
Efficient Adaptive Federated Optimization

Su Hyeong Lee 1 Sidharth Sharma 2 Manzil Zaheer 3 Tian Li 4

Abstract
Adaptive optimization plays a pivotal role in fed-
erated learning, where simultaneous server and
client-side adaptivity have been shown to be es-
sential for maximizing its performance. However,
the scalability of jointly adaptive systems are of-
ten constrained by limited resources in communi-
cation and memory. In this paper, we introduce
a class of efficient adaptive algorithms, named
FedAda2, designed specifically for large-scale,
cross-device federated environments. FedAda2

optimizes communication efficiency by avoid-
ing the transfer of preconditioners between the
server and clients, while simultaneously utiliz-
ing memory-efficient adaptive optimizers on the
client-side to reduce extra on-device memory cost.
Theoretically, we demonstrate that FedAda2

achieves the same convergence rates for gen-
eral, non-convex objectives as its more resource-
intensive counterparts that directly integrate joint
adaptivity. Empirically, we showcase the bene-
fits of joint adaptivity and the effectiveness of
FedAda2 on several image datasets.

1. Introduction
Federated learning is a distributed learning paradigm which
aims to train statistical models across multiple clients with-
out transmitting raw data (McMahan et al., 2017; Li et al.,
2020a; Wang et al., 2021a). In vanilla federated learning, a
central server orchestrates the training process by distribut-
ing the global model to a subsample of thousands or even
millions of clients. These clients collaboratively perform
local stochastic gradient descent while drawing from their

1Committee on Computational and Applied Mathematics,
University of Chicago, Chicago, IL, USA 2Department of
Electrical and Computer Engineering, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA 3Google DeepMind, New York,
NY, USA 4Department of Computer Science, University of
Chicago, Chicago, IL, USA. Correspondence to: Su Hyeong Lee
<sulee@uchicago.edu>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

private data streams. After several epochs have elapsed,
each client communicates their aggregate updates to the
server, which averages this information to make an informed
adjustment to the global model. This algorithm, using non-
adaptive weight updates, is called FedAvg (McMahan et al.,
2017). A recent trend is to investigate utilizing adaptive
optimizers to support federated learning (Reddi et al., 2021).
Adaptivity can be employed in either the server-side or the
client-side, where joint adaptivity (consisting of global and
local adaptive updates) has been shown to play a pivotal role
in accelerating convergence and enhancing accuracy (Wang
et al., 2021b).

Nevertheless, efficiency challenges remain for the success-
ful deployment of jointly adaptive algorithms in practice,
especially in cross-device federated settings (Kairouz et al.,
2021). The server, which collects pseudogradients pushed
by participating clients, consolidates a global approximation
of the preconditioners for adaptive model updates. Typically,
the server sends the preconditioners back to the clients to
precondition local adaptive updates. This could lead to
significant communication overhead that detracts from the
advantages offered by adaptivity (Wang et al., 2022). Fur-
thermore, dynamically varying client resource limitations
restrict the reliability of client-side adaptive optimizers to be
deployed in practice, especially when additional memory is
required to maintain gradient statistics for preconditioning
throughout each local training round.

In this work, we propose a class of efficient jointly adaptive
distributed training algorithms, called FedAda2, to mitigate
the aforementioned communication and memory restric-
tions while retaining the benefits of adaptivity. FedAda2

maintains an identical communication complexity as the
vanilla FedAvg algorithm. Instead of transmitting global
server-side preconditioners from the server to the selected
clients, we propose the simple strategy of allowing each
client to initialize local preconditioners from constants (such
as zero), without any extra communication of precondition-
ers. In addition, when running local updates, we adopt
existing memory-efficient optimizers that factorize the gra-
dient statistics to reduced dimensions to save on-device
memory. We prove that for the general, non-convex set-
ting, FedAda2 achieves the same convergence rate as prior
federated adaptive optimizers (e.g., Reddi et al. 2021).

1

Efficient Adaptive Federated Optimization

Contributions. Motivated by the importance of client-
side adaptivity both empirically and theoretically (Sec-
tion 3), we propose a simple and effective algorithm
FedAda2 to avoid extra communication cost and reduce
on-device memory while retaining the benefits of joint
server- and client-side adaptive optimization (Section 4).
We provide convergence analyses for a class of FedAda2

algorithms instantiated with different server-side and client-
side adaptive methods (Section 5). To the very best of
our knowledge, there are no known convergence results on
joint adaptive federated optimization in the general con-
vex or non-convex setting. Empirically, we demonstrate
that FedAda2, without transmitting preconditioners and
employing on-device preconditioner compression, matches
the performance of its more expensive counterparts and
outperforms baselines without client or server adaptivity
(Section 6).

2. Related Work
We now provide a brief overview of related work in adaptive
federated learning and efficient1 preconditioning.

Adaptive Federated Optimization. Adaptive gradient
methods are designed to dynamically adjust the learning
rate for each model parameter to address update sparsity
or scale imbalance, leveraging historical gradient data to
enhance optimization efficacy (Duchi et al., 2011). Recent
developments in Federated Learning have harnessed adap-
tivity to augment the selection of server and client model
parameter updates. Frameworks such as FedAdam (Reddi
et al., 2021) and FederatedAGM (Tong et al., 2020) focus
primarily on server-side adaptivity while enforcing a con-
stant learning rate for the clients. Additionally, FedCAMS
(Wang et al., 2022) delves into communication-efficient
adaptive optimization by implementing error feedback com-
pression to manage client updates while maintaining adap-
tivity solely on the server-side. Conversely, methodologies
such as FedLALR (Sun et al., 2023), Local AdaAlter (Xie
et al., 2019), and Local AMSGrad (Chen et al., 2020) have
adopted client-side adaptivity exclusively. These approaches
involve transmitting both client preconditioners and model
parameters for global aggregation in the server. Moreover,
some frameworks have embraced joint adaptivity. Local
Adaptive FedOPT (Wang et al., 2021b) implements joint
adaptivity while incorporating an additional client correc-
tion term. These terms, along with transmitted client pseudo-
gradients, are aggregated on the server to construct a global

1There are various notions of ‘efficiency’ of adaptive methods
in the context of the federated learning, two of them being commu-
nication efficiency and client memory efficiency. Our contribution
specifically targets at reducing communication and memory costs
incurred by local preconditioners, complementary with works
that reduce communication by repeated local updates or gradient
compression.

preconditioner used to synthesize the subsequent model
update. In contrast with all these approaches, FedAda2

avoids the transmission of any local/global preconditioners
and optimizer states entirely, maintaining identical commu-
nication complexity as vanilla FedAvg despite leveraging
joint adaptivity.

