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Abstract

We examine the problem of efficiently learning coarse correlated equilibria (CCE)
in polyhedral games, that is, normal-form games with an exponentially large
number of actions per player and an underlying combinatorial structure—such as
the classic Colonel Blotto game or congestion games. Achieving computational
efficiency in this setting requires learning algorithms whose regret and per-iteration
complexity scale at most polylogarithmically with the size of the players’ action sets.
This challenge has recently been addressed in the full-information setting, primarily
through the use of kernelization; however, in the more realistic partial information
setting, the situation is much more challenging, and existing approaches result in
suboptimal and impractical runtime complexity to learn CCE. We address this gap
via a novel kernelization-based framework for payoff-based learning in polyhedral
games, which we then apply to certain key classes of polyhedral games—namely
Colonel Blotto, graphic matroid and network congestion games. In so doing, we
obtain a range of computationally efficient payoff-based learning algorithms which
significantly improve upon prior work in terms of the runtime for learning CCE.

1 Introduction

Learning dynamics for computing equilibria in games have been extensively studied over recent
decades. The origins trace back to the work of Brown and Robinson in the 1950s [21; 51], who
introduced and analyzed fictitious play. A major conceptual breakthrough came with Blackwell’s
approachability theorem [16], which laid the foundation for the field of online learning and, in
particular, for the development of no-regret learning [23]. Several influential learning algorithms—
such as multiplicative weights update (MWU) [7], follow-the-regularized-leader [54], and follow-the-
perturbed-leader [37]—have been shown to satisfy the no-regret property. These algorithms typically
maintain a probability distribution (commonly referred to as a “policy”) over actions and update it
iteratively, with per-iteration complexity that is polynomial in the number of actions.

Remarkably, no-regret algorithms can be used as a black-box in repeated games under the full-
information setting, where each player observes the cost of all available actions, to recover well-
established equilibrium concepts, such as coarse correlated equilibria (CCE). The no-regret property
is of great importance for learning in games, as it guarantees that the time-average cost of any player
using such an algorithm is no worse than the cost of the best fixed action in hindsight—regardless of
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how the other players choose their actions. Consequently, if all players adopt no-regret algorithms,
the learning dynamics converge to CCE.

Polyhedral Games: motivation and challenges. In this paper, we focus on the problem of learning
CCE in multi-player games with combinatorial structure and large action spaces where the players
simultaneously use no-regret learning dynamics for T rounds. Specifically, we consider polyhedral
games [32] (also dubbed linear hypergraph games [12]), a rich class of normal-form games where
the actions per player are d-dimensional binary vectors with at most m ≤ d ones.

Polyhedral games capture important classes of games with large action sets, including the well-studied
Colonel Blotto game [18], congestion games [52], extensive-form games [40], and dueling games
[36]. For example, in multi-player Colonel Blotto games, each player must allocate n soldiers among
k battlefields, where n is typically much larger than k. In this case, using the one-hot representation
(see Section 4), we have that m = k, d = nk and N =

(
n+k−1
k−1

)
, with the latter being of order nk. In

graphic matroid congestion games, given a undirected graph G(V,E), each player must choose a
spanning tree, that is the basis of a graphic matroid of rank V − 1. In this case m = V − 1, d = |E|
and N is of order |E||V |. Similarly, in network congestion games, each player needs to choose a path
from s→ t, and the maximal path length is K. Here, m = K, d = |E| and N is of order |E|K .

In all the aforementioned examples, the number of actions N per player, grows exponentially
with m (approximately of order dm), and as a result the vanilla learning methods for finding CCE
become computationally inefficient since their per-iteration complexity is polynomial in N and not
polynomial in d,m. This computational challenge has recently been addressed in the full-information
setting. Beaglehole et al. [12] demonstrated how to perform approximate fast sampling from the
MWU distribution in specific polyhedral games (including the Colonel Blotto and graphic matroid
congestion games). However, their approach is somewhat restrictive beyond approximately sampling
from MWU, and thus sub-optimal in convergence rate, as it is unknown how to use their techniques
to efficiently deploy the near-optimal Optimistic MWU [30] in such game settings. In contrast, Farina
et al. [32] proposed an efficient general methodology to simulate the exact MWU (which allows to
use optimism) algorithm via kernelization, requiring only Θ(d) kernel computations (see Section
2 for a formal definition) per iteration for any polyhedral game. In particular, the kernelization
approach developed in [32] has led to state-of-the-art runtime to find CCE * in extensive-form games,
as recently established in [31].

However, the applicability of kernelization to polyhedral games remains largely unexplored beyond
the full-information setting—that is, in the bandit (and also semi-bandit) feedback settings. These
settings are of particular interest in practice, as the full-information assumption—where the costs of
all available actions are revealed after each round—is often unrealistic. In contrast, bandit feedback
reflects a more practical regime in which only the cost of the selected action is observed. For example,
learning under full-information feedback in network congestion games would impractically require
each player to be able to observe the cost of all paths of the network, rather than just the cost of the
path she actually chose.

In order to obtain equilibrium convergence guarantees in a bandit setting, the learning dynamics
of each player must satisfy no-realized-regret guarantees that hold with high probability against
adaptive adversaries (i.e., assuming that the other players can potentially adjust their policies based
on the player’s past actions)—a stringent and technically demanding requirement. This stands in
contrast to the more commonly studied expected regret from the online learning literature (e.g., see
[38; 24; 26]). An even more challenging, but very practical, requirement is to ensure that the learning
dynamics achieve an efficient runtime complexity to find CCE, with minimal dependence on the game
parameters d and m, while still maintaining the no-regret property with favorable dependence on T
as much as possible.

Many algorithms from the bandit linear optimization literature [41] can be leveraged to learn ε-CCE
in polyhedral games. Bartlett et al. [11] provide an algorithm with high probability guarantees that
achieves a

√
T regret bound, albeit requiring a prohibitive per-iteration complexity of poly(N). The

well-established GEOMETRICHEDGE algorithm (also known as COMBAND [24], or EXP2 [22])
originally proposed by Dani et al. [28] has been shown to achieve T 2/3 regret with high probability
[53; 19]. Despite GEOMETRICHEDGE being a classical algorithm in the literature, how to efficiently

*The runtime of an algorithm for finding an equilibrium is defined as the product between the number of
iterations T needed to compute the equilibrium and the algorithm’s per-iteration complexity.
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implement it remains generally unclear, with path planning being the only setting where efficient
implementations (e.g., via weight pushing [58; 62; 63]) were known prior to our work. Recently, Lee
et al. [42] and Zimmert and Lattimore [65] proposed algorithms for continuous action spaces—which
can be extended to polyhedral games using the same techniques as Abernethy et al. [1]—achieving a
regret bound of O(md7/2

√
T ) and O(md2

√
T ), respectively. However, the above bounds combined

with a per-iteration complexity†, which suboptimally depends on d, result in impractical runtime
complexity results for learning ε-CCE. In particular, the runtime of the algorithm in [42] to find
ε-CCE scales as d10, while that of [65] scales as d9—both exhibiting impractically large dependence
on the game parameters. Even more recently, the concurrent work of [46] proposed an algorithm for
online shortest paths in DAGs with a near-optimal regret bound of O(K3/2

√
|E|T ). However, their

algorithm also comes with a polynomial yet impractical runtime complexity to find an approximate
CCE stemming from ellipsoid method calls and other costly procedures.

Given the impractical runtime complexity results of the aforementioned approaches for learning CCE
in polyhedral games, in this paper, we aim to address the following question:

Can kernelization techniques be extended beyond the full-information setting to de-
sign no-regret learning dynamics for computing CCE with state-of-the-art runtime
complexity—achieving minimal dependence on the game parameters d and m?

Main Contributions and Techniques. In this paper, we answer the above question affirmatively.
Due to the exponentially large (in m) per-player action sets in polyhedral games, designing efficient
payoff-based learning algorithms involves addressing three primary challenges: (a) fast calculating
the loss estimators which are used to update each player’s policy, (b) fast sampling from each player’s
policy, and (c) ensuring that each player achieves efficient no-realized-regret guarantees, which imply
efficiently learning ε-CCE.

To face the above challenges, we propose a kernelization-based framework, which allows us to
efficiently implement standard loss estimators from bandit linear optimization. Specifically, in
the bandit setting (Section 3.1), we propose a kernelized customization of the well-established
GEOMETRICHEDGE algorithm [28] (see Algorithm 1). In contrast to the full-information setting,
where the approach of [32] required the first moments of a MWU distribution, in the bandit setting,
we require the second moments of MWU, needed to construct the unbiased combinatorial bandit
estimator [28; 24]. Importantly, we show that we can efficiently calculate such second moments via
only Θ(d2) kernel computations (Theorem 3.1). In the semi-bandit setting, our approach (see Section
3.2) utilizes the implicit exploration loss estimator [48], which, we show that it is compatible with
the kernels used for the first moment of MWU. In addition, we propose a general efficient sampling
scheme (Procedure SAMPLING in Algorithm 1), based on kernelization, which only requires extra
Θ(d) kernel computations.

Apart from improvements in the per-iteration complexity, our analysis provides the following no-
regret results for learning in polyhedral games: In the bandit setting, we achieve Õ(d2/3m4/3T 2/3)
regret with high probability (Theorem 3.2), improving upon baselines [53; 19] in the dependence
on the game parameters. Moreover, we achieve better regret than [65] in the realistic regime where
T ≤ d6. Regarding the semi-bandit setting, we achieve Õ(m

√
Td) regret with high probability

(Theorem 3.4), which is a factor
√
m worse than the optimal expected regret guarantee [8]. To the

best of our knowledge, this is the first high probability result on the general setting.

To showcase the power of our general framework, we study three important classes of polyhedral
games: the multi-player Colonel Blotto, graphic matroid and network congestion games.

In Colonel Blotto games, we use kernelization techniques based on the generator function induced by
the game’s combinatorial structure, in order to efficiently compute the required kernels. Remarkably,
our kernelization-based approach operates directly on the geometry of the Colonel Blotto game, by
allowing us to leverage an efficient Θ(nk)-representation. Prior work had only been able to operate
with DAG representations of the set, leading to suboptimal formulations with O(n2k) edges. As
shown in Table 1 (and stated in Theorem 4.4), in the bandit setting, our approach learns an ε-CCE
in time Õ

(
n2+ωk6+ω/ε3

)
—where ω is the multiplication exponent (currently the best known is

†The per-iteration complexity of the algorithm in [42] is Õ(d3) due to the fact that the optimization step is
solved via an interior point method (see [2]), while that of [65] is Õ(d5) due to the pre-processing step needed
to sample from a log-concave distribution (see [44]).
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Algorithm Runtime to ε-CCE Representation Feedback

Beaglehole et al. [12] Õ(nk4/ε2) O(k logn) Full-Info

Our Work Õ(|P|nk3/ε) O(nk) Full-Info

Our Work Õ
(
n2k4/ε2

)
O(nk) Semi-Bandit

Leon et al. [43] Õ
(

n4k5

ε3

(
max

{
1

λmin
, n2

}) 3
2
)

‡ O(n2k) Bandit

Zimmert and Lattimore [65] Õ(n18k11/ε2)† O(n2k) Bandit

Our Work Õ
(
n2+ωk6+ω/ε3

)
O(nk) Bandit

Table 1: Comparison of results in Colonel Blotto games, split by feedback type (full-information,
semi-bandit, and bandit). †: The approach of [65] is evaluated using the layered graph polytope [61]
of size n2k. ‡: The runtime of [43] depends on the arbitrarily large 1/λmin – that is, the inverse of the
minimum eigenvalue of E[vvT ] under the exploration distribution.

Algorithm Runtime to ε-CCE Feedback

[12] Õ(|V |5/ε2) Full-Info

Our Work Õ
(
|P ||V |4(|V |ω−1 + |E|)/ε

)
Full-Info

Our Work Õ(|E|2|V |2+ω/ε2) Semi-Bandit

[65] Õ(|V |29/ε2) Bandit

Our Work Õ
(
|E|3|V |6(|V |ω−1 + |E|)/ε3

)
Bandit

Table 2: Comparison in Graphic Matroid Con-
gestion Games. To assess [65], we used the
polytope representation of [47] that uses d =
|V |3 and has a small number of constraints.

Algorithm Runtime to ε-CCE Feedback

[35] Õ(|E|1+ωK3/ε2) Semi-Bandit

[49] Õ(|E|9/ε4)∗ Semi-Bandit

Our Work Õ(|E|1+ωK2/ε2) Semi-Bandit

[65] Õ(|E|9K10/ε2) Bandit

Our Work Õ(|E|2+ωK4/ε3) Bandit

Table 3: Comparison of results in Network
Congestion Games. ∗: The algorithm pro-
posed in [49] also achieves convergence to
Nash equilibria, albeit with slower rates.

≈ 2.372 [5])—thereby significantly improving over [65] in the dependence on the game parameters
by a factor ≈ n13k2. In the semi-bandit setting, our approach learns an ε-CCE in time Õ

(
n2k4/ε2

)
.

In graphic matroid congestion games, we design kernelization techniques based on the celebrated
Matrix-Tree Theorem [59]. To reduce the amortized kernel computation time, we use fast rank-1
updates of the LU decomposition of Laplacian matrices based on the structure of the required kernels.
Moreover, we perform efficient exact sampling via an incremental kernelization approach. As shown
in Table 2 (and also in Theorem 5.2), in the bandit setting, our approach learns an ε-CCE in time
Õ
(
|E|3|V |6(|V |ω−1 + |E|)/ε3

)
, significantly improving upon the very impractical dependence on

|V |29 of [65]. In the semi-bandit setting, our approach learns an ε-CCE in time Õ(|E|2|V |2+ω/ε2).

