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Abstract
Bandits with preference feedback present a powerful tool for optimizing unknown1

target functions when only pairwise comparisons are allowed instead of direct2

value queries. This model allows for incorporating human feedback into online3

inference and optimization and has been employed in systems for tuning large4

language models. The problem is well understood in simplified settings with linear5

target functions or over finite small domains that limit practical interest. Taking6

the next step, we consider infinite domains and nonlinear (kernelized) rewards. In7

this setting, selecting a pair of actions is quite challenging and requires balancing8

exploration and exploitation at two levels: within the pair, and along the iterations9

of the algorithm. We propose MAXMINLCB, which emulates this trade-off as a10

zero-sum Stackelberg game, and chooses action pairs that are informative and yield11

favorable rewards. MAXMINLCB consistently outperforms existing algorithms12

and satisfies an anytime-valid rate-optimal regret guarantee. This is due to our13

novel preference-based confidence sequences for kernelized logistic estimators.14

1 Introduction15

In standard bandit optimization, a learner repeatedly interacts with an unknown environment that gives16

numerical feedback on the chosen actions according to a utility function f . However, in applications17

such as fine-tuning large language models, drug testing, or search engine optimization, the quantitative18

value of design choices or test outcomes are either not directly observable, or are known to be19

inaccurate, or systematically biased, e.g., if they are provided by human feedback [Casper et al., 2023].20

A solution is to optimize for the target based on comparative feedback provided for a pair of queries,21

which is proven to be more robust to certain biases and uncertainties in the queries [Ji et al., 2023].22

Bandits with preference feedback, or dueling bandits, address this problem and propose strategies for23

choosing query/action pairs that yield a high utility over the horizon of interactions. At the core of such24

strategies is uncertainty quantification and inference for f in regions of interest, which is closely tied to25

exploration and exploitation dilemma over a course of queries. Observing only comparative feedback26

poses an additional challenge, as we now need to balance this trade-off jointly over two actions. This27

challenge is further exacerbated when optimizing over vast or infinite action domains. As a remedy,28

prior work often grounds one of the actions by choosing it either randomly or greedily, and tries to bal-29

ance exploration-exploitation for the second action as a reaction to the first [Ailon et al., 2014, Zoghi30

et al., 2014a, Kirschner and Krause, 2021, Mehta et al., 2023b]. This approach works well for simple31

utility functions over low-dimensional domains, however does not scale to more complex problems.32

Aiming to solve this problem, we focus on continuous domains in the Euclidean vector space and33

complex utility functions that belong to the Reproducing Kernel Hilbert Space (RKHS) of a poten-34

tially non-smooth kernel. We propose MAXMINLCB, a sample-efficient algorithm, that at every step35

chooses the actions jointly, by playing a zero-sum Stackelberg (Leader-Follower) game. We choose36

the Lower Confidence Bound (LCB) of f as the objective of this game which the Leader aims to37
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maximize and the Follower to minimize. The equilibrium of this game yields an action pair in which38

the first action is a favorable candidate to maximize f and the second action is the strongest competitor39

against the first. Our choice of using the LCB as the objective leads to robustness against uncertainty40

when selecting the first action. Moreover, it makes the second action an optimistic choice as a competi-41

tor, from its own perspective. We observe empirically that this approach creates a natural exploration42

scheme, and in turn, yields a more sample-efficient algorithm compared to standard baselines.43

Our game-theoretic strategy leads to an efficient bandit solver, if the LCB is a valid and tight lower44

bound on the utility function. To this end, we construct a confidence sequence for f given pairwise45

preference feedback, by modeling the noisy comparative observations with a logistic-type likelihood46

function. Our confidence sequence is anytime valid and holds uniformly over the domain, under the47

assumption that f resides in an RKHS. We improve prior work by removing or relaxing assumptions48

on the utility while maintaining the same rate of convergence. This result allows us to prove a49

sublinear regret bound for MAXMINLCB, and may be of independent interest, as it targets the loss50

function that is typically used for Reinforcement Learning with Human Feedback.51

Contributions Our main contributions are:52

• We propose a novel game-theoretic acquisition function for pairwise action selection with53

preference feedback.54

• We construct preference-based confidence sequences for kernelized utility functions that are55

tight and anytime valid.56

• Together this creates MAXMINLCB, an algorithm for bandit optimization with preference57

feedback over continuous domains. MAXMINLCB satisfies O(γT
√
T ) regret, where T is58

the horizon and γT is the information gain of the kernel.59

• We benchmark MAXMINLCB over a set of standard optimization problems and consistently60

outperform the most common action selection algorithms from the literature.61

2 Related Work62

Learning with indirect feedback was first studied in supervised preference learning [Aiolli and63

Sperduti, 2004, Chu and Ghahramani, 2005]. Subsequently, online and sequential settings were64

considered, motivated by applications in which the feedback is provided in an online manner, e.g.,65

by a human [Yue et al., 2012, Yue and Joachims, 2009, Houlsby et al., 2011]. Bengs et al. [2021]66

surveys this field comprehensively; here we include a brief background.67

Referred to as dueling bandits, a rich body of work considers (finite) multi-armed domains and learns68

a preference matrix specifying the relation among the arms. Such work often relies on efficient69

sorting or tournament systems based on the frequency of wins for each action [Jamieson and Nowak,70

2011, Zoghi et al., 2014b, Falahatgar et al., 2017]. Rather than jointly selecting the arms, such71

strategies often simplify the problem by selecting one at random [Zoghi et al., 2014a, Zimmert and72

Seldin, 2018], greedily [Chen and Frazier, 2017], or from the set of previously selected arms [Ailon73

et al., 2014]. In contrast, we jointly optimize both actions by choosing them as the equilibrium of a74

two-player zero-sum Stackelberg game, enabling a more efficient exploration/exploitation trade-off.75

The multi-armed dueling setting, which is reducible to multi-armed bandits [Ailon et al., 2014], natu-76

rally fails to scale to infinite compact domains, since regularity among “similar” arms is not exploited.77

To go beyond finite domains, utility-based dueling bandits consider an unknown latent function that78

captures the underlying preference, instead of relying on a preference matrix. The preference feedback79

is then modeled as the difference in the utility of two chosen actions passed through a link func-80

tion. Early work is limited to convex domains and imposes strong regularity assumptions [Yue and81

Joachims, 2009, Kumagai, 2017]. These assumptions are then relaxed to general compact domains82

if the utility function is linear [Dudík et al., 2015, Saha, 2021, Saha and Krishnamurthy, 2022]. Con-83

structing valid confidence sets from comparative preference feedback is a challenging task. However,84

it is strongly related to uncertainty quantification with direct logistic feedback, which is extensively85

analyzed by the literature on logistic and generalized linear bandits [Filippi et al., 2010, Faury et al.,86

2020, Foster and Krishnamurthy, 2018, Beygelzimer et al., 2019, Faury et al., 2022, Lee et al., 2024].87

Preference-based bandit optimization with linear utility functions is fairly well understood and even ex-88

tends to reinforcement learning with preference feedback on trajectories [Saha et al., 2023, Zhan et al.,89

2023, Zhu et al., 2023, Ji et al., 2023]. However, such approaches have limited practical interest, since90

they cannot capture real-world problems with complex nonlinear utility functions. Alternatively, Re-91

producing Kernel Hilbert Spaces (RKHS) provide a rich model class for the utility, e.g., if the chosen92
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kernel is universal. Many have proposed heuristic algorithms for bandits and Bayesian optimization93

in kernelized settings, albeit without providing theoretical guarantees Brochu et al. [2010], González94

et al. [2017], Sui et al. [2017], Tucker et al. [2020], Mikkola et al. [2020], Takeno et al. [2023].95

There have been attempts to prove convergence of kernelized algorithms for preference-based bandits96

[Xu et al., 2020, Kirschner and Krause, 2021, Mehta et al., 2023b,a]. Such works employ a regression97

likelihood model which requires them to assume that both the utility and the probability of preference,98

as a function of actions, lie in an RKHS. In doing so, they use a regression model for solving a99

problem that is inherently of a classification nature. While the model is valid, it does not result in100

a sample-efficient algorithm. In contrast, we use a kernelized logistic negative log-likelihood loss to101

infer the utility function, and provide confidence sets for its minimizer. In a concurrent work, Xu et al.102

[2024] also consider the kernelized logistic likelihood model and propose a variant of the MULTISBM103

algorithm [Ailon et al., 2014] using likelihood ratio-based confidence sets. The theoretical approach104

and resulting algorithm bear significant differences, and the regret guarantee has a strictly worse105

dependency on the time horizon T , by a factor of T 1/4. This is discussed in more detail in Section 5.106

3 Problem Setting107

Consider an agent which repeatedly interacts with an environment: at step t the agent selects two108

actions xt, x
′
t ∈ X and only observes stochastic binary feedback yt ∈ [0, 1] indicating if xt ≻ x′

t,109

that is, if action xt is preferred over action x′
t. More formally, P(yt = 1|xt,x

′
t) = P(xt ≻ x′

t),110

and yt = 0 with probability 1 − P(xt ≻ x′
t). Based on the preference history111

Ht = {(x1,x
′
1, y1), . . . (xt,x

′
t, yt)}, the agent aims to sequentially select favorable action pairs.112

Over a horizon of T steps, the success of the agent is measured through the cumulative dueling regret113

RD(T ) =

T∑
t=1

P(x⋆ ≻ xt) + P(x⋆ ≻ x′
t)− 1

2
, (1)

which is the average sub-optimality gap between the chosen pair and the globally preferred action114

x⋆. To better understand this notion of regret, consider the scenario where actions xt and x′
t are both115

optimal. Then the probabilities are equal to 0.5 and the dueling regret will not grow further, since116

the regret incurred at step t is zero. This formulation of RD(T ) is commonly used in the literature117

of dueling Bandits and RL with preference feedback [Urvoy et al., 2013, Saha et al., 2023, Zhu118

et al., 2023] and is adapted from Yue et al. [2012]. Our goal is to design an algorithm that satisfies a119

sublinear dueling regret, where RD(T )/T → 0 as T →∞. This implies that given enough evidence,120

the algorithm will converge to the globally preferred action. To this end, we take a utility-based121

approach and consider an unknown utility function f : X → R, which encodes absolute preference,122

i.e., xt ≻ x′
t if and only if f(xt) > f(x′

t). We model the dependency of the stochastic binary123

feedback yt on f using the Bradley-Terry model [Bradley and Terry, 1952]124

P(yt = 1|xt,x
′
t) := s (f(xt)− f(x′

t)) (2)

where s : R → [0, 1] is the sigmoid function, i.e. s(a) = (1 + e−a)−1. This probabilistic model125

for binary feedback is widely used in the literature for logistic and generalized bandits [Filippi et al.,126

2010, Faury et al., 2020]. Under the utility-based model, x⋆ = argmaxx∈X f(x) and we can draw127

connections to a classic bandit problem with direct feedback over a reward f . In particular, Saha128