Memory-Efficient Adaptive Optimizers. The implemen-
tation of local adaptive methods substantially increases
client memory requirements, as it necessitates the mainte-
nance of local preconditioners. For some language models,
it has been noted that the gradients combined with optimizer
states consume significantly more memory than the actual
model parameters themselves (Raffel et al., 2020). Algo-
rithms such as Adafactor (Shazeer & Stern, 2018) address
memory reduction by tracking moving averages of the re-
duction sums of squared gradients along a singular tensor
axis, attaining a low-rank projection of the exponentially
smoothed preconditioners. Galore (Zhao et al., 2024) ex-
tends this line of work by targeting the low-rank nature of the
gradient tensor (possessing an identical shape as the weight
tensor) and further projects the gradients into a reduced
rank. Similarly, Shampoo (Gupta et al., 2018) collapses
gradient statistics into separate preconditioning matrices for
each tensor dimension, which is extended by Chen et al.
(2019) via extreme tensoring. Due to significant empirical
enhancement in wall time and convergence speed, we fo-
cus on SM3 (Anil et al., 2019) in our implementation and
experiments; however, our theoretical framework covers a
broad class of memory-efficient optimizers applied on the
client-side (Section 5 and Appendix C).

3. Utility of Client-Side Adaptivity
In this section, we motivate our work by providing a theo-
retical description of how leveraging client-side adaptivity
improves distributed learning, which is later validated in
experiments (Section 6). Our analyses are motivated by
prior works that uncover critical conditions under which
centralized SGD can diverge, specifically in settings involv-
ing heavy-tailed gradient noise (Zhang et al., 2020). We
begin by providing a definition of heavy-tailed noise previ-
ously reported in the literature for completeness, which is
further motivated in Appendix A.2.

Definition 3.1. A random variable ξ ∼ D follows a heavy-
tailed distribution if the α-moment is infinite for α ≥ 2.

We may now present the following proposition.

Proposition 3.2. There exists a federated optimization prob-
lem with heavy-tailed client-side gradient noise such that the
following arguments hold (where an appropriate learning
rate schedule is chosen for (ii)):

(i) For vanilla FedAvg, given any client sampling strategy, if

2

Efficient Adaptive Federated Optimization

the probability pti of client i with heavy-tailed gradient noise
being sampled at step t is non-zero, then E∥∇f(xt+1)∥2 =
∞ for any nontrivial learning rate schedule ηtℓ > 0.

(ii) FedAvg with local adaptivity (i.e., via client-side Ada-
Grad) bounds the error in expectation as

lim
t→∞

E∥xt − x∗∥ ≤
2
√
3

1− ε̂
for some ε̂ ≈ 0,

where x∗ is the global optimum.

A proof is given by construction in Appendix A, which re-
veals a vulnerability in non-adaptive federated learning. We
show that even a single client with heavy-tailed gradient
noise is able to instantaneously propagate their volatility to
the global model, which severely destabilizes distributed
learning in expectation. Unfortunately, recent works have
confirmed that heavy-tailed gradient distributions are em-
pirically observed (Nguyen et al., 2019; Simsekli et al.,
2019; 2020), especially within model architectures utilizing
attention mechanisms, including transformer-based mod-
els (Devlin et al., 2018; Zhang et al., 2020; Brown et al.,
2020; Dosovitskiy et al., 2021). Proposition 3.2 suggests
that client-side adaptivity has the potential to stabilize lo-
cal model updates pushed from diverse and large-scale dis-
tributed sources, if communication bottlenecks and memory
efficiency can be addressed.

The construction of the federated problem in Proposition 3.2
draws gradient noise from the Student t-distribution which
is heavy-tailed depending on the parameter regime, but
whose moments are relatively controlled nevertheless. We
may exacerbate the severity of gradient stochasticity by
inserting a singular client with Cauchy-distributed noise,
while enforcing all other clients to follow non-heavy-tailed
Gaussian gradient noise. We further detail this setting in
Proposition A.2, Appendix A.

3.1. Deep Remorse of FedAvg and SGD

So far, we have examined two problems in which heavy-
tailed gradient noise is guaranteed to destabilize distributed
training in expectation. We now prove that this is an instan-
tiation of a more general phenomenon in federated learning
where a family of online µ-strongly convex global objectives
collapses to the identical failure mode. To our knowledge,
this provable limitation of distributed training resultant from
the heavy-tailed noise of a singular client has not previously
been established within the literature. The proofs of all
results are given in the appendix.
Definition 3.3. A learning algorithm A is deeply remorse-
ful if it incurs infinite or undefined regret in expectation. If
A is guaranteed to instantly incur such regret due to sam-
pling even a single client with a heavy-tailed stochastic
gradient distribution, then we say A is resentful of heavy-
tailed noise.

We present the following theorem.

Theorem 3.4. Let the global objectives ft(x) of a dis-
tributed training problem satisfy µ-strong convexity for
t = 1, . . . , T . Assume that the participation probability of
a client with a heavy-tailed stochastic gradient distribution
is non-zero. Then, FedAvg becomes a deeply remorseful al-
gorithm and is resentful of heavy-tailed noise. Furthermore,
if the probability of the heavy-tailed client being sampled at
step t is nontrivial, then the variance of the global objective
at t+ 1 satisfies E∥ft+1(xt+1)∥2 =∞.

In federated learning, we typically have ft(x) ≡ f(x) for
all t = 1, . . . , T . Proposition 3.2 intuits that inserting local
adaptivity successfully breaks the generality of remorse and
heavy-tailed resent for FedAvg. A high-level overview is
that client-side AdaGrad clips the local updates of each iter-
ation, which mollifies the impact of stochasticity in perturb-
ing the weight updates. This gives Proposition 3.5, which
is formulated loosely without utilizing any advantages pro-
vided by local adaptivity except for clipping. Given that
adaptive methods inherently include a clipping mechanism
while also offering the benefits of adaptivity, we consider
them to be preferable to clipped SGD for large-scale applica-
tions. This preference holds, provided that the memory and
computational constraints of the clients can be adequately
managed.

Proposition 3.5. Let ft ∈ C(Rd) for t = 1, . . . , T for ft
not necessarily convex. Introducing client-side adaptivity
via AdaGrad for the setting in Theorem 3.4 produces a
non-remorseful and a non-resentful algorithm.

Note that Proposition 3.5 can be straightforwardly extended
to jointly adaptive methods. An advantage of federated
learning is that when done tactfully, the large supply of
clients enable the trainer to draw from a virtually unlimited
stream of computational power. The downside is that the
global model may be strongly influenced by the various gra-
dient distributions induced by the private client data shards.
In this paper, we focus specifically on adaptive optimiza-
tion as a countermeasure to stabilize learning. In Section 4,
we propose FedAda2, which utilizes joint adaptivity in an
efficient and scalable manner for distributed or federated
training.

4. FedAda2: Efficient Joint Server- and
Client-Side Adaptivity

In federated learning, a server-side objective is formed by
taking a balanced average of all client objectives Fi(x) for
i ∈ [N],

f(x) =
1

N

N∑
i=1

Fi(x).

3

Efficient Adaptive Federated Optimization

In the case of unbalanced client data sizes, we note that
rescaling the local objectives appropriately gives an equiva-
lent formulation to the balanced case. With a slight abuse
of notation, we denote Fi(x) = Ez∼Di

[Fi(x, z)] where
Fi(x, z) is the stochastically realized local objective and
Di is the data distribution of client i. For analytical pur-
poses, we assume that the global objective does not diverge
to negative infinity and admits a minimzer x∗. To realize
joint adaptivity in federated systems, one natural baseline
is to estimate (pseudo)gradient statistics on the server (i.e.,
server-side preconditioners or global preconditioners) be-
fore transmitting them to all participating clients at the start
of every communication round. And then each selected
client performs local adaptive steps with preconditioners
starting from the global ones. This approach enables clients
to utilize historical gradient information to make informed
adjustments to their respective local models. However, trans-
mitting (pseudo)gradient statistics, such as the second mo-
ment, at each round significantly increases the communi-
cation cost. In addition, running adaptive updates locally
based on the local data introduces memory overheads.

