also note that if the answer is at most 3000 log n, then the vertex
trivially passes the test. Therefore, we assume Xu,v ≥ E [Xu,v] ≥ 3000 log n, and we again apply Chernoff for the tail
bound:

Pr
(
Xu,v ≥

nH

6

)
≤ exp

(
− (4/21)2

3
· E [Yu,v]

)
≤ 1

10
· 1

n3
. (using the condition E [Yu,v] ≥ 3000 log n)

For Yu,v, note that only t ∈ V small
ℓ̃

can report “v splits away from (u, t)” since the LCA between (u, t) is at least ℓ̃ for any
other v. Therefore, the number of signals we can possibly get is nH/2 plus the noise induced by the oracle O. As such, we
again have E [Yu,v] ≤ 11nH/20. Also, note that if Yu,v is less than 30000 log n, the vertex v would always pass the test,
which allows us to assume w.log. that E [Yu,v] ≥ 30000 log n. Therefore, we can again apply Chernoff bound to show

Pr
(
Yu,v ≥

3nH

5

)
≤ exp

(
− (1/11)2

3
· E [Yu,v]

)
≤ 1

10
· 1

n3
. (using the condition E [Zu,v] ≥ 30000 log n)

Lemma H.3 □

A direct corollary of Lemma H.3 is that the set T induced by any u ∈ ∪ℓ̃i=1V
small
i is larger than the T induced by

u ∈ ∪∞
i=ℓ̃+1

V small
i , and the “higher level” vertices in ∪ℓ̃i=1V

small
i induces larger sets. More formally, we can summarize this

observation as follows.

Lemma H.4. Conditioning on the high-probability event of Lemma H.3, the following statements are true:

• Let T1 be the vertex set induced by u1 ∈ ∪ℓ̃i=1V
small
i from Line 12 in Algorithm 12, and let T2 be the vertex set induced

by u2 ∈ ∪∞i=ℓ̃+1
V small
i from Line 12 in Algorithm 12. We have |T1| ≥ |T2|.

• Let ℓ1 ≤ ℓ2 ≤ ℓ̃. Let T1 be the vertex set induced by u1 ∈ V small
ℓ1

from Line 12 in Algorithm 12, and let T2 be the vertex
set induced by u2 ∈ V small

ℓ2
from Line 12 in Algorithm 12. We have |T1| ≥ |T2|.

Proof. We prove the second bullet first since the conclusion can be used to prove the first bullet. Note that conditioning on
the high-probability event of Lemma H.3, if ℓ1 ≤ ℓ2, we have T2 ⊆ T1 by Item c).. Therefore, we have |T1| ≥ |T2|.

For the first bullet, note that conditioning on the high-probability event of Lemma H.3, the set T2 can either be V small
ℓ̃

(by
Item a).) or ∪∞

i=ℓ̃+1
V small
i (by Item b).). In either case, the size of such a set is at most ∪∞

i=ℓ̃+1
V small
i , which is the set T1

generated by u ∈ V small
ℓ̃

. Furthermore, by the result in the second bullet, if u ∈ V small
i for some i ≤ ℓ̃, the induced set T1

can only be larger. This proves the first bullet.

We now show that conditioning on Lemma H.3 (resp. Lemma H.4), if the size of the orphaned set is relatively small, we will
not need the subroutine in Line 12, and all the guarantees in Lemma H.1 will be satisfied.

Lemma H.5. Let Ṽ and VH be as prescribed by Lemma H.1, and suppose the size of the orphaned set is at most 99
100 · ñ,

i.e.,
∣∣V orphan

∣∣ ≤ 99
100 · ñ. Then, with high probability, we have T ∗ ∩ Ṽ ̸= ∅, and the resulting T ∗ and Ṽ \ T ∗ satisfy the

properties of Lemma H.1.
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Proof. We discuss the cases based on whether VH = Ṽ and whether there exists a V small
ℓ such that

∣∣V small
ℓ

∣∣ ≥ 99
100 · ñ.

1. If VH = Ṽ . In this case, we show that with high probability, the guarantees in Item 1, Item 2, and Item 3 of Lemma H.1
always hold, and the Item 4b case of Lemma H.1 is going to happen. To see this, note that with high probability, we will
sample a vertex that is among the first ñ

25 vertices in the small-tree split order: the probability for us to not sample a
vertex from V small(≤ ñ

25 ) is at most

(
24

25
)500 logn ≤ 1

10
· 1

n2
.

As such, we can condition on a vertex v′ among V small(≤ ñ
25 ) is sampled. By Lemma H.3 and Lemma H.4, the

counterpart set induced by v′ ∈ V small(≤ ñ
25 ) is among ∪ℓ̃i=1V

small
i , which necessarily induces a larger set than any other

u ∈ ∪∞
i=ℓ̃+1

V small
i . Therefore, the induced set T ∗ must be from the vertex v′.

We now use this to verify the desired properties. The proofs of Item 1, Item 2, and Item 3 are straightforward as follows.

• For Item 1, note that by Lemma H.3, the induced set T ∗ is always ∪∞i=ℓV
small
i , which forms a maximal subtree in

T ∗(VH). Similarly, T ∩ Ṽ induces a maximal subtree in T ∗(Ṽ ).
• For Item 2, note that as long as T ∗ includes the orphaned set V orphan, there will be only one edge connecting to the

node induces T ∗ in T ∗. In this case, there is no orphaned set, and Item 2 holds trivially.
• Item 3 directly follows from Lemma H.3 since T ∗ is induced by u∗.