Remark 1.1. We can combine our kernelization results for Colonel Blotto and graphic matroid
congestion games with the full-information framework developed in [32] to yield 1/ε convergence to
ε-CCE in these games—thus addressing an open question of Beaglehole et al. [12]

Remark 1.2. Our kernelization techniques developed for graphic matroids (see Lemma 5.1) allow
us to efficiently implement GEOMETRICHEDGE over spanning trees—thus, to the the best of our
knowledge, resolving an open question posed by Cesa-Bianchi and Lugosi [24].

In network congestion games, our framework improves upon [35; 27; 49; 65]. For a summary of our
results, we refer to Table 3. Due to space constraints, our formal results can be found in Appendix I.
Further details on existing approaches for each of the above games can be found in Appendix A.

2 Preliminaries

Polyhedral Games. In this paper, we consider Polyhedral Games, a structured class of normal-
form games with exponentially large action sets, where each action can be represented as a binary
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d-dimensional vector of at most m ones and the incurred cost is linear in the action vector. For
simplicity, here we assume that all players have the same action sets. Formally, we represent a
polyhedral game as a tuple G = (P,V, {Li}). The set P defines the set of players, each of which
is assigned a unique player identifier in [|P|] := {1, 2, . . . , |P|}. The finite set V ⊂ Rd of size N
represents the actions available to each player i ∈ [|P|], such that for any v ∈ V , ∥v∥1 ≤ m. We
denote by−i all agents except i. We define the loss vector function ℓi : V |P | → Rd

+. Li : V |P | → R+

is the cost function, which is linear in vi; that is, Li(vi; v−i) = ℓ(vi; v−i) · vi.

Online Learning Setup in Polyhedral Games. In polyhedral game dynamics under partial-
information feedback, each player iteratively updates her strategies based on the feedback she
receives about the loss. We consider the bandit and semi-bandit settings. In the semi-bandit setting,
each player i selects an action vi ∈ Vi and receives the losses ℓi(j) of the loss vector ℓi = ℓi(vi; v−i)
for all j such that vi(j) = 1. In the bandit setting, each player receives only Li(vi; v−i).

However, it is not clear how a selfish player i should update her strategy in order to minimize her
overall loss, since the strategies of the other players can arbitrarily change over time. Thus, player i
tries to minimize her experienced loss under the worst-case assumption that the loss of each coordinate
is selected by a malicious adversary.

Based on the above, we focus on the single-player’s perspective and examine an abstract—online
learning—model, where each player is a decision maker interacting with an unknown and potentially
adversarial environment. At each round t = 1, 2, . . . , T of the online learning process, the decision
maker samples an action vt ∈ V from a probability distribution pt ∈ ∆(V). Subsequently, the
environment chooses a loss vector ℓt ∈ Rd, potentially in an adversarial fashion. This is the same
setup adopted in [49; 27]. Given any round T , we define the regret up to round T as follows:

RT =

T∑
t=1

vt · ℓt − min
v∗∈V

T∑
t=1

v∗ · ℓt. (1)

We note that the above notion measures realized regret, that is, it measures the performance of the
algorithm based on the actions sampled from the distribution pt. We say that players are playing
no-regret learning in the game if each one of them achieves sublinear regret.

A prominent result in the theory of learning in games establishes a celebrated connection between
no-regret learning and CCE of the game (which, in two-player zero-sum games, are Nash equilibria).

Theorem 2.1 (Informal, [34]). Suppose |P | players are playing no-regret learning in the game. Let
σ∗ := 1

T

∑T
t=1 v

(t)
1 ⊗ · · · ⊗ v

(t)
|P| be the time-average joint actions over T rounds. Then, σ∗ forms

an T−1 max(RT,1, . . . , RT,|P|)-approximate CCE of the game, where RT,i is the regret for the i-th
player at the T -th round.

Kernelized MWU. Multiplicative Weights Update (MWU) is an online learning algorithm that
iteratively updates a distribution pt over actions in V . Let p0 := 1

|V|1 ∈ ∆(V). The MWU rule at

each time step t is pt(v) ∝ pt−1(v) · e−ηtwt(v), ∀v ∈ V . In the standard MWU variant we set
wt := ℓt−1, where ℓt−1 is the loss vector observed at t− 1. By setting wt := 2ℓt−1− ℓt−2 we derive
the Optimistic MWU (OMWU) algorithm [30], which achieves constant regret (up to logarithmic
factors), and thus 1/ε convergence to CCE in the context of learning in games.

In polyhedral games, we are interested in the efficient calculation of moments of the MWU distribution.
For this aim, a useful tool introduced in [58; 32] is the kernel function Rd × Rd → R defined as
follows: KV(x, y) :=

∑
v∈V

∏
j:∈v(j)=1 x(j) y(j). The next theorem shows how to compute the

first moment of pt via d+ 1 kernel computations.

Theorem 2.2 (First Moment Calculation, [32]). At all rounds t ≥ 0, the first moment of the MWU
distribution, pt, can be calculated as follows:

Ev∼pt
[v]=

(
1− KV(Ct, ē1)

KV(Ct,1)
, . . . , 1− KV(Ct, ēd)

KV(Ct,1)

)
,

where Ct(j) := exp
{
−
∑t

τ=1 ητwτ (j)
}

and ēj(h) := 1{h ̸= j}, for h, j ∈ [d].
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3 Kernelized Payoff-based Learning in Polyhedral Games

In this section, we design a framework for efficient payoff-based learning in polyhedral games, under
bandit and semi-bandit feedback. Upon this framework, we build learning algorithms, which achieve
efficient no-realized-regret learning with high probability guarantees against adaptive adversaries—a
key requirement to show convergence to CCE. For our algorithms to be efficiently implementable,
as we will see, it suffices that the kernels used for constructing the loss estimators and for sampling
(highlighted in orange in Algorithm 1) can be computed efficiently. This can be achieved by effectively
leveraging the game’s combinatorial structure, as we will explain in depth later in the paper. For the
remainder of this section, we assume that we have oracles for calculating the required kernels. In the
next sections, we will demonstrate how our algorithms can be implemented efficiently in prominent
examples of polyhedral games.

3.1 Kernelized GEOMETRICHEDGE for Bandit No-Regret Learning

Algorithm 1: Kernelized GEOMETRICHEGDE

Data: d, m, η > 0, γ ∈ [0, 1]
1 Compute a 2-approximate-barycentric-spanner B
2 Initialize q0 = [1/N, . . . , 1/N ] ∈ ∆(V), µ = 1

d1{v ∈ B}, c0(j) = 0 and C0(j) = 1, ∀j ∈ [d]
3 for t = 1, . . . , T do
4 Mixing: pt = (1− γ)qt + γµ, where qt = MWU(Ct)

5 Compute the kernels: KV(Ct−1, 1) and {KV(Ct−1, ēj,j′)}, ∀j, j′ ∈ [d]

6 Sample vt ∼ (1− γ)SAMPLING(V, Ct−1) + γµ

7 Observe the bandit loss Lt = ℓt · vt
8 Compute Σt(qt) using Theorem 3.1 and set Σt = (1− γ)Σt(qt) +

γ
dBBT

9 Compute the unbiased loss estimator: ℓ̂t = LtΣ
−1
t vt

10 Update the aggregated loss estimators: ct(j) = ct−1(j) + ℓ̂t(j), ∀j ∈ [d]

11 Update the exponential cumulative loss estimators: Ct(j) = exp(−ηct(j)), ∀j ∈ [d]
12
13 Procedure: SAMPLING
14 Input: V , C

15 Sample v[1] ∼ Be
(
1− KV(C,ē1)

KV(C,1)

)
16 for j = 2, ..., d do
17 Compute the kernel: KV(j)

18 Set V(j) = {v′ ∈ V : v′[i] = v[i], ∀i ∈ [j − 1]} and pj = 1− KV(j)(C,ēj)

KV(j)(C,1)

19 Sample v[j] ∼ Be(pj)

20 Return: v

We present our first algorithm, which establishes efficient no-regret learning in polyhedral games under
bandit feedback. Our algorithm (Algorithm 1) is a kernelized customization of GEOMETRICHEDGE
[28], a classical algorithm in the study of combinatorial bandits [41]. Despite GEOMETRICHEDGE
being an algorithm with a well-studied expected regret analysis, how to efficiently implement it
remains largely unclear. The primary challenges in applying the vanilla method are the following:

1. Calculating Σ = E[vvT ] – needed to construct the unbiased loss estimates which will be
used by a MWU routine – in poly(d,m) time.

2. Sampling from MWU in poly(d,m) time.

In this paper, we tackle the above challenges in the context of polyhedral games (however, our
approach can also be applied to the well-studied combinatorial settings discussed in [24]). The
main idea of our approach is to utilize a loss estimate for each coordinate j ∈ [d], which can be
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kernelized efficiently, and simulate MWU using a fast sampling schema based on the computed
kernels. Subsequently, we present the main components of our approach.

Second Moment Kernelization. Algorithm 1 uses a distribution pt which is the mixture between
a MWU distribution qt and the uniform distribution, µ, over a 2-approximate barycentric spanner
of V . Due to space constraints, we prompt the interested reader to Appendix E for background on
barycentric spanners. In contrast to the full-information setting, where kernelized MWU [32] requires
the first moment of the MWU distribution to simulate the update rule, our algorithm also requires
the second moment of pt (i.e., the autocorrelation matrix, denoted by Σt) to construct the standard
unbiased estimator of GEOMETRICHEDGE (Step 9). Through Step 8, it suffices to efficiently calculate
Σt(qt), that is the autocorrelation matrix under the law of qt, which in general was not known how to
efficiently compute prior to our work (with the only exception being path planning problems where
weight pushing techniques [58; 53] can be applied).

For this purpose, we will make use of kernelization. The next theorem shows that we can efficiently
calculate the second moment of qt using only d2 + 1 kernel computations ‡.

Theorem 3.1 (Second Moment Calculation). Let Σt(qt) :=
∑

v∈V qt(v) · (vvT ) be the autocorrela-
tion matrix under the law of a MWU distribution qt. Then, for all j, j′ ∈ [d],

Σt(qt)[j, j
′] = 1− KV(Ct, ēj) +KV(Ct, ēj′)−KV(Ct, ēj,j′)

KV(Ct,1)

where ējj′(h) := 1{h ̸= j and h ̸= j′}, for h, h′, j ∈ [d] and ēj(h) := 1{h ̸= j}, for h, j ∈ [d].

Kernelization implies efficient exact sampling. Based on kernelization, we propose an efficient
sampling scheme (Procedure SAMPLING in Algorithm 1) that only requires extra d kernel compu-
tations. We are interested in sampling v ∼ pt. By using the chain rule on the probability of the
intersection events, we derive the following:

pt(v) = Pr[v(1)] Pr[v(2)|v(1)] · · ·Pr[v(d)|v(1), . . . , v(d− 1)] (2)
It is easy to see that the j-th term of the above product equals the j-th coordinate of the first moment
kernelization (see Theorem 2.2 and Observation 3.3) of the conditional polytope V(j)—i.e., the
polytope which has the first j − 1 coordinate values equal to the j − 1 sampled values (Step 18).
Based on this, we iteratively sample each coordinate j ∈ [d] from a Bernoulli distribution (Step 19),
which has probability equal to pj = Pr[v(j)|v(1), . . . , v(j − 1)] = 1− KV(j)(C,ēj)

KV(j)(C,1) (Step 19).

Improved regret dependence on the game parameters. Our analysis differs from that of the
original paper of GEOMETRICHEDGE [28], which studied expected regret. Importantly, we improve
upon prior analyses [53; 19], which also studied the realized regret of the algorithm, by reducing the
regret’s dependence on d and m, while avoiding dependence on the possibly exponentially small
minimum eigenvalue, λmin, of the autocorrelation matrix under the law of the initial distribution. In
particular, we achieve this by using a more careful analysis on the effect of the barycentric spanner to
the variance of the estimator. The following theorem shows that Algorithm 1 is no-regret.

Theorem 3.2 (No-Regret under Bandit Feedback). For T ≥ 8d2m, by setting γ = d2/3m1/3

T 1/3 and
η = 1

4d4/3m2/3T 1/3 , Algorithm 1 achieves regret RT ≤ Õ(d2/3m4/3T 2/3) with high probability.

3.2 The Semi-Bandit Feedback Case: Kernelizing Implicit Exploration

Now, we discuss our second learning algorithm for polyhedral games which establishes efficient
no-regret learning under semi-bandit feedback. The main idea is similar to that of the bandit setting—
that is, we utilize a loss estimator for each coordinate j ∈ [d], which can be kernelized efficiently,
and use the SAMPLING procedure to fast sample from a MWU routine using the computed kernels.
Due to the exponentially large action set V , one challenge here is that it is intractable to brute-force
over V in order to compute the unconditional probabilities, Pr[vt(j) = 1], of selecting j ∈ [d] as an
active coordinate, needed to compute the standard loss estimators used in adversarial multi-armed
bandits (MABs) [41]. The following observation suggests that we can kernelize such loss estimators.

‡Related results were concurrently shown in [55] to compute the Hessian of a self-concordant function,
which is needed to implement Newton’s method.
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Observation 3.3. Using Theorem 2.2, we can compute the first moment xt, which it turns out to
provide the probabilities needed to compute the standard loss estimators used in adversarial MABs,
since for any j ∈ [d], we have that xt(j) := Ev∼pt [1{v(j) = 1}] = Pr[v(j) = 1].

