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ABSTRACT

We study the problem of building an efficient learning system. Efficient learning
processes information in the least time, i.e., building a system that reaches a de-
sired error threshold with the least number of observations. Building upon least
action principles from physics, we derive classic learning algorithms, Bellman’s
optimality equation in reinforcement learning, and the Adam optimizer in genera-
tive models from first principles, i.e., the Learning Lagrangian. We postulate that
learning searches for stationary paths in the Lagrangian, and learning algorithms
are derivable by seeking the stationary trajectories.

Table 1: Overview of Physics-Inspired Learning Lagrangian. Machine learning encompasses a
broad set of paradigms from supervised, unsupervised learning to reinforcement learning and gen-
erative models. We postulate that learning also follows a physical law, the principle of least action.
We unify different learning paradigms through derivation from the first principles. In particular, we
compare the learning Lagrangian with existing physical laws and detail each principle’s suitable
application in learning tasks. We derive classical learning algorithms that arise when searching for
stationary solutions in the Lagrangian.

Physics Learning

Fermat’s principle T =
∫ B

A
dt T =

∫ ϵ[s]

ϵ[∅] dt [*]

Hamiltonian H(x,p) = p · ẋ− L(x, ẋ) H(s,a, λ) = r(s,a) + f(s,a)Tλ [†]

the Lagrangian L = T − V L(ℓ,∇θℓ) =
1
2
(∇θℓ)

TF−1∇θℓ−ℓ(θ) [*]

Applications Algorithms

Fermat’s principle Parametric Models A-optimality (Atkinson et al., 2007)

Hamiltonian Reinforcement Learning Bellman’s Equation (Bellman, 1958)

the Lagrangian Generative Models / Supervised Learning Adam (Kingma, 2014) / RMSprop
(Tieleman, 2012)

Notes: T in Fermat’s principle denotes time taken to travel from point A to point B; ϵ[∅], ϵ[s] is the generaliza-
tion error after observing zero data to data sequence s := s1, s2, . . .; H is the (physical) Hamiltonian system
with position x and momentum p and Lagrangian L; H(s,a, λ) is the reinforcement learning correspondent
with state s, action a, reward r(s,a), transition dynamics f(s,a) and momentum equivalent λ; L = T − V
represents kinetic energy minus potential energy; ℓ denotes some log-likelihood function; ∇θℓ is gradient with
respect to model parameters θ ∈ RP ; F−1 denotes the inverse Fisher information. Bold symbols are vectors;
(·)⊤ is transpose; ẋ is derivative with respect to time. The learning Lagrangian indicated via [†] means it is
classic textbook material in control theory (see Todorov (2006)). Learning Lagrangians indicated by [*] are
proposed in this work; to the best of our knowledge, no prior published work exists as of September 2025.
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1 INTRODUCTION

Modern machine learning encompasses a broad set of paradigms — supervised and unsupervised
learning, reinforcement learning, and generative models, with deep architectures as the dominant
modeling substrate. As momentum built across labs, industry, and policymakers, work shifted to-
ward translating technical advances into products. These efforts have accelerated deployment but
also privileged trial-and-error engineering and scale-first heuristics, in part because we still lack a
principled understanding of when and why learning emerges, generalizes, and fails. This gap has
impeded a systematic methodology for designing sample- and compute-efficient learning systems.

This paper demonstrates a close connection between physics and learning and postulates that learn-
ing algorithms arise as stationary trajectories of a learning Lagrangian. This paper presents a first-
principles account by casting diverse learning paradigms in a single variational framework. We posit
learning Lagrangians and show that algorithms arise as stationary points of their action, thereby
providing a unifying perspective to parameter estimation tasks—covering supervised learning and
generative modeling—and reinforcement learning. Table 1 provides a summary of the paper’s main
result. Motivated by physical principles, we postulate the corresponding learning analogy and il-
lustrate its use in suitable learning tasks. By seeking stationary paths of the associated action, we
recover classical algorithms.

Related Work. Machine learning and physics have early origins from energy-based models (Hinton,
2025; Hopfield, 1982) to their statistical mechanical analysis of memory capacity (Gardner & Der-
rida, 1988). Kaplan et al. (2020) show physics-like scaling law emerges as the neural models scale;
and recent efforts have begun to analyze this phenomenon using statistical mechanics tools (Cui
et al., 2021; Sorscher et al., 2022; Defilippis et al., 2024; Bahri et al., 2024; Paquette et al., 2024).
Bahri et al. (2020) give a more recent survey focused on deep models. This paper, on the other hand,
studies the relationship between efficient learning and the physics Lagrangian without discussing the
choice of model architectures. This work derives algorithms through seeking stationary trajectories,
and the commonality shared between different learning paradigms offers a unifying perspective.