For the size upper and lower bounds (Item 4), we verify that the guarantees for case 4b always holds. Note that
conditioning on the high-probability event of Lemma H.3, the size is at least 2nH

5 = 2ñ
5 (Observation 3). Therefore,

the set T ∗ ∩ Ṽ = T ∗ has size at least 2ñ
5 ≥

1
200 · ñ, which proves the lower bound (Item 4(b)i). For the upper bound

(Item 4(b)ii), we note that for the size of T ∗ ∩ Ṽ to be more than (1− 1
10000 log2 ñ

) · ñ, a necessary condition is to sample
a vertex u ∈ V small(≤ ñ/10000 log2 ñ). Since we sample 500 log n vertices, define X as the random variable for the
number of vertices sampled from V small(≤ ñ/10000 log2 ñ), we have

E [X] ≤ 1

20 log n
.

Since X is a summation of independent random variables supported on [0, 1], we can apply Chernoff bound to show that

Pr (X ≥ 1) = Pr (X ≥ 50 log n · E [X])

≤ exp

(
−
2500 log2 n · 1

20 logn

2 + 20 log n

)

≤ 1

10
· 1

n2
.

Therefore, we can apply a union bound to show that with high probability, the size of T ∗ ∩ Ṽ will not be larger than
(1− 1

10000 log2 ñ
) · ñ, as desired.

2. If VH ̸= Ṽ . We need to handle this case with more care. We first show that at least one vertex that is in Ṽ \ V orphan can
be sampled with high probability. To see this, note that by the size bound on

∣∣V orphan
∣∣, the probability for a vertex in

Ṽ \ V orphan to not be sampled is at most 99/100. Therefore, the probability for no vertices in Ṽ \ V orphan to be sampled
is at most

(99/100)500 logn ≤ 1

10
· 1

n2
.

We condition on the high-probability event that at least one vertex from Ṽ \ V orphan is sampled for the rest of the proof.
We now discuss two sub-cases.
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a). If there exists a V small
ℓ such that

∣∣V small
ℓ

∣∣ ≥ 99
100 · ñ and no vertex from ∪ℓ−1

i=1V
small
i is sampled. In this case, we

show that with high probability, Item 1, Item 2, and Item 3 of Lemma H.1 always hold, and Item 4a in Lemma H.1
is going to happen. Note that in this case, there exist vertices of V small

ℓ that are among V small(≤ ñ/100), and it is of
the size at least ñ/100. As such, the probability for us to sample at least one vertex from V small

ℓ is at least

1− (
1

100
)500 logn ≥ 1− 1

10
· 1

n5
.

Let v ∈ V small
ℓ be the sampled vertex. Note that since VH ̸= Ṽ , the vertex we sample from V small

ℓ is among the
vertices of ∪ℓ̃i=1V

small
i in Lemma H.3. Therefore, by the same argument of the VH = Ṽ case, if we pick T ∗ with the

largest size, the entire set of ∪∞i=ℓ+1V
small
i is going to be included in T ∗. Therefore, the properties of Item 1, Item 2,

and Item 3 follow from the same argument of the VH = Ṽ case.
Furthermore, by the condition that no vertex from ∪ℓ−1

i=1V
small
i is sampled, we cannot have larger such T ∗ sets

(see Lemma H.4). As such, the set we will pick is necessarily the set T corresponds to v ∈ V small
ℓ , and V small

ℓ

becomes the new V orphan set of the next iteration.
Finally, note that we have

∣∣V small
ℓ

∣∣ ≥ 99
100 · ñ. And after we remove T ∗ from Ṽ , we have (Ṽ ← Ṽ \ T ∗), which

means (ñ← ñ− C) for some C > 0. As such, for the next iteration, we must have
∣∣V orphan

∣∣ ≥ 99
100 · ñ.

b). If there exists a V small
ℓ such that

∣∣V small
ℓ

∣∣ ≥ 99
100 · ñ and a vertex from ∪ℓ−1

i=1V
small
i is sampled. In this case, we

show that Item 1, Item 2, and Item 3 of Lemma H.1 always hold, and Item 4b of Lemma H.1 is going to happen
with high probability. Note that since a vertex v′ ∈ ∪ℓ−1

i=1V
small
i is sampled, and since v′ is among ∪ℓ̃i=1V

small
i in

Lemma H.3, the entire set of V small
ℓ is going to be included in T ∗. The properties as prescribed by Item 1, Item 2,

and Item 3 follow from the argument in the Ṽ = VH case, and the size lower bound becomes∣∣∣T ∗ ∩ Ṽ
∣∣∣ ≥ 99

100
· ñ ≥ 1

200
· ñ,

as desired. Finally, note that we do not need to guarantee the size upper bound (Item 4(b)ii) since we will not be able
to meet the VH = Ṽ condition.

c). If
∣∣V small

ℓ

∣∣ < 99
100 · ñ for all ℓ among Ṽ . In this case, we show that Item 1, Item 2, and Item 3 of Lemma H.1 always

hold, and Item 4b case of Lemma H.1 will happen. We first show the size lower bound of Item 4b: note that with
high probability, we can sample one vertex that is among the first 1/200 vertices to be split in Ṽ in the small-tree
split order: the probability for us to not sample any vertex among the first n/200 vertices in the small-tree split order
is at most (

199

200

)500 logn

≤ 1

3
· 1

n2
.

Therefore, we condition on the event that a vertex v′ in V small(≤ ñ/200) is sampled. Since we have the condition
that

∣∣V small
ℓ

∣∣ < 99
100 · ñ for all ℓ among Ṽ , a vertex among V small(≤ ñ/200) can induce at most 99ñ

100 + ñ
200 = 199

200 · ñ
vertices. As such, let ℓ′ be the level in the small-tree split order of v′, we have∣∣∪∞i=ℓ′+1V

small
i

∣∣ ≥ 1

200
· ñ.

Furthermore, as in the case analysis of VH ̸= Ṽ , which means v′ is among the vertices of ∪ℓ̃i=1V
small
i in Lemma H.3.

