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ABSTRACT

This paper is concerned with ranking many pre-trained deep neural networks
(DNNs), called checkpoints, for the transfer learning to a downstream task.
Thanks to the broad use of DNNs, we may easily collect hundreds of checkpoints
from various sources. Which of them transfers the best to our downstream task of
interest? Striving to answer this question thoroughly, we establish a neural check-
point ranking benchmark (NeuCRaB) and study some intuitive ranking measures.
These measures are generic, applying to the checkpoints of different output types
without knowing how the checkpoints are pre-trained on which dataset. They
also incur low computation cost, making them practically meaningful. Our results
suggest that the linear separability of the features extracted by the checkpoints
is a strong indicator of transferability. We also arrive at a new ranking measure,
NLEEP, which gives rise to the best performance in the experiments.

1 INTRODUCTION

There is an increasing number of pre-trained deep neural networks (DNNs), which we call check-
points. We may produce hundreds of intermediate checkpoints when we sweep through various
learning rates, optimizers, and losses to train a DNN. Furthermore, semi-supervised (Chapelle et al.,
2009; Bachman et al., 2014; Rasmus et al., 2015; Laine & Aila, 2016; Tarvainen & Valpola, 2017;
Miyato et al., 2018; Luo et al., 2018; Berthelot et al., 2019) and self-supervised (Doersch et al.,
2015; He et al., 2020; Chen et al., 2020; Veeling et al., 2018; Noroozi & Favaro, 2016) learning
make it feasible to harvest DNN checkpoints with scarce or no labels. Fine-tuning (Yosinski et al.,
2014; Pan & Yang, 2009) has become a de facto standard to adapt the pre-trained checkpoints to
target tasks. It leads to faster convergence (Donahue et al., 2014; He et al., 2019; Sharif Razavian
et al., 2014) and better performance (Kornblith et al., 2019) on the downstream tasks.

However, not all checkpoints are equally useful for a target task, and some could even under-perform
a randomly initialized checkpoint (cf. Section 2.2). This paper is concerned with ranking neu-
ral checkpoints, which aims to measure how effectively fine-tuning can transfer knowledge from
the pre-trained checkpoints to the target task. The measurement should be generic enough for all
the neural checkpoints, meaning that it works without knowing any pre-training details (e.g., pre-
training examples, hyper-parameters, losses, early stopping stages, etc.) of the checkpoints. It also
should be lightweight, ideally without training on the downstream task, to make it practically useful.
We may use the measurement to choose the top few checkpoints before running fine-tuning, which
is computationally more expensive than calculating the measurements.

Ranking neural checkpoints is crucial. Some domains or applications lack large-scale human-
curated data, like medical images (Raghu et al., 2019), raising a pressing need for high-quality pre-
trained checkpoints as a warm start for fine-tuning. Fortunately, there exist hundreds of thousands of
checkpoints of popular neural network architectures. For instance, many computer vision models are
built upon ResNet (He et al., 2016), Inception-ResNet (Szegedy et al., 2016), and VGG (Simonyan
& Zisserman, 2014). As a result, we can construct a candidate pool by collecting the checkpoints
released by different groups, for various tasks, and over distinct datasets.

It is nontrivial to rank the checkpoints for a downstream task. We explain this point by drawing
insights from the related, yet arguably easier, task transferability problem (Achille et al., 2019; Eaton
et al., 2008; Zamir et al., 2018; Nguyen et al., 2020), which aims to provide high-level guidance
about how well a neural network pre-trained in one task might transfer to another. However, not all
checkpoints pre-trained in the same source task transfer equally well to the target task (Zoph et al.,
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2020; Kornblith et al., 2019). The pre-training strategy also matters. Zhai et al. (2019b) find that
combining supervision with self-supervision improves a network’s transfer results on downstream
tasks. He et al. (2020) also show that self-supervised pre-training benefits object detection more
than its supervised counterpart under the same fine-tuning setup.

We may also appreciate the challenge in ranking neural checkpoints by comparing it with another
related line of work: predicting DNNs’ generalization gaps (Neyshabur et al., 2017; Kawaguchi
et al., 2017; Bartlett et al., 2017). Jiang et al. (2018) use a linear regressor to predict a DNN’s
generalization gap, i.e., the discrepancy between its training and test accuracies, by exploring the
training data’s margin distributions. Other signals studied in the literature include network complex-
ity and noise stability. Ranking neural checkpoints is more challenging than predicting a DNN’s
generalization gap. Unlike the training and test sets that share the same underlying distribution, the
downstream task may be arbitrarily distant from the source task over which a checkpoint is pre-
trained. Moreover, we do not have access to the pre-training data at all. Finally, instead of keeping
the networks static, fine-tuning dramatically changes all weights of the checkpoints.

We establish a neural checkpoint ranking benchmark (NeuCRaB) to study the problem systemat-
ically. NeuCRaB covers various checkpoints pre-trained on widely used, large-scale datasets by
different training strategies at a range of early stopping stages. It also contains diverse downstream
tasks, whose training sets are medium-sized, making it practically meaningful to rank and fine-tune
existing checkpoints. Pairing up all the checkpoints and downstream tasks, we conduct careful
fine-tuning with thorough hyper-parameter sweeping to obtain the best transfer accuracy for each
checkpoint-downstream-task pair. Hence, we know the groundtruth ranking of the checkpoints for
each downstream task according to the final accuracies (over the test/validation set).