Organization of the paper:

• Section 2 formalizes the connection with kinematic quantities (distance, velocity, accelera-
tion) with Shannon information, deriving the corresponding information-processing veloc-
ity and acceleration. Insight No.1 shows that learning is a decelerating process.

• Section 3 reviews the relevant physical principles and presents the postulated learning La-
grangians. Solving for stationary trajectories of the associated action recovers classical al-
gorithms in parametric models (Sec. 3.1), reinforcement learning (Sec.3.2), and parameter
estimation tasks (including supervised learning and generative models)(Sec. 3.3), thereby
offering a unifying perspective across seemingly disparate learning paradigms. We thus hy-
pothesize that learning obeys the Principle of Least Action: searching for stationary paths
yields learning algorithms.

2 LEARNING AS A DECELERATION PROCESS.

Learning in intelligent systems travels distance not in terms of space but information observed. A
data stream until time t is s1, s2, . . . , st, abbreviated as s≤t. In physics, speed is defined as the rate
of change of position with respect to time: v = lim∆t→0

∆s
∆t = ds

dt . In information processing, we
define position as the amount of Shannon information (Shannon, 1948) up until time t: I(s≤t) :=
log 1

p(s≤t)
= − log p(s≤t). The rate of change of information content with respect to time, termed

as instantaneous velocity in information, is thus derivable as: v = lim∆t→0
I(s≤t+∆t)−I(s≤t)

∆t .

In discrete information flows (e.g., language tokens) when ∆t = 1, given a data stream x≤t, the ve-
locity at time t is v(t) = − log p(xt | x<t). Next token prediction is thus modeling the instantaneous
rate of change in information, or instantaneous velocity in information.

To check the consistency between distance and velocity in information processing, we expect it to
satisfy basic physics properties, e.g., distance as an integral over velocities.

2
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Figure 1: Expected test-time in-context learning velocity and acceleration: (Left) In-context per-
token loss ℓt = v(t) = E[− log pθ(xt | x<t)]; (Right) In-context per-token difference in loss
∆ℓt = a(t) = E[ℓt+1 − ℓt]. In-context learning (as shown in the right) is a deceleration process,
meaning loss goes down but less quickly as time progresses. A similar phenomenon is expected in
training and test loss. Here, in-context loss is evaluated on OpenWebText.

distance as integral. In discrete time, physical distance satisfies: distance =
∑

i v(ti)∆t. That
holds true in information processing too: the total amount of information is the sum of chain-ruled
conditional probabilities: I(x≤t) = − log p(x1, . . . , xt) =

∑t
i=1 v(ti) = −

∑t
i=1 log p(xi | x<i).

Continuing from understanding kinematic quantities in information processing, acceleration is the
instantaneous change in velocity, defined as a = dv

dt = lim∆t→0
∆v
∆t .

acceleration. In discrete information flows, acceleration models the instantaneous change in condi-
tional probability in information processing:

a(t) = − log p(xt+2 | x≤t+1) + log p(xt+1 | x≤t) (1)

Modelling information processing as kinematics, i.e., movements in physical spaces, prepares to
understand the later postulation that learning is searching for stationary trajectories of the action.
As trajectories often imply movements in physical space, here we mean movements in information
space in the above sense. Considering loss curves, regardless of in-context, train, or test losses, from
a kinematics perspective, provides insight No.1. Figure 1 plots the per-token in-context loss and
its discrete first and second differences for small language models, corresponding to the expected
test-time in-context learning velocity and acceleration.

Insight No.1 (Learning as a deceleration process: there is a limit inf v(t).)

Generalization error on the test dataset measuring learning progress is bounded below
by 0 or ϵ determined by intrinsic uncertainty in data. In-context loss curve,
vθ(t) = −E[log pθ(xt | x<t)], vθ(t) is a generally non-increasing function, and thus
a generally decelerating process.a

aDue to the monotone convergence theorem, a bounded below, non-increasing function con-
verges to some limit. We thus hypothesize that learning converges to its infimum.