[2021] shows that the dueling regret is equivalent up to constant factors, to the average utility regret129

of the two actions, that is
∑T

t=1 f(x
⋆)− [f(xt) + f(x′

t)]/2.130

Throughout this paper, we make two key assumptions over the environment. We assume that131

the domain X ⊂ Rd0 is compact, and that the utility function lies in Hk, a Reproducing Kernel132

Hilbert Space corresponding to some kernel function k ∈ X × X → R with a bounded RKHS133

∥f∥k ≤ B. Without a loss of generality, we further suppose that the kernel function is normalized134

and k(x,x) ≤ 1 everywhere in the domain. Our set of assumptions extends the prior literature135

on logistic bandits and dueling bandits from linear rewards or finite action spaces, to continuous136

domains with non-parametric rewards.137

4 Kernelized Confidence Sequences with Direct Logistic Feedback138

As a warm-up, we consider a hypothetical scenario where x′
t = xnull for all t ≥ 1 such that139

f(xnull) = 0. Therefore at every step, we suggest an action xt and receive a noisy binary feedback140

yt, which is equal to one with probability s(f(xt)). The conditional expectation of the feedback is141
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then characterized as E(yt|Ht−1) = s(f(xt)). This example reduces our problem to logistic bandits142

which has been previously analyzed for linear rewards [Filippi et al., 2010, Faury et al., 2020]. We143

extend prior work to the non-parametric setting by proposing a tractable loss function for estimating144

the utility function, a.k.a. reward. We present novel confidence intervals that quantify the uncertainty145

over the logistic predictions uniformly over the action domain. In doing so, we propose confidence146

sequences for the kernelized logistic likelihood model that are of independent interest for developing147

sample-efficient solvers for online and active classification.148

Since the feedback yt is a Bernoulli random variable, its likelihood depends on the utility function as149

s(f(xt))
yt [1− s(f(xt))]

1−yt . Then given history Ht, we can estimate f by ft, the minimizer of the150

regularized negative log-likelihood loss151

LL
k (f ;Ht) :=

t∑
τ=1

−yτ log [s(f(xτ ))]− (1− yτ ) log [1− s(f(xτ ))] +
λ

2
∥f∥2k (3)

where λ > 0 is the regularization coefficient. The regularization term ensures that ∥ft∥k is finite and152

bounded. For simplicity, we assume throughout the main text that ∥ft∥k ≤ B. However, we do not153

need to rely on this assumption. In the appendix, we present a more rigorous analysis by projecting154

ft back into the RKHS ball of radius B to ensure that the B-boundedness condition is met, instead of155

assuming it. We do not perform this projection in our experiments.156

Solving for ft may seem intractable at first glance since the loss is defined over functions in the large157

space of Hk. However, it is common knowledge that the solution has a parametric form and may158

be calculated by using gradient descent. This is a simple application of the Representer Theorem159

[Schölkopf et al., 2001] and is detailed in Proposition 1.160

Proposition 1 (Logistic Representer Theorem). The regularized negative log-likelihood loss of161

LL
k (f ;Ht) has a unique minimizer ft, which takes the form ft(·) =

∑t
τ=1 αsk(·,xτ ) where162

(α1, . . . αt) =:αt ∈ Rt is the minimizer of the strictly convex loss163

LL
k (α;Ht) =

t∑
τ=1

−yτ log
[
s(α⊤kt(xτ ))

]
− (1− yτ ) log

[
1− s(α⊤kt(xτ ))

]
+
λ

2
∥α∥22

with kt(x) = (k(x1,x), . . . , k(xt,x)) ∈ Rt.164

Given ft, we may predict the expected feedback for a point x as s(ft(x)). Centered around this165

prediction, we construct confidence sets of the form [s(ft(x))±βt(δ)σt(x)], and show their uniform166

anytime validity. The width of the sets are characterized by σt(x) defined as167

σ2
t (x) := k(x,x)− k⊤t (x)(Kt + λκIt)

−1kt(x) (4)

where κ = supa≤B 1/ṡ(a) and Kt ∈ Rt×t is the kernel matrix satisfying [Kt]i,j = k(xi,xj). Our168

first main result shows that for a careful choice of βt(δ), these sets contain s(f(x)) simultaneously169

for all x ∈ X and t ≥ 1 with probability greater than 1− δ.170

Theorem 2 (Kernelized Logistic Confidence Sequences). Assume f ∈ Hk and ∥f∥k ≤ B. Consider171

any 0 < δ < 1 and set172

βt(δ) := 4LB + 2L

√
2κ

λ
(γt + log 1/δ), (5)

where γt := maxx1,...,xt

1
2 log det(It + (λκ)−1KT ), and L := supa≤B ṡ(a). Then173

P (∀t ≥ 1,x ∈ X : |s (ft(x))− s (f(x))| ≤ βt(δ)σt(x)) ≥ 1− δ.

Function-valued confidence sets around the kernelized ridge estimator are analyzed and used exten-174

sively to design bandit algorithms with noisy feedback on the true reward values [Valko et al., 2013,175

Srinivas et al., 2010, Chowdhury and Gopalan, 2017, Whitehouse et al., 2023]. However, under noisy176

logistic feedback, this literature falls short since the proposed confidence sets are no longer valid for177

the kernelized logistic estimator ft. One could still estimate f using a kernelized ridge estimator178

estimator and benefit from this line of work. However, as empirically demonstrated in Figure 1a, this179

will not be a sample-efficient approach.180

Proof Sketch. When minimizing the kernelized logistic loss, we do not have a closed-form solution181

for ft, and can only formulate it using the fact that the gradient of the loss evaluated at ft is the182

null operator, i.e.,∇L(ft;Ht) : H → H = 0. The key idea of our proof is to construct confidence183
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intervals asH-valued ellipsoids in the gradient space and show that the gradient operator evaluated184

at f belongs to it with high probability (c.f. Lemma 8). We then translate this back into intervals185

around point estimates s(ft(x)) uniformly for all points x ∈ X . The complete proof is deferred to186

Appendix B, and builds on the results of Whitehouse et al. [2023] and Faury et al. [2020].187

Logistic Bandits. Such confidence sets are an integral tool for action selection under uncertainty,188

and bandit algorithms often rely on them to balance exploration against exploitation. To demonstrate189

how Theorem 2 may be used for bandit optimization with direct logistic feedback, we consider the190

kernelized Logistic GP-UCB algorithm. Presented in Algorithm 2, this algorithm extends LGP-UCB191

of Faury et al. [2020] from the linear to the kernelized setting, by using the confidence bound of192

Theorem 2 to calculate an optimistic estimate of the reward. We proceed to show that LGP-UCB193

attains a sublinear logistic regret, which is commonly defined as194

RL(T ) =

T∑
i=1

s(f(x⋆))− s(f(xt)).

To the best of our knowledge, the following corollary presents the first regret bound for logistic195

bandits in the kernelized setting and may be of independent interest.196

Corollary 3. Let δ ∈ (0, 1] and choose the exploration coefficients βt(δ) as described in Theorem 2197

for all t ≥ 0. Then LGP-UCB satisfies the anytime cumulative regret guarantee of198

P
(
∀T ≥ 0 : RL(T ) ≤ CLβT (δ)

√
Tγt

)
≥ 1− δ.

where CL :=
√
8/ log(1 + (λκ)−1).199

5 Main Results: Bandits with Preference Feedback200

We return to our main problem setting in which a pair of actions, xt and x′
t, are chosen and the201

feedback is a noisy binary indicator of xt yielding a higher utility than x′
t. While this type of202

feedback is more consistent in practice, it creates quite a challenging problem compared to the203

logistic case of Section 4. The search space for action pairs X ×X is significantly larger than X , and204

the observed preference feedback of s(f(xt)− f(x′
t)) conveys only relative information between205

two actions rather than absolute as in the logistic feedback case. We start by presenting a solution to206

estimate f and obtain valid confidence sets under preference feedback. Using these confidence sets207

we then propose the MAXMINLCB algorithm which chooses action pairs that are not only favorable,208

i.e., yield high utility, but are also informative and help to improve utility confidence estimates.209

5.1 Preference-based Confidence Sets210

We consider the probabilistic model of yt as stated in (2), and write the corresponding regularized211

negative loglikelihood loss as212

LD
k (f ;Ht) :=

t∑
τ=1

−yτ log [s(f(xτ )− f(x′
τ ))]

− (1− yτ ) log [1− s (f(xτ )− f(x′
τ ))] +

λ
2 ∥f∥

2
k.

(6)

Naturally, this loss may be optimized over different function classes and is commonly used for linear213

dueling bandits [e.g., Saha, 2021], and has been notably successful in reinforcement learning with214

human feedback [Christiano et al., 2017]. We proceed to show that the preference-based loss LD
k is215

equivalent to LL
kD , the standard logistic loss (3) invoked with a specific kernel function kD. This will216

allow us to cast the problem of inference with preference feedback as a kernelized logistic regression217

problem. To this end, we define the dueling kernel as218

kD
(
(x1,x

′
1), (x2,x

′
2)
)
:= k(x1,x2) + k(x′

1,x
′
2)− k(x1,x

′
2)− k(x′

1,x2)

for all (x1,x
′
1), (x2,x

′
2) ∈ X × X , and let HkD be the RKHS corresponding to it. While the two219

function spaces HkD and Hk are defined over different input domains, we can show that they are220

isomorphic, under simple regularity conditions.221

Proposition 4. Consider a kernel k and the sequence of its eigenfunctions (ϕi)
∞
i=1. Assume the222

eigenfunctions are zero-mean, i.e.
∫
x∈X ϕi(x)dx = 0, and let f : X → R. Then f ∈ Hk, if and223

only if there exists h ∈ HkD such that h(x,x′) = f(x)− f(x′). Moreover, ∥h∥kD = ∥f∥k.224
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The proof is left to Appendix D.1. The assumption on eigenfunctions in Proposition 4 is primarily225

made to simplify the equivalence class. In particular, the relative feedback function h can only226

capture the utility f up to a bias, i.e., if a constant bias b is added to all values of f , the corresponding227

h function will not change. The value of b may not be recovered by drawing queries from h,228

however, this will not cause issues in terms of identifying argmax of f through querying values229

of h. Therefore, without loss of generality, we set b = 0 by assuming that eigenfunctions of k230

are zero-mean. This assumption automatically holds for all kernels that are translation or rotation231

invariant over symmetric domains, since their eigenfunctions are periodic L2(X ) basis functions,232

e.g., Matérn kernels and sinusoids.233

Proposition 4 allows us to re-write the preference-based loss function of (6) as a logistic-type loss234

LL
kD(h;Ht) =

t∑
τ=1

−yτ log [s(h(xτ ,x
′
τ ))]− (1− yτ ) log [1− s (h(xτ ,x

′
τ ))] +

λ

2
∥h∥2kD ,

that is equivalent to (3) up to the choice of kernel. We define the minimizer ht := argminLL
kD(h;Ht)235

and use it to construct anytime valid confidence sets for the utility f given only preference feedback.236

Corollary 5 (Kernelized Preference-based Confidence Sequences). Assume f ∈ Hk and ∥f∥k ≤ B.237