Our algorithm (Algorithm 2 in Appendix B) kernelizes the implicit exploration (IX) loss estimator,
ℓ̃t(j) = ℓt(j)

xt(j)+γ1{vt(j) = 1}, proposed in [48], which ensures sufficient exploration for each
coordinate j ∈ [d] with low variance. Despite the fact that the implicit exploration loss estimator is
biased, it satisfies the important property that, with high probability, the aggregated estimator losses
are upper bounded by the realized losses plus a factor of Õ(1/γ). The following theorem shows that
the proposed algorithm is no-regret.

Theorem 3.4 (No-Regret under Semi-Bandit Feedback). By setting γ = m/
√
dT and η = 1/

√
dT ,

Algorithm 2 achieves regret RT ≤ Õ(m
√
Td) with high probability.

4 Efficient Kernelization in Colonel Blotto Games (CBGs)

We consider the setting proposed in [4] for the multiplayer Colonel Blotto game [17]. Each player
i ∈ [|P|] must allocate n soldiers among k battlefields. Let variable si,h denote the number of soldiers
allocated by the i-th player to the h-th battlefield. Given the soldier assignments of all players, a
per-battlefield loss is defined for each player i ∈ [|P |], and and the incurred cost of player i is given
by the sum of her per-battlefield losses.

Θ(nk)- representation. We aim to find succinct vector representations of each player’s actions
and the loss. One challenge here is that we need the action and loss representations to satisfy the
definition of polyhedral games— that is, the cost of each action, given the actions of other players,
must equal the dot product of the action and loss representations. One such representation is through
the layered graph [13] (also used in [60; 61; 43]), which implies a representation dimensionality of
Θ(n2k) that can be a bottleneck for efficiently learning CCE, as shown in Table 1.

Without loss of generality, we focus on player i and drop the subscript i. We use the notation
[b]0 = {0, 1, ..., b} for b ∈ N. Let d = (n + 1)k. For any action a ∈ A, we consider its succinct
representation v ∈ V ⊂ {0, 1}d such that for all h ∈ [k] and s ∈ [n]0, v[h, s] = 1 iff a assigns s
soldiers to the h-th battlefield. We similarly define the representation of the loss ℓ, such that for all
h ∈ [k] and s ∈ [n]0, ℓ[h, s] is the h-th battlefield loss observed when assigning s soldiers to the h-th
battlefield, given the assignments of the other players in h.

Remark 4.1. Although the Θ(nk)-representation is more straightforward to design and more succinct
than the Θ(n2k)-graph-representation [61], it is not known how to derive a polytope description in
the form of a small number of linear inequalities with the pure actions as corners—thus common
techniques, such as Carathéodory decomposition (e.g., [26]) and barrier methods (e.g. [42; 65])
cannot be used. Kernelization overcomes this obstacle by operating directly on the game’s geometry.

Kernelization. With the succinct representation established above, we are now ready to describe
how fast kernel computations are achieved in Colonel Blotto games.

Given weight vectors x, y ∈ {0, 1}d we define the polynomial Px,y(z) as follows:

Px,y(z) :=

k∏
h=1

n∑
s=0

x[h, s]y[h, s]zs. (3)

The key point is that the n-th coefficient of z in Px,y(z) generates kernel KV(x, y). The main idea is
as follows. To compute the n-th coefficient of 3, we execute a running product over the factors of the
polynomial. This process involves k updates of the partial product. After each update, the partial
product is truncated down to degree n. Thus, inductively we ensure that all k multiplications involve
polynomials of degree at most n. Based on the above, we derive the following proposition.

Proposition 4.2. For given x, y ∈ {0, 1}d, kernel KV(x, y) can be computed in time O(nk log n).

To construct the loss estimators of the proposed algorithms, we need to compute d kernels KV(Ct, ēj),
for j ∈ [d], for the semi-bandit setting and d2 kernels KV(Ct, ēj,j′), for j, j′ ∈ [d], for the bandit
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setting, as well as the kernel KV(Ct, 1). A naive approach is to use Proposition 4.2 separately for
each kernel, resulting in a total kernel computation time O(n3k3 log n) for the bandit setting and
O(n2k2 log n) for the semi-bandit.

We provide two algorithms, namely Algorithm 3 and 4 (Appendix G), which speed up the process of
computing all required kernels by leveraging the above ideas and appropriate precomputing.

Lemma 4.3. At each round t ∈ [T ], all kernels KV(Ct, ēj), for j ∈ [d], can be computed in time
O(nk log n). Moreover, all kernels KV(Ct, ēj,j′), for j, j′ ∈ [d], can be computed in time O(n2k2).

Combining the above with the exact sampling procedure provided in [12] (see Algorithm 5, Appendix
G.3), based on which we can calculate the required kernels of our SAMPLING procedure in time
O(nk log n), the per-iteration complexities for the bandit and semi-bandit are O(nωkω log n) and
O(nk log n), respectively. Putting everything together, we derive the following main result.

Theorem 4.4 (Runtime to learn ε-CCE). In a Colonel Blotto game, under bandit feedback, if all
players adopt Algorithm 1, then the total runtime for finding an ε-CCE, with high probability, is
Õ(n2+ωk6+ω/ϵ3). Under semi-bandit feedback, if all players adopt Algorithm 2 (Appendix B), then
the total runtime for finding an ε-CCE, with high probability, is Õ(n2k4/ϵ2).

Remark 4.5. If the Colonel Blotto game is two-player zero-sum (a more traditional setting which
has received much attention [14; 15; 4]), then our algorithm learns an ϵ-Nash equilibrium.

5 Efficient Kernelization in Graphic Matroid Congestion Games (GMCGs)

In a graphic matroid congestion game (GMCG), players compete for the edges of a connected
undirected graph G = (V,E), with the actions of each player being spanning trees in G [64; 3; 33].
We use the incidence vector representation of actions v ∈ {0, 1}|E| and denote by V the set of all
these incidence vectors. Given an action profile (vi, v−i), the total loss of player i is the sum of the
losses of the selected edges of vi. Typically the cost of each edge is equal to the number of players
using it but our framework can also handle arbitrary edge cost functions. Next, we will show how to
efficiently compute the required kernels and perform efficient sampling in GMCGs.

Kernelization. Given an edge weight vector C ∈ R|E| to compute the kernel KV(C,1),
we make use of the weighted Matrix-Tree Theorem [59; 45], which states that the value of∑

T∈V
∏

e∈T C(e) equals the value of a cofactor of the weighted Laplacian A of the graph, where
Au,u =

∑
e′∈E incident to u C(e′) and Au,v = −C(e) · 1{e ∈ E} for u ̸= v and edge e = (u, v).

A naive approach is to use the Matrix-Tree Theorem for each kernel separately, taking total time
O(|E|2|V |ω) for the kernel computations in the bandit and O(|E||V |ω) in the semi-bandit setting.

We provide an algorithm (see Appendix H) that reduces the amortized time per kernel computation.
Notably, the Matrix-Tree Theorem holds for any cofactor of the Laplacian matrix. We leverage this
property by making a strategic choice of which row and column to delete. For each edge j ∈ [|E|]
consider the Laplacian used for the computation of the kernel KV(C, ēj). The Laplacian for this
kernel is constructed in the same way as the one we described above for KV(C, 1) but with the
difference that C(j) is set to zero. The main idea is that for each node v ∈ V , we can precompute the
LU decomposition of A−v,−v , that is the submatrix of A derived by deleting row v and column v, and
then for each j = (u, u′) ∈ E, we can fast compute kernel K(C, ēj) by computing the determinant
of that kernel’s Laplacian via recursive LU updating [56] in O(|V |2). The key point in this analysis
is that we can always select a submatrix of the kernel’s Laplacian that only differs in one element
than A−u,−u. Similar arguments can also be used for fast computing KV(C, ēj,j′).

Sampling. We provide an efficient implementation of the SAMPLING procedure of Algorithm 1 for
GMCGs (see Appendix H, Algorithm 8). Our approach is based on an iterative kernelization process
where we sample each coordinate incrementally. The challenge here is how to perform kernelization
on the conditional action set V(j), for j ∈ [|E|], induced by the so far sampled coordinates up to
j. Interestingly, V(j) operates on an underlying multi-graph. The main idea is to transform this
multi-graph into a meta-graph, where a meta-node merges the nodes of the j-th edge of the initial
graph and a meta-edge accumulates the weights of parallel edges connecting the same nodes. First,
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we show that it suffices to perform kernelization on the meta-graph (Proposition H.1) and, based on
that, we show that our approach is efficient via an induction argument. Importantly, we derive the
following lemma.

Lemma 5.1. At each round t ∈ [T ], all kernels KV(Ct, ēj), for j ∈ [|E|], can be computed in
time O(|V |ω+1 + |E||V |2) and all kernels KV(Ct, ēj,j′), for j, j′ ∈ [d], can be computed in time
O(|E||V |ω+1 + |E|2|V |2). Moreover, SAMPLING(V, Ct) can be implemented in time O(|E||V |ω).

Putting everything together, we derive the following main result.

Theorem 5.2 (Runtime to learn ε-CCE). In a graphic matroid congestion game, under bandit
feedback, if all players adopt Algorithm 1, then the total runtime for finding an ε-CCE, with high
probability, is Õ

(
|E|3|V |6(|V |ω−1 + |E|)/ε3

)
. Under semi-bandit feedback, if all players adopt

Algorithm 2 (Appendix B), then the total runtime for finding an ε-CCE, with high probability, is
Õ(|E|2|V |2+ω/ε2).

6 Conclusion

In this paper, we focused on the problem of efficiently learning coarse correlated equilibrium (CCE)
in polyhedral games via kernelization—beyond full-information feedback. In particular, we proposed
kernelized no-regret learning algorithms that improve the runtime of state-of-the-art methods in
three important classes of polyhedral games, namely Colonel Blotto, graphic matroid and network
congestion games.

There are several important open questions for follow-up research:

• Most important of all is whether we can design an FPTAS algorithm for efficiently learning
correlated equilibria (CE) in polyhedral games; a stronger equilibrium notion than CCE.

• Another interesting open question is whether we can further leverage kernelization to achieve
1/ε2 dependence in the bandit setting, with a better dependence on d than Zimmert and
Lattimore [65].

• Computing Nash equilibria in the general setting of the Colonel Blotto games we have
studied in this paper is PPAD-hard, as any m-player normal-form game can be polynomially
reduced to an m-player Colonel Blotto game. However, what can be said about the computa-
tional complexity of computing Nash equilibria in Colonel Blotto games with monotone
piecewise-constant utility functions (e.g., see [12])?

We leave these as open questions for future work on the topic.
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work deals with computing coarse correlated equilibrium in various game
settings and is theoretical. As a result, there is no social impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Extended Related Work

Online learning in games. The connection between no-regret learning and the computation of
approximate CCE in games has been well-known since the work of Freund and Schapire [34] (see
also [23]); assuming that all players use no-regret learning algorithms with regret O

(√
T
)

, the time-

averaged history of joint-play consists a O
(

1√
T

)
-CCE. In [29], it was shown for two player zero-sum

games that rate of convergence Õ(1/T ) can be achieved, improving the standard O
(
1/
√
T
)

that can
be derived from black-box regret analysis. Further improvements using the idea of optimism were
shown in [50] and for general-sum games appeared in later works [57; 25; 30; 6] (see also references
therein as there is a vast literature in learning in games and it is impossible to cite properly all works).

Colonel Blotto games. The classical Colonel Blotto game introduced by Borel [18] dates back to
1953. Some notable works about computing NE in two-player zero-sum games include [4; 14; 15],
and for learning CCE in multi-player games include [12; 43]. Moreover, [60; 61] show no-expected-
regret learning in Colonel Blotto games which does not suffice for convergence to CCE. Our work
improves upon previous works the runtime time to learn a CCE (see also Table 1).

Congestion games. Congestion games are potential games [52] and always admit a pure Nash
Equilibrium (NE); i.e, a state in which no agent has an incentive to unilaterally deviate. In full-
information feedback, a long line of research studies the convergence properties to NE of game
dynamics (e.g. best/better response play or no-regret). The seminal work of Takimoto and Warmuth
[58], which studies online shortest paths, provides an efficient learning algorithm for network
congestion games. Regarding the semi-bandit and bandit feedback settings, György et al. [35], based
on [58], provide efficient algorithms for online shortest paths, which can also be applied to network
congestion games. Moreover, efficient algorithms based on online gradient descent have also been
established [49; 27]. The regret rate and per-iteration complexity, i.e., the total running time to reach
a CCE of the aforementioned works is inferior to ours (see also Table 3). Regarding learning on
spanning trees, Koo et al. [39] used the Matrix-Tree Theorem in the context of directed spanning
trees for calculating the normalization factor of exponentiated gradient algorithm. However, their
approach does not provide exact sampling, nor kernelization of bandit estimators.
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Algorithm 2: Kernelized Algorithm based on IX under semi-bandit feedback

Data: d, m, η > 0 and γ ∈ [0, 1]
1 Initialize c0(j) = 0 and C0(j) = 0 for all j ∈ [d], p0 = [1/N, . . . , 1/N ] ∈ ∆(Vi)
2 for t = 1, ..., T do
3 Compute the kernels: KV(Ct−1, 1) and {KV(Ct−1, ēj)} for j ∈ [d]

4 Sample an action vt ∼ pt (MWU) using vt = SAMPLING(V, Ct−1)

5 Observe semi-bandit losses ℓt ∈ Rd

6 Compute the unconditional probabilities: xt=
(
1− KV(Ct−1,ē1)

KV(Ct−1,1) , . . . , 1−
KV(Ct−1,ēd)
KV(Ct−1,1)

)
7 Compute the IX loss estimators: ℓ̃t(j) =

ℓt(j)
xt(j)+γ1{vt(j) = 1}, ∀j ∈ [d]

8 Update the aggregated loss estimators: ct(j) = ct−1(j) + ℓ̃t(j), ∀j ∈ [d]

9 Update the exponential cumulative loss estimators: Ct(j) = exp (−ηct(j)) , ∀j ∈ [d]

10
11 Procedure: SAMPLING
12 Input: V , C

13 Sample v[1] ∼ Be
(
1− KV(C,ē1)

KV(C,1)

)
14 for j = 2, ..., d do
15 Compute the kernel: KV(j)

16 Set V(j) = {v′ ∈ V : v′[i] = v[i], ∀i ∈ [j − 1]} and pj = 1− KV(j)(C,ēj)

KV(j)(C,1)

17 Sample v[j] ∼ Be(pj)

18 Return: v

B Semi-bandit No-Regret Learning: Analysis of Algorithm 2

Lemma B.1 (Corollary 1, [48]). Let γt = γ ≥ 0 for all t. With probability at least 1− δ′,
T∑

t=1

(
ℓ̃t(i)− ℓt(i)

)
≤ log(d/δ′)

2γ

simultaneously holds for all i ∈ [d].
Theorem B.2 (Theorem 3.4 restated). For any δ ∈ (0, 1), the sequence v1, ..., vT of actions played
by Algorithm 2 with γ = m√

dT
and η = 1√

dT
satisfies

R(T ) ≤ O
((

m
√
Td+ d

)
log(d/δ)

)
,

with probability at least 1− δ.