Scalar Preconditioner Initialization. To enhance the
feasibility of joint federated learning in cross-device set-
tings, we first address extra major communication bottle-
neck brought by server-side preconditioners. We propose
a simple strategy of uniformly initializing local precondi-
tioners to zero (or some constant, as discussed later) at the
beginning of each training round, thus eliminating the need
for preconditioner transmission between server and clients.
In addition to communication reduction, this approach en-
ables the use of different optimizers on the server and clients,
as the server and client can maintain independent gradient
statistics estimates.

Assuming Adagrad is selected as the server-side opti-
mizer (Reddi et al., 2021) for expository purposes, we have
the following server update rule (SU) for −∆t

i the accumu-
lated pseudogradient from client i at step t,

∆t =
1

|St|
∑

i∈St ∆t
i, m̃t = β̃1m̃t−1 + (1− β̃1)∆t,

ṽt = ṽt−1 +∆2
t , xt = xt−1 + η m̃t√

ṽt+τ
.

(SU)
Here, ṽt acts as the second moment statistic for the server-
side pseudogradient −∆t. An extension to the case when
Adam is selected as the server optimizer is given in Ap-
pendix B.2. At each communication round, the server does
not communicate ṽt to the participating clients; instead,
each client only receives xt and initializes the local precon-
ditioners from zero. The variant of FedAda2 where the
client and server utilizes differing optimizers may also be re-
alized as a special case of blended optimization (Section 5.1,
Appendix C).

Addressing Client-Side Resource Constraints. To ac-
commodate local memory restrictions, we employ memory-
efficient optimizers for all clients. Our framework allows
any such optimizer to be used, including a heterogeneous
mixture within each communication round, and we provide
a convergence guarantee for a very broad class of optimizer
strategies in Theorem C.1. In this paper, we specifically
focus on SM3 (Anil et al., 2019) adaptations of Adam and
Adagrad.

Intuitively, SM3 exploits natural activation patterns ob-
served in model gradients to accumulate approximate
parameter-wise statistics for preconditioning. More pre-
cisely, the gradient information in each coordinate element
{1, . . . , d} is blanketed by a cover {S1, . . . , Sq} satisfying⋃q

b=1 Sb = {1, . . . , d} for which an auxiliary µk(b) is as-
signed for each b ∈ [q]. The µk(b) then act to form vk as a
coordinate ascent upper bound to the squared gradient sum∑k

ℓ=1(g
t
i,ℓ)

2 as SM3 iterates over each j ∈ [d]. A more
in-depth explanation is given in Appendix B.

As an add-on, utilizing the staleness of gradients to con-
struct preconditioners has previously been suggested as a
strategy to accelerate adaptive optimization without hurt-
ing the performance (Gupta et al., 2018; Li et al., 2023).
Therefore, we may optionally further mollify the burden of
client-side adaptive optimizers by enforcing delayed pre-
conditioner updates. This is given by the following client
update rule (DCU) which incorporates delay step z,

vk(j)← minb:Sb∋j µk−1(b) +
(
gti,k(j)

)2
µk(b)← max{µk(b), vk(j)}, for ∀b : Sb ∋ j

(DCU)

for (k − 1)/z ∈ Z and vk(j)← vk−1(j) otherwise, where
k is the local iteration.

These methodologies are consolidated into Algorithm 1,
which we call FedAda2. For simplicity, we describe the
variant in which both the client and server employ AdaGrad.
However, we present other instantiations of FedAda2 in
Appendix C.

5. Convergence Analyses
One of the challenges in proving the convergence bound for
jointly adaptive systems lies in handling gradient mixing on
the client-side. In typical convergence proofs in non-convex
settings (e.g., Zhang et al. 2020; Reddi et al. 2021), an upper
bound on the global objective is formed using L-smoothness,
on which expectation is taken. When local SGD is used, the
expectation independently acts on each localized stochastic
gradient due to linearity. However, in the case of local adap-
tive methods that maintain second-order stochastic gradient
histories, the individual gradients may not be isolated due to
dependencies between client gradients in the model update.
Furthermore, server adaptivity actively interferes with the

4

Efficient Adaptive Federated Optimization

Algorithm 1 FedAda2: SM3-ADAGRAD Variant

Require:
(SM3) A full cover {S1, . . . , Sq} ⊂ P([d]).
(Main) Initializations x0, ṽ0 ≥ τ2 and m̃0 = 0.
Smoothing terms εs, ε, τ > 0. Global decay param-
eter β̃1 ∈ [0, 1).
(Optional) Update delay step size z ∈ Z≥1.

1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N] of clients
3: for each client i ∈ St (in parallel) do
4: Initialize v0 ≥ 0 (default v0 ← 0), xti,0 ← xt−1

5: for k = 1, . . . ,K do
6: Draw unbiased gradient gti,k ∼ D(xti,k−1)

7: mk ← gti,k, µk(b)← 0 for ∀b ∈ {1, . . . , q}
8: for j = 1, . . . , d do
9: Delayed Client Update (DCU)

10: end for
11: if 0 < ∥mk/(

√
vk + ε)∥ < εs, do mk ← 0

12: xti,k ← xti,k−1 − ηℓ ·mk/(
√
vk + ε)

13: end for
14: ∆t

i = xti,K − xt−1

15: end for
16: Server Update (SU)
17: end for

application of techniques introduced in singularly client-
side adaptive works such as Xie et al. 2019. To address
these issues, we transition to the gradient descent setting
and employ gradient clipping as a key technique, detailed
below.

We encounter additional challenges with subsampling,
which we manage by uniformly bounding the relevant terms
(Appendix B.1). In typical gradient descent proofs, sub-
sampling or random initialization introduces randomness,
necessitating the formation of upper bounds via expecta-
tions. However, we provide a stronger result by proving a
uniform upper bound for any arbitrary initial weight x0 and
client sampling scheme, thereby eliminating the need for
expectation bounds related to initialization or subsampling
randomness. To proceed with the convergence analysis, we
make the following assumptions where the ℓ2 norm is taken
by default.

Assumption 1 (L-smoothness). The local objectives are
L-smooth and satisfy ∥∇Fi(x)−∇Fi(y)∥ ≤ L∥x− y∥ for
all x, y ∈ X and i ∈ [N].

Assumption 2 (Bounded Gradients). The local objective
gradient is bounded by

∣∣∣[∇Fi(x, z)]j

∣∣∣ ≤ G for j ∈ [d].