Therefore, the properties of Item 1, Item 2, and Item 3 follow from the same argument as in the VH = Ṽ case.
For the size bounds of T ∗ ∩ Ṽ , by Lemma H.4, if we pick the largest T ∗ by the subroutine of line Line 12, at least
the entire set of ∪∞i=ℓ′+1V

small
i is going to be included, which means the size of T ∗ ∩ Ṽ is of size at least 1

200 · ñ.
This gives us the size lower bound.
Finally, we again note that we do not need to guarantee the size upper bound (Item 4(b)ii) since we will not be able
to meet the VH = Ṽ condition.

We now handle the case when V orphan becomes large. We first note that if we happen to sample a vertex u ∈ Ṽ \ V orphan, we
can still guarantee T ∗ ∩ Ṽ ̸= ∅ and obtain the properties as prescribed by Lemma H.1.
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Lemma H.6. Let Ṽ and VH be as prescribed by Lemma H.1, and suppose the size of the orphaned set is more than 99
100 · ñ,

i.e.,
∣∣V orphan

∣∣ > 99
100 · ñ. Furthermore, suppose U ∩ (Ṽ \ V orphan) ̸= ∅. Then, with high probability, we have T ∗ ∩ Ṽ ̸= ∅,

and the resulting T ∗ and Ṽ \ T ∗ satisfy the properties of Lemma H.1.

Proof. In the lemma statement, we have already conditioned on a vertex sampled from Ṽ \ V orphan. Furthermore, we can
again show that the probability for us to sample a vertex among the first nH/25 in the small-tree split order is at least

1− (
24

25
)500 logn ≥ 1− 1

10
· 1

n2
.

The events of U ∩ (Ṽ \ V orphan) ̸= ∅ and U ∩ V small(≤ nH/25) ̸= ∅ are not independent. Nevertheless, we can still apply a
union bound and argue that both events happen with high probability.

Conditioning on the high-probability events as above, we can argue by Lemma H.3 and Lemma H.4 that the entire set of
V orphan is going to be included by the subroutine as defined in line Line 12 of Algorithm 12, which gives us the size lower
bound. We do not need to guarantee the size upper bound since we cannot meet the condition of VH = Ṽ .

Finally, for properties of Item 1, Item 2, and Item 3, we can repeat our proofs in Lemma H.5. We provide the analysis again
for the purpose of self-contained proof.

• For Item 1, note that by Lemma H.3, the induced set T ∗ is always ∪∞i=ℓV
small
i . Therefore, T ∩ Ṽ induces a maximal

subtree in T ∗(Ṽ ).

• For Item 2, note that as long as T ∗ includes the orphaned set V orphan, there will be only one edge connecting to the
node induces T ∗ in T ∗. This is exactly what we proved in the lemma.

• Item 3 directly follows from Lemma H.3 since T ∗ is induced by u∗.

This concludes the proof of Lemma H.6.

By Lemma H.6, the only case of concern now is when T ∗ ∩ Ṽ = ∅, i.e.,
∣∣V orphan

∣∣ > 99
100 · ñ and U does not contain

samples from Ṽ \ V orphan. We now show that our procedure in Line 12 can effectively distinguish between the cases of
Ṽ \ V orphan = ∅ (root cut) and Ṽ \ V orphan being small.

Lemma H.7. Let Ṽ and VH be as prescribed by Lemma H.1, and suppose the size of the orphaned set is more than 99
100 · ñ,

i.e.,
∣∣V orphan

∣∣ > 99
100 · ñ. Furthermore, suppose T ∗ ∩ Ṽ = ∅ in Line 12 of Algorithm 12. Then, the following statements are

true.

(i). If Ṽ \ V orphan ̸= ∅, with high probability, we have X∗ ̸= ∅ and X∗ ⊆ (Ṽ \ V orphan), i.e., X∗ only contains vertices
in Ṽ but not in V orphan.

(ii). If Ṽ \ V orphan = ∅, with high probability, we have X∗ = ∅.

Proof. Consider the small-tree splitting order of VH, and let u ∈ V small
ℓ for some ℓ ≤ ℓ̃, where V small

ℓ̃
= V orphan. We prove

that with high probability, i). no vertices v ∈ Ṽ ∩ (∪∞i=ℓV
small
ℓ ) can be added to X by Line 11; and ii). all vertices in

v ∈ Ṽ ∩ (∪ℓ−1
i=1V

small
ℓ ) are added to X by Line 11. (Note that this is why we name the subroutine as a “predecessor” test.)

We first observe that by our definition, there is V orphan ⊆ Ṽ ∩ (∪∞i=ℓV
small
ℓ ). Too see i), note that any v ∈ Ṽ ∩ (∪∞i=ℓV

small
ℓ )

can only split away from (u, t) for t ∈ V small
ℓ : this is true since for every t ̸∈ V small

ℓ , the lowest common ancestor between
(u, t) induces a subtree in VH that contains v. Moreover, since V small

ℓ ⊆ Ṽ , we have
∣∣V small

ℓ

∣∣ ≤ ñ. Define Xv as the number
of answers “v splits away from (u, t)” for t ∈ VH from O. By our choice of the parameter threshold-pred, we assume w.log.
Xv ≥ ñ since otherwise v will not join X anyway. If nH ≤ 3ñ, we have E [Xv] ≤ ñ+ nH

10 = 13
10 · ñ in expectation. Since
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Xv is a summation of independent random variables supported on {0, 1}, we can apply Chernoff bound to obtain that

Pr
(
Xv ≥

3

2
· ñ
)

= Pr
(
Xv ≥

15

13
· E [Xv]

)
≤ exp

(
− (2/13)2

3
· E [Xv]

)
≤ 1

10
· 1

n3
. (using the condition on the lower bound of Xv)

On the other hand, if nH > 3ñ, we have E [Xv] ≤ nH

3 + nH

10 = 13
30 · nH . We again assume w.log. that Xv ≥ ñ, and we can

apply Chernoff bound to obtain that

Pr
(
Xv ≥

2

3
· nH

)
= Pr

(
Xv ≥

20

13
· E [Xv]

)
≤ exp

(
− (8/13)2

3
· E [Xv]

)
≤ 1

10
· 1

n3
. (using the condition on the lower bound of Xv)

Therefore, we can apply a union bound and argue that with high probability, no vertices v ∈ Ṽ ∩ (∪∞i=ℓV
small
ℓ ) can be added

to X by Line 11, as desired by i).