Proof. Let L̂t(v) =
∑

i∈V ℓ̂t(i) be the loss estimator of selecting pure action v at time step t and
Lt(v) =

∑
i∈V ℓt(i) the corresponding true loss. Moreover, let Ĉt(v) =

∑t
t′=1 L̂t′(v) be the

cumulative loss estimator of selecting pure action v for the first t time steps. Also, let wt(v) =

exp(−ηĈt(v)), where η is the learning rate of MWU, and let Wt =
∑

v∈V wt(v), with W0 = |V| =
N .

As in the standard analysis of MWU, we will upper and lower bound the quantity log WT

W0
. First, we

fix a pure action v∗ ∈ V and using the fact that Wt(v) ≥ wt(v
∗), for all t, we have the following

lower bound:

log
WT

W0
≥ −ηĈT (v

∗)− logN (4)

On the other hand, assuming ηL̂t(v) ≤ 1 for all A ∈ A (this condition will be verified later), using
the elementary inequalities ex ≤ 1 + x+ x2 for |x| ≤ 1 and ln(1 + y) ≤ y for y > −1, we get the
standard following upper bound:
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log
Wt

Wt−1
= log

∑
v∈V

pt(v) exp(−ηL̂t(v)) (5)

≤ log
∑
v∈V

pt(A)(1− ηL̂t(v) + η2L̂t(v)
2) (6)

≤ η2
∑
v∈V

pt(v)L̂t(v)
2 − η

∑
v∈A

pt(v)L̂t(v) (7)

Now, we will upper bound the first term and lower bound the second term of 7, as follows:

∑
v∈V

pt(v)L̂t(v)
2 =

∑
v∈V

pt(v)

(∑
i∈v

ℓ̂t(i)

)2

(8)

≤ m
∑
v∈V

pt(v)
∑
i∈v

ℓ̂t(i)
2 (9)

= m
∑
i∈[d]

ℓ̂t(i)
2
∑

v∈V:i∈v

pt(v) (10)

= m
∑
i∈[d]

xt(i)ℓ̂t(i)
2 (11)

= m
∑
i∈[d]

xt(i)
ℓt(i)1{i ∈ vt}

xt(i) + γ
ℓ̂t(i) (12)

≤ m
∑
i∈vt

qt(i)ℓ̂t(i) (13)

≤ m
∑
i∈vt

ℓ̂t(i) (14)

where in 9 we have used the property that the arithmetic mean is less or equal than the quadratic
mean, in 13 we have used the fact that ℓt(i) ≤ 1 and we defined qt(i) =

xt(i)
xt(i)+γ , and in 14 we have

the fact that qt(i) ≤ 1.

Similarly, we lower bound the second term as follows:

∑
v∈V

pt(v)L̂t(v) =
∑
v∈V

pt(v)
∑
i∈v

ℓ̂t(i) (15)

=
∑
i∈[d]

ℓ̂t(i)
∑

v∈V:i∈v

pt(v) (16)

=
∑
i∈vt

xt(i)

xt(i) + γ
ℓt(i) (17)

=
∑
i∈vt

ℓt(i)− γ
∑
i∈vt

ℓt(i)

xt(i) + γ
(18)

=
∑
i∈vt

ℓt(i)− γ
∑
i∈vt

ℓ̂t(i) (19)

Now, summing for t = 1, 2, ..., T , we get:
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log
WT

W0
≤ η2m

T∑
t=1

∑
i∈vt

ℓ̂t(i)− η

T∑
t=1

∑
i∈vt

(ℓt(i)− γℓ̂t(i)) (20)

Combining the above with the lower bound of 4, we get the following:

−ηĈt(v
∗)− logN ≤ η2m

T∑
t=1

∑
i∈vt

ℓ̂t(i)− η

T∑
t=1

∑
i∈vt

(ℓt(i)− γℓ̂t(i)) (21)

which implies that

T∑
t=1

∑
i∈vt

ℓt(i)− ĈT (v
∗) ≤ logN

η
+ ηm

T∑
t=1

∑
i∈vt

ℓ̂t(i) +

T∑
t=1

∑
i∈vt

γℓ̂t(i) (22)

⇒
T∑

t=1

Lt(vt)−
T∑

t=1

L̂t(v
∗) ≤ logN

η
+

T∑
t=1

∑
i∈vt

(ηm+ γ)ℓ̂t(i) (23)

Then, using Lemma B.1, with probability at least 1− δ′, we get the following:

T∑
t=1

Lt(vt)−
T∑

t=1

Lt(v
∗) ≤ m log(d/δ′)

2γ
+

logN

η
+ (ηm+ γ)

T∑
t=1

∑
i∈vt

ℓ̂t(i) (24)

≤ m log(d/δ′)

2γ
+

logN

η
+ (ηm+ γ)

∑
i∈[d]

T∑
t=1

ℓ̂t(i) (25)

Now, we can apply Lemma B.1 to the term
∑

i∈[d]

∑T
t=1 ℓ̂t(i). Then with probability at least 1− 2δ′

we obtain:

T∑
t=1

(Lt(vt)− Lt(v
∗)) ≤ m log(d/δ′)

2γ
+

logN

η
+ (ηm+ γ)

T∑
t=1

∑
i∈[d]

ℓt(i) + (ηm+ γ)
d log(d/δ′)

2γ

(26)

≤ m log(d/δ′)

2γ
+

2m log d

η
+ (ηdm+ γd)T + (ηm+ γ)

d log(d/δ′)

2γ
(27)

where in the last inequality we have used the fact that N ≤
∑m

i=0

(
d
i

)
≤ mdm ⇒ logN ≤ 2m log d

and that
∑

i∈vt
ℓt(i) ≤ m, which holds because |vt|1 ≤ m.

Next we will optimize over parameters γ and η to minimize the RHS in 27. We have one constraint
over the parameters. In the proof of 7 we used the condition ηL̂t(vt) ≤ 1 for all t ∈ [T ]. It is easy to
verify that if ηm ≤ γ then the above condition is satisfied. We set γ = m√

dT
and η = 1√

dT
to balance

the dominating terms in the regret bound. Moreover, we set δ = 2δ′. Therefore, using the above and
plug them in 27, we get the following:

T∑
t=1

(Lt(vt)− Lt(v
∗)) ≤ m

√
dT log(2d/δ) + 2m

√
dT log d+ 2m

√
dT + d log(2d/δ) (28)
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Finally, we obtain our result by setting v∗ = argminv∈V
∑T

t=1 Lt(v).

C Second Moment Calculation via Kernelization

Theorem C.1 (Theorem 3.1 restated). Let Σt(qt) :=
∑

v∈V qt(v)vv
T be the autocorrelation matrix

under the law of qt. Then, for all j, j′ ∈ [d], it holds that:

Σt(qt)[j, j
′] = 1− K(b(t), ēj) +K(b(t), ēj′)−K(b(t), ēj,j′)

K(b(t),1)

Proof. We observe that for all j, j′ ∈ [d], the feature map ϕ(ēj,j′) satisfies for all v ∈ V

ϕ(ēj,j′)[M ] =
∏

k:v(k)=1

ēj,j′ [k] =
∏

k:v(k)=1

1k ̸=j∧k ̸=j′ = 1j /∈v∧j′ /∈v

= 1− 1j∈v∨j′∈v

= 1− 1j∈v − 1j′∈v + 1j,j′∈v

= 1j /∈v + 1j′ /∈v + 1j,j′∈v − 1

Using the fact that ϕ(1) = 1 and ϕ(ēj)[v] = 1j /∈v, we conclude that for all j, j′ ∈ [d], v ∈ V

1j,j′∈v = ϕ(1)[v] + ϕ(ēj,j′)[v]− ϕ(ēj)[v]− ϕ(ēj′)[v] (29)

Therefore, for all j, j′ ∈ [d], we obtain for the autocorrelation matrix

Σt(qt)[j, j
′] =

∑
v∈V

qt(v)(vv
T )[j, j′] =

∑
v∈V

qt(v)1j,j′∈v (30)

=
∑
v∈V

qt(v)(ϕ(1)[v] + ϕ(ēj,j′)[v]− ϕ(ēj)[v]− ϕ(ēj′)[v]) (31)

=
⟨ϕ(b(t)), ϕ(1)⟩+ ⟨ϕ(b(t)), ϕ(ēj,j′)⟩ − ⟨ϕ(b(t)), ϕ(ēj)⟩ − ⟨ϕ(b(t)), ϕ(ēj′)⟩

K(b(t),1)
(32)

=
K(b(t),1) +K(b(t), ēj,j′)−K(b(t), ēj)−K(b(t), ēj′)

K(b(t),1)
(33)

= 1− K(b(t), ēj) +K(b(t), ēj′)−K(b(t), ēj,j′)

K(b(t),1)
, (34)

where the third equation follows from (29), the fourth from Theorem 2.2, and the fifth from the
definition of K(·, ·).
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D Layered Graph Representation in Colonel Blotto

Definition D.1 (Layered Graph [13]). The layered graph has k + 1 layers and n+ 1 vertices in each
layer. Let vi,j denote the j-th vertex in the i-th layer (0 ≤ i ≤ k and 0 ≤ j ≤ n). For any 0 ≤ i ≤ k
there exists a directed edge from vi−1,j to vi,l iff 0 ≤ j ≤ l ≤ n.
Lemma D.2 (Pure actions in a Layered Graph [13]). Each directed path in the layered graph starting
from v0,0 and ending at vn,k is equivalent to exactly one pure action of the Colonel Blotto game, and
vice versa. For each pure action, the reward for each battlefield is associated with a unique edge of
the directed path.

However, the layered graph, which has been used to succinctly represent the action space for learning
in Colonel Blotto games, see [60; 61; 43], implies a representation complexity of Θ(n2k) that can be
a bottleneck for efficient no-regret learning and convergence to CCE.

E Barycentric Spanners

Before proceeding with the proposed algorithm for the bandit setting, we introduce the important
notion of barycentric spanners [10]. We will use barycentric spanners to ensure adequate exploration
of each coordinate j ∈ [d], sufficient to guarantee low variance of the loss estimators.
Definition E.1. A subset of independent vectors {b1, . . . , bd} ⊆ V is said to be C-approximate
barycentric spanner of Vi, with C > 1, if, for all v ∈ V , there exists α ∈ Rd such that

v =

d∑
j=1

αjbj and |αj | ≤ C, for all j ∈ [d].

We define B to be the matrix whose columns are the barycentric spanners {b1, . . . , bd}.

The following proposition ensures that, if specific conditions hold, there exists an efficient algorithm
for computing a C-approximate barycentric spanner.
Proposition E.2 (Proposition 2.5, [9]). Suppose S ⊆ Rd is a compact set not contained in any proper
linear subspace. Given an oracle for optimizing linear functions over S, for any C > 1 there exists
an algorithm that computes a C-approximate barycentric spanner for S in polynomial time, using
O
(
d2 logC(d)

)
calls to the optimization oracle.

E.1 Computing an Approximate-Barycentric Spanner for Colonel Blotto Games

Proposition E.3 (Oracle for finding best-response in polynomial-time). Given a reward vector r, the
following linear optimization problem

max
V ∈Vi

rTV

can be solved in time O(n2k).

Proof. We will solve the following linear optimization problem (which corresponds to playing
best-response with respect to the reward vector r):

max
V ∈Vi

rTV (35)

The above problem is equivalent to the problem of finding the longest path from a directed weighted
DAG (with |V | nodes and |E| edges), which can be solved via Dynamic Programming in time
|V | · |E|. To do so, we leverage the Layered Graph representation (see Section D), which is a DAG
with Θ(nk) nodes and Θ(n2k) edges. More specifically, in the Layered Graph, in layer h ∈ [k]
the edge eh = (uh,i, uh+1,j) for i ≤ j and i, j ∈ [n]0 corresponds to assigning j − i soldiers on
battlefield h+ 1. On each edge, we use as edge weight the battlefield reward taken by assigning the
corresponding number of soldiers on the corresponding battlefield, and the longest path of this graph,

29



denoted by x∗ ∈ Rn2k, represents the best response with respect to r. Thus, we can solve the linear
optimization problem in time O(n2k).

The only thing left to do is to get V ∗ = argmaxV ∈Vi
rTV from x∗. It is straightforward that

there exists an one-to-one correspondence between these two vectors. To get V ∗, one must do the
following:

• Initialize V ∗ = 0 ∈ Rd.