3 LEARNING LAGRANGIANS

Chollet (2019) measures intelligence centered around efficiency and generality, namely, when facing
new tasks, an intelligent agent should adapt and acquire new skills efficiently. This idea has evolved
to community challenges established in ARC-AGI-1, and ARC-AGI-2 (Chollet et al., 2025). The
authors believe that intelligence is obtained through efficient learning. This paper is motivated to
study the design of an efficient learning system. We present our main postulation below. We first
provide a short review of relevant principles in physics and then present the corresponding learning
Lagrangians. We then show that searching for the stationary path in the Lagrangians, we recover
classic algorithms in different tasks.

3
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Main Postulation (Learning-by-Stationarity)

Learning is searching for the path that makes action governed by the Learning
Lagrangian stationary. In particular, learning algorithms (as in equations of motion)
are obtained by seeking stationary trajectories.

Review of Principles in Physics.

• Fermat’s Principle / Principle of Least Time (Optics) (Born & Wolf, 2019)
A ray of light travelling from point A to point B chooses a path along which the time taken
is the least or minimum 1. Mathematically,

T = min
s

∫
path

nds, (2)

where n = 1
v is refractive index and v is the velocity of light in the medium.

• Hamilton’s Principle / Principle of Least Action (Mechanics) (Hamilton, 1834)
The Law states that the actual path ξ(t) taken by a particle is the path that makes the action
S stationary, where

S[ξ] =

∫
Ldt =

∫
T − V dt, (3)

where L is the Lagrangian, with T kinetic energy and V potential energy. ξ is the general-
ized coordinates that specify the configuration of the system.
A classic example is the Newtonian mechanics for a particle, where ξ is the coordinates of
the particle in the system. The Lagrangian is L = 1

2m|ẋ|
2 − V (x, t). Finding the path that

makes the action stationary leads to Euler-Lagrangian equation, which gives the equation
of motion mẍ = −∇V = F .

• Hamiltonian system. The Hamiltonian system is the Legendre transform of the Lagrangian:

H(x,p) = p · ẋ− L(x, ẋ), (4)

where p = ∂L
∂ẋ is the conjugate momentum of x.

Efficient learning is as if designing a physical system’s process of walking along the information
path such that it takes the least time to reach the desired error threshold. To make the idea concrete:

In learning, we define a point in space as the generalization error ϵ after observing a data sequence
s := {s1, s2, . . .}. Efficient learning thus means optimizing for a path to reach an error threshold in
the shortest time (cf. Fermat’s principle of least time). Mathematically,

T (δ) = min
s

∫ ∞

0

Θ(ϵ[s]− δ)dt = min
s

∫ δ

ϵ[∅]

dϵ

r(ϵ, s)
, (5)

where ϵ[s] is the generalization error after seeing data path s and ϵ[∅] denotes the generalization error
before seeing any data, and Θ is an indicator function where Θ(x) = 0, if x ≤ 0 and 1 if x > 0.
Learning velocity2, denoted by r(ϵ, s), is the rate of difference in generalization error as information
progresses, i.e., rθ(ϵ, sn) = ϵθ(sn−1) − ϵθ(sn), where the small θ denotes the configuration of the
system3. The least time is quantified as the least number of observations, assuming similar informa-
tion content in each observation4. Thus we propose metrics for evaluation for efficient learning:

• sample-efficient: Tsample = number of samples required to achieve the error threshold.

1More generally, a ray of light travelling from point A to point B choose an optical path that is stationary
(i.e., maximum, minimum, extremum), mathematically T =

∫ B

A
dt = stationary.

2We note that different learning problems with different algorithms have different rates of learning. It is
derivable given specific setup and algorithm, though not known a priori.

3Configuration includes but not limited to model parameters, initialization, architecture choice.
4Future work can investigate how to quantify time when samples do not contain similar information content.
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• compute-efficient: Tcompute = computational time taken to achieve the error threshold.

The metrics are proposed based on the learning time of the system indicated from Eq. 5 and the time
in real life to process learning (e.g., parallel processing decreases computational time but does not
enable sample-efficient learning). The above makes clear that efficient learning that could increase
intrinsic intelligence requires optimization in Tsample, and investing in compute only may not be the
best solution.

A natural next step is to optimize the given objective. However, we face the technical difficulty
of unknown generalization error. The generalization error is derivable given a specific setup and
algorithm, but it is not known a priori for optimization.