Choose 0 < δ < 1 and set βD
t (δ) and σD

t as in equations (4) and (5), with kD used as the kernel238

function. Then,239

P
(
∀t ≥ 1,x,x′ ∈ X : |s (ht(x,x′))− s (f(x)− f(x′))| ≤ βD

t (δ)σ
D
t (x,x′)

)
≥ 1− δ.

where ht = argminLL
kD(h;Ht).240

Corollary 5 gives valid confidence sets for kernelized utility functions under preference feedback and241

may be of independent interest. This confidence bound immediately improves prior results on linear242

dueling bandits and kernelized dueling bandits with regression-type loss, to kernelized setting with243

logistic-type likelihood. To demonstrate this, in Appendix D.3 we present the kernelized extensions244

of MAXINP (Saha [2021], Algorithm 3), and IDS (Kirschner and Krause [2021], Algorithm 4) and245

prove the corresponding regret guarantees (cf. Theorems 15 and 16). This corollary holds almost246

immediately by invoking Theorem 2 with the dueling kernel kD and applying Proposition 4. A proof247

is provided in Appendix D.1 for completeness.248

Comparison to Prior Work. A line of previous work assumes that both f and the probability s(f(x))249

are B-bounded members ofHk. This allows them to directly estimate s(f(x)) via kernelized linear250

regression [Xu et al., 2020, Mehta et al., 2023b, Kirschner and Krause, 2021]. The resulting con-251

fidence intervals are then around the minimum least squares estimator, which does not align with252

the logistic estimator ft. This model does not encode the fact that s(f(x)) only takes values in [0, 1]253

and considers a sub-gaussian distribution for yt, instead of the Bernoulli formulation. Therefore, the254

resulting algorithms require more samples to learn an accurate reward estimate. In a concurrent work,255

Xu et al. [2024] address the preference-based loss function of Equation (6) and present anytime valid256

likelihood-ratio confidence sets for the minimizer of this loss. The width of such sets at time T , scale257

with
√
T logN (Hk; 1/T ) where the second term is the metric entropy of the B-bounded RKHS at258

resolution 1/T , that is, the log-covering number of this function class, using balls of radius 1/T . It is259

known that logN (Hk; 1/T ) ≍ γT as defined in Theorem 2. This may be easily verified using Wain-260

wright [2019, Example 5.12] and [Vakili et al., 2021, Definition 1]. Noting the definition of βD
t , we see261

that likelihood ratio sets of Xu et al. [2024] are wider than Corollary 5. Consequently, the presented262

regret guarantee in this work is looser by a factor of T 1/4 compared to our bound in Theorem 6.263

5.2 Action Selection Strategy264

We propose MAXMINLCB in Algorithm 1 for the preference feedback bandit problem that selects265

xt and x′
t jointly in each time step t as266

xt = arg max
x∈Mt

LCBt(x,x
′(x)) (Leader)

s.t. x′(x) = arg min
x′∈Mt

LCBt(x,x
′) (Follower)

(7)

where the lower-confidence bound LCBt(x,x
′) = s(ht(x,x

′)) − βD
t σ

D
t (x,x

′) presents a267

pessimistic estimate of h andMt = {x ∈ X | ∀x′ ∈ X : s(ht(x,x
′)) + βD

t σ
D
t (x,x

′) ≥ 0.5} is268

the set of potentially optimal actions. The second action is chosen as x′
t = x′(xt). Equation (7)269

forms a zero-sum Stackelberg (Leader–Follower) game where the actions xt and x′
t are chosen270
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Algorithm 1 MAXMINLCB

Input (βD
t )t≥1.

for t ≥ 1 do
Play the most potent pair (xt,x

′
t) according to the Stackelberg game

xt = arg max
x∈Mt

s(ht(x,x
′(x)))− βD

t σ
D
t (x,x

′(x))

s.t. x′(x) = arg min
x′∈Mt

s(ht(x,x
′))− βD

t σ
D
t (x,x

′)

and x′
t = x

′(xt).

Observe yt and append history.
Update ht+1 and σD

t+1 and the set of plausible maximizers

Mt+1 = {x ∈ X | ∀x′ ∈ X : s(ht+1(x,x
′)) + βD

t+1σ
D
t+1(x,x

′) ≥ 0.5}.
end for

sequentially [Stackelberg et al., 1952]. First, the Leader selects xt, then the Follower selects x′
t271

depending on the choice of xt. Importantly, the sequential nature of action selections is known and272

xt is chosen by the Leader such that the Follower’s action selection function, x′(·), is accounted for273

in the selection of xt. Sequential optimization problems are known to be computationally NP-hard274

even for linear functions [Jeroslow, 1985]. However, due to their importance in practical applications,275

there are algorithms that can efficiently approximate a solution over large domains [Sinha et al., 2017,276

Ghadimi and Wang, 2018, Dagréou et al., 2022, Camacho-Vallejo et al., 2023].277

MAXMINLCB builds on a simple insight: if the utility f is known, both the Leader and the278

Follower will choose x⋆ yielding an objective value 0.5 for both players, and zero dueling regret.279

Since MAXMINLCB has no access to f , it leverages the confidence sets of Corollary 5 and280

uses a pessimistic approach by considering the LCB instead. There are two crucial properties281

of the Follower specific to this game. First, the Follower can not do worse than the Leader with282

respect to the LCBt. In any scenario, the Follower can match the Leader’s action which results283

in LCBt(xt,x
′
t) = 0.5. Second, for sufficiently tight confidence sets, the Follower will not select284

sub-optimal actions. In this case, the Leader’s best action must be optimal as it anticipates the285

Follower’s response and Equation (7) recovers the optimal actions. Therefore, the objective value286

of the game considered in Equation (7) is always less than, or equal to the objective of the game287

with known utility function f , i.e., LCBt(xt,x
′
t) ≤ 0.5 = f(x⋆,x⋆) and the gap shrinks with288

the confidence sets. Overall, the Stackelberg game in Equation (7) can be considered as a lower289

approximation of the game played with known utility function f .290

The primary challenge for MAXMINLCB is to sample action pairs that sufficiently shrink the291

confidence sets for the optimal actions without accumulating too much regret. MAXMINLCB292

balances this exploration-exploitation trade-off naturally with its game theoretic formulation. We view293

the selection of xt to be exploitative by trying to maximize the unknown utility f(xt) and minimizing294

regret. On the other hand, x′
t is chosen to be the most competitive opponent to xt, i.e., testing whether295

the condition LCBt(xt,x
′
t) ≥ 0.5 holds. Note that LCBt is pessimistic concerning xt making it296

robust against the uncertainty in the confidence set estimation. At the same time, LCBt is an optimistic297

estimate for x′
t encouraging exploration. In our main theoretical result, we prove that under the298

assumptions of Corollary 5, MAXMINLCB achieves sublinear regret on the dueling bandit problem.299

Theorem 6. Suppose the utility function f lies inHk with a norm bounded by B, and that kernel k300

satisfies the assumption of Proposition 4. Let δ ∈ (0, 1] and choose the exploration coefficient βD
t (δ)301

as in Corollary 5. Then MAXMINLCB satisfies the anytime dueling regret of302

P
(
∀T ≥ 0 : RD(T ) ≤ C3β

D
T (δ)

√
TγDT = O(γDT

√
T )

)
≥ 1− δ

where γDT is the T -step information gain of kernel kD and C3 = (8 + 2κ)/
√
log(1 + 4(λκ)−1).303

The proof is left to Appendix D.2. The information gain γDT in Theorem 6 quantifies the structural304

complexity of the RKHS corresponding to kD and its dependence on T is fairly understood for305

kernels commonly used in applications of bandit optimization. As an example, for a Matérn kernel306
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Figure 1: Regret of learning the Ackley function with logistic and preference feedback. (a) Same
UCB algorithms, each using a different confidence set. LGP-UCB performs best, showcasing the
power of Theorem 2. (b): Algorithms with different acquisition functions, all using our confidence
sets. MAXMINLCB is more sample-efficient.

of smoothness ν defined over a d-dimensional domain, γT = Õ(T d/(2ν+d)) [Remark 2 Vakili et al.,307

2021] and the corresponding regret bound grows sublinearly with T .308

Restricting the optimization domain toMt ⊂ X is common in the literature [Zoghi et al., 2014a, Saha,309

2021] despite being challenging in applications with large or continuous domains. We conjecture that310

MAXMINLCB would enjoy similar regret guarantees without restricting the selection domain toMt311

as done in Equation (7). This claim is supported by our experiments in Section 6.2 which are carried312

out without such restriction on the optimization domain.313

6 Experiments314

Our experiments are on finding the maxima of test functions commonly used in (non-convex)315

optimization literature [Jamil and Yang, 2013] given preference feedback. These functions cover316

challenging optimization landscapes including several local optima, plateaus, and valleys, allowing317

us to test the versatility of MAXMINLCB. We use the Ackley function for illustration in the main text318

and provide the regret plots for the remainder of the functions in Appendix E.2. For all experiments,319

we set the horizon T = 2000 and evaluate all algorithms on a uniform mesh over the input domain320

of size 100. All experiments are run across 20 random seeds and reported values are averaged over321

the seeds, together with standard error. Details of implementation 1 are deferred to Appendix E.1.322

6.1 Benchmarking Confidence Sets323

Performance of MAXMINLCB relies on validity and tightness of the LCB. We evaluate the quality324

of our kernelized confidence sets, using the potentially simpler task of bandit optimization given325

logistic feedback. We fix the acquisition function via the celebrated principle of optimism-in-the-face-326

of-uncertainty (OfU), and choose the action that maximizes the upper confidence bound (UCB). This327

comparison highlights the separate benefits of LGP-UCB. We refer to the UCB algorithm instantiated328

with the confidence sets of Theorem 2 as LGP-UCB, and consider three baselines. UCB assumes that329

actions are uncorrelated, and maintains an independent confidence interval for each action as in Latti-330

more and Szepesvári [2020, Algorithm 3]. This demonstrates how LGP-UCB utilizes the correlation331

between actions. We also implement LOG-UCB1 [Faury et al., 2020] that assumes that f is a linear332

function, i.e., f(x) = θTx to highlight the improvements gained by kernelization. Last, we compare333

LGP-UCB with GP-UCB [Srinivas et al., 2010] that estimates probabilities s(f(·)) via a kernelized334

ridge regression task. This comparison highlights the benefits of using our kernelized logistic estimator335

(Proposition 1) over regression-based approaches [Xu et al., 2020, Kirschner and Krause, 2021, Mehta336

et al., 2023b,a]. Figure 1a shows that the cumulative regret of LGP-UCB is the lowest among the337

selected algorithms. GP-UCB performs closest to LGP-UCB, however, it accumulates regret linearly338

during the initial steps. Note that GP-UCB and LGP-UCB differ in the estimation of the utility func-339

tion ft while estimating the width of the confidence bounds similarly. This result suggests that using340

the logistic-type loss (3) to infer the utility function is advantageous. As expected, UCB converges at341

a slower rate than either LGP-UCB or GP-UCB due to omitting the correlation between arms while342