These assumptions are standard within the literature and
have been used in previous works (e.g. Xie et al. 2020;

Wang et al. 2020; Li et al. 2020b; Reddi et al. 2021). We
note that Assumption 2 implies |∇Fi(x)| ≤ G for x ∈ X
via Jensen and integrating over z ∼ Di. In particular, this
delineates an L̃-Lipschitz family of client objectives given
that the arguments are ηℓεs-bounded away from each other,

∥∇Fi(x)−∇Fj(y)∥ ≤ L̃∥x− y∥ :=
2
√
dG

ηℓεs
∥x− y∥

for i, j ∈ [N] and ∥x − y∥ ≥ ηℓεs. Here, εs is an ep-
silon smoothing term that activates on the client-side. This
quantity is used in a gradient clipping step in FedAda2 (Al-
gorithm 1), where if the local gradient update is negligibly
small in magnitude, the gradient is autonomously clipped
to 0. ηℓ > 0 is the local learning rate, and in particular, we
note that L̃ = Θ(η−1

ℓ). By taking εs → 0, our algorithm re-
covers federated algorithms that do not utilize local gradient
clipping. Therefore to remain consistent with most feder-
ated learning implementations, we take εs to be a negligible
value during the experiment section.

We now provide a convergence bound for the general, non-
convex case under gradient descent which holds for both full
and partial client participation. The full theorem statement
as well as the generalization to the case where Adam is
selected for the choice of adaptive optimizer is provided in
Appendices B.1, B.2. We note that the convergence bound
for the variant of FedAda2 with SM3 inactive trivially
follows from the analysis.

Theorem 5.1. Let Assumptions 1, 2 hold. Then given any
choice of initialization x0, Algorithm 1 deterministically
satisfies

min
t∈[T]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6

where asymptotically,

ψ1 = Θ(1), ψ2 = η2η2ℓT, ψ3 = ηη2ℓT, ψ4 = ηηℓ log(1 + Tη2ℓ)

and

ψ5 =

{
η3η3ℓT if O(ηℓ) ≤ O(1)
η3ηℓT if Θ(ηℓ) > Ω(1)

, ψ6 =

{
ηηℓT if O(Tη2ℓ) ≤ O(1)

η
√
T if Θ(Tη2ℓ) > Ω(1)

.

In particular, we make no other assumptions on local or
global learning rates to extract the most general use of The-
orem 5.1. We have the following two corollaries:

Corollary 5.2. Any of the following conditions are sufficient
to ensure convergence of Algorithm 1:

(A) : ηℓ ≤ O(T− 1
2) for Ω(T−1) < ηηℓ < O(1),

(B) : ηℓ = Θ(T− 49
100) for Ω(T− 1

2) < η < O(T 12
25).

Corollary 5.3. Algorithm 1 converges at rate O(T−1/2).

5

Efficient Adaptive Federated Optimization

In particular, ηℓ must necessarily decay to establish conver-
gence in Theorem 5.1. However, striking a balance between
local and global learning rates provably allows for greater
than Ω(T 1/3) divergence in the server learning rate without
nullifying the desirable convergence property. This theo-
retically demonstrates the enhanced resilience of adaptive
client-side federated learning algorithms to mitigate subop-
timal choices of server learning rates.

5.1. Discussion of Convergence Bound

There have been several recent works exploring adaptivity
and communication efficiency in federated learning. The
convergence rate in Corollary 5.3 matches the state of the art
for federated non-convex optimization methods (Xie et al.,
2019; Chen et al., 2020; Tong et al., 2020; Reddi et al., 2021;
Wang et al., 2022; Sun et al., 2023). However, to the best
of our knowledge, there are no known convergence results
of jointly adaptive federated systems, in either the GD nor
SGD setting. Previous work most related to ours is given
in Wang et al. 2021b, Theorem 1, which presents a decaying
bound on the distance between the realized weights xt of
their federated algorithm to the fixed point x̃ of a contrac-
tive operator for strongly convex objectives. However, the
authors are unable to derive a closed form expression for the
hi term that appears on the right hand side for client-side
Adam and Adagrad, opting for a numerical approximation
instead2. Our analysis holds for both these optimizers, while
additionally incorporating the elements of delayed updates
and memory efficiency.

Generality of FedAda2: Blended Optimization. The
gradient descent setting used in the analysis of Theorem 5.1
is conceptually equivalent to accessing oracle client work-
ers capable of drawing their entire localized empirical data
stream. While this constraint is a limitation of our theory
(we refer to Section 7), it enables us to derive stronger re-
sults and induce additional adaptive frameworks for which
our analysis generalizes. For instance, our bound determin-
istically guarantees asymptotic stabilization of the minimum
gradient, regardless of initialization or client subsampling
procedure. Furthermore, in Appendix C, we prove that our
analysis can be extended to form a flexible framework for
federated learning which we call Federated Blended Opti-
mization (Algorithm 4).

Blended optimization distributes local optimizer strategies
during the subsampling process, which are formalized as
functions that take as input the availability of client re-
sources and outputs hyperparameters such as delay step
size z or choice of optimizer (Adam, AdaGrad, SGD, etc).
These may be chosen to streamline model training based

2Moreover, we have discovered unrecoverable issues with their
Lemma 2 via a counterexample, which forms a central backbone
in developing their theory.

on a variety of factors, such as straggler mitigation or low
availability of local resources. Under certain non-restrictive
conditions on optimizer choices contained in the strate-
gies, this dynamic hyperparameter allocation scheme allows
for guaranteed convergence of the global gradient objec-
tive (Theorem C.1). In particular, this framework permits
the deployment of different adaptive optimizers for each
round per device, enhancing the utility of communication-
efficient frameworks that do not retain preconditioners be-
tween clients or between the server and client. This flexi-
bility is especially beneficial in scenarios where there is a
mismatch between adaptive optimizer choices.

6. Experiments and Discussion
In this section, we conduct experiments to empirically vali-
date the benefits of joint adaptivity motivated by communi-
cation and memory efficiency, which accumulates to an em-
pirical derivation of FedAda2. Our study aims to contrast
FedAda2 with frameworks that lack adaptivity on either
the server or client-sides. In the pre-trained transformer
setting below, we have discovered that adaptivity induces
qualitatively varying model dynamics, leading to significant
performance improvements after hyperparameter tuning.

Evaluation Setup and Dataset Splits. We explore the
impact of joint adaptivity on a small vision transformer
(ViT-S), introduced in Sharir et al. 2021 and pre-trained on
the ImageNet-21K dataset (Ridnik et al., 2021). FedAda2,
along with its partially non-adaptive counterparts, are evalu-
ated by fine-tuning the pre-trained model on the GLD-23K
subset of the Google Landmarks dataset (Weyand et al.,
2020), which represents a domain shift onto natural user-
split pictorial data. Analogous experiments are carried out
using CIFAR-10 (Krizhevsky, 2009), involving 1000 clients
with a subsampling rate of 0.01. Data partitioning was
achieved using LDA (Blei et al., 2003) with α = 0.5. In
ViT experiments, images are resized to 224 × 224 pixels,
and 30 communication rounds are conducted for CIFAR-10
and 200 rounds for GLD-23K. For the latter dataset, the
client optimizer employed a learning rate schedule that be-
gan with a 15-step linear warm-up phase, followed by a
step-function decay where the learning rate was reduced by
a factor of 0.1 every 15 backpropagation steps. We set the
local training batch size to 32 for both datasets. Details for
hyperparameter selection along with compute resources are
provided in Appendix G.