A functional checkpoint ranking measurement should be highly correlated with the groundtruth
ranking and, equally importantly, incurs as less computation cost as possible. We study several
intuitive methods for ranking the neural checkpoints. One is to freeze the checkpoints as feature
extractors and use a linear classifier to evaluate the features’ separability on the target task. Another
is to run fine-tuning for only a few epochs (to avoid heavy computation) and then evaluate the
resulting networks on the target task’s validation set. We also estimate the mutual information
between labels and the features extracted from a checkpoint.

Finally, we propose a lightweight measure, named Gaussian LEEP (NLEEP), to rank checkpoints
based on the recently proposed log expected empirical prediction (LEEP) (Nguyen et al., 2020).
LEEP was originally designed to measure between-task transferabilities. It cannot handle the check-
points pre-trained by unsupervised or self-supervised learning since it requires all checkpoints to
have a classification head. Its computation cost could blow up when the classification head corre-
sponds to a large output space. Moreover, it depends on the classification head’s probabilistic output,
which, unfortunately, is often overly confident (Guo et al., 2017).

To tackle the above problems, we replace the checkpoints’ output layer with a Gaussian mixture
model (GMM). This simple change kills two birds with one stone. On the one hand, GMM’s soft
assignment of input to clusters seamlessly applies to LEEP, resulting in the lightweight, effective
NLEEP measure that works regardless of the checkpoints’ output types. On the other hand, since
we fit GMM to the target task’s data, instead of the pre-training data of a different source task, the
cluster assignment probabilities are likely more calibrated than the classification probabilities (if
there exist classification heads).

2 THE NEURAL CHECKPOINT RANKING BENCHMARK (NEUCRAB)

We formalize ranking neural checkpoints as follows. Suppose we have m pre-trained neural net-
works, called checkpoints, C := {θi}mi=1. Denote by T a distribution of tasks. Without loss of
generality, we study classification downstream tasks, each of which, t ∼ T , contains a training set
and a test set. An evaluation procedure, G : C × T 7→ R, replaces the output layer of a checkpoint
θi with a linear classifier for a downstream task t, followed by fine-tuning using the task’s training
set. It employs hyper-parameter sweeping and returns the best accuracy on the test set. We apply
this evaluation procedure to all the checkpoints for the task t and obtain their test accuracies:

Gt := {G(θi, t)}mi=1 ∈ Rm, (1)

which defines the groundtruth ranking list for the task t.
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Denote byR all measures that return a ranking score for any checkpoint-task pair under a computa-
tion budget b. A measure R ∈ R gives rise to the following ranking scores for a task t,

Rt := {R(θi, t;b)}mi=1 ∈ Rm, (2)

where we underscore the computation budget b in the measure.

Our objective in ranking neural checkpoints is to find the best ranking measure in expectation,

R∗ ← arg max
R∈R

Et∼T M(Rt,Gt) (3)

whereM is a metric evaluating the ranking scores Rt against the test accuracies Gt. Section 2.3
details the evaluation methods used in this work. Equipped with such a ranking measure R∗, we can
identify the checkpoints that potentially transfer to a downstream task better than the others without
resorting to heavy computation.

2.1 DOWNSTREAM TASKS T

Following the design principle of (Zhai et al., 2019b), we study diverse downstream tasks including
Caltech101 (Fei-Fei et al., 2006), Flowers102 (Nilsback & Zisserman, 2008), Sun397 (Xiao et al.,
2010), and Patch Camelyon (Veeling et al., 2018). These tasks are representative of general object
recognition, fine-grained object recognition, scenery image classification, and medical image clas-
sification, respectively. Table 4 in Appendix A.1 provides more details of these tasks. A common
theme is that their training sets are all medium-sized, making it especially beneficial to leverage
pre-trained checkpoints to avoid overfitting.

2.2 NEURAL CHECKPOINTS C

Thanks to the broad use of DNNs, one may collect neural checkpoints of various types from multiple
sources. To simulate this situation, we construct a rich set of checkpoints and separate them into
three groups according to the pre-training strategies and network architectures.

Group I: Checkpoints of mixed supervision. The first group of checkpoints are pre-trained with
mixed supervision till convergence, including supervised learning, self-supervised learning, semi-
supervised learning, and the discriminators or encoders in deep generative models. It consists of
16 ResNet-50s (He et al., 2016). We borrow 14 models pre-trained on ImageNet (Deng et al.,
2009) from (Zhai et al., 2019b). Among them, four are pre-trained by self-supervised learning
(Jigsaw (Noroozi & Favaro, 2016), Relative Patch Location (Doersch et al., 2015), Exemplar (Doso-
vitskiy et al., 2014), and Rotation (Gidaris et al., 2018)), six are the discriminators of generative
models (WAE-UKL (Rubenstein et al., 2019), WAE-GAN, WAE-MMD (Tolstikhin et al., 2017),
Cond-BigGAN, Uncond-BigGAN (Brock et al., 2018), and VAE (Kingma & Welling, 2013)), two
are based on semi-supervised learning (Semi-Rotation-10% and Semi-Exemplar-10% (Zhai et al.,
2019a)), one is by fully supervised learning (Sup-100%-Img (He et al., 2016)), and one is trained
with a hybrid supervised loss (Sup-Exemplar-100% (Zhai et al., 2019a)). We also add two super-
vised checkpoints pre-trained on iNaturalist (Sup-100%-Inat) (Van Horn et al., 2018) and Places365
(Sup-100%-Pla) (Zhou et al., 2017), respectively. Using the evaluation procedure G(θi, t) (cf. equa-
tion (1)), we obtain their final accuracies on the downstream tasks described in Section 2.1.