We now proceed to show ii). all vertices in v ∈ Ṽ ∩(∪ℓ−1
i=1V

small
ℓ ) are added to X by Line 11. Note that v ∈ Ṽ ∩(∪ℓ−1

i=1V
small
ℓ )

implies v ∈ Ṽ \ V orphan. Therefore, v splits from (u, t) for every t in the orphaned set and for every t as the sibling of
V orphan, i.e., t ∈ ∪∞

i=ℓ̃+1
V small
i . Define Yv as the number of answers “v splits away from (u, t)” for t ∈ VH from O. By our

choice of the parameter threshold-pred, if nH ≤ 3ñ, since we have
∣∣V orphan

∣∣ ≥ 99
100 ñ and

∣∣∣∪∞
i=ℓ̃+1

V small
i

∣∣∣ ≥ ∣∣V orphan
∣∣, we

have E [Yv] ≥ 9
10 ·

199
100 · ñ in expectation. Since Yv is a summation of independent random variables supported on {0, 1},

we can apply Chernoff bound to obtain that

Pr
(
Yv ≤

3

2
· ñ
)

= Pr
(
Yv ≤

17

15
· E [Yv]

)
≤ exp

(
− (2/15)2

3
· E [Yv]

)
≤ 1

10
· 1

n3
. (using E [Yv] ≥ 17

10 · ñ)

On the other hand, if nH > 3ñ, we have at least nH − 1
100 ñ ≥

299
300nH vertices t such that v splits away from (u, t).

Therefore, we have E [Yv] ≥ 9
10 ·

299
300 ·nH ≥ 4

5 ·nH in expectation. Therefore, we can again apply Chernoff bound to obtain
that

Pr
(
Yv ≤

2

3
· nH

)
= Pr

(
Yv ≥

5

6
· E [Yv]

)
≤ exp

(
− (1/6)2

3
· E [Yv]

)
≤ 1

10
· 1

n3
. (using E [Yv] ≥ 4

5 · nH ≥ 4
5 · ñ)

Therefore, we can apply a union bound to obtain the desired statement on ii).

By our statements in i) and ii) as above, we can already conclude that X∗ ⊆ (Ṽ \ V orphan). Therefore, Item (ii). of
Lemma H.7 follows straightforwardly since if Ṽ \ V orphan = ∅, any of its subset can only be empty as well. For Item (i).,
what remains to show is that with high probability, there is X∗ ̸= ∅. Note that if u ∈ V orphan and Ṽ \ V orphan ̸= ∅, then by
our statements in i) and ii) above, the set X∗ will not be empty. Since we assume

∣∣V orphan
∣∣ ≥ 99

100 ·
∣∣∣Ṽ ∣∣∣, the probability for
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U ′ to not have any vertex u ∈ V orphan is at most

(
1

100
)100 logn ≤ 1

10
· 1

n3
,

as desired. Thus, with high probability, X∗ is not empty, which proves Item (i). and concludes the proof of Lemma H.7.

Finalizing the proof of Lemma H.1. By Lemma H.2, the algorithm runs in n2
H log n time. For the set of vertices Ṽ , we

either have
∣∣V orphan

∣∣ < 99
100 · ñ or

∣∣V orphan
∣∣ ≥ 99

100 · ñ. In the former case, we apply Lemma H.5, and all guarantees in
Lemma H.1 are satisfied. Otherwise, if

∣∣V orphan
∣∣ ≥ 99

100 · ñ and U ∩ (Ṽ \ V orphan) ̸= ∅, by Lemma H.6, we can still satisfy
the properties as prescribed by Lemma H.1.

The only remaining case is if
∣∣V orphan

∣∣ ≥ 99
100 · ñ and U ∩ (Ṽ \ V orphan) = ∅. In such a case, the algorithm will enter

Line 12. If Ṽ \ V orphan = ∅, then by Item (ii). of Lemma H.7, the algorithm uses VH = Ṽ for a single level of recursion
call, and the properties of Lemma H.1 are satisfied by the guarantees of Lemma H.5 (since now V orphan = ∅). Otherwise,
if Ṽ \ V orphan ̸= ∅, note that by Item (i). of Lemma H.7, any arbitrary vertex u ∈ U∗ belongs to V small

ℓ for some ℓ < ℓ̃,
such that V small

ℓ̃
= V orphan. Since

∣∣V orphan
∣∣ ≥ 99

100 ñ and nH ≥ ñ, the vertex u is among V small(≤ nH/100). As such, by
Lemma H.3, with high probability, the vertex set T ∗ contains all vertices in V orphan, and the size is sufficiently large to
guarantee Item 4(b)i of Lemma H.1. We do not need to guarantee Item 4(b)ii since V orphan ̸= ∅, and we will not meet the
Ṽ = VH condition. The guarantees of Item 1 and Item 2 are similarly satisfied since we remove a set ∪iV small

i that contains
V orphan. Finally, by a similar argument as we used in Lemma H.5 and Lemma H.6, Item 3 is satisfied as desired.

H.2. An algorithm to merge two subtrees

We now move to the algorithm that merges two partial trees. Note that this task is not trivial: we use the thought process of
small-tree split order in the proof of Lemma H.1, but the algorithm vertex-splitO(Ṽ ) does not immediately tell us
which node did we “extract” the set T . As such, it still takes considerable work to merge the two trees on the “right” internal
node.