Benefits of Joint Adaptivity. We briefly verify that a natu-
ral, expensive implementation of joint client- and server-side
Adam with transmitted global preconditioners, supersedes
the performance of FedAvg (McMahan et al., 2017) and sin-
gularly server-side adaptivity (FedAdam Reddi et al. 2021),
as shown in Figure 1. Intuitively, these results are expected

6

Efficient Adaptive Federated Optimization

0 50 100 150 200
Rounds

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ac
cu

ra
cy

GLD-23K Test Accuracy
Naive Joint Adaptivity

FedAdam

FedAvg

0 50 100 150 200
Rounds

2

3

4

5

6

Lo
ss

GLD-23K Test Loss
Naive Joint Adaptivity

FedAdam

FedAvg

5 10 15 20 25 30
Rounds

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 Test Accuracy

Naive Joint Adaptivity

FedAdam

FedAvg

5 10 15 20 25 30
Rounds

0.0

0.5

1.0

1.5

2.0

2.5
Lo

ss
CIFAR-10 Test Loss

Naive Joint Adaptivity

FedAdam

FedAvg

Figure 1. Naive joint adaptivity performs better than FedAdam and
FedAvg on both GLD-23K and CIFAR-10 datasets. The shadows
represent the moving averages of the accuracy.

as Section 3 confirms that adaptivity aids the stabilization
of gradient updates. However, note that full gradient trans-
mission incurs significant communication cost, as noted
in Section 1. Moreover, the adaptive optimizer substan-
tially increases the memory demand on the client, due to
the maintenance of auxiliary second order statistics used
to synthesize model updates in every local iteration. This
motivates the communication-efficient and low-memory pre-
conditioning design of FedAda2, and we report the results
below.

Communication-Efficiency of FedAda2. To address the
issue of additional communication overhead introduced by
joint adaptivity, we propose to simply initialize the local
preconditioners from zero (or a constant) at each round. In
Figure 2, we compare the performance with and without
preconditioner communication. We find that initializing
from zero does not underperform the more complicated
algorithm (naive joint adaptivity). To our surprise, on some
datasets (GLD-23k), such a compromise for the purpose
of reducing communication can even achieve better test
performance than the more expensive baseline.

Memory-Efficiency of FedAda2. Here, we investigate
the performance of using approximated, memory-efficient
local adaptive optimizers in FedAda2. We implement SM3
on the client-side, which is a sublinear method to reduce
memory consumption. In Figure 3 (top), the difference be-
tween FedAda2 and joint adaptivity without preconditioner
communication is the usage of SM3 as an approximation
of the full client-side preconditioners during local updates.
We see that FedAda2 still retains the competitive perfor-

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

GLD-23K Test Accuracy
Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAdam

FedAvg

0 50 100 150 200
Rounds

1

2

3

4

5

6

Lo
ss

GLD-23K Test Loss
Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAdam

FedAvg

5 10 15 20 25 30
Rounds

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 Test Accuracy

Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAdam

FedAvg

5 10 15 20 25 30
Rounds

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

CIFAR-10 Test Loss
Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAdam

FedAvg

Figure 2. Effects of joint adaptivity without preconditioner com-
munication compared with the more expensive baseline of naive
joint adaptivity with server-client preconditioner synchronization.
We see that initializing from zero (as opposed to a global pre-
conditioner as in naive joint adaptivity) does not meaningfully
degrade performance and sometimes can even achieve higher test
accuracies in certain applications.

mance of naive joint adaptivity, while being communication-
and memory-efficient. As an optional add-on, we provide
a sample result for the delayed preconditioner update strat-
egy detailed in Section 4, which may further reduce local
computation. As intuitively expected in cases where pre-
conditioners remain generally stable across local iterations,
only updating them periodically on the client-side does not
substantively affect the performance (Figure 3, bottom).

In addition to convergence plots, we provide accuracy num-
bers of FedAda2 and the baselines in Table 1. We see that
naive joint adaptivity (NJA) is superior to side-side adaptiv-
ity (FedAdam) as well as FedAvg. Empirically, avoiding
preconditioner transmission and leveraging client-side pre-
conditioner approximations (i.e., FedAda2) does not harm
the performance of its more expensive variants.

Table 1. Test accuracies of different methods. NJA stands for Naive
Joint Adaptivity, JAPC for naive Joint Adaptivity without Precon-
ditioner Communication, and DU for Delayed Updates.

Datasets FedAvg FedAdam NJA JAPC FedAda2 FedAda2 + DU

CIFAR-10 95.59 92.80 96.4 97.2 96.4 97.2
GLD-23K 29.94 41.22 51.02 59.79 52.75 49.338

7. Extensions and Future Work
Our convergence analysis studies full gradient descent,
whereas experiments are conducted using stochastic gra-
dient descent for better industrial scalability. Although our

7

Efficient Adaptive Federated Optimization

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

GLD-23K Test Accuracy
Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAda2

0 50 100 150 200
Rounds

1

2

3

4

5

6

Lo
ss

GLD-23K Test Loss
Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAda2

0 50 100 150 200
Rounds

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

GLD-23K Test Accuracy

Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAda2

FedAda2

With Delayed Precond. Updates

0 50 100 150 200
Rounds

1

2

3

4

5

6
Lo

ss
GLD-23K Test Loss

Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAda2

FedAda2

With Delayed Precond. Updates

Figure 3. (Top) Performance of joint adaptivity with memory-
efficient client preconditioners. We compare our communication-
and memory-efficient adaptive algorithm (FedAda2) with base-
lines of naive joint adaptivity (i.e., using server-side pre-
conditioners to initialize client-side preconditioners) and only
communication-efficient joint adaptivity (i.e., without transmit-
ting server-preconditioners but using full preconditioners for local
updates). We observe that using memory-efficient approximated
local preconditioners does not materially harm performance. (Bot-
tom) To further reduce computation costs on the client-side, we
optionally add delayed preconditioner updates on top of FedAda2

(FedAda2 with Delayed Updates). We observe that the overall
accuracy remains competitive with FedAda2. Similar results for
CIFAR-10 are given in Appendix F.2, Figure 6.

work provides a first convergence guarantee for a jointly
adaptive system matching the state of the art (e.g. Xie et al.
2019; Li et al. 2020b; Reddi et al. 2021; Wang et al. 2022),
moving to the stochastic gradient setting motivates addi-
tional challenges left for future research.

Another extension is to study the performance of Feder-
ated Blended Optimization (Section 5.1, Appendix C), a
naturally induced framework discovered by generalizing
our nonconvex convergence analysis. Blended optimizaton
allows the trainer to utilize the unique strengths of each indi-
vidual optimizer, balancing compute limitations and client
noise. Generally, drawing from noisy local data streams
will benefit more from adaptive methods in return for higher
computational cost. Furthermore, each client has the option
to run different optimizer strategies as the training rounds
progress, adapting to individual resource constraints and dis-
tribution shifts in the data stream. We note that this approach
faithfully mirrors real-world settings where the availability
of local resources are actively dynamic. Future work will
provide empirical results on the performance of blended
optimization, including identifying the settings in which

mixing optimizer strategies are advantageous for distributed
learning.