To address the technical difficulty in optimization with unknown generalization error, we con-
sider the following approaches:

• Parametric assumption. Section 3.1 provides a concrete example in linear regression with
parametric assumptions. Under suitable assumptions on input standardization, optimizing
the Lagrangian given by Fermat’s principle Eq. 5 yields an analytical optimal solution.
Remark. Though it is not desirable in practice to constrain model classes with parametric
restriction due to model mis-specification, we find it helpful to have an analytical analysis
that illustrates some properties for efficient learning (e.g., planning is important).

• Reward Hypothesis. Section 3.2 provides insights on how reinforcement learning circum-
vents the problem with step-wise progress measured by reward. Writing the Lagrangian in
terms of reward gives an equivalent form of Hamiltonian system, and finding the stationary
path in the Lagrangian gives rise to Bellman’s optimality equations (Bellman, 1958).
Remark. Given the reward assumption, we will see in the section the derivation does not
give rise to concrete Lagrangian as L in Eq. 4 is replaced with reward.

• Postulated Lagrangian. Section 3.3 presents our postulated learning Lagrangian in terms
of parameter estimation tasks, covering supervised learning and generative modelling. Op-
erationalizing the learning dynamics of loss field through particle dynamics of the con-
figuration gives rise to θ̇ = F−1/2∇θℓ that Adam (Kingma, 2014) approximates with
diagonalized Fisher for parallel processing.

3.1 PARAMETRIC ASSUMPTION GIVES ANALYTICAL PATH DERIVATION.

Consider a linear regression setup: Suppose y = xTβ+ϵ and x ∈ Rp and ϵ has mean 0 and variance
σ2. The generalization error on the standard linear regression is:

ϵ(x) = σ2 + σ2tr((XTX)−1E[xxT ]),

where x is the test data point and x are the sequence of observational points as rows in the data
matrix X . Assuming unit norm assumptions where each observed data point satisfies ||xi||2 = 1,∀i
and x is uniformly drawn from the unit sphere Sp−1. We work in the classical regime where n ≥ p,
so that the data matrix XTX is invertible and has full rank. Note, by unit norm assumption,

tr(XTX) = tr(
∑
i

xix
T
i ) =

∑
i

tr(xix
T
i ) =

∑
i

||xi||22 = n. (6)

Further E[xxT ] = 1
pIp due to uniform sampling over Sp−1. Optimizing the Lagrangian shown in Eq.

5, we would like to choose the observational data path x such that ϵ(x) is minimized with the least
number of observations. Since S := XTX is a real symmetric matrix, by the spectral theorem, there
exists an orthogonal Q and a real diagonal matrix Λ such that S = QΛQT . Then S−1 = QΛ−1QT

and tr(S−1) = tr(Λ−1QTQ) =
∑

i
1
λi

. The problem of optimizing the data path:

min
x:||xi||2=1

∫ ∞

0

Θ(ϵ(x)− δ)dt (7)

translates to min 1
p

∑p
i=1

1
λi

subject to
∑p

i=1 λi = n. By convexity function t → 1
t and Jensen’s

inequality, one has
1

p

∑
i

1

λi
≥ p∑

i λi
=

p

n

5
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The inequality is achieved when λi =
n
p , thus minimum is attained at 1

p

∑p
i=1

1
λi

= p
n . Then

min
x

ϵ(x) = σ2 + σ2 p

n

As noted before in Section 2, dependent on specific problem setup, there is an irreducible general-
ization error (σ2 in this case), and the generalization error ranges from (σ2, 2σ2] due to n ≥ p. For
example, to reach ϵ(x) = 2σ2, the minimum sample required is p and X could be any orthogonal
matrix Q. To reach ϵ(x) = 1.5σ2, the minimum sample required is 2p and X =

√
2V , where V

could be any (real) Stiefel matrix. The analytical example shows us that given parametric assump-
tions on function classes and input distribution, it is possible to choose the observation matrix most
efficiently for reducing generalization error. This is a special case for A-optimality (Atkinson et al.,
2007) in linear regression setting.

A natural follow-up question is whether there is a data solution path such that adding more data
points always stays along the optimal path? A short answer is no as XTX =

∑
xix

T
i and adding

one single data point to maintain S = n
p Ip implies the added point has the property xix

T
i = 1

pIp,
which is impossible due to rank difference between 1 and p. However, adding blocks of p new data
points is possible, planning p-steps ahead in this case.

Insight No.2

Planning is needed to learn continuously in the most efficient way.