Figure 1 shows the best fine-tuning accuracies offset by their mean, for better visualization, and
Table 7 (in Appendix) contains the absolute accuracy values. We include the training from scratch
(From-Scratch) for comparison. Most of the checkpoints yield significantly better fine-tuning results
than From-Scratch. Some of the discriminators in generative models, however, under-perform From-
Scratch. The highest-performance checkpoints change from one downstream task to another.

Group II: Checkpoints at different pre-training stages. This group comprises 12 ResNet-50s
pre-trained by fully supervised learning on ImageNet, iNaturalist, and Places-365. We save a check-
point right after each learning rate decay, resulting in four checkpoints per dataset. Figure 4 and
Table 8 (in Appendix) show the best fine-tuning accuracies over the four downstream tasks, where
Img-90k refers to the checkpoint trained on ImageNet for 90k iterations. Interestingly, the down-
stream tasks favor different pre-training sources, indicating the necessity of studying between-task
transferabilities (Zhai et al., 2019b; Zamir et al., 2018). However, the source task information may
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Sun397Camelyon

Caltech101 Flowers102

Figure 1: Fine-tuning the checkpoints in Group I on four downstream tasks. We keep the best
fine-tuning accuracy for each checkpoint-task pair after hyper-parameter sweeping. For better visu-
alization, the values are offset by their mean (cf. Table 7 in Appendix for the absolute values). (Best
viewed in color. Red: generative models. Black: From-Scratch. Green: self-supervised models.
Blue: semi-supervised models. Yellow, Pink, and Orange: supervised models trained on ImageNet,
Inatualist, and Places365, respectively. Cyan: Hybridly-supervised model.)

be not known for all checkpoints. Moreover, the converged model over a source task does not al-
ways transfer the best to a downstream task (cf. Img-270k vs. Img-300k on Camelyon, Inat-270k
vs. Inet-300k on Flowers102, etc.). We hence construct this NeuCRaB for studying the ranking of
neural checkpoints without accessing how one pre-trained the checkpoints over which dataset.

Group III: Checkpoints of heterogeneous architectures. Finally, we construct the third group
of checkpoints by using different neural architectures. Four of them belong to the Inception fam-
ily (Szegedy et al., 2015), one is Inception-ResNet-v2 (Szegedy et al., 2016), six come from the
MobileNet family (Howard et al., 2017), and two are from ResNet-v1 family (He et al., 2016).
We train them on ImageNet till convergence. Figure 5 and Table 9 (in Appendix) visualize their
fine-tuning accuracies on the four downstream tasks.

2.3 EVALUATION METRICSM

We use multiple metrics (cf.M in eq. (3)) to evaluate the checkpoint ranking measures.

Recall@k: A practitioner may have resources to test up to k checkpoints for their task of interest.
We consider it a success if a measure ranks the highest-performance checkpoint into the top
k. The measure’s Recall@k is the ratio between the number of downstream tasks on which
it succeeds and the total number of tasks. We employ k = 1 and k = 3 in the experiments.

Top-k relative accuracy (Rel@k): Given a task, a ranking measure returns an ordered list of the
checkpoints. If the measure selects a high-performing checkpoint to the top k despite
that it misses the highest-performance one, we do not want to overly penalize it. This
Rel@k is the ratio between the highest final accuracy on the downstream task by the top k
checkpoints and the highest final accuracy by all the checkpoints.

Pearson correlation: We incorporate Pearson’s r (Pearson, 1895) to compute the linear correlation
between a measure’ ranking scores Rt and the evaluation procedure’s final accuracies Gt.

Kendall ranking correlation: We also include Kendall’s τ (Kendall, 1938) to measure the ordinal
association between a ranking measure R and the evaluation procedure G for each task.
After all, what matter is the order of the checkpoints rather than the precise ranking scores.

3 CHECKPOINT RANKING METHODS

In this section, we describe some intuitive neural checkpoint ranking methods. These methods strive
to achieve high correlation with the checkpoint evaluation procedure G at low computation cost.
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Fine-tuning with early stopping. If there is no constraint over computing, the evaluation procedure
G itself becomes the gold ranking measure. Hence, a natural ranking method is the fine-tuning with
early stopping, by which the model is far from convergence. The premature models’ test accuracies
are the ranking scores. Experiments reveal that it is hard to forecast from the premature models.

Linear classifiers. We derive the second ranking method also from the evaluation procedure G,
which replaces a checkpoint’s output layer by a linear classifier tailored for the downstream task.
We train the linear classifier while freezing the other layers. The ranking score equals the classifier’s
test accuracy. It is worth mentioning that self-supervised learning (Chen et al., 2020; He et al., 2020;
Grill et al., 2020) often adopts this practice as well to evaluate the learned feature representations.
We shall see that the linear separability of the features extracted from a checkpoint is a strong
indicator of the performance of fine-tuning the full checkpoint.

Mutual information. Suppose the extracted features’ quality well correlates with a checkpoint’s
final accuracy on a downstream task. Besides the linear separability above, we can rank the check-
points by their mutual information between the high-dimensional features and discrete labels of the
downstream task. We employ the state-of-the-art Iα mutual information estimator (Poole et al.,
2019), where α controls the trade-off between variance and bias. It is a variational lower bound
parameterized by a neural network. Belghazi et al. (2018) report that the neural estimators gen-
erally outperform prior mutual information estimations, especially when the variables are high-
dimensional. We use the code released by the authors to calculate Iα.