1We implemented the environments and algorithms end-to-end in JAX [Bradbury et al., 2018].
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Table 1: Benchmarking RD
T for a variety of test utility functions, T = 2000.

f MAXMINLCB DOUBLER MULTISBM MAXINP RUCB IDS

Ackley 54± 3 67± 3 453± 58 112± 5 79± 3 99± 10
Branin 63± 10 79± 8 213± 28 197± 23 63± 11 86± 17
Eggholder 100± 7 132± 8 435± 56 179± 21 155± 24 123± 13
Hoelder 107± 16 132± 8 460± 59 169± 15 153± 18 119± 15
Matyas 81± 8 87± 8 209± 27 100± 8 79± 7 58± 8
Michalewicz 108± 10 149± 11 473± 61 196± 25 184± 28 154± 19
Rosenbrock 18± 3 24± 8 131± 17 76± 6 38± 6 34± 9

LOG-UCB1’s regret grows linearly as the Ackley function violates the assumption of linearity. We343

defer the results on the rest of the utility functions to Table 2 in Appendix E.2 and the figures therein.344

6.2 Benchmarking Acquisition Functions345

In this section, we compare MAXMINLCB with other utility-based bandit algorithms. To isolate the346

benefits of our acquisition function, we instantiate other algorithms using our confidence sets Corol-347

lary 5. Our implementation then differs from the corresponding references, while we refer to them by348

their original name. We consider the following baselines. DOUBLER and MULTISBM [Ailon et al.,349

2014] who choose xt as a reference action from the recent history of actions and pair it with x′
t which350

maximizes the joint UCB (cf. Algorithm 5 and 6). RUCB [Zoghi et al., 2014a] similarly relies on351

OfU, however, it selects the reference action uniformly at random fromMt (Algorithm 7). MAXINP352

[Saha, 2021] also maintains the set of plausible maximizersMt, however, in each time step, it selects353

the pair of actions that maximize σD
t (x,x′) (Algorithm 3). IDS [Kirschner and Krause, 2021] selects354

the reference action greedily by maximizing ft, and pairs it with an informative action (Algorithm 4).355

Notably, all algorithms, with the except of MAXINP, choose one of the actions independently and use356

it as a reference point when selecting the other one. Figure 2 in Appendix A illustrates the differences357

in action selection between the OfU, maximum information, and MAXMINLCB approaches358

Figure 1b benchmarks the algorithms using the Ackley utility function, where MAXMINLCB359

outperforms the baselines. All algorithms suffer from close-to-linear regret during the first phase360

of the learning suggesting that there is an inevitable exploration phase. Notably, MAXMINLCB,361

IDS, and DOUBLER are the first to select actions with high utility, while RUCB and MAXINP362

explore for longer. Table 1 shows the dueling regret for all utility functions. MAXMINLCB performs363

consistently among the best two algorithms across the analyzed functions and achieves a low standard364

error supporting its efficiency in balancing exploration and exploitation in the preference feedback365

setting. While MAXMINLCB consistently outperforms the baselines, we do not observe a clear366

ranking among the rest. For instance, IDS achieves the smallest regret for optimizing Matyas, while367

RUCB excels on the Branin function. This indicates the challenges each function offers and the368

performance of the action selection is task dependent. The consistent performance of MAXMINLCB369

demonstrates its robustness against the underlying unknown utility function.370

7 Conclusion371

We addressed the problem of bandit optimization with preference feedback over large domains and372

complex targets. We propose MAXMINLCB, which takes a game-theoretic approach to the problem373

of action selection under comparative feedback, and naturally balances exploration and exploitation by374

constructing a zero-sum Stackelberg game between the action pairs. MAXMINLCB achieves a sublin-375

ear regret for kernelized utilities, and performs competitively across a range of experiments. Lastly, by376

uncovering the equivalence of learning with logistic or comparative feedback, we propose kernelized377

preference-based confidence sets, which may employed in adjacent problems, such as reinforcement378

learning with human feedback. The technical setup considered in this work serves as a foundation for379

a number of applications in mechanism design, such as preference elicitation and welfare optimization380

from multiple feedback sources for social choice theory, which we leave as future work.381
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A Illustration of main concepts540
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Figure 2: Confidence sets for an illustrative problem with 3 arms at a single time step. Annotated
arrows highlight the action selection for three common approaches. MAXMINLCB selects the action
pair (1, 2) with the least regret. Upper-bound maximization (OPTIMISM) and information maximiza-
tion (MAX INFO) choose sub-optimal arms due to the large width of the sets that have higher regrets.

B Proofs for Bandtis with Logistic Feedback541

While we have written the algorithm in terms of the kernel matrix and function evaluations, for the pur-542

pose of the proof, we mainly rely on entities in the Hilbert space. Consider the operator ϕ : X → H543

which corresponds to kernel k and satisfies k(x, ·) = ϕ(x). Then by Mercer’s theorem, any f ∈ Hk544

may be written as f = θ⊤ϕ, where θ ∈ ℓ2(N) and has a Bbounded ℓ2 norm. For a sequence of545

points x1, . . . ,xt ∈ X , we define the infinite dimensional feature map Φt = [ϕ(x1), · · · ,ϕ(xt)]
⊤,546

which gives rise to the kernel matrix Kt : Rt → Rt and the covariance operator St : H → H,547

respectively defined as Kt = ΦtΦ
⊤
t and St = Φ⊤

t Φt. Let It denote the t-dimensional identity548

matrix, and IH be the identity operator on the RKHS. Then it is widely known that the covariance549

and kernel operators are connected via det(IH + ρ−2St) = det(It + ρ−2Kt) for any t ≥ 1 and550

ρ ̸= 0. For operators on the Hilbert space, det(A) refer to a Fredholm determinant [c.f. Lax, 2002].551

To analyze our function-valued confidence sequences, we start by re-writing the logistic loss function552

L(θ;Ht) =

t∑
s=1

−ys log s
(
θ⊤ϕ(xs)

)
−

t∑
s=1

(1− ys) log
(
1− s

(
θ⊤ϕ(xs)

))
+
λ

2
∥θ∥22
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which is strictly convex in θ and has a unique minimizer θt which satisfies553

∇L(θt;Ht) =

t∑
s=1

−ysϕ(xs) + gt(θt) = 0

where gt(θ) : H → H is a linear operator defined as554

gt(θ) :=

t∑
s=1

ϕ(xs)s(θ
⊤ϕ(xs)) + λθ.

In the main text, we assumed that minimizer of L satisfies the norm boundedness condition. Here,555

we present a more rigorous analysis which does not assume so. Instead, we work with a projected556

estimator defined via557

θPt = argmin
∥θ∥2≤B

∥gt(θ)− gt(θt)∥V −1
t
. (8)

where Vt = St + κλIH and θt is the minimizer of L(θ;Ht). Roughly put, θPt ∈ ℓ2(N) is a norm558

bounded alternative to θt, which satisfies a small∇L, and therefore, is expected to result in an accurate559

decision boundary. We will present our proof in terms of θPt . This also proves the results in the main560

text, since θPt = θt if θt itself happens to have a B-bounded norm, as assumed in the main text.561

Our analysis relies on a concentration bound forH-valued martingale sequences stated in Abbasi-562

Yadkori [2013] and later in Whitehouse et al. [2023]. Below, we have adapted the statement to match563

our notation.564

Lemma 7 (Corollary 1 Whitehouse et al. [2023]). Suppose the sequence (xt)t≥1 is (Ft)t≥1-565

predictable, where Ft := σ (x1, . . . ,xt, ε1, . . . , εt−1) and εt is i.i.d. zero-mean σ-subGaussian566

noise. Consider the RKHS H corresponding to a kernel k(x,x′) = ϕ⊤(x)ϕ(x′). Then, for any567

ρ > 0 and δ ∈ (0, 1), we have that, with probability at least 1− δ, simultaneously for all t ≥ 0,568 ∥∥∥∥∥∥
∑
s≤t

εsϕ(xs)

∥∥∥∥∥∥
V −1
t

≤ σ
√
2 log

(
1

δ

√
det(It + ρ−2Kt)

)

where Vt = St + ρ2IH.569

The following lemma, which extends Faury et al. [2020][Lemma 8] toH-valued operators, expresses570

the closeness of θt and θ⋆ in the gradient space, with respect to the norm of the covariance matrix.571

Lemma 8 (Gradient Space Confidence Bounds). Set 0 < δ < 1. Then,572

P

(
∀t ≥ 0 : ∥gt(θt)− gt(θ⋆)∥V −1

t
≤ 1

2

√
2 log 1/δ + 2γT +

√
λ

κ
B

)
≥ 1− δ

where Vt = St + κλIH.573

Proof of Lemma 8. Recall that gt(θ) :=
∑

s≤t s(θ
⊤ϕ(xs))ϕ(xs) + λθ. Then it is straighforward574

to show that575

∇L(θ;Ht) =
∑
s≤t

ysϕ(xs)− gt(θ).

Then since θt is a minimizer of Lt, it holds that gt(θt) =
∑

s≤t ysϕ(xs). This allows us to write,576

∥gt(θt)− gt(θ⋆)∥V −1
t

=

∥∥∥∥∥∥
∑
s≤t

(
ys − s(ϕ⊤(xs)θ

⋆)
)
ϕ(xs)− λθ⋆

∥∥∥∥∥∥
V −1
t

≤

∥∥∥∥∥∥
∑
s≤t

εsϕ(xs)

∥∥∥∥∥∥
V −1
t

+ λ∥θ⋆∥V −1
t

(9)
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where εs := ys − s(ϕ⊤(xs)θ
⋆) is a history dependent random variable in [0, 1], due to our data577

model. To bound the first term, we recognize that any random variable in [0, 1] is σ-subGaussian with578

σ = 0.5 and apply Lemma 7 . We obtain that for all t ≥ 0, with probability greater than 1− δ579 ∥∥∥∥∥∥
∑
s≤t

εsϕ(xs)

∥∥∥∥∥∥
V −1
t

≤ 1

2

√
2 log

(
1

δ

√
det(It + (λκ)−1Kt)

)

≤ 1

2

√
2 log 1/δ + 2γT

since γt(ρ) = supx1,...,xt

1
2 log det(It + ρ−2Kt)). To bound the second term in (9), note that St =580

Φ⊤
t Φt is PSD and therefore Vt ≥ κλIH. Then581

λ∥θ⋆∥V −1
t
≤ λ√

λκ
∥θ⋆∥2 ≤

√
λ

κ
B.

concluding the proof.582

The following lemma shows the validity of our parameter-space confidence sets.583

Lemma 9. Set 0 < δ < 1 and consider the confidence sets584

Θt(δ) :=
{
∥θ∥ ≤ B,

∥∥θ − θPt ∥∥Vt
≤ 2
√
λκB + κ

√
2 log 1/δ + 2γT

}
.