• For each layer h ∈ [k], given the selected edge eh = (uh,i, uh+1,j) in x∗, assign V ∗[h, j −
i] = 1.

Lemma E.4 (Polynomial-time algorithm for C-barycentric spanner in Colonel Blotto). In Colonel
Blotto, for C > 1, there exists a polynomial-time algorithm that computes a C-approximate barycen-
tric spanner for Vi in time O(n4k3 logC(nk)).

Proof. To prove Lemma E.4, first observe that Vi satisfies Proposition E.2 because it is compact and
is not contained in any proper linear subspace of Rd. Now, we need to have access to an oracle for
optimizing linear functions over Vi. To do so, we utilize the oracle for finding a best response given a
reward vector from Proposition E.3.

Therefore, each oracle call needs time O(n2k). Now, using Proposition E.2, to compute the barycen-
tric spanner for Vi, one may use the algorithm defined in [9] that computes an approximate C-spanner
(with C > 1) in time O(n4k3 logC(nk)).

E.2 Computing an Approximate-Barycentric Spanner for Graphic Matroid Congestion
Games

The idea is similar to above but using the Kruskal algorithm as the oracle. To compute a C-barycentric
spanner here we need O(|E|2 logC(|E|).
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F Bandit No-Regret Learning: Analysis of Algorithm 1

We have the following:

sup
x,y∈V

xTΣ+
t y ≤ sup

α,β∈[−C,C]d
αTBTΣ+

t Bβ (36)

≤ sup
∥α∥=∥β∥=C

√
d

αTBTΣ+
t Bβ (37)

≤ C2d · ∥BTΣ+
t B∥2 (38)

= C2d · λmax

(
BTΣ+

t B
)

(39)

= C2d · 1

λmin (B−1ΣtB−T )
(40)

= C2 d

λmin

(
B−1

(
γ
dBBT + (1− γ)Ep̂t

[vvT ]
)
B−T

) (41)

≤ C2d2

γλmin (B−1BBTB−T )
(42)

=
C2d2

γ
(43)

where B ∈ Rd×d is a full rank matrix that has the approximate spanners as columns. In 40, we have
used the fact that B is invertible because it is full rank, and also that Σt is non-singular (see [28])
which implies that Σ−1

t exists and thus the pseudo-inverse matrix Σ+
t equals the inverse matrix, i.e.,

Σ+
t = Σ−1

t . Moreover, in 42, we used the Weyl’s inequality.

Let Ct be the autocorrelation matrix under the law of the exploration distribution on the barycentric
spanner. We aim to bound the minimum non-zero eigenvalue of Ct. Similarly to above, we have

sup
x∈V

xTC−1
t x ≤ sup

α∈[−C,C]d
αTBTC−1

t Bα (44)

≤ sup
∥α∥=∥β∥=C

√
d

αTBTC−1
t Bα (45)

≤ C2d · ∥BTC−1
t B∥2 (46)

= C2d · λmax

(
BTC−1

t B
)

(47)

= C2d · 1

λmin (B−1CtB−T )
(48)

= C2 d

λmin

(
B−1

(
1
dBBT

)
B−T

) (49)

≤ C2d2. (50)

Let Et[·] denote expectation conditioned on the past events; i.e. the realized rewards received and the
actions taken by player i up to time step t−1. Also, let 1 be the ones vector. We define Lt(v) = ℓt ·v,
and similarly L̂t(v) = ℓ̂t · v. In the following analysis, we drop the superscript i and sometimes write
qt and pt for the distributions of player i. For now, we assume that T ≥ 8d2m, an assumption that
will be verified later by the average regret guarantee for the convergence to CCE.

Using the above analysis, along with the basic lemma of [11], we can easily get the following lemma
with the basic properties of the algorithm.

Lemma F.1. For any v ∈ Vi and t ∈ [T ], the following hold:

1. (unbiasedness) Et[ℓ̂t] = ℓt
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2. vTΣ−1
t v ≤ d2C2

γ

3.
∣∣∣L̂t(v)

∣∣∣ ≤ d2mC2

γ

4. Et[v
T
t Σ

−1
t vt] = d

5. Et

[(
ℓ̂t · v

)2]
≤ m2vTΣ−1

t v

Now, using Lemma F.1 and selecting η = γ
d2mC2 = 1

d4/3m2/3C2T 1/3 , we have∣∣∣ηL̂t(v)
∣∣∣ ≤ 1.

Lemma F.2 (Bernstein’s inequality for martingales). Let Y1, ..., YT be a martingale difference
sequence. Suppose that Yt ∈ [a, b] and

E
[
Y 2
t | Xt−1, . . . , X1

]
≤ σ

for all t ∈ {1, . . . , T}. Then for all ε > 0,

Pr

(
T∑

t=1

Yt >
√
2σT ln(1/δ) + 2 ln(1/δ)(b− a)/3

)
≤ δ

Lemma F.3. Simultaneously for any v ∈ Vi, with probability at least 1− δ, it holds that

T∑
t=1

(
L̂t(v)− Lt(v)

)
≤
(
dm3/2C
√
γ

+m3/2

)√
2T ln(d/δ) +

4

3
ln(d/δ)

(
d2m2C2

γ
+m2

)

Proof. Fix any v ∈ Vi, we define Yt(v) = L̂t(v) − Lt(v). Yt is a martingale difference sequence.
Using Lemma F.1, the following hold:

•
√
Vart Yt(v) =

√
Vart

[
L̂t(v)− Lt(v)

]
(51)

≤

√
Et

[(
L̂t(v)− Lt(v)

)2]
(52)

≤

√
Et

[(
L̂t(v)

)2]
+

√
Et

[
(Lt(v))

2
]

(53)

≤ m

√
v⊤Σ−1

t v +m (54)

≤ m

√
d2C2

γ
+m (55)

=
mdC
√
γ

+m (56)

where in 53 we used the Cauchy-Schwarz inequality and in 55 we used Lemma F.1.

• |L̂t(v)− Lt(v)| ≤
md2C2

γ
+m (57)

Now by applying the Bernstein’s inequality (Lemma F.2), with probability at least 1− δ
|Vi| we obtain
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T∑
t=1

Yt(v) ≤
(
mdC
√
γ

+m

)√
2T ln(|Vi|/δ) +

4

3
ln(|Vi|/δ)

(
md2C2

γ
+m

)
(58)

=

(
dm3/2C
√
γ

+m3/2

)√
2T ln(d/δ) +

4

3
ln(d/δ)

(
m2d2C2

γ
+m2

)
(59)

Taking the union bound, we obtain the desired result.

Lemma F.4. With probability at least 1− δ,

T∑
t=1

∑
v∈B

γ

nm
L̂t(v) ≤ γmT +

(√
γdm3/2C + γm3/2

)√
2T ln(d/δ) +

4

3
ln(d/δ)

(
m2d2C2 + γm2

)
Proof. Using Lemma F.3, with probability at least 1− δ, we have, simultaneously for all v ∈ B,

1

d

∑
t

γL̂t(v) ≤
1

d

(
γ
∑
t

Lt(v) + γ

(
dm3/2C
√
γ

+m3/2

)√
2 ln(d/δ)

+
4γ

3
ln(d/δ)

(
d2m2C2

γ
+m2

))
(60)

≤ 1

d

(
γmT +

(√
γdm3/2C + γm3/2

)√
2 ln(d/δ)

+
4

3
ln(d/δ)

(
d2m2C2 + γm2

))
(61)

Summing over the d elements of the spanner, and using the fact that Lt(v) ≤ m, we get the result of
the statement.

Lemma F.5. With probability at least 1− δ,

T∑
t=1

ℓt · vt −
T∑

t=1

∑
v∈Vi

pt(v)ℓ̂t · v ≤ (m
√
d+m)

√
2T ln(1/δ) +

4

3
ln(1/δ)

(
d2mC2

γ
+m

)
.

Proof. The proof follows directly from the proof of Lemma 6 in [11], using |Yt| ≤ d2mC2

γ +m, and

Vart Yt ≤ m
√
d+m.

Lemma F.6. With probability at least 1− δ,

T∑
t=1

η
∑
v∈Vi

pt(v)
(
ℓ̂t · v

)2
≤ ηdm2T + η

(
d2m2C2

γ
+ dm2

)√
2T ln(1/δ)

Proof. The proof directly follows the proof of Lemma 8 from [11], by using that the summands
vTt Σ

−1
t vt are bounded by d2C2

γ .

Theorem F.7 (Theorem 3.2 restated). For T ≥ 8d2m and for any δ ∈ (0, 1), the sequence v1, . . . , vT
of actions played by Algorithm 2 with γ = d2/3m1/3

T 1/3 and η = 1
4d4/3m2/3T 1/3 satisfies

RT ≤ Õ
(
d2/3m4/3T 2/3

)
.
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Proof. Following the standard analysis of MWU (also similar to our analysis in the semi-bandit
setting), we have that,

Wt+1

Wt
=
∑
v∈Vi

wt(v) exp
(
−ηL̂t(v)

)
Wt

(62)

≤
∑
v∈Vi

wt(v)

Wt

(
1− ηL̂t(v) + η2

(
L̂t(v)

)2)
(63)

≤ 1 +
η

1− γ

(
−
∑
v∈Vi

pt(v)L̂t(v) +
∑
v∈B

γ

d
L̂t(v) +

∑
v∈Vi

pt(v)η
(
L̂t(v)

)2)
(64)

since by definition of pt,

wt(v)

Wt
=

pt(v)− γ
d1{v ∈ B}

1− γ
.

Fix any v∗ ∈ Vi. We have that,

ln

(
WT+1

W1

)
≥ −η

(
T∑

t=1

L̂t(v
∗)

)
− ln |Vi| (65)

≥ −η

[
T∑

t=1

Lt(v
∗) +

(
dm3/2C
√
γ

+m3/2

)√
2T ln(d/δ) +

4

3
ln(d/δ)

(
d2m2C2

γ
+m2

)
+

m ln d

η

]
(66)

≥ −2η
[ T∑

t=1

Lt(v
∗) +

(
d2/3m4/3CT 2/3 +m3/2

√
T
)√

2 ln(d/δ)

+
4

3
ln(d/δ)

(
d2/3m4/3C2T 1/3 +m2

)
+

m ln d

η

]
(67)

where in 66 we used Lemma F.3, and in 67 we used the fact that γ = d2/3m1/3

T 1/3 .

Putting these together, using Lemmas F.4, F.5 and F.6 in 64, we have

Wt+1

Wt
≤ 1 +

η

1− γ

(
−

T∑
t=1

Lt(ut) + (m
√
d+m)

√
2T ln(1/δ) +

4

3
ln(1/δ)

(
d2mC2

γ
+m

)
+ γmT +

(√
γdm3/2C + γm3/2

)√
2T ln(d/δ) +

4

3
ln(d/δ)

(
d2m2C2 + γm2

)
+ ηdm2T + η

(
d2m2C2

γ
+ dm2

)√
2T ln(1/δ)

)
(68)

Taking logs, using the fact that ln(1 + x) ≤ x, and also the fact that η
1−γ ≤ 2η, because we have

assumed that T ≥ 8d2m, and summing over t, we have
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ln

(
WT+1

W1

)
≤ 2η

(
−

T∑
t=1

Lt(ut) + (m
√
d+m)

√
2T ln(1/δ) +

4

3
ln(1/δ)

(
d2mC2

γ
+m

)
+ γmT +

(√
γdm3/2C + γm3/2

)√
2T ln(d/δ) +

4

3
ln(d/δ)

(
d2m2C2 + γm2

)
+ ηdm2T + η

(
d2m2C2

γ
+ dm2

)√
2T ln(1/δ)

)
(69)

= 2η

(
−

T∑
t=1

Lt(ut) + (m
√
d+m)

√
2T ln(1/δ) +

4

3
ln(1/δ)

(
d4/3m2/3C2T 1/3 +m

)
+ d2/3m4/3T 2/3 +

(
d4/3m5/3CT 1/3 + d2/3m11/6T 1/6

)√
2 ln(d/δ)

+
4

3
ln(d/δ)

(
d2m2C2 + d2/3m7/3T 1/3

)
+

m2/3T 2/3

d1/3
+

(
m
√
T +

m2/3T 1/6

d1/3

)√
2 ln(1/δ)

)
(70)

where in 70 we used the definitions of γ and η.