Exactly here is why we need the split algorithm vertex-splitO(Ṽ ) to return the vertex u∗. Note that our goal is
essentially to find the lowest common ancestor x between u∗ and T , and “stitch” the tree TT to the node. As such, a natural
strategy is to ask whether in T ∗ (resp. T ∗(Ṽ )), whether a vertex v ∈ Ṽ splits away from (u∗, x) for x ∈ T . If O is to
answer the queries correctly, all vertices that are “outside” LCAT ∗(Ṽ )(T ∪ {u

∗}) would answer yes, and all vertices that are
among the leaves of LCAT ∗(Ṽ )(T ∪ {u

∗}) would answer no. We then use the fact that T is always large enough to beat the
noise from O.

The formal description of the algorithm is as Algorithm 13.

Algorithm 13 tree-mergeO(TT , TṼ \T , u
∗): an algorithm to merge partial trees TT and TṼ \T .

Input: Vertex set Ṽ of size ñ; a splitting oracle O; Partial trees TT and TṼ \T constructed by vertex-splitO(Ṽ , VH);

vertex u∗ by vertex-splitO(Ṽ , VH)
Output: A partial tree on TṼ
Initialize S′ ← ∅ for s ∈ Ṽ \ T do

Initialize a counter cs ← 0 for Every vertex t ∈ T do
If s splits away from (u∗, t), increase cs by 1

end
if cs ≤ 1

2 · |T | then
Add s to S′

end
end
Take the lowest common ancestor x = LCATṼ \T

(S′) If S′ does not induces a maximal tree in TṼ \T , i.e.,
leavesTṼ \T

[S′ ] ̸= S′, abort the algorithm and report “fail” If the algorithm does not fail, split node x into two
nodes: the left node induces the subtree of x, and the right node induces the subtree TT .

We now present the guarantees of the tree-merging algorithm.
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Lemma H.8. Given any composable vertex set Ṽ ⊆ V such that
∣∣∣Ṽ ∣∣∣ = ñ ≥ 50000 log n, a splitting oracle O with correct

probability 9/10, and suppose TṼ \T , TT , and u∗ are obtained by Algorithm 12. Furthermore, assume that

i). The high probability events of Lemma H.1 happens;

ii). The partial tree TṼ \T is (weakly) consistent with T ∗(Ṽ \ T ), TT is (weakly) consistent with T ∗(T ).

Then, with high probability, Algorithm 13 runs in time O(ñ2), and outputs a partial tree TṼ that is weakly consistent with
T ∗(Ṽ ).

Proof. We first remind the readers of the definition of a partial tree I weakly consistent with another tree T . For I to be
consistent with T , there should be

a). each super-vertex of I corresponding to a connected subtree in T with out-degree at most 2, and each of the edge
connects to either a parent or a sibling node; and

b). for leaves (x, y) in I, let X and Y be the corresponding leaves in T , the subtrees induced by LCAT (x, y) and
LCAT (X ∪ Y ) contain exactly the same set of leaves.

We now show that with high probability, the algorithm tree-mergeO(TT , TṼ \T , u
∗) outputs a partial tree that satisfies

a) and b) w.r.t. T ∗(Ṽ ). For a), we note that the super-vertices in T ∗(Ṽ ) and (T ∗(Ṽ \ T ), T ∗(T )) are exactly the same.
Furthermore, by the high probability event of Lemma H.1, both T ∗(Ṽ ) and (T ∗(Ṽ \ T ), T ∗(T )) satisfy the weakly
consistent property. As such, the guarantee of a) follows.

The main work here is to prove the guarantee prescribed by b). To this end, we first observe that for any set of vertices X
and Y , if LCAT ∗(Ṽ )(X ∪ Y ) only contain vertices in T (resp. Ṽ \ T ), then the assumptions of TṼ \T being consistent with

T ∗(Ṽ \ T ) and TT being consistent with T ∗(T ) is sufficient to prove the leaves induced by LCATṼ
(X ∪ Y ) is the same as

the leaves of LCAT ∗(Ṽ )(X ∪ Y ). This is evident by using the procedure that constructs T ∗(Ṽ ) as in Definition 25.

The final missing piece is the vertex sets X and Y that induce vertices in both T and Ṽ \ T , which is the place where
we need to show that the merging algorithm finds the “correct” node to merge. Let S = V orphan be the orphaned vertices
by removing T from Ṽ . Since we condition on the high probability event of Lemma H.1, there must be an internal
vertex z, such that z = LCAT ∗(Ṽ )(T ∪ {u

∗}), and nodes rT and rS such that i). z = pa (rT ) and z = pa (rS) in

T ∗(Ṽ ) and ii). the induced leaves of rT is T and the induced leaves of rS is S such that u∗ ∈ S. Furthermore, we have
|T | ≥ 50000 log n · 1

200 ≥ 200 · log n by Lemma H.1. We now claim that by running tree-mergeO(TT , TṼ \T , u
∗), the

set S′ we recover is exactly the leaves of S (the V orphan set of vertices). The detailed analysis is as follows.