3.2 REINFORCEMENT LEARNING AS STOCHASTIC APPROXIMATION.

This section builds on two insights:

• optimizing action/policy is implicitly optimizing the data path or state path in RL terms,
for learning, cf. mins in Eq. 5.

• The reward hypothesis circumvents the problem of unknown generalization error.

In fact, searching the stationary points in the Lagrangian written from a reward perspective derives
Bellman’s optimality equation (Bellman, 1958), the backbone of many RL algorithms, e.g., policy
iteration, value iteration (Sutton & Barto, 2018), Q-learning (Watkins & Dayan, 1992), Deep Q-
learning (Mnih et al., 2013).

Reward Hypothesis. All goals can be represented by rewards (Sutton & Barto, 2018).

Reinforcement learning circumvents the problem of unknown generalization error through measur-
ing step-wise progress through reward r(s,a) on its current state s and next action a. In other words,
the value function V (s) is the path to maximize reward, and the optimization over mins is through
finding the optimal policy reaching the optimal path V⋆(s). Greydanus & Olah (2019) provides an in-
tuitive playground on how value function can be viewed from a path perspective. Note that the exact
quantification of optimal can be incorporated appropriately through designing the reward function.

Next, we demonstrate that searching for the stationary points in the Lagrangian defined in the RL
setting gives commonly known learning algorithms, i.e., Bellman’s optimality equation. We do not
claim novelty in this derivation, as it is textbook material in classic control theory, see Pontrya-
gin’s maximum principle (Kirk, 1970), Hamilton-Jacobi-Bellman equations for the continuous case
(Evans, 2010); we include it to demonstrate the support of our main postulation that learning is
searching for stationary points in the Lagrangian, and finding stationary points gives rise to classic
learning algorithms.

Derivation of Bellman equation from the Lagrangian. The goal of the learning problem is to find
actions (a0,a1, . . . ,an−1) and states (s0, s1, . . . , sn) to maximize the objective function J , where

J = h(sn) +

∫ tf

0

r(st,at, t)dt (8)

subject to constraints sk+1 = f(sk,ak) and tf is final time. This assumes a deterministic transition
where the next state is uniquely determined by its action. And h(sn) is the terminal reward. Turning

6
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the above problem into a constrained optimization problem with Lagrangians:

L({s}, {a}, λ) = h(sn) +

n−1∑
k=0

(
r(sk,ak, k) + (f(sk,ak)− sk+1)

Tλk+1

)
(9)

Learning a stationary solution for the Lagrangian means we search for solutions that satisfy ∂L
∂sk

= 0,
∂L
∂ak

= 0 for all k and ∂L
∂λ = 0. Define discrete-time Hamiltonian:

H(k)(s,a, λ) = r(s,a, k) + f(s,a)
T
λ (10)

Re-writing the Lagrangian in Eq. 9 gives Eq. 11 :

L = h(sn)− sTnλn + sT0 λ0 +

n−1∑
k=0

(H(k)(sk,ak, λk+1)− sTk λk

)
(11)

dL = (∇sh(sn)− λn)
T dsn + λT

0 ds0 +

n−1∑
k=0

(∂H(k)

∂sk
− λk

)T
dsk + (

∂H(k)

∂ak
)T dak (12)

With the initial position fixed (ds0 = 0), we search for solutions that lead to other terms of variations
being 0. This leads to solutions that satisfy constraints below:

λn = ∇sh(sn) (13)

λk =
∂r(sk,ak, k)

∂sk
+

∂f(sk,ak)

∂sk

T

λk+1 (14)

ak = argmax
u

H(k)(sk, u, λk+1) =⇒ ∂H(k)

∂ak
= 0 (15)

Given h(sn) is the terminal reward and λn is the derivative of the terminal return with respect
to state. That means in RL terms λn = ∇sV (sn). Suppose λk = ∇sV (sk). Mathematically,
differentiating Eq. 16 with respect to sk gives Eq. 14:

V (sk) = r(sk,ak, k) + V (sk+1) = r(sk,ak, k) + V (f(sk,ak)) (16)

∇sV (sk) =
∂r(sk,ak, k)

∂sk
+

∂f(sk,ak)

∂sk

T

∇sV (sk+1) (17)

Combining with Eq. 15, the solution needs to satisfy constraints:

V (sk) = max
u
{r(sk, u, k) + V (f(sk, u))} (18)

It is not hard to see, in probabilistic transitions where the Lagrangian involves integral over random-
ness in the environment, the solution that satisfies being the stationary path gives:

V (sk) = max
u

(r(sk, u, k) + E[V (Sk+1)]) (19)

uk = argmax
u

(r(sk, u, k) + E[V (Sk+1)]) (20)

This is the classic Bellman optimality equation.