8. Conclusion
In this work, we introduce FedAda2, a class of jointly
adaptive algorithms designed to enhance scalability and
performance in large-scale, cross-device federated environ-
ments. FedAda2 is conceptually simple and straightfor-
ward to implement. By optimizing communication effi-
ciency and employing localized memory-efficient adaptive
optimizers, FedAda2 significantly reduces the overhead
associated with transferring preconditioners and extra on-
device memory cost without degrading model performance.
Our empirical results demonstrate the practical benefits of
FedAda2 in real-world federated learning scenarios. Future
research could explore extensions of FedAda2 to accommo-
date more diverse and large-scale federated learning tasks,
such as by blending varied client optimizer strategies.

References
Anil, R., Gupta, V., Koren, T., and Singer, Y. Memory

efficient adaptive optimization. Advances in Neural In-
formation Processing Systems, 32, 2019.

Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet
allocation. Journal of Machine Learning Research, 3:
993–1022, 2003.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. Advances in Neural Infor-
mation Processing Systems, 2020.

Chen, X., Agarwal, N., Hazan, E., Zhang, C., and Zhang,
Y. Extreme tensoring for low-memory preconditioning.
arXiv preprint arXiv:1902.04620, 2019.

Chen, X., Li, X., and Li, P. Toward communication efficient
adaptive gradient method. In Proceedings of the 2020
ACM-IMS on Foundations of Data Science Conference,
pp. 119–128, 2020.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv, 2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,

8

Efficient Adaptive Federated Optimization

N. An image is worth 16x16 words: Transformers for
image recognition at scale. International Conference on
Learning Representations, 2021.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12:2121–2159,
2011.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Pre-
conditioned stochastic tensor optimization. In Interna-
tional Conference on Machine Learning, pp. 1842–1850.
PMLR, 2018.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and trends® in machine
learning, 14(1–2):1–210, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. International Conference for Learning
Representations, 2015.

Krizhevsky, A. Learning multiple layers of features
from tiny images. 2009. URL https://api.
semanticscholar.org/CorpusID:18268744.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3):50–60, 2020a.

Li, T., Zaheer, M., Liu, Z., Reddi, S., McMahan, B., and
Smith, V. Differentially private adaptive optimization
with delayed preconditioners. International Conference
on Learning Representations, 2023.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On
the convergence of fedavg on non-iid data. International
Conference on Learning Representations, 2020b.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In International Con-
ference on Artificial Intelligence and Statistics, 2017.

Nguyen, T. H., Simsekli, U., Gurbuzbalaban, M., and
Richard, G. First exit time analysis of stochastic gra-
dient descent under heavy-tailed gradient noise. 33rd
Conference on Neural Information Processing Systems,
2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:
1–67, 2020.

Reddi, S., Kale, S., and Kumar, S. On the convergence of
adam and beyond. International Conference on Learning
Representations, 2018.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konecný, J., Kumar, S., and McMahan, B. Adaptive feder-
ated optimization. International Conference on Learning
Representations, 2021.

Ridnik, T., Ben-Baruch, E., Noy, A., and Zelnik, L.
Imagenet-21k pretraining for the masses. Proceedings
of the Neural Information Processing Systems Track on
Datasets and Benchmarks, 2021.

Sharir, G., Noy, A., and Zelnik-Manor, L. An image is worth
16x16 words, what is a video worth? arXiv preprint
arXiv:2103.13915, 2021.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In International Con-
ference on Machine Learning, pp. 4596–4604. PMLR,
2018.

Simsekli, U., Sagun, L., and Gurbuzbalaban, M. A tail-index
analysis of stochastic gradient noise in deep neural net-
works. Proceedings of the 36 th International Conference
on Machine Learning, 2019.

Simsekli, U., Zhu, L., Teh, Y. W., and Gurbuzbalaban, M.
Fractional underdamped langevin dynamics: Retargeting
sgd with momentum under heavy-tailed gradient noise.
Proceedings of the 37 th International Conference on
Machine Learning, 2020.

Sun, H., Shen, L., Chen, S., Sun, J., Li, J., Sun, G., and
Tao, D. Fedlalr: Client-specific adaptive learning rates
achieve linear speedup for non-iid data. arXiv preprint
arXiv:2309.09719, 2023.

Tong, Q., Liang, G., and Bi, J. Effective federated adaptive
gradient methods with non-iid decentralized data. arXiv
preprint arXiv:2009.06557, 2020.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V.
Tackling the objective inconsistency problem in heteroge-
neous federated optimization. 34th Conference on Neural
Information Processing Systems, 2020.

Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B.,
Al-Shedivat, M., Andrew, G., Avestimehr, S., Daly, K.,
Data, D., et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021a.

Wang, J., Xu, Z., Garrett, Z., Charles, Z., Liu, L., and
Joshi, G. Local adaptivity in federated learning: Conver-
gence and consistency. arXiv preprint arXiv:2106.02305,
2021b.

9

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

Efficient Adaptive Federated Optimization

Wang, Y., Lin, L., and Chen, J. Communication-efficient
adaptive federated learning. In International Conference
on Machine Learning, pp. 22802–22838. PMLR, 2022.

Weyand, T., Araujo, A., Cao, B., and Sim, J. Google land-
marks dataset v2 - a large-scale benchmark for instance-
level recognition and retrieval. In CVPR, 2020. URL
https://arxiv.org/abs/2004.01804.

Xie, C., Koyejo, O., Gupta, I., and Lin, H. Local adaalter:
Communication-efficient stochastic gradient descent with
adaptive learning rates. arXiv preprint arXiv:1911.09030,
2019.

Xie, C., Koyejo, O., Gupta, I., and Lin, H. Local adaalter:
Communication-efficient stochastic gradient descent with
adaptive learning rates. OPT2020: 12th Annual Workshop
on Optimization for Machine Learning, 2020.

Zhang, J., Karimireddy, S., Veit, A., Kim, S., Reddi, S.,
Kumar, S., and Sra, S. Why are adaptive methods good
for attention models? 34th Conference on Neural Infor-
mation Processing Systems, 2020.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar,
A., and Tian, Y. Galore: Memory-efficient llm train-
ing by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

10

https://arxiv.org/abs/2004.01804

Efficient Adaptive Federated Optimization

A. Utility of Client-Side Apdaptivity
Overview of Student’s t-distribution For the convenience of the reader, we provide a brief summary of basic properties
of the Student’s t-distribution. Intuitively, the t-distribution can be understood as an approximation of the Gaussian with
heavier tails. The density is given by

fν(t) =
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

) (1 + t2

ν

)−(ν+1)/2

where ν ∈ R>0 is the degree of freedom (or normality parameter), and Γ is the gamma function. We recover the normalized
Gaussian as the degree of freedom tends to infinity. The first moment is 0 for ν > 1, and the second moment satisfies
ν/(ν − 2) for ν > 2 while being infinite for 1 < ν ≤ 2, where the heavy-tails are most pronounced. Following the
convention of Zhang et al. 2020, we refer to a distribution as being heavy-tailed if the second moment is infinite.

The following proposition showcases the utility of local adaptivity in federated learning.