Then,585

P (∀t ≥ 0 : θ⋆ ∈ Θt(δ)) ≥ 1− δ

Proof of Lemma 9. From construction of Et(δ) we have,586 ∥∥θ⋆ − θPt ∥∥Vt
≤ κ

∥∥gt(θ⋆)− gt(θPt )∥∥V −1
t

(Lem. 12)

≤ κ
(
∥gt(θ⋆)− gt(θt)∥V −1

t
+
∥∥gt(θt)− gt(θPt )∥∥V −1

t

)
≤ 2κ∥gt(θ⋆)− gt(θt)∥V −1

t
Eq (8)

≤ κ
√
2 log 1/δ + 2γT + 2

√
λκB (Lem. 8)

587

Lastly, we prove an extension of Theorem 2.588

Theorem 10 (Theorem 2 - Formal). Set 0 < δ < 1 and consider the confidence sets Et(δ) ⊂ H589

where590

Et(δ) =
{
f(·) = θ⊤ϕ(·) : θ ∈ Θt(δ)

}
.

Then, simultanously for all x ∈ X , f ∈ Et(δ) and t ≥ 0591

|s(f(x))− s(f⋆(x))| ≤ βt(δ)σt(x)

with probability greater than 1− δ, where592

βt(δ) := 4LB + 2L

√
κ

λ

√
2 log 1/δ + 2γT

Proof of Theorem 10. For simplicity in notation let us define593

β̃t(δ) := 2
√
λκB + κ

√
2 log 1/δ + 2γt.
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Algorithm 2 LGP-UCB

Initialize Set (βt)t≥1 according to Theorem 2.
for t ≥ 1 do

Choose an optimistic action via

xt = argmax
x∈X

s(ft−1(x)) + βt−1(δ)σt−1(x)

Observe yt and append history.
Calculate ft acc. to Proposition 1 and update σt acc. to Theorem 2.

end for

Suppose f = θ⊤ϕ(·) is in Et(δ). Then594 ∣∣s(ϕ⊤(x)θ⋆)− s(ϕ⊤(x)θ)
∣∣ = ∣∣α(x;θ,θ⋆)ϕ⊤(x)[θ − θ⋆]

∣∣ Lem. 11

≤ L
∣∣ϕ⊤(x)[θ − θ⋆]

∣∣ s is L-Lipschitz

≤ L∥ϕ(x)∥V −1
t
∥θ − θ⋆∥Vt

≤ L∥ϕ(x)∥V −1
t

(∥∥θ − θPt ∥∥Vt
+
∥∥θPt − θ⋆∥∥Vt

)
≤ L∥ϕ(x)∥V −1

t

(
β̃t(δ) +

∥∥θPt − θ⋆∥∥Vt

)
θ ∈ Θt(δ)

w.h.p.
≤ 2Lβ̃t(δ)∥ϕ(x)∥V −1

t
Lem. 9

≤ 2Lβ̃t(δ)√
λκ

σt(x) Lem. 13

= σt(x)

(
4LB + 2L

√
κ

λ

√
2 log 1/δ + 2γT

)
where the third to last inequality holds with probability greater than 1 − δ , but the rest of the595

inequalities hold deterministically.596

Given the confidence set of Theorem 2, we give extend the LGP-UCB algorithm of Faury et al. to597

the kernelized setting (c.f. Algorithm 2) and prove that it satisfies sublinear regret.598

Proof of Corollary 3. Recall that if xt is the maximizer of the UCB, then599

s(ϕ⊤(x⋆)θPt )− s(ϕ⊤(xt)θ
P
t ) ≤ σt(xt)βt(δ)− σt(x⋆)βt(δ)

Then using Theorem 10, we obtain the following for the regret at step t,600

rt = s(ϕ⊤(x⋆)θ⋆)− s(ϕ⊤(xt)θ
⋆)

= s(ϕ⊤(x⋆)θ⋆)− s(ϕ⊤(x⋆)θPt ) + s(ϕ⊤(xt)θ
P
t )− s(ϕ⊤(xt)θ

⋆)

+ s(ϕ⊤(x⋆)θPt )− s(ϕ⊤(xt)θ
P
t )

≤ σt(x⋆)βt(δ) + σt(xt)βt(δ) + σt(xt)βt(δ)− σt(x⋆)βt(δ)

≤ 2βt(δ)σt(xt)

with probability greater than 1− δ for all t ≥ 0. Which allows us to bound the cumulative regret as,601

RT =

T∑
t=1

rt ≤

√√√√T

T∑
t=1

r2t

≤ 2βT (δ)

√√√√T
T∑

t=1

σ2
t (xt) βt(δ) ≤ βT (δ)

≤ C1βT (δ)
√
Tγt Lem. 14

where C1 :=
√
8/ log(1 + (λκ)−1).602
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C Helper Lemmas for Appendix B603

Lemma 11 (Mean-Value Theorem). For any x ∈ X and θ1,θ2 ∈ ℓ2(N) it holds that604

s(θ⊤2 ϕ(x))− s(θ⊤1 ϕ(x)) = α(x;θ1,θ2)(θ2 − θ1)⊤ϕ(x)
where605

α(x;θ1,θ2) =

∫ 1

0

ṡ(νθ⊤2 ϕ(x) + (1− ν)θ⊤1 ϕ(x))dν

Proof of Lemma 11. For any differentiable function s : R → R by the fundamental theorem of606

calculus we have607

s(z2)− s(z1) =
∫ z2

z1

ṡ(z)dz.

Define ν = (z − z1)/(z2 − z1), then z = νz2 + (1− ν)z1 and re-writing the integral in terms of ν608

gives,609

s(z2)− s(z1) = (z2 − z1)
∫ 1

0

ṡ(νz2 + (1− ν)z1)dν.

Letting z1 = θ⊤1 ϕ(x) and z2 = θ⊤2 ϕ(x) concludes the proof.610

Lemma 12 (Gradients to Parameters Conversion). For all t ≥ 0 and θ1,θ2 ∈ ℓ2(N) it holds that,611

∥θ1 − θ2∥Vt
≤ κ∥gt(θ1)− gt(θ2)∥V −1

t

Proof of Lemma 12. We proof the lemma through an auxiliary operatorGt(θ1,θ2) : H → H defined612

as613

Gt(θ1,θ2) = λIH +
∑
s≤t

α(xs;θ1,θ2)ϕ(xs)ϕ
⊤(xs).

Step 1. First we establish how we can go back and forth between the operator norms defined based614

on Gt and Vt. Recall that κ = supz
1

ṡ(z) . Therefore, κ−1 ≤ ṡ(z) for all z ∈ R, implying that615

α(x;θ1,θ2) ≥
∫ 1

0
κ−1dν = κ−1. We can then conclude,616

Gt(θ1,θ2) ≥ λIH +
∑
s≤t

κ−1ϕ(xs)ϕ
⊤(xs) = κ−1Vt. (10)

Step 2. Now by the definition of gt(θ),617

gt(θ2)− gt(θ1) = λ(θ2 − θ1) +
∑
s≤t

ϕ(xs)
[
s(θ⊤2 ϕ(xs))− s(θ⊤1 ϕ(xs))

]
= λ(θ2 − θ1) +

∑
s≤t

ϕ(xs)
[
α(xs;θ1,θ2)ϕ

⊤(xs)(θ2 − θ1)
]

(Lem. 11)

=

λIH +
∑
s≤t

α(xs;θ1,θ2)ϕ(xs)ϕ
⊤(xs)

 (θ2 − θ1)

= Gt(θ1,θ2) (θ2 − θ1)
Therefore,618

∥gt(θ2)− gt(θ1)∥G−1
t (θ1,θ2)

= [gt(θ2)− gt(θ1)]⊤ (θ1 − θ2)
= (θ2 − θ1)⊤Gt (θ2 − θ1)
= ∥θ2 − θ1∥Gt(θ1,θ2)

. (11)

Step 3. Putting together the previous two steps, we can bound the Vt-norm over the parameters to the619

V −1
t role in the gradients,620

∥θ1 − θ2∥Vt

(10)
≤ √κ∥θ1 − θ2∥G−1

t (θ1,θ2)

(11)
≤ √κ∥gt(θ1)− gt(θ2)∥G−1

t (θ1,θ2)

(10)
≤ κ∥gt(θ1)− gt(θ2)∥V −1

t
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concluding the proof.621

The following two lemmas are standard results in kernelized bandits [Srinivas et al., 2010, Chowdhury622

and Gopalan, 2017, e.g.,]. We include it here for completeness.623

Lemma 13. For any x ∈ X and ρ > 0 it holds that
√
λκ∥ϕ(x)∥V −1

t
= σt(x), where624

σ2
t (x, ρ) = k(x,x)− k⊤t (x)(Kt + ρ2It)

−1kt(x)

with kt(x) = (k(x,x1), . . . , k(x,xt)) ∈ Rt.625

Proof of Lemma 13. We start by stating some identities which will later be of use. First note that626 (
Φ⊤

t Φt + ρ2IH
)
Φ⊤

t = Φ⊤
t

(
ΦtΦ

⊤
t + ρ2It

)
which gives627

Φ⊤
t

(
ΦtΦ

⊤
t + ρ2It

)−1
=
(
Φ⊤

t Φt + ρ2IH
)−1

Φ⊤
t . (12)

Moreover, by definition of kt we have628

kt(x) = Φtϕ(x) (13)
which allow us to write,629 (

Φ⊤
t Φt + ρ2IH

)
ϕ(x) = Φ⊤

t kt(x) + ρ2ϕ(x)

and obtain,630

ϕ(x) =
(
Φ⊤

t Φt + ρ2IH
)−1

Φ⊤
t kt(x) + ρ2

(
Φ⊤

t Φt + ρ2I
)−1

ϕ(x)

(12)
= Φ⊤

t

(
ΦtΦ

⊤
t + ρ2It

)−1
kt(x) + ρ2

(
Φ⊤

t Φt + ρ2I
)−1

ϕ(x).

Given the above equation, we conclude the proof by the following chain of equations:631

k(x,x) = ϕ⊤(x)ϕ(x)

=
(
Φ⊤

t

(
ΦtΦ

⊤
t + ρ2It

)−1
kt(x) + ρ2

(
Φ⊤

t Φt + ρ2IH
)−1

ϕ(x)
)⊤
ϕ(x)

= k⊤t (x)
(
ΦtΦ

⊤
t + ρ2It

)−1
Φtϕ(x) + ρ2ϕ⊤(x)

(
Φ⊤

t Φt + ρ2IH
)−1

ϕ(x)

(13)
= k⊤t (x)

(
Kt + ρ2It

)−1
kt(x) + ρ2ϕ⊤(x)V −1

t ϕ(x)

To obtain the third equation we have used the fact that for bounded operators on hilbert spaces, the632

inverse of the adjoint is equal to the adjoint of the inverse [e.g., Theorem 10.19 Axler, 2020].633

Lemma 14. For all T ≥ 1,634

T∑
t=1

σ2
t (xt) ≤

2γT
log(1 + (λκ)−1)

,

T∑
t=1

(σD
t (xt))

2 ≤ 8γDT
log(1 + 4(λκ)−1)

.

Proof of Lemma 14. By Srinivas et al. [2010, Lemma 5.3],635

γT = max
x1,...xT

1

2

T∑
t=1

log(1 + (λκ)−1σ2
t−1(xt)).