Finally, using 67 and 70, rearranging terms, dividing with η, using the fact that ln d/η =
d4/3m2/3T 1/3 ln d, and rescaling δ = 4δ, with probability at least 1 − δ, simultaneously for all
u∗ ∈ Vi, we have that,

T∑
t=1

(Lt(vt)− Lt(v
∗)) ≤ Õ

(
d2/3m4/3T 2/3

)
.
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G Kernelization in Colonel Blotto games

Algorithm 3: Efficient First-Moment Kernel Computations in Colonel Blotto games
Data: Ct

1 /∗ Compute the partial products P1 and P2
∗/

2 P
(t)
1 [0] = 1

3 for h = 0, ..., k − 1 do

4 Pleft(z) = P
(t)
1 [h](z) ·

n∑
s=0

Ct[h+ 1, s] · zs

5 P
(t)
1 [h+ 1](z) = truncate Pleft(z) to degree n

6 P
(t)
2 [0] = 1

7 for h = 0, ..., k − 1 do

8 Pright(z) = P
(t)
2 [h](z) ·

n∑
s=0

Ct[h+ 1, s] · zs

9 P
(t)
2 [h+ 1](z) = truncate Pright(z) to degree n

10 /∗ Compute the d+ 1 kernels ∗/
11 KV(Ct, 1) = n-th degree coefficient of P (t)

1 [k]
12 for h = 1, ..., k do
13 P−h = P

(t)
1 [h− 1](z) · P (t)

2 [k − h](z)

14
n∑

s=0
αs · zs = truncate P−h to degree n

15 for s = 0, ..., n do
16 KV(Ct, ēh,s) = KV(Ct, 1)− αn−s · Ct[h, s]
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Algorithm 4 Efficient Second-Moment Kernel Computations in Colonel Blotto games

Require: C(t)

1: # Compute the interval products
2: for h, h′ in [k + 1]0 × [k + 1]0 do
3: Pint[h, h

′] = 1
4: for h = 1, ..., k − 1 do

5: Pint[h, h](z) =
n∑

s=0
C

(t)
h,s · zs

6: for h′ = h, ..., k − 1 do

7: P (z) = Pint[h, h
′](z) ·

n∑
s=0

C
(t)
h′+1,s · zs

8: Pint[h, h
′ + 1](z) = truncate P (z) to degree n

9: # Pint[h, h
′](z) =

h′∏
i=h

n∑
s=0

C
(t)
i,s · zs

10: # Compute the d2 kernels
11: for h = 1, ..., k do
12: # case 1: h′ = h
13: P−h(z) = Pint[1, h− 1](z) · Pint[h+ 1, k](z)

14:
n∑

s=0
αs · zs = truncate P−h to degree n

15: for s = 0, ..., n do
16: for s′ = 0, ..., n do
17: KV(C

(t), ēh,h,s,s′) = KV(C
(t), 1)− αn−s · C(t)

h,s − αn−s′ · C(t)
h,s′ · 1{s ̸= s′}

18: # case 2: h′ > h
19: if h < k then
20: for h′ = h+ 1, ..., k do

21: Ph(z) =
n∑

s=0
C

(t)
h,s · zs

22: for s = 0, ..., n do
23: Ph,s(z) = Ph(z)− C

(t)
h,s · zs

24: P−h,h′(z) = Pint[1, h− 1](z) · Pint[h+ 1, h′ − 1](z) · Pint[h
′ + 1, k](z)

25: P−h′(z) = P−h,h′(z) · Ph,s(z)

26:
n∑

s=0
αs · zs = truncate P−h′ to degree n

27: for s′ = 0, ..., n do
28: KV(C

(t), ēh,h′,s,s′) = KV(C
(t), 1)− αn−s′ · C(t)

h′,s′

G.1 Proof of Proposition 4.2

Proposition G.1. For given x, y ∈ {0, 1}d, there exists an algorithm that computes the kernel
K(x, y) in time O(nk log n).

Proof. To compute the n-th coefficient of 3, we execute a running product over the factors of the
polynomial. This process involves k updates of the partial product. After each update, the partial
product is truncated down to degree n. Thus, inductively we ensure that all k multiplications
involve polynomials of degree at most n. Each multiplication can be implemented with FFT [20]
in O(n log n) time. The overall complexity over the k multiplications is O(nk logn) and after the
truncated product is computed the target coefficient is obtained in O(1).
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G.2 Proof of Lemma 4.3

The proof is based on Algorithm 3. We define the running product P (t)
l [i] from left to right, which

is the sum of the degree 0 to n terms of the polynomial
i∏

i′=1

n∑
j=0

Ct[i
′, j] · zj . We can compute all

polynomials P (t)
l [i], for i = 1, ..., k in total time nk log n using the following induction argument:

Given P
(t)
l [i], we compute P

(t)
l [i + 1] by performing the polynomial multiplication P

(t)
l [i](z) ·

n∑
j=0

Ct[i+1, j] · zj and truncating all terms of degree greater than n. The two multiplied polynomials

have degree n, so the multiplication can be done in time n logn using FFT, while the truncation of
the higher degree terms can be done in time n since the product polynomial has degree 2n. Repeating
this procedure for i = 1, ..., k − 1 we get all left-to-right partial products in total time nk logn.

Similarly, we define the running product P (t)
r [i] from right to left as the sum of the degree 0 to n

terms of the polynomial
k∏

i′=k−i+1

n∑
j=0

Ct[i
′, j] · zj . Similarly to P

(t)
l , we can compute all right-to-left

partial products P (t)
r [i], for i = 1, ..., k in total time nk log n.

Now, using the above partial products, we compute all the kernels required for (O)MWU at time step
t. All polynomial multiplications in the Algorithm are performed using FFT so that each of them
takes time n log(n).

Following similar logic as above, via Algorithm 4 we get the desired result.

G.3 Alternative Proof of Lemma 4.3

Efficient sampling of MWU in CBGs has been studied in Beaglehole et al. [12]. A useful tool for this
purpose is the partition function defined in equation 100. Here we describe their method with details
and we extend their ideas to the efficient calculation of first and second order moments of the MWU
distribution.

Remark G.2. We give an algorithm (Algorithm 4) that performs the second moment computation
in terms of kernels. The algorithm follows a similar logic to Algorithm 3, but is somewhat more
complicated, due to the nature of the problem. In steps where polynomial multiplication is performed,
we imply that the multiplication is implemented efficiently through FFT.

We remind that the calculation of first order moments was used in our method for learning in the
semi-bandit setting and the second moments appear in the calculation of the autocorrelation matrix
which is used in the bandit setting. Next we proceed to the technical details of our methods.

Focusing on a single player, at time step t, let ℓt[h, s] be the loss observed by the player when
assigning s soldiers to the h-th battlefield, given the assignments of the other players in this battlefield.
Moreover, let

c
(t)
h (s) =

t∑
τ=1

ℓt[h, s]

We define the partition function

fh(y) =
∑

x1+···+xh=y

h∏
i=1

exp
(
−ηc(t)i (xi)

)
. (71)

We also define the partition function gh(y), which is similar to fh(y) but aggregates battlefields in
the reverse order.

gh(y) =
∑

xh+···+xk=y

k∏
i=h

exp
(
−ηc(t)i (xi)

)
. (72)
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Let L(t)(x1, ..., xk) be the cumulative loss at timestep t. L(t) can be decomposed into the cumulative
losses per battlefield as follows:

L(t)(x1, ..., xk) =

k∑
h=1

c
(t)
h (xh) (73)

Under MWU the probability of some assignment x1, ..., xk at timestep t can be written as

Pr[s1, ..., sk = x1, ..., xk] ∝ exp
(
−ηL(t)(x1, ..., xk)

)
(74)

= exp

(
−η

k∑
h=1

c
(t)
h (xh)

)
(75)

Marginal probabilities of soldier assignments at a single battlefield can be written as follows:

Pr[sk = s] =
∑

x1+···+xk−1=n−s

Pr[s1, ..., sk−1, sk = x1, ..., xk−1, s] (76)

∝
∑

x1+···+xk−1=n−s

exp

(
−η

k−1∑
h=1

c
(t)
h (xh)− ηc

(t)
k (s)

)
(77)

= exp
(
−ηc(t)k (s)

) ∑
x1+···+xk−1=n−s

exp

(
−η

k−1∑
h=1

c
(t)
h (xh)

)
(78)

= exp
(
−ηc(t)k (s)

) ∑
x1+···+xk−1=n−s

k−1∏
h=1

exp
(
−ηc(t)h (xh)

)
(79)

= exp
(
−ηc(t)k (s)

)
· fk−1(n− s) (80)

Moreover, we can compute the conditional probability of each soldier assignment at a single battlefield,
given a set of soldier assignments at other battlefields:

Pr{sk−h = s | sk−h+1, . . . , sk} =
∑

x1+···+xk−h−1=

n−s−
k∑

j=k−h+1

sj

Pr[s1, ..., sk−h−1, sk−h = x1, ..., xk−h−1, s | sk−h+1, . . . , sk]

(81)

∝
∑

x1+···+xk−h−1=

n−s−
k∑

j=k−h+1

sj

exp

−η k−h−1∑
j=1

c
(t)
j (xj)− ηc

(t)
k−h(s)− η

k∑
j=k−h+1

c
(t)
j (sj)


(82)

= exp

−ηc(t)k−h(s)− η

k∑
j=k−h+1

c
(t)
j (sj)

 ∑
x1+···+xk−h−1=

n−s−
k∑

j=k−h+1

sj

exp

−η k−h−1∑
j=1

c
(t)
j (xj)


(83)

= exp

−ηc(t)k−h(s)− η

k∑
j=k−h+1

c
(t)
j (sj)

 fk−h−1

n−

 k∑
j=k−h+1

sj

− s


(84)

∝ exp
(
−ηc(t)k−h(s)

)
· fk−h−1

n−

 k∑
j=k−h+1

sj

− s


(85)
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Similarly, in terms of the partition function gh(y), we derive

Pr[s1 = s] ∝ exp
(
−ηc(t)1 (s)

)
· gk−1(n− s) (86)

Pr{sh = s | s1, . . . , sh−1} ∝ exp
(
−ηc(t)h (s)

)
· gk−h−1

n−

h−1∑
j=1

sj

− s

 (87)

The conditional probabilities can be used to implement an efficient sampling procedure for the MWU
distribution, as was proposed in [12]. For completeness we write the algorithm below.

Algorithm 5 Sampling from the MWU distibution in Colonel Blotto games

Require: Soldiers n ≥ 0, battlefields k ≥ 1 and cumulative loss c(t)h (s) for h, s ∈ [k]× [n]0
1: f0(s) = 1 for all s ∈ [n]0
2: for h = 1, ..., k − 1 do
3: Using FFT, calculate the convolution (a ∗ b)(s) where a(s) = exp

(
−ηc(t)h (s)

)
and b(s) =

fh−1(s), s ∈ [n]0.
4: ∀ s ∈ [n]0, calculate the partition function for battlefield h:

fh(s) =

s∑
s′=0

exp
(
−ηc(t)h (s′)

)
· fh−1 (s− s′) = (a ∗ b)(s),

5: Sample the number sk of soldiers at the last battlefield:

Pr[sk = s] ∝ exp
(
−ηc(t)k (s)

)
· fk−1(n− s), s ∈ [n]0

6: for h = 1, ..., k − 1 do
7: Sample the number sk−h of soldiers at battlefield k − h given the numbers of soldiers,

sk−h+1, . . . , sk, assigned to battlefields k − h+ 1, . . . , k as follows:

Pr{sk−h = s | sk−h+1, . . . , sk} ∝ exp
(
−ηc(t)k−h(s)

)
·fk−h−1

n−

 k∑
j=k−h+1

sj

− s


for s ∈

[
n−

k∑
j=k−h+1

sj

]
0

Remark G.3. Algorithm 5 implements the SAMPLING procedure of Algorithms 1 and 2. The key
point is that instead of explicitly calculating the required kernels, it directly computes the conditional
probabilities via a partition function, which corresponds to kernelizing the conditional polytope.
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The unconditional marginals that constitute the first moment are calculated as follows:

Pr [sh = s] =
∑

∑
j ̸=h

xj=n−s

Pr[(s1, ..., sh, ..., sk) = (x1, ..., s, ..., xk)] (88)

∝
∑

∑
j ̸=h

xj=n−s

exp

−η∑
j ̸=h

c
(t)
j (xj)− ηc

(t)
h (s)

 (89)

= exp
(
−ηc(t)h (s)

) n−s∑
s′=0

∑
h−1∑
j=1

xj=s′

exp

−η h−1∑
j=1

c
(t)
j (xj)

 ∑
k∑

j=h+1

xj=n−s−s′

exp

−η k∑
j=h+1

c
(t)
j (xj)


(90)

= exp
(
−ηc(t)h (s)

) n−s∑
s′=0

fh−1(s
′)gh+1(n− s− s′) (91)

= exp
(
−ηc(t)h (s)

)
(fh−1 ∗ gh+1)(n− s) (92)

We can precompute the partition functions fh(y), gh(y), for all h ∈ [k] and y ∈ [n]0 in total time
kn log n utilizing the self reducible structure of the partition function (see algorithm 6 lines 1-5 for
details). Then we compute fh−1 ∗ gh+1 for all h ∈ [k] and y ∈ [n]0 in total time kn log n with
FFT. Using these calculations each term Pr [sh = s] computation takes constant time. Note that this
method is essentially equivalent to the kernel method we describe in the main paper (Algorithm 3).