• For each s ∈ S, observe that in T ∗ (and T ∗(Ṽ )), s does not split away from (u∗, t) for t ∈ T . Therefore, define Cs as
the random variable that records “s split away from (u∗, t) for t ∈ T ” fromO, we have in expectation E [Cs] ≤ 1

10 · |T |.
If Cs ≤ 20 · log n, it trivially fails the test. Otherwise, if Cs ≥ 20 · log n, we can apply Chernoff bound to get that

Pr
(
Cs ≥

1

2
· |T |

)
= Pr (Cs ≥ 5 · E [Cs])

≤ exp

(
−52

3
· E [Cs]

)
≤ 1

5
· 1

n3
. (using Cs ≥ 20 · log n)

• For each d ̸∈ S, observe that in T ∗ (and T (Ṽ )), d does split away from (u∗, t) for t ∈ T . Therefore, define Cd as the
random variable that records “d split away from (u∗, t) for t ∈ T ” from O, we have in expectation E [Cd] ≥ 9

10 · |T |.
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Therefore, we can apply Chernoff bound to get that

Pr
(
Cd ≤

1

2
· |T |

)
= Pr

(
Cd ≤

5

9
· E [Cd]

)
≤ exp

(
− (4/9)2

3
· E [Cd]

)
≤ 1

5
· 1

n3
. (using Cd ≥ 200 · log n)

We can then apply a union bound over at most ñ ≤ n vertices in Ṽ \ T to get the desired statement.

Observe that any internal node that induces leaves in both T and Ṽ \ T has to at least include the whole set of S and T . For
any leaves x and y in TṼ , let the induced set of vertices in the leaves of T ∗(Ṽ ) be Z = S ∪ T ∪ P . By the above argument,
S ∪ T should be returned in the set of vertices. Furthermore, by the consistency between TṼ \T and T ∗(Ṽ \ T ), the set P
should also be returned. This concludes the proof.

The merging algorithm in Lemma H.8 could be visualized as in Figure 10.

......

orphan

......

orphan

a). Merging algorithm's view b). The actual

Figure 10. An illustration of the algorithm that merges T ∗(V \ T ) and T ∗(T ) The shaded internal node is the “actual” node to split S
and T in T ∗. If the oracle is correct, s does not split away from (u∗, t), but d does split away from (u∗, t). The size of T is large enough
to overcome the adversarial noise.

H.3. Finalizing the proof of Theorem 11

We now move to prove Theorem 11 for our partial tree construction. We first bound the number of possible internal nodes as
n by Fact A.1. Therefore, we can apply a union bound on all splits for Lemma H.1, and argue that with high probability, the
events of Lemma H.1 hold for every partition. Furthermore, conditioning on Lemma H.1 always holds across the splits, we
can again apply a union bound to show that Lemma H.8 holds across all internal nodes in the partial tree construction with
high probability. We condition on the high probability events of Lemma H.1 and Lemma H.8 across the internal nodes for
the rest of the proof.

Proof of efficiency. We now show that the depth of recursive calls on Lemma H.1 is O(log3 n), i.e., the longest sequence
of recursive calls induced by any fixed Ṽ is at most O(log3 n) in Algorithm 8. To see this, consider any set of vertices Ṽ
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with size ñ, and we look into three levels of splits on Ṽ . Suppose the vertices sets are Ṽ → (Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, Ṽ7, Ṽ8).
We claim that there is

max
i

(
{
∣∣∣Ṽi

∣∣∣}8i=1

)
≤ (1− 1

10000 log2 ñ
) · ñ.

We prove the above statement by using Lemma H.1. Conditioning on the high probability event of Lemma H.1, if the first
split of Ṽ falls into the condition of Ṽ = VH, then by Item 4(b)i and Item 4(b)ii of Lemma H.1, the balanceness of sizes
already follows. Otherwise, we can have the following cases

• If we enter the case of Item 4b, note that we have |T | ≥ ñ
200 . As such, in the first split Ṽ → (Ṽ \ T, T ), we already

have
∣∣∣Ṽ \ T ∣∣∣ ≤ 199

200 · ñ ≤ (1− 1
10000 log2 ñ

) · ñ. The size of T might be large; however, it must have Ṽ = VH for the

first split on T (by Algorithm 8). Therefore, in the next iteration, the maximum size is at most (1− 1
10000 log2 ñ

) · ñ as
well.

• If we enter the case of Item 4a, note that the set T of the current iteration is of size at most ñ
100 ≤ (1− 1

10000 log2 ñ
) · ñ.

Furthermore, in the next iteration, the V orphan set accounts for at least 99
100 fraction of vertices. Hence, we can apply

Lemmas H.6 and H.7 and argue that the split will be in the case of Item 4b with T2 as the new set T ∗. Now, we have
Ṽ \ (T ∪ T2) with size at most ñ

100 ≤ (1 − 1
10000 log2 ñ

) · ñ. The new set T2 ∩ (Ṽ \ T ) might be large, but since it

forms a single maximal subtree in T (T2 ∩ (Ṽ \ T )), there is VH = Ṽ , and in the third iteration, the maximum size is
going be to at most (1− 1

10000 log2 ñ
) · ñ, as desired.

Since the size reduces by a (1− 1
10000 log2 ñ

) factor for every three level of splits, after 60000 log3 ñ recursive calls, we have

remaining size ≤ ñ · (1− 1

10000 log2 ñ
)20000 log3 ñ

≤ ñ · exp (−2 log ñ) ≤ O(1),

to which point the remaining vertices will be collapsed to a super-vertex by our algorithm. Therefore, since ñ ≤ n, the
longest sequence of dependent calls is at most O(log3 n).

Finally, to complete the proof of efficiency, note that by Lemma H.1, the runtime for each call of Algorithm 12 is
O(n2

H · log n). The tree has depth at most log3 n; and at each level, the total number of runtime is at most O(n2 · log n) since
we have

∑
nH ≤ n. Similarly, each call of the merging algorithm will happen only after the split algorithm, which causes an

overall O(n2) runtime overhead on any level. Therefore, the total runtime is bounded by O(n2 · log4 n) = O(n2 ·polylogn),
as desired.