Following the technique in Srinivas et al. [2010, Lemma 5.4], since σ2
t ≤ 1, then ρ−1σ2

t ∈ [0, ρ−1].636

Now for any z ∈ [0, ρ−1], z ≤ C log(1 + z) where C = 1/(ρ log(1 + ρ−1)). We then may write,637

T∑
t=1

σ2
t (xt) =

T∑
t=1

λκ(λκ)−1σ2
t (xt)

≤
T∑

t=1

λκC log
(
1 + (λκ)−1σ2

t (xt)
)

=

T∑
t=1

log(1 + (λκ)−1σ2
t (xt))

log (1 + (λκ)−1)

Putting both together proves the first inequality of the lemma. As for the dueling case, we can easily638

check that σD
t ≤ 2, and a similar argument yields the second inequality.639
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D Proofs for Bandits with Preference Feedback640

This section presents the proof of main results in Section 5, and our additional contributions in the641

kernelized Preference-based setting.642

D.1 Equivalence of Preference-based and Logistic Losses643

We start by establishing the equivalence between the logistic loss of Equation (3) and dueling loss644

Equation (6).645

Proof of Proposition 4. By Mercer’s theorem, we know that the kernel function k has eigen-646

value eigenfunction pairs (
√
λi, ϕ̃i) for i ≥ 1 where ϕ̃i are orthonormal. Then k(x,x′) =647 ∑

i≥1 ϕi(x)ϕi(x
′) with ϕi(x) =

√
λiϕ̃i(x). Now applying the definition of kD, it holds that648

kD(z, z′) =
∑

i≥1 ψ
⊤
i (z)ψi(z

′) where ψi(z) =
√
λi(ϕi(x)−ϕi(x′)). It is straighforward to check649

that ψi are the eigenfunctions of kD, however, they may not be orthonormal. We have,650

⟨ψi, ψi⟩L2
= 2λi(1− b2i )

⟨ψi, ψj⟩L2 = −2
√
λiλjbibj

where bi =
∫
ϕ̃i(x)d(x). By the assumption of the proposition, we have bi = 0. However, this651

assumption holds automatically for all kernels commonly used in applications, e.g. any translation652

invariant kernel, over many domains, since ϕ̃i for such kernels are a sine basis.653

Now since f ∈ Hk, it may be decomposed f =
∑

i≥1 βiϕi and ∥f∥2k =
∑

i≥1 β
2
i ≤ ∞. Therefore654

for the difference function we may write h(x,x′) =
∑

i≥1 βiψi(z). We can then bound the RKHS655

norm of h w.r.t. the kernel kD as follows656

∥h∥2kD =
∑
i≥1

( ⟨h, ψi⟩L2

⟨ψi, ψi⟩L2

)2

=
∑
i≥1

(∑
j≥1 βj⟨ψj , ψi⟩L2

2λi(1− bi)

)2

=
∑
i≥1

βi − bi√
λi(1− bi)

∑
j ̸=i

βjbj
√
λj

2

bi=0
= ∥f∥2k ≤ B2.

Now by Mercer’s theorem, h ∈ HkD since it is decomposable as a sum of kD eigenfunctions, and657

attains a B-bounded kD-norm which we showed to be equal to ∥f∥k.658

Proof of Corollary 5. Consider the utility function f and define h(x,x′) := f(x)− f(x′). Then by659

Proposition 4, h is in RKHS of kD with a kD-norm bounded by B. We may estimate h by minimizing660

LL
kD(·;Ht). Now invoking Theorem 2 with the dueling kernel we have,661

P
(
∀t ≥ 1,x,x′ ∈ X : |s (ht(x,x′))− s (h(x,x′))| ≤ βD

t (δ)σ
D
t (x,x′)

)
≥ 1− δ

concluding the proof by definition of h.662

D.2 Proof of the Preference-based Regret Bound663

Recall Corollary 5, which states664

|s(f(x⋆)− f(xt))− s(ht(x⋆,xt))| ≤ βD
t (δ)σ

D
t (x,x′)

with high probability simultaneously for all (x,x′) and t ≥ 1. For simplicity in notation, we define665

ωt(x,x
′) := βD

t (δ)σ
D
t (x,x′) and use it for the remainder of this section. Note that ωt(x,x

′) =666

ωt(x
′,x) by the symmetry of the dueling kernel kD.667

Proof of Theorem 6. Using Corollary 5, define668

LCBt(x,x
′) := s(ht(x

⋆,xt))− ωt(x,x
′),

UCBt(x,x
′) := s(ht(x

⋆,xt)) + ωt(x,x
′).
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We start by observing that since s(z) = 1− s(−z) then LCB(x,x′) = 1−UCB(x′,x) and669

argmax
x

argmin
x′

LCBt(x,x
′) = argmin

x
argmax

x′
UCBt(x

′,x)

where the max-min calculations are carried out sequentially, as in Equation (7).670

Furthermore, we note that by the definition of x′
t in Equation (7), LCBt(xt,x

′
t) ≤ LCBt(xt,x

′)671

for all x′ ∈ Mt. Also, for all x, ht(x,x) = 0.5 and ωt(x,x) = 0.0 since it is known that672

s(f(xt) − f(xt)) = s(0) = 0.5, i.e., LCBt(x,x) = 0.5 = UCBt(x,x). Then, since xt ∈ Mt,673

we get that LCBt(xt,x
′
t) ≤ LCBt(xt,xt) ≤ 0.5.674

Step 1: First, we show the following inequality675

s(f(x∗)− f(x′
t)) ≤ (1 + h(xt,x

′
t))s(f(x

∗)− f(xt))

where h(xt,x
′
t) = f(xt) − f(x′

t). Note that s(f(x∗) − f(x′
t)) ≥ 0.5, s(f(x∗) − f(xt)) ≥ 0.5676

and the sigmoid function s is concave on the interval [0.5,∞), i.e.,677

s(f(x∗)− f(x′
t)) ≤ s(f(x∗)− f(xt)) + s′(f(x∗)− f(xt))(f(xt)− f(x′

t))

= s(f(x∗)− f(xt)) + s(f(x∗)− f(xt))s(f(xt)− f(x∗))(f(xt)− f(x′
t))

≤ (1 +
h(xt,x

′
t)

2
)s(f(x∗)− f(xt))

where the first line is the definition of concavity, the second comes from the derivative of the sigmoid678

function, s′(x) = s(x)(1− s(x)) = s(x)s(−x), and in the last line we use s(f(xt)− f(x∗)) ≤ 0.5.679

Using this inequality, we can upper bound the average regret of the two arms with the regret of xt as680

2rDt = s(f(x⋆)− f(xt)) + s(f(x⋆)− f(x′
t))− 1

≤ s(f(x⋆)− f(xt)) + (1 +
h(xt,x

′
t)

2
)s(f(x⋆)− f(xt))− 1

≤ 2s(f(x⋆)− f(xt))− 1 +
h(xt,x

′
t)

2
s(f(x⋆)− f(xt))

Step 2: Next, we show that the regret is bounded by ωt(xt,x
′
t).681

First,682

s(f(x⋆)− f(xt))− 0.5 ≤ s(ht(x⋆,xt)) + ωt(xt,x
⋆)− 0.5 Corollary 5

≤ 0.5− s(ht(xt,x
⋆)) + ωt(xt,x

⋆) Sigmoid equality
≤ 2ωt(xt,x

⋆)

In the last inequality, we used that xt ∈ Mt implying that 0.5 − s(ht(xt,x
⋆)) ≤ ωt(xt,x

⋆). It683

implies then that684

2rDt ≤ 4ωt(xt,x
⋆) + h(xt,x

′
t)s(f(x

⋆)− f(xt))

Now, we bound ωt(xt,x
⋆) by ωt(xt,x

′
t). If xt = x⋆, then ωt(xt,x

⋆) = 0 ≤ ωt(xt,x
′
t). If685

x′
t = x⋆, then the two expressions are equivalent. Now, assume that xt ̸= x∗ and x′

t ̸= x⋆ and686

consider ωt(xt,x
⋆).687

Case 1: Assume that UCBt(xt,x
⋆) ≤ UCBt(xt,x

′
t). Then,688

2ωt(xt,x
∗) = UCBt(xt,x

⋆)− LCBt(xt,x
⋆)

≤ UCBt(xt,x
′
t)− LCBt(xt,x

⋆)

≤ UCBt(xt,x
′
t)− LCBt(xt,x

′
t)

= 2ωt(xt,x
′
t)

where we used the definition of x′
t in the second inequality.689

Case 2: Assume that UCBt(xt,x
⋆) ≥ UCBt(xt,x

′
t). First note that the assumption implies that690

LCBt(x
⋆,xt) ≥ LCBt(x

′
t,xt) since UCBt(x,x

′) = 1−LCBt(x
′,x) for all x,x′ ∈ X . Similarly,691

LCBt(xt,x
′
t) ≤ LCBt(xt,x

⋆) implies UCBt(x
′
t,xt) ≥ UCBt(x

⋆,xt).692

2ωt(xt,x
∗) = UCBt(x

⋆,xt)− LCBt(x
⋆,xt)

≤ UCBt(x
⋆,xt)− LCBt(x

′
t,xt)

≤ UCBt(x
′
t,xt)− LCBt(x

′
t,xt)

= 2ωt(xt,x
′
t)
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Therefore,693

2rDt ≤ 4ωt(xt,x
′
t) +

h(xt,x
′
t)

2
s(f(x⋆)− f(xt))

Step 3: Next, we upper bound the second term. Define ∆ := h(xt,x
′
t). By the Mean-Value Theorem,694

∃z ∈ [0,∆] such that695

ṡ(z)(∆− 0) = s(∆)− f(0)

Now since κ = supz 1/ṡ(z) then,696

∆ ≤ κ(s(∆)− 0.5) ≤ κ/2 (14)

Next, we consider the right-hand side of the inequality. Note that xt,x
′
t ∈Mt implies that697

UCBt(xt,x
′
t) ≥ 0.5

s(ht(xt,x
′
t)) ≥ 0.5− ωt(xt,x

′
t)

additionally LCBt(xt,x
′
t) ≤ 0.5 implies that698

LCBt(xt,x
′
t) ≤ 0.5

s(ht(xt,x
′
t)) ≤ 0.5 + ωt(xt,x

′
t).