Insight No.3

The stationary path in the Lagrangian, written in terms of rewards, should satisfy
Bellman’s optimality equation. Thus, optimizing Bellman’s equation is searching for
the stationary path.

Remark. Recall the Hamiltonian system:

H(x,p) = p · ẋ− L(x, ẋ), (21)

where p is the conjugate momentum of x and p = ∂L
∂ẋ . From the above derivation in discrete-time

Hamiltonian, we saw that momentum p is λ and ẋ is the transition dynamics f(s,a), and as noted

7
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the Lagrangian or rate of decrease in generalization error as information progresses is replaced with
step-wise reward r(s,a). Reinforcement learning thus performs well in settings with well-defined
rewards, e.g., games (Mnih et al., 2015), chess (Silver et al., 2017), or verifiable problems like
mathematics (Guo et al., 2025) though the lack of intermediate rewards for math problems may
lead to inefficiency in search, thus large-scale training. Applying RL in real-world applications
without clear rewards thus requires a carefully designed reward model, e.g., reinforcement learning
from human feedback (Ouyang et al., 2022; Lambert, 2025). However, for our purposes, the above
derivation does not show the learning Lagrangian. In the section below, we postulate the learning
Lagrangian and provide reasons for our postulation.

3.3 GENERATIVE MODELS WITH POSTULATED LAGRANGIAN

In search of a design of an efficient learning system, we started from the equivalent learning La-
grangian from Fermat’s Principle, to a reward-based Hamiltonian system. Efficient learning tran-
sitions from traveling on the path that takes the least time to its more general mechanical form as
searching for the stationary path to minimize action.

A naı̈ve understanding from discussions in previous sections (see Fermat’s principle) would lead
to the conclusion that supervised learning is less efficient than reinforcement learning, due to a
lack of optimization over the data path s. In this section, we show that this is not the case. We
present our postulated Lagrangian and posit that reinforcement learning is the Legendre transform
of parameter estimation tasks, in the same sense as a Hamiltonian system is the Legendre transform
of the Lagrangian, such that they share the same optimal solutions.

In generative models, given a dataset D := {x1,x2, . . . ,xn}, we search for parameter θ that learns
how the data are distributed pθ(x). Similarly, in supervised learning, we learn a conditional distri-
bution pθ(y | x) from either labelled pairs for classification tasks, or regression tasks. Both learning
problems, from generative modelling to supervised learning, are parameter estimation problems.

In statistical estimation tasks, we search for an estimator θ̂ that maximizes the likelihood function.
Here, we are not only interested in finding an estimator that best models data, but we are also looking
for an efficient statistical estimator. The Cramér-Rao lower bound states

Let θ̂ be an unbiased estimator of the unknown parameter θ. Then under regularity conditions,

Var(θ̂)− I−1(θ), (22)

is positive semi-definite. In particular, an unbiased estimator θ̂ attains the lower bound, i.e., Var(θ̂) =
I−1(θ) is an efficient estimator. Here I(θ) is known as the Fisher information and defined as

I(θ) := E[(∇θℓ(θ;x))(∇θℓ(θ;x))
T ] (23)

= −E
[ ∂2

∂θ∂θT
ℓ(θ;x)

]
(24)

where ℓ(θ;x) is the log-likelihood function. From hereon, we state the postulation.

Postulation: Consider the loss function ℓ(θ, t) as a field5 defined at every point of configuration
(θ, t). The dynamics of the field is governed by the Lagrangian dynamics:

S =

∫
t

dt

∫
θ

dθ

∫
x

p(x)dxL(ℓ, ∂ℓ
∂t

,
∂ℓ

∂θ
, θ, t) (25)

The integral over x is due to batched sampling over data. Given the loss function in current machine
learning paradigm does not depend on time, and knowing potential energy is a static term corre-
sponding to some intrinsic property of the estimation task, we postulate it to be some log-likelihood
function ℓ(θ;x); knowing kinetic energy takes a quadratic form and taking into account searching
for an efficient estimator, we thus hypothesize that Lagrangian takes the form of:

L(ℓ,∇θℓ) = T − V =
1

2P
(∇θℓ)

TF (θ)−1(∇θℓ)− ℓ(θ;x) (26)

5Here we meant by physical field.
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where P is the number of model parameters, i.e., θ ∈ RP and F denotes Fisher information.
Given the postulated Lagrangian, we expect the solution at the stationary points to satisfy the
Euler-Lagrangian equation for scalar field theory with expectation adjusted:

E[
∂L
∂ℓ

] = E
[ ∂

∂t
(
∂L
∂ℓ̇

) +
∑
i

∂

∂θi

∂L
∂(∂ℓ/∂θi)

]
(27)

The left-hand side is −1 and due to L has no ℓ̇ term, the first term in the right-hand side is 0. The
second term in the right-hand side can be re-written as E[∇θ · ∂L

∂∇θl
]. Thus,

−1 = E[∇θ ·
∂L
∂∇θl

] (28)

−1 =
1

P
E[∇θ · (F−1∇θl)] due to

∂L
∂∇θℓ

= F−1∇θℓ (29)

Note that the divergence of a vector is the trace of the gradient of the vector. Note the Fisher does
not depend on the randomness of x as it already takes expectation over x, we have:

−1 =
1

P
tr(∇θ(F (θ)−1) E[∇θl]︸ ︷︷ ︸

=0 at stationary points

+F−1E[∇2
θl]]) =

1

P
tr
(
F−1 E[∇2

θl]︸ ︷︷ ︸
=−F

)
= −1 (30)

We thus observe (unsurprisingly) that the solution at stationary points for the parameter estimation
task needs to be a maximum likelihood estimator.

The learning dynamics of loss fields needs to be operationalized through changes in particle dynam-
ics where each parameter in the configuration θ is governed by L = T − V = 1

2mθ̇T θ̇ − V (θ, t).
Re-writing the postulated Lagrangian, we have θ̇ = F−1/2∇θl where the mass of the system is the
inverse number of model parameters m = 1

P and F is a symmetric and positive semi-definite ma-
trix. In optimization, given unknown observed Fisher, we approximate using the empirical Fisher.
Both RMSprop (Tieleman, 2012) and Adam (Kingma, 2014) have update based on F−1/2∇θℓ:

RMSprop: θt+1 ← θt − α
gt√
vt + ϵ

, (31)

Adam: θt+1 ← θt − α
m̂t√
v̂t + ϵ

, (32)

where gt = ∇θtℓ, vt = β2vt−1 + (1 − β2)gt ⊙ gt, and mt = β1mt−1 + (1 − β1)gt, m̂t =
mt

1−βt
1

,
v̂t =

vt

1−βt
2

, and ϵ are added for numerical stability. From the Lagrangian, one can also predict the
inefficiency of SGD, as it does not satisfy the Euler-Lagrange equation. Combining with Section 3.2
on the relationship with reinforcement learning and Hamiltonian system, we thus posit our insight:

Insight No.4

Reinforcement learning is the Legendre transform of parameter estimation tasks
under Adam / RMSprop optimization.

4 CONCLUSION

Motivated by the study of efficient learning through physics, we find surprising synergies between
different physics principles and different learning paradigms, from active data selection, reinforce-
ment learning, to parameter estimation tasks. We assay the results in Section 3 and derive classic
learning algorithms from seeking stationary trajectories in the Lagrangian, offering a unifying per-
spective to seemingly broad and different learning paradigms. As any intriguing hypothesis needs
experimental verification, a natural next step is to design verifiable experiments. Though at the
current status, we find our insights with mathematical justification provide a diverse range of postu-
lations about synergies across different fields that could require community efforts to test and verify.
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ETHICS STATEMENT

The paper aims to understand the fundamentals of learning and intelligence. We demonstrate a
close connection between physics and learning and postulate that learning, too, follows physical
laws. This work promotes the importance of AI safety and ethics, as machine learning, like other
engines or entities, obeys the laws of Nature. This paper presents a principled, promising approach
to designing safer AI through understanding the fundamental laws behind learning.

REPRODUCIBILITY STATEMENT

The paper includes theoretical derivations within the paper and experiment results are easily repro-
ducible through public sources.
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Large language models are used to polish academic writing, search for references, and provide
hints for mathematical proofs with concrete prompts. Large language models are very helpful as an
assisted tool, but it still cannot directly contribute to the paper’s main contribution.
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