Proposition A.1. There exists a federated optimization problem with heavy-tailed client noise which satisfies the following
under FedAvg (where appropriate learning rate schedules are chosen for (ii-iv)):

(i) Given any client sampling strategy, if the probability pti of client i with heavy-tailed gradient noise being sampled at step
t is non-zero, then E∥∇f(xt+1)∥2 =∞ for any nontrivial learning rate schedule ηtℓ > 0.

(ii) Local adaptivity via client-side AdaGrad bounds the error in expectation as

lim
t→∞

E∥xt − x∗∥ ≤
2
√
3

1− ε̂
for some ε̂ ≈ 0,

where x∗ is the global optimum.

(iii) Furthermore, local adaptivity implicitly constructs a critical Lyapunov stable region which stabilizes the gradient
variance via the following inequality which holds once any learned weight enters the region:

min
t∈{1,...,T}

E∥∇f(xt)∥2 ≤ O
(
1

T

)
.

(iv) The global gradient variance of the federated problem with heavy-tailed client noise is fully stabilized via

E[∥∇f(xt)∥2] ≤ 2∥x0∥2 + 2

(∫ ∞

1

1

x2
dx

)2

for ∀t ∈ {1, . . . , T}.

This proposition demonstrates that even a single client with heavy-tailed gradient noise is able to instantaneously propagate
their volatility to the global model, which destabilizes federated training in expectation. However, recent work (Zhang
et al., 2020) has shown that heavy-tailed gradient distributions appear frequently in language model applications, and more
generally within model architectures utilizing any kind of attention mechanism, including transformers. To our knowledge,
this provable failure mode of distributed training resultant from the unbiased, yet heavy-tailed noise of a singular client has
not previously been reported within the literature.

Proof of (i). Let the local stochastic objectives be given by Fi(x, ξi) = x2/2 + ξix where gradient noise follows a
t-distribution with i+ 1 degrees of freedom, ξi ∼ ti+1 for ∀i ∈ {1, . . . , N}. Minibatches are sampled with replacement,
which ensures that gradient noise in each client epoch are independent amongst and in between any two (possibly identical)
clients, and further identically distributed conditional on the client ID i. Clearly, the global objective is

f(x) =
1

N

N∑
i=1

Eξi [fi(x, ξi)] =
1

N
E

[
N

2
x2 +

N∑
i=1

ξix

]
=

1

2
x2.

For global step t, we subsample clients St following any sampling strategy, where Ct is the collection of all possible multisets
Str whose elements indicate (possibly repeated) client selection, with associated probabilities ptC(r) > 0 of realization for
r ∈ [|Ct|]. Assume that 1 ∈ Stm for some m.

11

Efficient Adaptive Federated Optimization

Then, FedAvg updates may be written

xt+1 = xt −
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ

which gives the squared length of the global gradient under expectation as

Et∥∇f(xt+1)∥2 = Et

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

= Eξ|tESt|ξ,t

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=

|Ct|∑
r=1

Eξ|tp
t
C(r)

∥∥∥∥∥∥xt − ηℓ
|Str|

∑
i∈St

r

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥∥
2

≥ ptC(m)Eξ|t

∥∥∥∥∥∥xt − ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
xti,ℓ−1 + ξti,ℓ−1

)∥∥∥∥∥∥
2

where in the second equality we have conditioned on local gradient noise ξ and stochastic realizations up to timestep t, using
the law of iterated expectations. Recursively unravelling xti,ℓ−1 in terms of sampled noise and xti,0 = xt gives

xti,ℓ−1 = xti,ℓ−2 − ηℓgti,ℓ−2 = xti,0 − ηℓ
ℓ−2∑
p=0

gti,p

= xti,0 − ηℓ

(
ℓ−2∑
p=0

∇f(xti,p) + ξti,p

)

= xti,0 − ηℓ

(
ℓ−2∑
p=0

xti,p + ξti,p

)

= atxt −
ℓ−2∑
p=0

ati,pξ
t
i,p

where at, ati,p ∈ Q[ηℓ] are polynomial functions of the learning rate with rational coefficients. Therefore, we have for
bti,p ∈ Q[ηℓ]

ptC(m)Eξ|t

∥∥∥∥∥∥xt − ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
atxt −

ℓ−2∑
p=0

ati,pξ
t
i,p + ξti,ℓ−1

)∥∥∥∥∥∥
2

= ptC(m)Eξ|t

∥∥∥∥∥∥
1− ηℓ

|Stm|
∑
i∈St

m

K∑
ℓ=1

at

xt +
ηℓ
|Stm|

∑
i∈St

m

K∑
ℓ=1

(
ℓ−2∑
p=0

ati,pξ
t
i,p + ξti,ℓ−1

)∥∥∥∥∥∥
2

= ptC(m)Eξ|t

∥∥∥∥∥∥
1− ηℓ

|Stm|
∑
i∈St

m

K∑
ℓ=1

at

xt

∥∥∥∥∥∥
2

+
η2ℓp

t
C(m)

|Stm|2
Eξ|t

∥∥∥∥∥∥
∑
i∈St

m

(
K−2∑
p=0

bti,pξ
t
i,p + ξti,K−1

)∥∥∥∥∥∥
2

≥
η2ℓp

t
C(m)E

∥∥ξt1,K−1

∥∥2
|Stm|2

=∞,

where we have used that ξti,ℓ ∼ ti+1 independently with mean 0, for all permissible i, ℓ, and t.

12

Efficient Adaptive Federated Optimization

Proof of (ii). We specialize to the setting with client-side AdaGrad with K = 1. Assume that clients St have been selected
to participate in the round, which gives the update as

xt+1 = xt −
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

(1)

= xt −
ηℓ
|St|

∑
i∈St

∇f(xti,0) + ξti,1
∥∇f(xti,0) + ξti,1∥+ ε

= xt

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)
− ηℓ
|St|

∑
i∈St

ξi
∥xt + ξi∥+ ε

where we have gradually simplified notation. Noting that∫
1

∥xt + ξi∥+ ε
p(ξi) dξi ≤

1

ε
,

setting ηℓ ≤ ε gives

∥∇f(xt+1)∥ = ∥xt+1∥ ≤ ∥xt∥ ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)
+

ηℓ
|St|

∑
i∈St

∥ξi∥
∥xt + ξi∥+ ε

. (2)

Using Et to denote expectation conditional over realizations up to step t, we have

Et∥xt+1∥ ≤ ∥xt∥ ·

(
1− ηℓ
|St|

Et

[∑
i∈St

1

∥xt + ξi∥+ ε

])
+

ηℓ
|St|

∑
i∈St

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
.