From these two inequalities, it follows that699

|s(ht(xt,x
′
t))− 0.5| ≤ ωt(xt,x

′
t)

furthermore,700

UCBt(xt,x
′
t)− 0.5 = s(ht(xt,x

′
t))− 0.5 + ωt(xt,x

′
t)

≤ |s(ht(xt,x
′
t))− 0.5|+ ωt(xt,x

′
t)

≤ 2ωt(xt,x
′
t)

and similarly701

0.5− LCBt(xt,x
′
t) ≤ 2ωt(xt,x

′
t)

From these upper bounds on the distance between the ends of the confidence interval and the middle702

point of 0.5, it follows that703

|s(f(xt)− f(x′
t))− 0.5| ≤ max{UCBt(xt,x

′
t)− 0.5, 0.5− LCBt(xt,x

′
t)} Corollary 5

≤ 2ωt(xt,x
′
t)

Combining this inequality with Equation (14) and using the fact that s(f(x∗)− f(xt)) ≤ 1, we get704

that705

2rDt ≤ (4 + κ)ωt(xt,x
′
t). (15)

Therefore, for the cumulative dueling regret it holds706

RD(T ) =

T∑
t=1

rDt ≤

√√√√T

T∑
t=1

(rDt )
2

≤ (2 + κ/2)βD
T (δ)

√√√√T

T∑
t=1

(σD
t )

2(xt,
√
λκ) βt(δ) ≤ βD

T (δ)

≤ C3β
D
T (δ)

√
TγDt Lem. 14

with probability greater than 1− δ for all T ≥ 1.707

708
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D.3 Extension of Linear Dueling bandits to Kernelized Utilities709

Maximum Informative Pair Algorithm. Propose in Saha [2021] for linear utilities, the MAXINP710

algorithm similarly maintains a set of plausible maximizer arms, and picks the pair of actions that711

have the largest joint uncertainty, and therefore are expected to be informative. Algorithm 3 present712

the kernelized variant of this algorithm in detail. Using Corollary 5, we can show that the kernelized713

MAXINP also satisfies a Õ(γT
√
T ) regret.714

Theorem 15. Let δ ∈ (0, 1] and choose the exploration coefficient βD
t (δ) as defined in Corollary 5.715

Then MAXINP satisfies the anytime dueling regret guarantee of716

P
(
∀T ≥ 0 : RD(T ) ≤ C2β

D
T (δ)

√
TγDT

)
≥ 1− δ

where γDT is the T -step information gain of kernel kD and C2 = 4/
√

log(1 + 4(λκ)−1).717

Proof of Theorem 15. When selecting (xt,x
′
t) according to Algorithm 3, we choose the pair via718

xt,x
′
t = argmax

x,x′∈Mt

ωt(x,x
′) (16)

where action space is restricted719

Mt = {x ∈ X s.t. s(ht(x,x′)) + ωt(x,x
′) ≥ 1/2} .

Since xt,x
′
t ∈Mt, then720

s(ht(x
⋆,xt)) ≤ 1/2 + ωt(xt,x

⋆)

s(ht(x
⋆,x′

t)) ≤ 1/2 + ωt(x
′
t,x

⋆)
(17)

where we have used the identity s(−z) = 1− s(z). Simultaneously for all t ≥ 1, we can bound the721

single-step dueling regret with probability greater than 1− δ722

2rDt = s(f(x⋆)− f(xt)) + s(f(x⋆)− f(x′
t))− 1

≤ s(ht(x⋆,xt)) + ωt(x
⋆,xt) + s(ht(x

⋆,x′
t)) + ωt(x

⋆,x′
t)− 1 (w.h.p.)

≤ 2 (ωt(x
⋆,xt) + ωt(x

⋆,x′
t)) Eq. (17)

≤ 4ωt(xt,x
′
t)) Eq. (16)

where for the first inequality we have invoked Corollary 5. Therefore, for the cumulative dueling723

regret it holds that724

RD(T ) =

T∑
t=1

rDt ≤

√√√√T

T∑
t=1

(rDt )
2

≤ 2βD
T (δ)

√√√√T

T∑
t=1

(σD
t )

2(xt,
√
λκ) βt(δ) ≤ βD

T (δ)

≤ C2β
D
T (δ)

√
TγDt Lem. 14

with probability greater than 1− δ for all T ≥ 1.725

Dueling Information Directed Sampling (IDS) Algorithm. To choose actions at each iteration726

t, MAXINP and MAXMINLCB require solving an optimization problem on X × X . The Dueling727

IDS approach addresses this issue and presents a algorithm which requires solving an optimization728

problem on X × [0, 1], which is computationally more efficient when d0 > 1. This work considers729

kernelized utilities, however, assumes the probability of preference itself is in an RKHS and solves730

a kernelized ridge regression problem to estimate the probability s(h(x,x′). In the following, we731

present an improved version of this algorithm, by considering the preference-based loss (6) for732

estimating the utility function. We modify the algorithm and the theoretical analysis to accomodate733

for this change.734

Consider the suboptimality gap ∆(x) := h(x⋆,x) for an action x ∈ X . We may estimate this gap735

using the reward estimate maximizer x̂⋆
t := argmaxx∈X ft(x). Suppose we choose x̂⋆

t as one of736
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Algorithm 3 MAXINP- Kernelized Variant

Input (βD
t )t≥1.

for t ≥ 1 do
Play the most informative pair via

xt,x
′
t = arg max

x,x′Mt

σD
t (x,x

′)

Observe yt and append history.
Update ht+1 and σD

t+1 and the set of plausible maximizers

Mt+1 = {x ∈ X | ∀x′ ∈ X : s(ht+1(x,x
′)) + βD

t+1σ
D
t+1(x,x

′) > 1/2}.
end for

Algorithm 4 Dueling IDS - Kernelized Logistic Varniant

Initialize Set (βt)t≥1 according to Theorem 2.
for t ≥ 1 do

Find a greedy action via fixing any point xnull ∈ X and maximizing

x
(1)
t = x̂⋆

t = argmax
x∈X

ht(x, xnull)

Update ut and ∆̂t(x) acc. to (18)
Find an informative action and the probability of selection via

x
(2)
t , pt = argmin

x∈X
p∈[0,1]

(
(1− p)ut + p∆̂t(x)

)2
p log

(
1 + (λκ)−1

(
σD
t (x

(1)
t ,x)

)2)
Draw αt ∼ Bern(pt).
if αt = 1 then

Choose action pair (xt,x
′
t) = (x

(1)
t ,x

(2)
t )

else
Choose action pair (xt,x

′
t) = (x

(1)
t ,x

(1)
t )

end if
Observe yt and append history.
Update ht+1 and σD

t+1.
end for

the actions. Then ut, as defined below, shows an optimistic estimate of the highest obtainable reward737

at this step738

ut := max
x∈X

h(x, x̂⋆
t ) + β̃tσ

D
t (x,x⋆

t ).

where β̃t is the exploration coefficient. We bound ∆(x) by the estimated gap739

∆̂t(x) := ut + ht(x̂
⋆
t ,x) (18)

and show its uniform validity in Lemma 17. Given this gap estimate, we propose the Kernelized740

Logistic IDS algorithm with dueling feedback in Algorithm 4, as a variant of the algorithm of741

Kirschner and Krause.742

Theorem 16. Let δ ∈ (0, 1] and for all t ≥ 1, set the exploration coefficient as β̃t = βD
t (δ)/L. Then743

Algorithm 4 satisfies the anytime cumulative dueling regret guarantee of744

P
(
∀T ≥ 0 : RD(T ) = O

(
βD
T (δ)

√
T (γT + log 1/δ)

))
≥ 1− δ.

Proof of Theorem 16. The proof closely follows proof of Kirschner and Krause [2021, Theorem 1].745

Define the expected average gap for a policy µ ∈M(X × X )746

∆̂t(µ) :=
1

2
Ex,x′∼µ∆̂t(x) + ∆̂t(x

′)
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and the expected information ratio as747

Ξt(µ) =
∆̂2

t (µ)

Ex,x′∼µ log
(
1 + (λκ)−1

(
σD
t (x,x′)

)2) .
Consider Algorithm 4, and for t ≥ 1 let µt = (1− pt)δ(x(1)

t ,x
(1)
t )

+ ptδ(x(1)
t ,x

(2)
t )

denote the action-748

taking policy µt defined over X × X . Here δ(x,x′) denotes a Direct delta. Then by Kirschner et al.749

[2020, Lemma 1],750

1

2

T∑
t=1

h(x⋆,xt) + h(x⋆,x′
t) ≤

√√√√ T∑
t=1

Ξt(µt) (γT +O(log 1/δ)) +O(log T/δ)

which allows us to bound the regret with probability greater than 1− δ as751

RD(T ) ≤ L

√√√√ T∑
t=1

Ξt(µt) (γT +O(log 1/δ)) +O(L log T/δ) (19)

since s(·) with its domain restricted to [−2B, 2B] is L-Lipschitz. It remains to bound Ξt(µt), the752

expected information ratio for Algorithm 4. Now by definition of µt753

2∆̂t(µt) = (2− pt)∆̂t(x
(1)
t ) + pt∆t(x

(2)
t )

= (2− pt)
(
ut + ht(x

(1)
t ,x

(1)
t )
)
+ pt∆t(x

(2)
t )

= 2(1− pt)ut + pt(∆̂t(x
(2)
t ) + ut),

and similarly754

Eµt
log
(
1 +

σD
t (x,x′)2

λκ

)
= (1− pt) log

(
1 +

σD
t (x

(1)
t ,x

(1)
t )2

λκ

)
+ pt log

(
1 +

σD
t (x

(1)
t ,x

(2)
t )2

λκ

)
= pt log

(
1 + (λκ)−1σD

t (x
(1)
t ,x

(2)
t )2

)
(σD

t (x,x) = 0)

allowing us to re-write the expected information ratio as755

Ξt(µt) =

(
2(1− pt)ut + pt(∆̂t(x

(2)
t ) + ut)

)2
4pt log

(
1 + (λκ)−1σD

t (x
(1)
t ,x

(2)
t )2

)
≤

(
(1− pt)ut + pt∆̂t(x

(2)
t )
)2

pt log
(
1 + (λκ)−1σD

t (x
(1)
t ,x

(2)
t )2

) (ut ≤ ∆̂t(x))

= min
x,p

(
(1− p)ut + p∆̂t(x)

)2
p log

(
1 + (λκ)−1σD

t (x
(1)
t ,x)2

) Def. (pt,x
(2)
t )

≤ min
x

∆̂2
t (x)

log
(
1 + (λκ)−1σD

t (x
(1)
t ,x)2

) . Set p = 1

Now consider the definition of ut and let zt denote the action for which ut is achieves, i.e. zt =756

argmaxh(x, x̂⋆
t ) + β̄t(δ)σ

D
t (x, x̂

⋆
t ). Then757

∆̂t(zt) = h(x̂⋆
t , zt) + β̄t(δ)σ

D
t (zt, x̂

⋆
t ) + h(zt, x̂

⋆
t ) = β̄t(δ)σ

D
t (x, x̂

⋆
t ),
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therefore using the above chain of equations we may write758

Ξt(µt) ≤ min
x

∆̂2
t (x)

log
(
1 + σD

t (x
(1)
t ,x)2

)
≤ ∆̂2

t (zt)

log
(
1 + (λκ)−1σD

t (x
(1)
t , zt)2

)
≤ β̄2

t (δ)σ
D
t (ztx̂

⋆
t )

2

log
(
1 + (λκ)−1σD

t (x
(1)
t , zt)2

)
≤ 4β̄2

t (δ)

log (1 + 4(λκ)−1)
(20)

where last inequality holds due to the following argument. Recall that k(x,x) ≤ 1, implying that759

σD
t (x,x

′)2 ≤ 4 and therefore log(1 + σD
t (x,x

′)2) ≥ log(1 + (λκ)−1)σD
t (x,x

′)2/4, similar to760

Lemma 14. To conclude the proof, from (19) and (20) it holds that761

RD(T ) ≤ L

√√√√ T∑
t=1

Ξt(µt) (γT +O(log 1/δ)) +O(L log T/δ)

≤ L

√√√√ T∑
t=1

4β̄2
t (δ)

log (1 + 4(λκ)−1)
(γT +O(log 1/δ)) +O(L log T/δ)

≤ L
√

4T β̄2
T (δ)

log (1 + 4(λκ)−1)
(γT +O(log 1/δ)) +O(L log T/δ)

= O
(
βD
T (δ)

√
T (γT + log 1/δ)

)
with probability greater than 1− δ, simultaneously for all T ≥ 1.762

D.3.1 Helper Lemmas for Appendix D.3763

Lemma 17. Assume f ∈ Hk. Suppose supa≤B ṡ(a) = L and supa≤B 1/ṡ(a) = κ. Then for any764

0 < δ < 1765

P(∀t ≥ 0,x ∈ X : ∆(x) ≤ 2∆̂t(x)) ≥ 1− δ.