LEEP for the checkpoints with classification heads. To rank the checkpoints pre-trained over
classification source tasks, the recently proposed LEEP (Nguyen et al., 2020) measure is directly
applicable despite that it was originally designed for between-task transfer. Denote by Z the classi-
fication space of a checkpoint θ. We can interpret θ(x)z , the z-th (softmax) output element, as the
probability of classifying the input x into the class z ∈ Z . Given a downstream task t ∼ T and its
test set {(xj , yj)}nj=1, the LEEP ranking score for the checkpoint θ is calculated by

RLEEP(θ, t) :=
1

n

n∑
j=1

logP (yj |xj , θ, t), P (y|x, θ, t) :=
∑
z∈Z

P̂ (y|z)θ(x)z (4)

where P̂ (y|z) is the empirical conditional distribution of the downstream task’s label y given the
source label z ∈ Z , and P (y|x, θ, t) is a “dummy” classifier, which firstly draws a label z from the
checkpoint θ(x) and then draws a class y from the conditional distribution P̂ (y|z).

Denote by {xj , yj}ñj=1, y ∈ Y , the downstream task’s training set. LEEP computes the conditional
distribution P̂ (y|z) by “counting”. The joint distribution P̂ (y, z) due to the checkpoint θ is

P̂ (y, z) =
1

ñ

∑
j:yj=y

θ(xj)z, (5)

which gives rise to the conditional distribution P̂ (y|z) = P̂ (y, z)/P̂ (z) = P̂ (y, z)/
∑
y∈Y P̂ (y, z).

In the experiments, LEEP and the linear classifier are among the second best ranking methods for the
checkpoints pre-trained for classification. However, LEEP’s computation cost is high when a check-
point’s classification output is high-dimensional (e.g., iNaturalist contains more than 8000 classes).
Besides, its softmax estimation of the classification probability θ(x)z is often poorly calibrated (Guo
et al., 2017). Finally, it does not apply to the checkpoints with no classification heads.

NLEEP. We propose a variation to LEEP that applies to all types of checkpoints and avoids the
overly confident softmax.

Feeding the training data of a downstream task into a checkpoint, we obtain their feature repre-
sentations. The representations are thousands of dimensions, depending on the checkpoint’s neural
architecture. We reduce their dimension by using the principal component analysis (PCA). Denote
by s the resultant low-dimensional representation of the input x.

We then fit a Gaussian mixture model (GMM), P (s) =
∑
v∈V πvN (s|µv,Σv), to the training set

{sj}ñj=1, where V is a collection of all the Gaussian components, and πv, v ∈ V, are the mixture
weights. It is convenient to compute the posterior distribution:

P (v|x) = P (v|s) ∝ πvN (s|µv,Σv), (6)
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Group I Group II

Figure 2: NLEEP’ checkpoint ranking performance, evaluated by Kendall’s τ , on Groups I and II in
NeuCRaB. We vary the PCA feature dimension and the number of Gaussian components in GMM.

which is arguably more reliable than the class assignment probability θ(x)z output by the softmax
classifier because we fit GMM to the downstream task’s training data, whereas the softmax classifier
is learned from a different source task.

Hence, we arrive at an improved ranking measure, named NLEEP, by replacing θ(x)z , the proba-
bility of classifying an input x to the class z, in equations (4–5) by the posterior distribution P (v|x).

4 EXPERIMENTS ON NEUCRAB

There are free parameters in each of the ranking methods. Before presenting the main results, we
study how the free parameters in NLEEP affect its checkpoint ranking performance. Figure 2 il-
lustrates NLEEP’s Kendall’s τ values over Groups I and II with different PCA feature dimensions
and the numbers of Gaussian components. Each Kendall’s τ is averaged across all the downstream
tasks; the higher, the better. Along the vertical axes, we change the feature dimensions by keeping
different percentages of the PCA energies; PCA50 means the percentage is 50%. Along the hori-
zontal axes, we adopt different numbers of Gaussian components in GMM; 2× means the number
is twice the class number of the downstream task. Notably, the Kendall’s τ values remain relatively
stable. In the remaining experiments with NLEEP, we fix the PCA energy to 80% and the number
of Gaussian components five times the class number of a downstream task.

Comparison results. Tables 1, 2, and 3 show the checkpoint ranking methods’ performance on
Groups I (checkpoints of mixed supervision), II (different pre-training stages), and III (heteroge-
neous architectures), respectively. We also union the three groups and present the corresponding
ranking performance in Table 5 in Appendix. The numbers in the tables are the average over all
downstream tasks. In addition to the evaluation metrics detailed in Section 2.3, the GFLOPS col-
umn measures the ranking methods’ computing performance; the lower, the better.

We report multiple variations of the ranking methods in the tables. Fine-tuning is computationally
expensive, so we stop it after one or five epochs. The linear classifiers are less so as we save the
feature representations of downstream tasks’ after one forward pass to the checkpoints. We report
the linear classifiers’ ranking results after training them for one epoch, five epochs, and convergence.
We test α = 0.01 and α = 0.50 in the Iα mutual information estimator. Additionally, we experiment
with Iα after reducing the feature dimensions by using PCA.

Main findings. In each column of Tables 1, 2, 3, and 5, we highlight the best and second best by the
bold font and underscore, respectively. The mutual information fails to rank high-performing check-
points to the top and even produces negative Pearson and Kendall correlations, probably because of
the features’ high dimensions. Reducing the feature dimensions by PCA significantly improves the
mutual information’s ranking performance; MI w/ PCA (α=0.01) is among the second best in Group
III, the checkpoints of heterogeneous neural architectures.