Proof of correctness. We inductively prove the correctness of Theorem 11. On the level of the leaves in Algorithm 8,
by Lemma H.1, if the leave contains more than one vertex, it must be a composable set with out-degree at most 2 in
T ∗, and exactly one of them connecting to a parent node, and the other connecting to the sibling of the orphaned vertex.
As such, when we merge two components X , Y in which at least one of them is a super-vertex, we can guarantee the
out-degree is still at most 2, and the LCA of X and Y induces the same vertices as on T ∗(LCAT ∗(X ∪ Y )), which implies
the partial tree is weakly consistent with T ∗(X ∪ Y ). On the other hand, when merging two components who are both not
super-vertices, we can use Lemma H.8, and the assumptions of weak consistency come from the guarantees on previous
partitions. Therefore, the weak consistency inductively applies to every level of the merging process, which gives the desired
correctness guarantee.

I. Discussions about Additional Settings for Our Algorithms
We discuss our algorithms in additional settings, which include general success probability (other than 9/10) and splitting
oracle for approximately optimal HC trees.

I.1. General success probabilities

We use a success probability of 9/10 in our algorithms for technical convenience. Here, we discuss algorithms with more
general success probabilities. We remark that due to adversarial incorrect answers, our algorithm cannot work with 1

2 + ε

51



Learning-Augmented Hierarchical Clustering

success probability for arbitrary ε. In fact, it is unclear whether any algorithm would work with 1
2 +ε success probability and

adversarial incorrect answers. Concretely, suppose that in the optimal HC tree, the first cut is balanced with size (n/2, n/2).
This appears to be a quite easy example. Now, let us fix a vertex u and determine whether a vertex v is on the same side of u.
If v is on the same side of u, there are n/2 vertices w ∈ V such that w splits away from (u, v); conversely, if v is on the
opposite side, there is no such w vertex. However, due to adversarial incorrect answers, we can report (n/2− n/3 = n/6)
such w vertices in the former case, and n/3 such w vertices in the latter case. As such, in the above example, the correct
probability for the oracle must be at least 3/4 to get anything meaningful. Finally, we remark our algorithm would work
for any success probability 1

2 + C for sufficiently large C = Ω(1): all the analysis will go through with changes in the
constants. Furthermore, if we deal with random incorrect answers instead, we will be able to work with 1

2 + ε success
probability for any ε = Ω(1/n).

Finally, we give a remark on the discrepancy between success probabilities between learning-augmented HC and other
learning-augmented graph algorithms. In some graph algorithm, e.g., in (Braverman et al., 2024; Cohen-Addad et al., 2024;
Dong et al., 2025), the learning-augmented oracle could work with 1/2 + C probability for any C = Ω(1). The reason
our algorithm should work with a sufficiently high success probability is due to the hierarchical structure. For instance, in
the paper that studied learning-augmented max-cut (e.g. (Dong et al., 2025)), the errors in the algorithm are “one shot”.
However, in the HC problem, if the construction of the partial tree is wrong at any level, the error will propagate to all
subsequent nodes, and it is not clear how to control the error if this happens. Therefore, a constant success probability
sufficiently larger than 1/2 is necessary.

I.2. Splitting oracle with approximately optimal HC trees

A natural extension of our algorithms is to explore HC algorithms with splitting oracles from an approximately optimal HC
tree. In other words, for a triplet of vertices (u, v, w), the oracle O answers the “splitting away” query based on an HC tree
T that achieves α-approximation of the optimal tree T ∗. We remark that our algorithms based on the strongly consistent
partial HC trees (i.e., the algorithms of Theorems 1, 2 and 21) could work with approximation HC trees. In particular, if the
splitting oracle is constructed from an α-approximation HC tree T , our algorithm will produce HC trees with an extra O(α)
factor on the approximation guarantees.

On the other hand, however, it is not immediately clear whether our algorithms based on weakly consistent partial HC
trees could work for oracles from approximate HC trees. The main difficulty here is that to analyze the revenue decrement
induced by the weakly consistent partial HC tree, we need to prove Lemma D.4 that characterizes the revenue structure of
the optimal tree. We proved the statement by showing that if the statement is not true, we can increase the revenue, which
forms a contradiction with the optimal HC tree (see Claim D.2 for details). We cannot easily argue that the same structural
statement with an approximately optimal HC tree. This could be an interesting problem to resolve for future work.

J. Splitting Oracle and Learning Theory
In this section, we offer formal learning theory analysis for learning a splitting oracle for the learning-augmented hierarchical
clustering problem. In particular, we utilize the PAC learning framework to show that a high-quality predictor can be
efficiently learned, provided that the input instances are drawn from a specific distribution. We remark that similar results
have been shown in other settings by (Izzo et al., 2021; Chen et al., 2022c; Ergun et al., 2022; Grigorescu et al., 2022). Thus
although the results of this section are by now standard techniques, they still provide an end-to-end framework for designing
learning-augmented algorithms.

First, we suppose that there exists an underlying distribution D, from which our input is drawn. In particular, D generates
independent instances for hierarchical clustering, corresponding to the setting where similar instances of hierarchical
clustering are being solved. Note that this is exactly the setting where we would like to apply learning-augmented algorithms.
If there is instead generalization failure or distribution-shift, then inherently machine learning models will perform poorly.

Then our goal is to efficiently learn a predictor f from a family F of possible functions, where the input to each predictor f
is a weighted undirected graph G = (V,E,w) and three specific nodes, and the output is a feature vector. We remark that
each input instance G can be encoded as a vector in Rn2+n, by first considering the weighted n× n adjacency matrix of the
graph. We can then flatten the matrix into a vector of dimension n2 and then append a 3-sparse binary vector of length n,
corresponding to the three vertices in the input. We also assume that the output of f has at most n dimension, indicating a
binary vector for which vertex should be split from the other two vertices.
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We define a loss function L : f × G → R, which intuitively defines how accurate a predictor f performs on each input
instance G. For example, f can represent the splitting oracle on G and L can denote the number of inaccurate responses
compared to the best hierarchical clustering on G.