For the calculation of the second-order marginals that constitute the second moment, we will make
use of the interval partition function fh,h′(y), that aggregates possible assignments between the h
and the h′ battlefields.

fh,h′(y) =
∑

xh+···+xh′=y

h′∏
i=h

exp
(
−ηc(t)i (xi)

)
. (93)

Pr [sh, sh′ = s, s′] =
∑

∑
j ̸=h,h′

xj=n−s−s′

Pr[(s1, ..., sh, ..., sh′ , ..., sk) = (x1, ..., s, ..., s
′, ..., xk)]

(94)

∝
∑

∑
j ̸=h,h′

xj=n−s−s′

exp

−η ∑
j ̸=h,h′

c
(t)
j (xj)− ηc

(t)
h (s)− ηc

(t)
h′ (s

′)

 (95)

= exp
(
−ηc(t)h (s)

)
exp

(
−ηc(t)h′ (s

′)
) n−s−s′∑

x=0

n−s−s′−x∑
y=0

∑
h−1∑
j=1

xj=x

exp

−η h−1∑
j=1

c
(t)
j (xj)


∑

h′−1∑
j=h+1

xj=y

exp

−η h′−1∑
j=h+1

c
(t)
j (xj)

 ∑
k∑

j=h′+1

xj=n−s−s′−x−y

exp

−η k∑
j=h′+1

c
(t)
j (xj)


(96)

= exp
(
−ηc(t)h (s)

)
exp

(
−ηc(t)h′ (s

′)
) n−s−s′∑

x=0

∑
h−1∑
j=1

xj=x

exp

−η h−1∑
j=1

c
(t)
j (xj)


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n−s−s′−x∑
y=0

∑
h′−1∑

j=h+1

xj=y

exp

−η h′−1∑
j=h+1

c
(t)
j (xj)

 ∑
k∑

j=h′+1

xj=n−s−s′−x−y

exp

−η k∑
j=h′+1

c
(t)
j (xj)


(97)

= exp
(
−ηc(t)h (s)

)
exp

(
−ηc(t)h′ (s

′)
) n−s−s′∑

x=0

f1,h−1(x)

n−s−s′−x∑
y=0

fh+1,h′−1(y)fh′+1,k(n− s− s′ − x− y) (98)

= exp
(
−ηc(t)h (s)

)
exp

(
−ηc(t)h′ (s

′)
) n−s−s′∑

x=0

f1,h−1(x)(fh+1,h′−1 ∗ fh′+1,k)(n− s− s′ − x)

= exp
(
−ηc(t)h (s)

)
exp

(
−ηc(t)h′ (s

′)
)
(f1,h−1 ∗ (fh+1,h′−1 ∗ fh′+1,k))(n− s− s′)

(99)

We observe that the marginal probabilities only depend on the interval partition function and the
cumulative loss per battlefield. We can precompute the partition function fh,h′(y), for all h, h′ ∈
[k]2 : h ≤ h′ and y ∈ [n]0 in total time nk2 log n utilizing the self reducible structure of the partition
function (see Algorithm 5). Then we compute the convolutions (f1,h−1 ∗ fh+1,h′−1 ∗ fh′+1,k)(y)
for all h, h′ ∈ [k]2 : h < h′ and y ∈ [n]0 in total time nk2 log n with FFT. Using these calculations
each term Pr [sh, sh′ = s, s′] computation takes constant time.

G.4 Proof of Theorem 4.4

Proof. Using Lemma 4.3 and the exact sampling procedure provided in [12] (see Algorithm 5), based
on which we can calculate the required kernels of our SAMPLING procedure in time O(nk log n), the
per-iteration complexity for the bandit and semi-bandit algorithms isO(nωkω log n) andO(nk log n),
respectively. By combining Theorems 3.2 and 3.4 with Theorem 2.1, we can achieve the desired
results.
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G.5 Similar Techniques for Efficient Implementation of Kernelized GEOMETRICHEGDE in
m-sets

Algorithm 6 Sampling the MWU distribution in m-sets

Require: Soldiers n ≥ 0, battlefields d ≥ 1 and cumulative loss c(t)h · b for h, s ∈ [d]× [n]0
1: f0(y) = 1 for all y ∈ [m]0
2: for h = 1, ..., d− 1 do
3: ∀ y ∈ [m]0, calculate the partition function for item h:

fh(y) = exp
(
−ηc(t)h

)
· fh−1 (y − 1) + fh−1 (y) ,

4: Sample the selection of the last item:

Pr[vd = b] ∝ exp
(
−ηc(t)d · b

)
· fd−1(m− b), b ∈ {0, 1}

5: for h = 1, ..., d− 1 do
6: Sample the selection vd−h of item d − h given the selections, vd−h+1, . . . , vd, of items

d− h+ 1, . . . , d as follows:

Pr{vd−h = b | vd−h+1, . . . , vd} ∝ exp
(
−ηc(t)d−h · b

)
·fd−h−1

m−

 d∑
j=d−h+1

vj

− b


for b ∈

{
0,min

(
1,m−

d∑
j=d−h+1

vj

)}

Summary: We can apply similar techniques to efficiently compute the second moment used in
Algorithm 1 for the classic m-sets setting. In particular, our approach requires time Õ(md2),
improving upon the DAG formulation approach of [24; 58] which requires time O(m2d2).

A classic setting in combinatorial bandits which is also considered in [32] are m-sets, where actions
are selections of m out of d items. Its binary representation the action set can be written as V = {v ∈
{0, 1}d |

∑
i vi = m}.

We will show how to perform efficient exact sampling and autocorrelation matrix calculation in
m-sets. For this purpose we will use the partition function defined in equation 100, similarly to
Blotto. The partition function resembles the kernels used in kernelized MWU. Next we proceed to
the technical details of our methods.

At time step t, let ℓt[i] be the loss observed by the player when selecting the i-th item. Moreover, let

c
(t)
i =

t∑
τ=1

ℓt[i]

be the cumulative loss of the i-th item over the first t time steps. We define the partition function

fh(y) =
∑

x1+···+xh=y

h∏
i=1

exp
(
−ηc(t)i · xi

)
(100)

where xi ∈ {0, 1}, h ∈ [d] and y ∈ [m].
We also define the partition function gh(y), which is similar to fh(y) but aggregates the set items in
the reverse order.

gh(y) =
∑

xh+···+xd=y

d∏
i=h

exp
(
−ηc(t)i · xi

)
. (101)
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Let L(t)(x1, ..., xd) be the cumulative loss at timestep t. L(t) can be decomposed into the cumulative
losses per item as follows:

L(t)(x1, ..., xd) =

d∑
h=1

c
(t)
h · xh (102)

Under MWU the probability of some assignment x1, ..., xd at timestep t can be written as

Pr[v1, ..., vd = x1, ..., xd] ∝ exp
(
−ηL(t)(x1, ..., xd)

)
(103)

= exp

(
−η

d∑
h=1

c
(t)
h · xh

)
(104)

Marginal probabilities over assignments can be written as follows:

Pr[vd = b] =
∑

x1+···+xd−1=m−b

Pr[v1, ..., vd−1, vd = x1, ..., xd−1, b] (105)

∝
∑

x1+···+xd−1=n−b

exp

(
−η

d−1∑
h=1

c
(t)
h · xh − ηc

(t)
d · b

)
(106)

= exp
(
−ηc(t)d · b

) ∑
x1+···+xd−1=m−b

exp

(
−η

d−1∑
h=1

c
(t)
h · xh

)
(107)

= exp
(
−ηc(t)d · b

) ∑
x1+···+xd−1=m−b

d−1∏
h=1

exp
(
−ηc(t)h · xh

)
(108)

= exp
(
−ηc(t)d · b

)
· fd−1(m− b) (109)

Conditional probabilities over assignments are calculated as follows:

Pr{vd−h = b | vd−h+1, . . . , vd} =
∑

x1+···+xd−h−1=

m−b−
d∑

j=d−h+1

vj

Pr[v1, ..., vd−h−1, vd−h = x1, ..., xd−h−1, b | vd−h+1, . . . , vd]

(110)

∝
∑

x1+···+xd−h−1=

m−b−
d∑

j=d−h+1

vj

exp

−η d−h−1∑
j=1

c
(t)
j · xj − ηc

(t)
d−h · b− η

d∑
j=d−h+1

c
(t)
j · vj


(111)

= exp

−ηc(t)d−h · b− η

d∑
j=d−h+1

c
(t)
j · vj

 ∑
x1+···+xd−h−1=

m−b−
d∑

j=d−h+1

vj

exp

−η d−h−1∑
j=1

c
(t)
j · xj


(112)

= exp

−ηc(t)d−h · b− η

d∑
j=d−h+1

c
(t)
j · vj

 fd−h−1

m−

 d∑
j=d−h+1

vj

− b


(113)

∝ exp
(
−ηc(t)d−h · b

)
· fd−h−1

m−

 d∑
j=d−h+1

vj

− b


(114)
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Similarly we derive

Pr[v1 = b] ∝ exp
(
−ηc(t)1 · b

)
· gd−1(m− b) (115)

Pr{vh = b | v1, . . . , vh−1} ∝ exp
(
−ηc(t)h · b

)
· gd−h−1

m−

h−1∑
j=1

vj

− b

 (116)

The conditional probabilities can be used to implement an efficient sampling procedure for the MWU
distribution. We write the algorithm below.

For the calculation of second-order marginals we will make use of the interval partition function
fh,h′(y), that aggregates possible assignments between the h and the h′ battlefields.

fh,h′(y) =
∑

xh+···+xh′=y

h′∏
i=h

exp
(
−ηc(t)i (xi)

)
. (117)

Pr [vh, vh′ = b, b′] =
∑

∑
j ̸=h,h′

xj=m−b−b′

Pr[(v1, ..., vh, ..., vh′ , ..., vd) = (x1, ..., b, ..., b
′, ..., xd)]

(118)

∝
∑

∑
j ̸=h,h′

xj=m−b−b′

exp

−η ∑
j ̸=h,h′

c
(t)
j · xj − ηc

(t)
h · b− ηc

(t)
h′ · b′

 (119)

= exp
(
−ηc(t)h · b

)
exp

(
−ηc(t)h′ · b′

)m−b−b′∑
x=0

m−b−b′−x∑
y=0

∑
h−1∑
j=1

xj=x

exp

−η h−1∑
j=1

c
(t)
j · xj


∑

h′−1∑
j=h+1

xj=y

exp

−η h′−1∑
j=h+1

c
(t)
j · xj

 ∑
d∑

j=h′+1

xj=m−b−b′−x−y

exp

−η d∑
j=h′+1

c
(t)
j · xj


(120)

= exp
(
−ηc(t)h · b

)
exp

(
−ηc(t)h′ · b′

)m−b−b′∑
x=0

∑
h−1∑
j=1

xj=x

exp

−η h−1∑
j=1

c
(t)
j · xj


m−b−b′−x∑

y=0

∑
h′−1∑

j=h+1

xj=y

exp

−η h′−1∑
j=h+1

c
(t)
j · xj

 ∑
d∑

j=h′+1

xj=m−b−b′−x−y

exp

−η d∑
j=h′+1

c
(t)
j · xj


(121)

= exp
(
−ηc(t)h · b

)
exp

(
−ηc(t)h′ · b′

)m−b−b′∑
x=0

f1,h−1(x)

m−b−b′−x∑
y=0

fh+1,h′−1(y)fh′+1,d(m− b− b′ − x− y) (122)

= exp
(
−ηc(t)h · b

)
exp

(
−ηc(t)h′ · b′

)m−b−b′∑
x=0

f1,h−1(x)(fh+1,h′−1 ∗ fh′+1,d)(m− b− b′ − x)

(123)
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= exp
(
−ηc(t)h · b

)
exp

(
−ηc(t)h′ · b′

)
(f1,h−1 ∗ (fh+1,h′−1 ∗ fh′+1,d))(m− b− b′)

(124)

We observe that the marginal probabilities only depend on the interval partition function and the
cumulative loss per battlefield. We can precompute the partition function fh,h′(y), for all h, h′ ∈
[d]2 : h ≤ h′ and y ∈ [n]0 in total time md2 logm utilizing the self reducible structure of the
partition function (see algorithm 6 lines 1-5 for details). Then we compute the convolutions (f1,h−1 ∗
fh+1,h′−1 ∗ fh′+1,d)(y) for all h, h′ ∈ [d]2 : h < h′ and y ∈ [n]0 in total time md2 logm with FFT.
Using these calculations, each term Pr [vh, vh′ = b, b′] computation takes constant time.

We remind that the autocorrelation matrix, which is used to construct the loss estimator in
GEOMETRICHEGDE, has the probabilities Pr [vh, vh′ = b, b′] as entries. At this point we have
shown how to efficiently sample from MWU and how to compute the autocorrelation matrix and thus
that GEOMETRICHEGDE can be efficiently implemented.

G.5.1 Comparison with a DAG approach

One can easily see that online learning in m-sets can be modeled as online path planning in an
appropriately constructed DAG with E = O(d ∗m) edges. In this graph, nodes are parameterized
by two indices i, j ∈ [d + 1] × [m]. The source is node N(0, 0) and the sink is N(d + 1,m). At
node N(i, j), 1 ≤ i ≤ d we have considered items 1 to i− 1 and we have selected j of them. If we
select item i we make a transition from N(i, j) to N(i+ 1, j + 1), otherwise we make a transition
to N(i+ 1, j). Transitions that lead to selecting more than m items are illegal and at the sink node
N(d+ 1,m) we should have selected exactly m items. This way, there is an equivalence between
paths in the constructed DAG and selections of m out of d items and in both cases the reward is linear
to the components.

For m-sets over d items the corresponding DAG has |E| = Θ(md) edges. Then, sampling can
be performed through weight pushing [58] in O(E) = O(md), which is similar to complexity of
sampling via the partition function. For the calculation of the autocorrelation matrix the approach
of path planning in the m-set DAG would need O(E2) = O(m2d2) using the techniques of [58].
Compared to the above our approach saves an m factor. Thus, along with partitions (which is the
action set in Blotto) m-sets is another application, where kernelization is beneficial compared to
standard techniques such as weight pushing.
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H Kernelization in Graphic Matroid Congestion Games

Algorithm 7: Efficient First-Moment Kernel Computations in Graphic Matroid Congestion games

Data: C ∈ RE

1 /∗ Compute the weighted Laplacian A ∈ R|V |×|V | ∗/

2 A[u, v] =


∑

e∈E incident to u C(e) if u = v

−C(e) if e = (u, v) ∈ E

0 otherwise.

3 /∗ Compute the LU decompositions of the submatrices A−u,−u
∗/

4 for u = 1, ..., |V | do
5 A−u,−u = the submatrix of A derived by deleting row u and column u

6 Compute the LU decomposition (Lu, Uu) of A−u,−u, that is lower triangular Lu and upper
triangular Uu such that A−u,−u = Lu · Uu

7 /∗ Compute the d kernels ∗/
8 for j = 1, ..., |E| do
9 Let uj , vj be the two nodes connected by edge j

10 Let E−j = E \ {j} be the subgraph that does not have edge j

11 /∗ Compute the weighted Laplacian A(j) in the subgraph where edge j is missing ∗/

12 A(j)[u, v] =


∑

e∈E−j incident to u C(e) if u = v

−C(e) if e = (u, v) ∈ E−j

0 otherwise.