Fine-tuning up to some epochs turns out the worst ranking methods because it leads to low corre-
lation with the groundtruth ranking and yet incurs heavy computation. Similarly, training the linear
classifier up to one or five epochs does not perform well except in Group II. These results indicate
that it is difficult to forecast the checkpoints’ final performance from early-stage premature models.
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Table 1: Checkpoint ranking results on Group I, the checkpoints of mixed supervision (GFLOPS
excludes a forward pass on training data, which takes 3.04E5 GFLOPS shared by all methods)

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 0.00 96.97 25.00 98.79 23.56 18.44 4.95E4
Linear (5 epoch) 25.00 98.79 50.00 98.94 49.77 32.33 4.97E4
Linear (converged) 50.00 99.63 75.00 99.65 68.97 53.43 5.33E4
Fine-tune (1 epoch) 25.00 97.45 25.00 97.66 30.25 22.15 6.51E5
Fine-tune (5 epoch) 0.00 91.09 25.00 98.61 48.19 36.78 4.28E6
MI (α=0.01) 0.00 64.67 0.00 87.96 2.39 -0.31 1.62E5(Poole et al., 2019)
MI (α=0.50) 0.00 66.71 25.00 90.31 -4.91 -13.05 1.62E5
MI w/ PCA (α=0.01) 0.00 89.45 50.00 99.27 16.16 20.67 5.58E4
MI w/ PCA (α=0.50) 0.00 86.49 25.00 94.28 -24.72 -16.06 5.58E4
LEEP – – – – – – –(Nguyen et al., 2020)
NLEEP 75.00 99.65 75.00 99.65 84.30 76.00 12.85

Table 2: Checkpoint ranking results on Group II, the checkpoints at different pre-training stages
(GFLOPS excludes a forward pass on training data, which takes 3.04E5 GFLOPS shared by all)

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 0.00 96.46 25.00 98.79 27.01 24.24 4.95E4
Linear (5 epochs) 50.00 99.57 100.00 100.00 55.07 51.28 4.97E4
Linear (converged) 75.00 99.95 100.00 100.00 79.30 68.60 5.33E4
Fine-tune (1 epoch) 25.00 99.05 25.00 99.47 19.61 15.52 6.51E5
Fine-tune (5 epochs) 25.00 99.55 100.00 100.00 68.47 58.33 4.28E6
MI (α=0.01) 0.00 94.84 25.00 97.43 -29.41 -17.81 1.62E5(Poole et al., 2019)
MI (α=0.50) 0.00 96.66 0.00 97.03 -11.36 -10.21 1.62E5
MI w/ PCA (α=0.01) 50.00 99.60 75.00 99.85 52.14 51.34 5.58E4
MI w/ PCA (α=0.50) 0.00 96.68 50.00 99.52 23.73 17.09 5.58E4
LEEP 75.00 99.44 75.00 99.90 50.36 55.49 378.31(Nguyen et al., 2020)
NLEEP 100.00 100.00 100.00 100.00 72.84 67.49 12.95

Table 3: Checkpoint ranking results on Group III, the checkpoints of heterogeneous architectures
(GFLOPS excludes a forward pass on training data, which takes 2.73E5 GFLOPS shared by all)

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 25.00 98.17 25.00 99.35 30.14 13.80 3.37E4
Linear (5 epoch) 25.00 98.98 25.00 99.63 33.45 18.95 3.38E4
Linear (converged) 25.00 99.66 25.00 99.72 63.55 36.91 3.62E4
Fine-tune (1 epoch) 0.00 98.28 25.00 99.80 17.61 11.59 4.43E5
Fine-tune (5 epoch) 25.00 98.62 25.00 99.68 25.72 15.72 2.91E6
MI (α=0.01) 25.00 98.29 25.00 99.34 4.42 2.94 1.30E5(Poole et al., 2019)
MI (α=0.50) 25.00 98.36 25.00 99.37 -9.79 -6.81 1.30E5
MI w/ PCA (α=0.01) 0.00 99.18 50.00 99.82 61.94 38.83 5.56E4
MI w/ PCA (α=0.50) 0.00 96.34 0.00 98.47 33.17 21.26 5.56E4
LEEP 25.00 97.36 75.00 99.90 42.99 45.06 247.56(Nguyen et al., 2020)
NLEEP 25.00 99.66 25.00 99.70 66.94 51.14 12.68

If we train the linear classifiers till convergence, they become the second best checkpoint rank-
ing method in Groups I and II. Note that the linear classifiers’ accuracies, i.e., the ranking scores,
imply the linear separability of the features extracted by the checkpoints. Recall that the mutual in-
formation with PCA feature dimension reduction is among the second best in Group III. Since both
methods measure the feature representations’ quality by the downstream tasks’ labels, we conjecture
that the quality of the features is a strong indicator of the checkpoints’ final fine-tuning performance
on the downstream tasks. It would be interesting to study other feature quality measures beyond the
linear separability and mutual information in future work.
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NLEEP performs consistently well on all the groups of checkpoints with the lowest computation
cost. In contrast, the original LEEP measure is not applicable to Group I, the checkpoints of mixed
supervision, because it requires that the checkpoints have a classification output layer. LEEP is
among the second best ranking methods in Groups II and III, whose checkpoints all have a classifi-
cation output layer. We conjecture thatNLEEP outperforms LEEP mainly because GMMs calibrate
the posterior probabilities better than the checkpoints’ softmax classifiers.