Proof of Lemma 17. Note that for any three inputs x1,x2,x3766

h(x1,x3) = h(x1,x2) + h(x2,x3). (21)
Therefore, from the definition of the estimated gap get767

∆̂t(x) = max
z∈X

h(z, x̂⋆
t ) + ht(x̂

⋆
t ,x) + β̄t(δ)σ

D
t (z, x̂⋆

t )

= max
z∈X

h(z,x) + β̄t(δ)σ
D
t (z, x̂⋆

t )

≥ h(x,x) + β̄t(δ)σ
D
t (x,x⋆

t )

= β̄t(δ)σ
D
t (x,x⋆

t ). (22)
Then going back to the definition of the true gap we may write768

∆(x) = max
z∈X

h(z,x)

= max
z∈X

h(z, x̂⋆
t ) + h(x̂⋆

t ,x) Eq. (21)

w.h.p.

≤ max
z∈X

hPt (z, x̂
⋆
t ) + ht(x̂

⋆
t ,x) + β̄t(δ)

(
σD
t (z, x̂⋆

t ) + σD
t (x̂⋆

t ,x)
)

Lem. 18

= ut + hPt (x̂
⋆
t ,x) + β̄t(δ)σ

D
t (x̂⋆

t ,x) Def. ut

= ∆̂t(x) + β̄t(δ)σ
D
t (x⋆

t ,x) Def. ∆̂t(x)

≤ 2∆̂t(x) Eq. (22)
with probability greater than 1− δ.769
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Lemma 18. Assume f ∈ Hk. Suppose supa≤B 1/ṡ(a) = κ. Then for any 0 < δ < 1770

P
(
∀t ≥ 1, x ∈ X :

∣∣h(x,x′)− hPt (x,x′)
∣∣ ≤ β̄t(δ)σD

t (x,x′;
√
λκ)
)
≥ 1− δ

where771

β̄t(δ) := 2B +

√
κ

λ

√
2 log 1/δ + 2γt(

√
λκ)

Proof of Lemma 18.∣∣h(x,x′)− hPt (x,x′)
∣∣ = ∣∣f(x, )− f(x′)− (fPt (x, )− fPt (x′))

∣∣
=
∣∣ψ⊤(x,x′)(θ⋆ − θPt )

∣∣
≤ ∥ψ(x,x′)∥(V D

t )−1

∥∥θ⋆ − θPt ∥∥V D
t

w.h.p.
≤
√
λκβ̄t(δ)∥ψ(x,x′)∥(V D

t )−1 Lem. 9

≤ β̄t(δ)σD
t (x,

√
λκ) Lem. 13

where the third to last inequality holds with probability greater than 1 − δ , but the rest of the772

inequalities hold deterministically.773

E Numerical Experiments774

E.1 Implementation Details775

E.1.1 Optimization Functions776

We use the following functions that are standard in the optimization literature [Jamil and Yang, 2013]777

to evaluate the robustness of MAXMINLCB and report the results in Table 1 and Table 2. We present778

the functions as loss functions as common in the literature, however, for the experiments we negate779

them all to get utilities. We use a uniform grid of 100 points over their specified domains and scale780

the utility values to the range [−3, 3].781

• Ackley: X = [−5, 5]2782

f(x) = −20 exp

−0.2
√√√√1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + exp(1)

• Branin: X = [−5, 10]× [0, 15]783

f(x1, x2) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

• Eggholder: X = [−512, 512]2784

f(x1, x2) = −(x2 + 47) sin

(√
|x2 +

x1
2

+ 47|
)
− x1 sin

(√
|x1 − (x2 + 47)|

)
• Hoelder: X = [−10, 10]2785

f(x1, x2) = −| sin(x1) cos(x2) exp
(
|1−

√
x21 + x22
π

|
)
|

• Matyas: X = [−10, 10]2786

f(x1, x2) = 0.26(x21 + x22)− 0.48x1x2

• Michalewicz: X = [0, π]2787

f(x) = −
d∑

i=1

sin(xi) sin
2m

(
ix2i
π

)
where m = 10 and d is the dimension of the input vector x.788

• Rosenbrock: X = [−5, 10]2789

f(x) =

d−1∑
i=1

[
100(xi+1 − x2i )2 + (xi − 1)2

]
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Algorithm 5 DOUBLER [Ailon et al., 2014]

Input (βD
t )t≥1.

Let L be any action from X
for t ≥ 1 do

for j = 1, . . . , 2t do
Select x′

t uniformly randomly from L
Select xt = argmaxx∈Mt

s(ht(x,x
′
t)) + βD

t σ
D
t (x,x

′
t)

Observe yt and append history.
Update ht+1 and σD

t+1
end for
L ← the multi-set of actions played as x′

t in the last for-loop over index j
end for

Algorithm 6 MULTISBM [Ailon et al., 2014]

Input (βD
t )t≥1.

for t ≥ 1 do
Set xt ← x′

t−1

Select x′
t = argmaxx∈Mt

s(ht(x,xt)) + βD
t σ

D
t (x,xt)

Observe yt and append history.
Update ht+1 and σD

t+1 and the set of plausible maximizers

Mt+1 = {x ∈ X | ∀x′ ∈ X : s(ht+1(x,x
′)) + βD

t+1σ
D
t+1(x,x

′) > 1/2}.
end for

E.1.2 Action Selection Optimization790

To eliminate additional noise in our comparisons coming from approximate solvers, we use an791

exhaustive search over the domain for the action selection of LGP-UCB, MAXMINLCB, and other792

presented algorithms. For the numerical experiments presented in this paper, we do not consider this793

as a practical limitation. Due to our efficient implementation in JAX, this optimization step can be794

carried out in parallel and seamlessly support accelerator devices such as GPUs and TPUs.795

E.1.3 Logistic Bandits796

Hyperparameters. We set δ = 0.1 for all algorithms. For the GP-UCB and LGP-UCB algorithms,797

we use β = 1, 0.25 for the noise variance, and the Radial Basis Function (RBF) kernel. We choose798

the variance and length scale parameters from [0.1, 1.0] to optimize their performance separately. For799

LGP-UCB, we tuned λ, the L2 penalty coefficient in Proposition 1, on the grid [0.0, 0.1, 1.0, 5.0] and800

B on [1.0, 2.0, 3.0]. The hyperparameter selections were done for each utility function and algorithm801

separately.802

E.1.4 Preference Feedback Bandits803

Hyperparameters. We tune the same parameters of LGP-UCB for the preference feedback bandit804

problem on the following grid: λ ∈ [0, 0.1, 1], B ∈ [1, 2, 3], and [0.1, 1] for the kernel variance and805

length scale.806

Comparison algorithms. Algorithm 5, Algorithm 6, and Algorithm 7 described the algorithms807

used for comparison in Section 6.2. MAXINP and IDS are defined in Algorithm 3 and Algorithm 4,808

respectively, in Appendix D.3 alongside with their theoretical analysis. We note that DOUBLER809

includes an internal for-loop, therefore, we adjusted the time-horizon T such that it observes the same810

number of feedback yt as the other algorithms for a fair comparison.811

E.2 Additional Experiments812

In this section, we provide Table 2 that details the performance of the algorithm on the Logistic813

Dueling problem complementing the results in Section 6.1.814

E.3 Computational Resources and Costs815

We ran our experiments on a shared cluster equipped with various NVIDIA GPUs and AMD EPYC816

CPUs. Our default configuration for all experiments was a single GPU with 24 GB of memory, 16817
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Figure 3: Regret with Branin utility function with logistic and preference feedback for horizon
T = 2000.
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Figure 4: Regret with Eggholder utility function with logistic and preference feedback for horizon
T = 2000.
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Figure 5: Regret with Hoelder utility function with logistic and preference feedback for horizon
T = 2000.
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Figure 6: Regret with Matyas utility function with logistic and preference feedback for horizon
T = 2000.
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Figure 7: Regret with Michalewicz utility function with logistic and preference feedback for horizon
T = 2000.
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Figure 8: Regret with Rosenbrock utility function with logistic and preference feedback for horizon
T = 2000.
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Algorithm 7 RUCB [Zoghi et al., 2014a]

Input (βD
t )t≥1.

for t ≥ 1 do
Select x′

t uniformly randomly fromMt

Select xt = argmaxx∈Mt
s(ht(x,x

′
t)) + βD

t σ
D
t (x,x

′
t)

Observe yt and append history.
Update ht+1 and σD

t+1 and the set of plausible maximizers

Mt+1 = {x ∈ X | ∀x′ ∈ X : s(ht+1(x,x
′)) + βD

t+1σ
D
t+1(x,x

′) > 1/2}.
end for

Table 2: Benchmarking RL
T for a variety of test utility functions, T = 2000.

f LGP-UCB GP-UCB UCB LOG-UCB1

Ackley 23.97± 1.54 96.35± 1.27 479.63± 3.42 1810.30± 0.00
Branin 75.23± 17.51 44.81± 2.81 142.37± 1.33 1810.30± 0.00
Eggholder 167.11± 31.26 152.34± 4.28 559.56± 4.15 1041.00± 0.00
Hoelder 57.35± 10.23 150.41± 9.64 426.28± 2.94 105.64± 4.88
Matyas 36.64± 8.77 50.21± 2.07 137.98± 1.21 920.48± 0.57
Michalewicz 283.85± 3.62 175.46± 2.86 566.36± 3.75 1810.30± 0.00
Rosenbrock 8.92± 0.33 26.14± 0.87 76.13± 0.84 897.04± 120.68

CPU cores, and 16 GB of RAM. Each experiment of the 11 configurations reported in Section 6.2 ran818

for about 12 hours and the experiment reported in Section 6.1 ran for 5 hours. The total computational819

cost to reproduce our results is around 140 hours of the default configuration. Our total computational820

costs including the failed experiments are estimated to be 2-3 times more.821
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