13 A
(j)
−uj ,−uj

= the submatrix of A(j) derived by deleting row uj and column uj

14 Compute the LU decomposition (L, U ) of A(j)
−uj ,−uj

in O(|V |2) using the precomputed
matrices Luj , Uuj and the technique of [56]

15 Compute the kernel KV(C, ēj) = det(L · U) in O(|V |2)

H.1 Proof of Proposition H.1

Let Ḡ = (V̄, Ē) be a connected multigraph, and let Ĝ = (V̂, Ê) be the meta-graph associated with
Ḡ, defined as follows:

1. The vertex sets coincide:
V̂ = V̄.

2. For an edge e = (u, v) ∈ Ē with weight w̄(e):

• If e is the unique edge between u and v, then e ∈ Ê with the same weight:

ŵ(e) = w̄(e).

• Otherwise, let {e′} ⊂ Ē be all parallel edges connecting u and v. Then, we define a
single meta-edge ê ∈ Ê with weight equal to the total weight of the merged edges:

ŵ(ê) =
∑

e′∈{e′}

w̄(e′).

We say that ê is a merged meta-edge, and write e′ ⊂ ê if the edge e′ ∈ Ē participates
in the construction of ê ∈ Ê.

3. Let T̄ denote the set of spanning trees of Ḡ, and let T̂ denote the set of spanning trees of Ĝ.

We derive the following proposition.
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Proposition H.1. It holds that KV̂(ŵ,1) = KV̄(w̄,1).

Proof. It holds that:

KV̂(ŵ,1) =
∑
T̂ ∈V̂

∏
ê∈T̂

ŵ(ê) (125)

=
∑
T̂ ∈V̂

∏
e∈T̂ :e not merged

ŵ(e)
∏

ê∈T̂ :ê merged

ŵ(ê) (126)

=
∑
T̂ ∈V̂

∏
e∈T̂ :e not merged

w̄(e)
∏

ê∈T̂ :ê merged

∑
e′⊂ê

w̄(e′) (127)

=
∑
T̄ ∈V̄

∏
ē∈T̄

w̄(ē) (128)

= KV̄(w̄,1) (129)

H.2 Proof of Lemma 5.1

Proof. Kernelization.

The above algorithm (Algorithm 7) shows how to compute the first-moment kernel computations
in Graphic Matroid Congestion games. The time complexity and correctness of the algorithm are
discussed below.

We will use the following:

• We need O(|V |ω) time for computing an LU decomposition.

• We need O(|V |ω+1) time for precomputing the LU decompositions of the minors.

We leverage the property of the Matrix-Tree Theorem which allows us to use any submatrix to
compute the determinant of the Laplacian matrix. Therefore, we can always make a strategic choice
of which row and column to delete. For each edge j ∈ [|E|] consider the Laplacian used for the
computation of the kernel KV(C, ēj). The Laplacian for this kernel is constructed in the same way
as the one we described above for KV(C, 1) but with the difference that C(j) is set to zero. For each
node v ∈ V , we precompute the LU decomposition of the minors A−v,−v—that is the submatrix of
A derived by deleting row v and column v—and then for each j = (u, u′) ∈ E, we fast compute
kernel K(C, ēj) by computing the determinant of that kernel’s Laplacian via recursive LU updating
[56] in O(|V |2). The latter is due to the fact that we can always select a submatrix of the kernel’s
Laplacian that only differs in one element from A−u,−u, so we can apply the techniques of [56].
Similar arguments can also be used for fast computing KV(C, ēj,j′) to derive the desired results.

Per-Iteration complexity of SAMPLING.

We implement the SAMPLING procedure of Algorithms 1 and 2 based on the above algorithm
(Algorithm 8). Since we have guaranteed that the SAMPLING procedure performs exact sampling
from a MWU(V, C), what remains to prove is that the implementation we propose correctly computes
the conditional kernels. We will prove this using an induction argument on the iterations j ∈ [|E|]
of the algorithm. We will show that the algorithm correctly computes the new Bernoulli probability
pj+1.

• Basis: The meta-graph is initialized as the initial graph. From Theorem 2.2 and Observation
3.3, we get the unconditional probability p1. The algorithm samples v(1) ∼ p1. If the
first edge (u, v) is not selected then the algorithm removes it from the new meta-graph
and computes KV(2) via the cofactor of the Laplacian of the new meta-graph. If the first
edge is selected then: (a) if the first edge is not a merging meta-edge (that is, nodes u
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Algorithm 8: Efficient Exact Sampling of MWU in Graphic Matroids

Data: C ∈ R|E|

1 Initialize Meta-Graph = G(V,E) and assign weight C(e) to each edge e
2 Compute kernels KV(C, ē1) and KV(C,1) using the Matrix-Tree Theorem

3 Sample v(1) ∼ Be
(
1− KV(C,ē1)

KV(C,1)

)
4 Initialize the cumulative weight w = 1
5 for j = 2, ..., d do
6 if v(j − 1) = 0 then
7 Find the meta-edge of Meta-Graph containing edge j − 1 and reduce its weight by

C(j − 1)
8 else
9 Find the meta-edge e of Meta-Graph containing edge j − 1

10 Update w = w · weight(e)
11 Merge the two meta-nodes connected by the meta-edge e.
12 If parallel edges are created then merge them into a single meta-edge containing all the

parallel edges and assign to the new meta edge weight equal to the sum of the weights
of the parallel edges

13 /∗ Compute the kernel KV(j)
∗/

14 Compute a cofactor c of the Laplacian of the Meta-Graph
15 KV(j)(C,1) = w · c
16 Find the meta-edge of Meta-Graph containing the edge j and reduce its weight by C(j)
17 Compute a cofactor c′ of the Meta-Graph Laplacian using the weights of the meta-edges
18 KV(j)(C, ēj) = w · c′
19 Find the meta-edge of Meta-Graph containing the edge j and increase its weight by C(j)

20 pj = 1− KV(j)(C,ēj)

KV(j)(C,1)

21 Sample v(j) ∼ Be(pj)

and v do not have common neighbors in the meta-graph) then the algorithm removes this
edge from the graph, merges the two associated nodes of this edge in the new meta-graph,
updates the cumulative weight with the weight of this edge, and computes KV(2), (b) if
the first edge is a merging meta-edge (i.e., nodes u and v do have common neighbors in
the meta-graph), then the algorithm makes the above steps, but now the meta-graph is a
multi-graph. In this case, the algorithm also merges the resulted parallel edges connecting
the associated nodes into a meta-edge with weight equal with the sum the weights of the
merged edges. The computation of KV(2) is correct, due to Proposition H.1, because the
kernel computation on a multi-graph (that is, the meta-graph after merging the nodes u
and v, but before merging the resulted parallel edges) equals the kernel computation on the
corresponding new meta-graph.

• Induction Step: We use similar arguments with the basis, with the only difference when
removing an edge. Now, if edge j is not selected by the Bernoulli distribution pj but j is part
of a merged meta-edge (i.e., a meta-edge consisting of many edges of the initial graph), then
the algorithm removes its weight from this meta-edge and computes the new meta-graph.
Again the computation of KV(j+1) is correct due to Proposition H.1.

Therefore, SAMPLING(V, Ct) can be implemented in time O(|E||V |ω), where |V |ω is due to the
time we need to compute a single kernel.

H.3 Proof of Theorem 5.2

Proof. We directly derive the statement of the theorem by combining Theorems 3.2 and 3.4 with
Theorem 2.1 and Lemma 5.1.
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I Kernelization in Network Congestion Games

We consider the setting used in [49; 27]; that is, the network congestion game takes place on a DAG,
consisting of nodes V and edges E, and thus an action of each player is a path of a DAG. We assume
that the maximal path length is K. Following [24], we represent an action of each player i ∈ [|P|], as
the incidence vector v ∈ {0, 1}|E| of the corresponding path: for all j ∈ [|E|], v(j) = 1 if and only
if the corresponding edge is present in the path. We denote the action set (i.e., a set of path vectors) of
player i ∈ [|P|] by Vi. Given an action profile (vi, v−i) the total loss of player i, Li, is the sum of the
losses of the selected edges of vi. Based on the above, it is easy to check that a network congestion
game is a combinatorial game with |P| players, actions sets {Vi} and losses {Li}, where the action
vectors are |E|-dimensional and their L1-norm is at most K.

To perform efficient sampling in DAGs and compute all kernels needed by Algorithms 2 and 1, we
utilize the methodology based on DP developed by [58]. For sampling we need time O(|E|). For the
first moment calculation we need time O(|E|), while for the second moment calculation we need
time O(|E|2). Using also the fact that we can compute a 2-approximate barycentric spanner in time
Õ((|E|+ |V |)3), we obtain the following CCE convergence results.

Theorem I.1 (Semi-bandit Convergence to CCE). In a network congestion game, under the semi-
bandit online learning setup, if all players adopt Algorithm 2, then after Õ(|E|1+ωK2/ϵ2) runtime,
with T ≥ |E|K2/ε2, the time-average joint actions, σ∗ := 1

T

∑T
t=1 v

(t)
1 ⊗ · · · ⊗ v

(t)
|P|, forms an

ε-CCE of the game with high probability.

Theorem I.2 (Bandit Convergence to CCE). In a network congestion game, under the bandit
online learning setup, if all players adopt Algorithm 1, then after Õ(|E|2+ωK4/ϵ3) runtime, with
T ≥ |E|2K4/ε3, the time-average joint actions, σ∗ := 1

T

∑T
t=1 v

(t)
1 ⊗ · · · ⊗ v

(t)
|P|, forms an ε-CCE

of the game with high probability.

J Efficient Uniform Random Path Sampling from a DAG

In this section, we describe a method for efficiently and exactly sampling paths uniformly at random
from a Directed Acyclic Graph (DAG). This process is essential for the initialization phase of MWU.
We present the algorithm’s pseudocode and analyze its computational complexity as well as its
correctness.

Algorithm 9 Uniform Random Path Sampling from a DAG
Require: A DAG G = (V,E), source node s, target node t
Ensure: A uniformly random path P from s to t

1: /∗ Path Count Precomputation: ∗/
2: Perform a topological sort of the nodes in G.
3: Set C(v)← 0 for all v ∈ V , and C(t)← 1.
4: for each node v in reverse topological order do
5: C(v)←

∑
(v,u)∈E C(u)

6: /∗ Path Sampling: ∗/
7: Initialize P ← [s] and set v ← s.
8: while v ̸= t do
9: Calculate probabilities P (u)← C(u)∑

(v,w)∈E C(w) for all (v, u) ∈ E.

10: Select the next node u based on probabilities P (u).
11: Add u to P and update v ← u.
12: return P

Computationally Complexity. The precomputation step requires O(V + E) for the topological
sort and another O(V +E) for calculating the path counts. Therefore, the overall complexity of the
precomputation step is O(V + E). During the sampling phase, there are at most O(V ) iterations,
one for each node in the path. Computing transition probabilities takes O(deg(v)) for each node v,
leading to a total of O(E) operations. Thus, the complexity of the sampling phase is O(E).
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Combining both steps, the total complexity of the algorithm is O(V + E).

Correctness Proof. To demonstrate correctness, we prove that every path P from s to t is selected
with equal probability.

The dynamic programming step calculates C(v), the number of paths from node v to t. Using the
recurrence relation:

C(v) =
∑

(v,u)∈E

C(u),

we ensure that C(s) represents the total number of paths from s to t, and C(v) indicates the number
of paths passing through v. At each node v, the transition probability to a neighboring node u is:

P (u | v) = C(u)∑
(v,w)∈E C(w)

=
C(u)

C(v)
.

For any path P = s → v1 → v2 → · · · → t in G the probability of selecting it is given by the
product of transition probabilities:

P (P ) = P (v1 | s) · P (v2 | v1) · · · · · P (t | vK).

By substituting P (u | v) = C(u)
C(v) , we get:

P (P ) =
C(v1)

C(s)
· C(v2)

C(v1)
· · · · · C(t)

C(vK)
=

C(t)

C(s)
=

1

C(s)
.

Since C(s) equals the total number of paths from s to t, every path is selected with an equal probability
of 1

C(s) .

51


	Introduction
	Preliminaries
	Kernelized Payoff-based Learning in Polyhedral Games
	Kernelized GeometricHedge for Bandit No-Regret Learning
	The Semi-Bandit Feedback Case: Kernelizing Implicit Exploration

	Efficient Kernelization in Colonel Blotto Games (CBGs)
	Efficient Kernelization in Graphic Matroid Congestion Games (GMCGs)
	Conclusion
	Extended Related Work
	Semi-bandit No-Regret Learning: Analysis of Algorithm 2
	Second Moment Calculation via Kernelization
	Layered Graph Representation in Colonel Blotto
	Barycentric Spanners
	Computing an Approximate-Barycentric Spanner for Colonel Blotto Games
	Computing an Approximate-Barycentric Spanner for Graphic Matroid Congestion Games

	Bandit No-Regret Learning: Analysis of Algorithm 1
	Kernelization in Colonel Blotto games
	Proof of Proposition 4.2
	Proof of Lemma 4.3
	Alternative Proof of Lemma 4.3
	Proof of Theorem 4.4
	Similar Techniques for Efficient Implementation of Kernelized GeometricHegde in m-sets
	Comparison with a DAG approach


	Kernelization in Graphic Matroid Congestion Games
	Proof of Proposition H.1
	Proof of Lemma 5.1
	Proof of Theorem 5.2

	Kernelization in Network Congestion Games
	Efficient Uniform Random Path Sampling from a DAG