Finally, we highlight the GFLOPS column in the tables. NLEEP and LEEP exhibit a clear advantage
over the other checkpoint ranking methods in terms of computing.

5 RELATED WORK

Our work is broadly related to task transferability and neural networks’ generalization gap.

Task transferability. A task usually refers to a joint distribution over input and label. Task trans-
ferability aims to predict how well a deep neural network pre-trained on a source task transfers to
the target task. One may estimate the task transferability by data similarities regardless of models
being used. Some work in this line includes conditional entropy (Tran et al., 2019), data set distance
as optimal transport Alvarez-Melis & Fusi (2020), F -relatedness (Ben-David & Schuller, 2003),
A-distance (Kifer et al., 2004), and discrepancy distance (Mansour et al., 2009). Besides, Poole
et al. (2019) derive information theoretic bounds. These methods are generally hard to compute in
practice and rely on the availability of the source data. Some recent task transferability estimators
involve both data and the models. Taskonomy (Zamir et al., 2018) is a fully computation method,
where task similarity scores are obtained by transfer learning experiments. Dwivedi & Roig (2019)
analyze the representation similarities to construct a task taxonomy. Song et al. (2019) employ attri-
bution maps to quantify transferabilities. Song et al. (2020) adopt the relationship between gradients
and input. Besides the models trained on source tasks, all these methods also require a fine-tuned
or independently trained model from the target task. In contrast, our work aims to find checkpoint
ranking measures that are lightweight in computing and requires no access to the source tasks.

Predicting neural networks’ generation gap. The difference between a model’s performance
on the training data versus its performance on test data is known as the generalization gap. It is
practically useful and theoretically impactful to predict a neural network’s generalization gap. Most
recent work does so by finding a set of features that is predictive of the generalization, e.g., by
estimating data margins (Bartlett et al., 2017; Elsayed et al., 2018; Sokolić et al., 2017). Jiang et al.
(2018) and Yak et al. (2019) demonstrate how the margin signatures of a neural network can predict
the generalization gap with small errors. Besides, the network complexity and noise stability are
also useful cues Neyshabur et al. (2017); Kawaguchi et al. (2017); Bartlett et al. (2017); Arora et al.
(2018). Our problem substantially differs from predicting the neural networks’ generalization gap,
which is concerned with the training and test data sets that share the same underlying distribution.
We instead care about the results after fine-tuning a network’s checkpoint.

6 CONCLUSION

Deep learning has triumphed over many fields in both research and real-world applications. There
must exist hundreds of thousands of DNNs trained and released by various groups. To this end, it
is natural to select an existing, promising DNN checkpoint as a warm start to a training procedure
when solving a new task. How to identify useful checkpoints from a large pool for the target task?
Towards answering this question, we present NeuCRaB, a thorough benchmark covering diverse
downstream tasks and pre-trained DNN checkpoints, along with NLEEP, a lightweight, effective
checkpoint ranking measure.

The experiments with linear classifiers and mutual information (after PCA) reveal that the features
extracted from the checkpoints are good indicators of the checkpoints’ potential in transfer learning.
It is worth exploring other ways of evaluating the features’ quality in future work. It is also interest-
ing to investigate the checkpoints’ inherent signatures, such as topology and stability to noise, which
might be informative of their transferabilities. Finally, some learning-based methods in predicting
networks’ generalization gaps are also promising for the checkpoint ranking problem.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. arXiv preprint arXiv:1706.04599, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Proceedings of
the IEEE international conference on computer vision, pp. 4918–4927, 2019.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization gap
in deep networks with margin distributions. arXiv preprint arXiv:1810.00113, 2018.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
arXiv preprint arXiv:1710.05468, 2017.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data streams. In VLDB,
volume 4, pp. 180–191. Toronto, Canada, 2004.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2661–2671,
2019.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang. Smooth neighbors on teacher graphs for
semi-supervised learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8896–8905, 2018.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds
and algorithms. arXiv preprint arXiv:0902.3430, 2009.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979–1993, 2018.

10



Under review as a conference paper at ICLR 2021

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. In Advances in neural information processing systems, pp. 5947–5956,
2017.

Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and Matthias Seeger. Leep: A new measure to
evaluate transferability of learned representations. arXiv preprint arXiv:2002.12462, 2020.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729. IEEE, 2008.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision, pp. 69–84. Springer, 2016.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

Karl Pearson. Vii. note on regression and inheritance in the case of two parents. proceedings of the
royal society of London, 58(347-352):240–242, 1895.

Ben Poole, Sherjil Ozair, Aaron van den Oord, Alexander A Alemi, and George Tucker. On varia-
tional bounds of mutual information. arXiv preprint arXiv:1905.06922, 2019.

Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Understanding
transfer learning for medical imaging. In Advances in neural information processing systems, pp.
3347–3357, 2019.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-
supervised learning with ladder networks. In Advances in neural information processing systems,
pp. 3546–3554, 2015.

Paul Rubenstein, Olivier Bousquet, Josip Djolonga, Carlos Riquelme, and Ilya O Tolstikhin. Prac-
tical and consistent estimation of f-divergences. In Advances in Neural Information Processing
Systems, pp. 4070–4080, 2019.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features off-
the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pp. 806–813, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.
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A APPENDIX

In this appendix, we provide the following details to support the main text:

Section A.1: Descriptions of the 4 downstream tasks.
Section A.2: Training details of pre-training and fine-tuning.
Section A.3: Comparison results on the combined group of checkpoints in Groups I, II and III.
Section A.4: Another group of checkpoints with ResNet101s at different pre-training stages.
Section A.5: More experiment results on Groups I-IV.