Now our goal is to learn the function f ∈ F , which minimizes the following objective:

E
G∼D,(x,y,z)∈V 3

[L(fG(x, y, z))] . (3)

Let f∗ be an optimal function in F ,, so that f∗ = argmin E
G∼D,(x,y,z)∈V 3

[L(fG(x, y, z))] is a minimizer of the above

objective. Assuming that for each graph instance G, triplet (x, y, z) ∈ V , and each f ∈ F , we can efficiently compute
fG(x, y, z) as well as L(fG(x, y, z)), say in polynomial time T (n), then we have:

Proposition 29. There exists an algorithm that uses poly
(
T (n), 1

ε

)
samples and returns a function f̂ , such that with

probability at least 9
10 ,

E
G∼D,(x,y,z)∈V 3

[
L(f̂G(x, y, z))

]
≤ min

f
E

G∼D,(x,y,z)∈V 3
[L(fG(x, y, z))] + ε.

In particular, Proposition 29 is a PAC-style result that bounds the number of samples necessary to achieve a good probability
of learning an approximately-optimal function f̂ . The algorithm corresponding to Proposition 29 is straightforward; it is
simply the empirical minimizer after a sufficient number of samples are drawn. To prove correctness, we first require the
following definition of pseudo-dimension for a function class, which is a generalization of VC dimension to real-valued
functions.

Definition 30 (Pseudo-dimension, e.g., Definition 9 in (Lucic et al., 2017)). Let X denote a ground set, and let F be a
collection of functions mapping elements from X to the interval [0, 1]. Consider a fixed set S = {x1, . . . , xn} ⊂ X , a set of
real numbers R = {r1, . . . , rn}, where each ri ∈ [0, 1], and a function f ∈ F . The subset Sf = {xi ∈ S | f(xi) ≥ ri}
is referred to as the induced subset of S determined by the function f and the real values R. We say that the set S with
associated values R is shattered by F if the number of distinct induced subsets is |{Sf | f ∈ F}| = 2n. Then the
pseudo-dimension of F is defined as the size of the largest subset of X that can be shattered by F (or it is infinite if no such
maximum exists).

Using pseudo-dimension, we can now present an accuracy-sample complexity trade-off for empirical risk minimization
with and the number of necessary samples. First, we define H be the class of functions in F composed with L, i.e.,
H := {L ◦ f : f ∈ F}. Moreover, by normalization, we can assume the range of L is contained within [0, 1]. Then we have
the following generalization bounds:

Theorem 31. (Anthony & Bartlett, 1999) Let D be a distribution over problem instances in G, and let H be a class of
functions h : G → [0, 1] with pseudo-dimension dG . Consider t i.i.d. samples G1, G2, . . . , Gt drawn from D. There exists a
universal constant c0 such that for any ε > 0, if t ≥ c0 · dH

ε2 , then for all h ∈ H, we have the following with probability at
least 9

10 : ∣∣∣∣∣1t
t∑

i=1

h(Gi)− E
G∼D

[h] (G)

∣∣∣∣∣ ≤ ε.

We have the following immediate corollary by applying the triangle inequality.

Corollary 32. Let G1, . . . , Gt be a set of independent samples from D and let ĥ ∈ H be a function that minimizes
1
t

∑t
i=1 h(Gi). If the number of samples t is chosen as in Theorem 31, then with probability at least 9

10 ,

E
G∼D

[
ĥ(G)

]
≤ min E

G∼D
[h∗(G)] + 2ε.

Thus, the main question is to analyze the pseudo-dimension of our function class H. To that end, we first relate the
pseudo-dimension to the VC dimension of a related class of threshold functions.

Lemma J.1 (Pseudo-dimension to VC dimension, Lemma 10 in (Lucic et al., 2017)). For any h ∈ H, let Bh denote the
indicator function of the threshold function, i.e., Bh(x, y) = sgn(h(x)− y). Then the pseudo-dimension ofH equals the
VC-dimension of the subgraph class BH = {Bh | h ∈ H}.
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What remains is to bound the VC dimension of the function to compute in the class, which follows from the following
standard result.

Lemma J.2 (Theorem 8.14 in (Anthony & Bartlett, 1999)). Let τ : Ra × Rb → {0, 1}, defining the class

T = {x 7→ τ(θ, x) : θ ∈ Ra}.

Assume that any function τ can be computed by an algorithm that takes as input the pair (θ, x) ∈ Ra × Rb and produces
the value τ(θ, x) after performing no more than t of the following operations:

• arithmetic operations +,−,×, / on real numbers,

• comparisons involving >,≥, <,≤,=, and outputting the result of such comparisons,

• outputting 0 or 1.

Then, the VC dimension of T is bounded by O(a2t2 + t2a log a).

We can now apply these results to prove Proposition 29 by instantiating Lemma J.2 with the computational complexity of
evaluating any function in the classH.

Proof of Proposition 29. From Lemma J.1, we know that the pseudo-dimension ofH is equivalent to the VC dimension of
the threshold functions defined byH. Next, from Lemma J.2, we observe that the VC dimension of the relevant class of
threshold functions is polynomial in the computational complexity of evaluating a function from the class. In other words,
Lemma J.2 implies that the VC dimension of BH (as defined in Lemma J.1) is polynomial in the number of arithmetic
operations required to compute the threshold function corresponding to some h ∈ H. According to our definition, this
quantity is polynomial in T (n). Thus, the pseudo-dimension of H is also polynomial in T (n), and the desired result
follows.

Note that we can initialize Proposition 29 with various oracles, in terms of the input and output predictions. Indeed, if each
function in the family of oracles we are considering can be computed efficiently, then Proposition 29 guarantees that a
polynomial number of samples is sufficient to learn a nearly optimal oracle.
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