A.1 DOWNSTREAM TASKS

In this section, we describe the datasets used for the downstream tasks as shown in Table 4. More
specifically, Caltech101 (Fei-Fei et al., 2006) contains 101 classes, including animals, airplanes,
chairs and etc, the image size varies from 200 to 300 pixels per edge. Flowers102 (Nilsback &
Zisserman, 2008) have 102 classes, with 40 to 248 training images per class, each image has at
least 500 pixels. Patch Camelyon (Veeling et al., 2018) contains 327,680 images of histopathologic
scans of lymph node sections with image size of 96x96, which is collected to predict the presence
of metastatic tissue. Sun397 (Xiao et al., 2010) is a scenery benchmark with 397 classes, including
cathedral, staircase, shelter, river, or archipelago. There are at least 100 images per class. The images
are in 200x200 or higher resolutions. We believe the dataset portfolio well represents a broad set of
vision tasks.

Table 4: Statistics of the datasets associated with the downstream tasks
Dataset Training Evaluation Number of Classes
Caltech101 (Fei-Fei et al., 2006) 3060 6084 101
Flower102 (Nilsback & Zisserman, 2008) 2040 6149 102
Patch-Camelyon (Veeling et al., 2018) 262144 32768 2
Sun397 (Xiao et al., 2010) 76128 10875 397

A.2 HYPER-PARAMETER SWEEP

We adopt the similar experiment setting as in (Zhai et al., 2019b) to fine-tune the neural networks
on the downstream tasks. Specifically, we set the batch size to 512 and use SGD with momentum
of 0.9. We do not use weight decay for fine-tuning, and we set it to be 0.01 times the learning
rate (Loshchilov & Hutter, 2017) when training from scratch. We perform per-task hyper-parameter
search. For each task, we sweep the learning rate in {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5}
and the training steps in {2500, 5000, 10000, 15000, 20000, 400000}. We incorporate inception
data augmentation (Szegedy et al., 2016) for pre-training checkpoints and we do not use data-
augmentation when we fine-tune the neural networks on the downstream tasks to emphasize the
effect of transfer learning.

Table 5: Comparison results on all checkpoints in Group I, II, III (GFLOPS excludes a forward pass
on training data, which takes 2.73E5 GFLOPS shared by all).

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 0.00 99.13 25.00 99.46 22.30 13.42 4.45E4
Linear (5 epochs) 0.00 99.13 25.00 99.21 42.99 31.64 4.47E4
Linear (converged) 25.00 99.42 50.00 99.73 76.22 61.22 4.79E4
Fine-tune (1 epoch) 0.00 96.69 0.00 98.16 3.84 6.50 5.85E5
Fine-tune (5 epochs) 0.00 99.49 0.00 99.49 27.20 27.16 3.84E6
MI (α=0.01) 0.00 77.50 0.00 81.44 1.12 7.16 1.52E5(Poole et al., 2019)
MI (α=0.50) 0.00 66.51 0.00 90.07 -4.05 -14.22 1.52E5
MI w/ PCA (α=0.01) 0.00 89.18 50.00 99.84 12.14 20.99 5.57E4
MI w/ PCA (α=0.50) 0.00 97.07 0.00 98.70 -14.03 -2.39 5.57E4
LEEP – – – – – – –(Nguyen et al., 2020)
NLEEP 50.00 99.47 50.00 99.78 83.71 68.18 12.86
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A.3 COMPARISON RESULTS ON ALL CHECKPOINTS IN GROUPS I, II, III

To obtain a comprehensive analysis, we also consolidate the checkpoints from Group I, II and III
into one group (including 41 checkpoints in total) and then apply the ranking methods on it. Table 5
shows the comparison results. The results further evaluate our observations in Section 4 of the main
text. NLEEP performs consistently well on the big group of checkpoints with lowest computation
cost. Linear separability of the feature representation is also a good indicator for ranking a large
group of neural checkpoints. Fine-tuning with early stopping and mutual information estimator
produce poor correlations. The ranking qualities of different ranking methods on the large group of
checkpoints are in sharper contrast than on small groups. For instance, the Pearson’s r of NLEEP
vs. Finetune (5 epochs) on the large group is 83.71 vs. 27.84 but they perform 72.84 vs. 68.47
on Group II (Table 2). It indicates that NLEEP is a low-variance and low-bias checkpoint ranking
estimator, while early stopping may produce high-variance ranking results.

Sun397Camelyon

Caltech101 Flowers102

Figure 3: Difference between the fine-tuning accuracy of each checkpoint and the mean fine-tuning
accuracy on Group IV. Black bar means From-Scratch. Red, green and orange bars represent Ima-
geNet models, iNaturalist models and Places365 models, respectively. Img-90k means the check-
point obtained by early stopping at the 90k-th iteration on ImageNet, and so on.
Table 6: Comparison results on Group IV (GFLOPS excludes a forward pass on training data, which
takes 6.27E5 GFLOPS shared by all).

Method Recall@1 Rel@1 Recall@3 Rel@3 Pearson Kendall GFLOPS
Linear (1 epoch) 0.00 98.58 25.00 98.99 46.75 27.27 1.021E5
Linear (5 epochs) 0.00 98.72 75.00 99.95 59.27 41.32 1.023E5
Linear (converged) 25.00 99.81 75.00 99.95 82.17 73.48 1.06E5
Fine-tune (1 epoch) 0.00 96.19 25.00 99.34 29.64 21.21 1.34E6
Fine-tune (5 epochs) 75.00 99.98 75.00 99.94 69.19 50.00 8.81E6
MI (α=0.01) 0.00 97.25 75.00 98.46 12.96 13.21 1.62E5(Poole et al., 2019)
MI (α=0.50) 25.00 98.60 50.00 99.54 30.16 18.21 1.62E5
MI w/ PCA (α=0.01) 0.00 99.85 75.00 99.95 51.85 48.91 5.58E4
MI w/ PCA (α=0.50) 0.00 95.99 50.00 98.41 48.64 44.31 5.58E4
LEEP 25.00 99.52 75.00 99.72 54.54 46.43 378.31(Nguyen et al., 2020)
NLEEP 75.00 99.98 100.00 100.00 83.22 73.80 12.95

A.4 GROUP IV: SUPERVISED RESNET101S

We incorporate another group of checkpoints, including 12 ResNet101 (He et al., 2016) models
pre-trained by fully supervised learning on ImageNet (Deng et al., 2009), iNaturalist (Van Horn
et al., 2018), and Places-365 (Zhou et al., 2017). We obtain the checkpoints in the same way as we
have done for Group II, but with ResNet101 architecture. We want to study how different model
architecture and model size affect the ranking quality.

14



Under review as a conference paper at ICLR 2021

Figure 3 and Table 10 show the fine-tuning accuracy on 4 downstream tasks. The relative fine-tuning
accuracies are similar to the accuracies on Group II. We also observe that a converged checkpoint
does not necessarily demonstrate the best performance on the downstream tasks (cf. Img-270k is
better than Img-300k on Flowers102 (Nilsback & Zisserman, 2008)). Table 6 shows the comparison
results of ranking methods on those checkpoints. The relative performance among the ranking meth-
ods is similar to what they do in Group II (Table 2 in the main text). Except that they perform better
on ResNet101s, e.g., Linear (converged) can achieve 68.60 in terms of Kendall’s τ on ResNet50s
versus 73.48 on ResNet101s, NLEEP can get 72.84 in terms of Pearson’s r on ResNet50s versus
83.22 on ResNet101s. The observation reveals that the ranking of deeper checkpoints may be more
predictable than shallow ones.

Caltech101 Flowers102

Sun397Camelyon

Figure 4: Difference between the fine-tuning accuracy of each checkpoint and the mean fine-tuning
accuracy on Group II. Black bar means From-Scratch. Red, green and orange bars represent Ima-
geNet models, iNaturalist models and Places365 models, respectively. Img-90k means the check-
point obtained by early stopping at the 90k-th iteration on ImageNet, and so on.

Caltech101 Flowers102

Camelyon Sun397

Figure 5: Difference between the fine-tuning accuracy of each checkpoint and the mean fine-tuning
accuracy on Group III. The colors of bars represent the models trained with different architectures.
Brown: Inception-ResNet-V2. Red: Inception family. Green: MobileNet family and their variants.
Orange: ResNet-v1 family.
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A.5 MORE EXPERIMENTAL RESULTS ON GROUPS I-IV

We show more comparison results on NeuCRaB in this section. Figures 4 and 5 show the best fine-
tuning accuracies offset by their mean (for better visualization) on Groups II and III, respectively.
Table 7, 8, 9, 10 demonstrate the absolute best fine-tuning accuracies on Groups I-IV, respectively.

Table 7: Absolute fine-tuning accuracy on Group I.
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Caltech101 51.44 41.99 42.37 73.88 51.83 54.91 73.15 78.85 79.09 80.02 87.91 92.73 92.77 94.42 94.5 87.00 87.27
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Table 8: Absolute fine-tuning accuracy on Group II.
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Table 9: Absolute fine-tuning accuracy on Group III.

D
at

as
et

In
ce

pt
io

n-
R

es
N

et
-v

2

In
ce

pt
io

n-
v1

In
ce

pt
io

n-
v2

In
ce

pt
io

n-
v3

In
ce

pt
io

n-
v4

M
ob

ile
N

et
-v

1

M
ob

ile
N

et
-v

1-
02

5

M
ob

ile
N

et
-v

2

M
ob

ile
N

et
-v

2-
03

5

M
ob

ile
N

et
-v

3-
la

rg
e

M
ob

ile
N

et
-v

1-
sm

al
l

R
es

N
et

-v
1-

10
1

R
es

N
et

-v
1-

50

Caltech101 94.02 93.13 93.77 94.76 94.55 93.15 86.59 93.02 88.28 93.02 90.52 94.42 94.09
Flowers102 93.39 91.5 92.25 93.07 93.31 92.69 84.44 92.68 87.71 92.81 89.01 93.03 92.72
Camelyon 86.23 86.38 85.18 86.58 86.0 86.91 84.42 85.75 84.93 86.64 84.77 85.49 86.35
Sun397 71.52 67.82 69.95 71.23 71.41 69.03 56.88 69.22 62.7 69.61 64.63 72.74 71.44

Table 10: Absolute fine-tuning accuracy on Group IV.
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Camelyon 82.14 84.95 85.81 85.87 85.35 84.64 84.87 85.08 84.16 86.03 85.59 85.13 85.09
Sun397 46.87 67.36 70.83 71.41 71.44 64.6 66.97 67.44 67.42 68.78 73.21 74.22 74.24
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