To further bound the right hand side, consider the functional

Ii(ε) :=

∫
1

∥xt + ξi∥+ ε
pi+1(ξi) dξi,

where clearly

Ii(0) ≥
∫ −x+

t

−x−
t

1

∥xt + ξi∥
pi+1(ξi) dξi ≈

∫ 0+

0−

pi+1(−xt)
|x|

dx =∞

and Ii(1) < 1. By continuity and strict decay of Ii(ε), there exists 1≫ ε̂i > 0 and εi ∈ (0, 1] such that for all i ∈ [N], we
have 1 > Ii(ε) ≥ 1− ε̂i for ε ∈ [εi, 1]. Taking ε ∈ [maxi∈[N] εi, 1] and ε̂ := maxi∈[N] ε̂i, we thus obtain

Et∥xt+1∥ ≤ ∥xt∥ · (1− ηℓ(1− ε̂)) +
ηℓ
|St|

∑
i∈St

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
. (3)

To bound the remaining term, it is easy to show that ∥ξi∥pi+1(ξi) is symmetric around the origin O, and strictly increases
from 0 to (3/2 + 2/(i+ 1))−1/2 while strictly decreasing afterwards. Defining the even extension of

hi+1(ξi) =

−
x

(3/2+2/(i+1))−1/2 + supξi∈R ∥ξi∥pi+1(ξi) + ϵ for 0 ≤ ξi ≤
(

3
2 + 2

i+1

)− 1
2

,

∥ξi∥pi+1(ξi) for ξi >
(

3
2 + 2

i+1

)− 1
2

to be hi+1(ξi) for small 1 ≫ ϵ > 0, we note that 1/(∥xt + ξi∥ + ε) analogously is symmetric around ξi = −xt while
decaying with respect to the argument ∥xt + ξi∥. As hi+1(ξi) is symmetric around O and decays moving to the left and
right of O, by matching monotonicity and maxima with 1/(∥xt + ξi∥ + ε), we conclude that the left hand side of (4) is
maximized for xt = 0:

Et

[
∥ξi∥

∥xt + ξi∥+ ε

]
≤
∫
hi+1(ξi)

∥ξi∥+ ε
dξi = Bi. (4)

13

Efficient Adaptive Federated Optimization

Asymptotically as ξi →∞, we have

hi+1(ξi)

∥ξi∥+ ε
≲ pi+1(ξi),

which gives that Bi <∞. Letting B := maxi∈[N]Bi and scheduling the learning rate ηtℓ = 1/((t+ t0)(1− ε̂)) where t0 is
the smallest positive integer satisfying ηtℓ < ε for all t, we thus conclude

E∥xt+1∥ ≤
t+ t0 − 1

t+ t0
E∥xt∥+

B

(t+ t0)(1− ε̂)

≤ t+ t0 − 2

t+ t0
E∥xt−1∥+

2B

(t+ t0)(1− ε̂)

≤ · · · ≤ t0 − 1

t+ t0
E∥x0∥+

(t+ 1)B

(t+ t0)(1− ε̂)

≤ O
(
1

t

)
+

B

1− ε̂
.

As this bound holds for any choice of client subsample St, we are done. It is easy to show by straightforward integration
that B < 2

√
3.

Proof of (iii). Our strategy is to locate a 1-shot stabilization regime of the gradient norm that is formed via local client
adaptivity, which may be viewed as a Lyapunov stable region of the optimum x∗. From (2) and Jensen,

∥xt+1∥2 ≤ 2∥xt∥2 ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)2

+
2η2ℓ
|St|2

(∑
i∈St

∥ξi∥
∥xt + ξi∥+ ε

)2

≤ 2∥xt∥2 ·

(
1− ηℓ
|St|

∑
i∈St

1

∥xt + ξi∥+ ε

)2

+
2η2ℓ
|St|

∑
i∈St

(
∥ξi∥

∥xt + ξi∥+ ε

)2

.

We now impose ηℓ ≤ 2ε, while letting ∥xt∥ < δ for some δ ∈ R>0. Taking expectations gives

Et∥xt+1∥2 ≤ 2∥xt∥2 +
2η2ℓ
|St|

∑
i∈St

Et

(
∥ξi∥

∥xt + ξi∥+ ε

)2

,

and by similar arguments to the proof of (ii), the summands of the second term are bounded uniformly by B̃ which yields

E∥xt+1∥2 ≤ 2δ2 + 2η2ℓ B̃.

Setting δ, ηtℓ ≤ O(1/
√
T) immediately gives the desired inequality.

Proof of (iv). An advantage of client-side adaptive optimization is the autonomous normalization and clipping of the
stochastic gradients. Let ηtℓ := 1/t2. Telescoping (1) gives

xT+1 = x0 −
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

,

14

Efficient Adaptive Federated Optimization

which implies

∥xT+1 − x0∥ =

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ |∥xT+1∥ − ∥x0∥| ≤

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ ∥xT+1∥ ≤ ∥x0∥+

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
=⇒ E∥xT+1∥2 ≤ 2∥x0∥2 + 2E

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
2

.

Substituting the learning rate schedule gives

E

∥∥∥∥∥
T∑

t=1

ηtℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ
∥gti,ℓ∥+ ε

∥∥∥∥∥
2

≤ E

∥∥∥∥∥
T∑

t=1

Kηtℓ

∥∥∥∥∥
2

≤ E
∥∥∥∥K ∫ ∞

1

1

x2
dx

∥∥∥∥2 .
Therefore, we conclude that for any t,

E∥xt∥2 ≤ 2∥x0∥2 + 2K2

(∫ ∞

1

1

x2
dx

)2

.

A.1. Exacerbation of singular client noise

Overview of Cauchy–Lorentz distribution For the convenience of the reader, we provide a brief description of the
Cauchy distribution CL(x0, γ). The density is given by

f (x;x0, γ) =
1

πγ

[
1 +

(
x−x0

γ

)2] =
1

π

[
γ

(x− x0)2 + γ2

]
,

where x0 is the location parameter and γ > 0 the scale parameter. Note that the Cauchy distribution is an example of “worst
case gradient noise” that a federated problem may encounter in its clients. That is, the tails are so heavy that the distribution,
despite being symmetric around the origin O, does not admit a mean due to being non-(Lebesgue) integrable. In particular,
this indicates that the law of large numbers cannot be applied due to uncontrolled stochasticity, which lethally destabilizes
pure stochastic gradient descent. Despite this limitation, we provide an example demonstrating that local adaptivity can be
utilized to successfully mollify extreme client noise even in this “worst case” setting.

Proposition A.2. There exists a generalized federated optimization problem which satisfies the following under FedAvg:

(i) Given any client sampling strategy without replacement, if the probability pti of client i with heavy-tailed gradient noise
being sampled at each step t is non-zero, then E∥∇f(xt+1)∥ = ∞ or E∥∇f(xt)∥ = ∞ for any t ∈ Z≥1 and nontrivial
learning rate ηtℓ > 0.

(ii) Under local adaptivity via client-side AdaGrad, we have bounded gradient length as

lim
t→∞

E∥∇f(xt)∥ ≤
2

1− ε̂
for some ε̂ ≈ 0.

Proof of (i). We provide a similar construction as in the proof of Theorem A.1. Let all local stochastic objectives be given
by Fi(x, ξi) = x2/2 + ξix where client gradient noise mostly models a Gaussian, ξi ∼ N (0, σ2

i) for ∀i ∈ {2, . . . , N} and

15

Efficient Adaptive Federated Optimization

σi ∈ R. For the first client, we let ξ1 ∼ CL(0, γ) for any γ ∈ (0, 1/3). We sample minibatches with replacement, but clients
are selected without replacement. In this case, we must consider a generalized version of the federated objective as strictly
speaking, the deterministic local objective

Eξ1 [F1(x, ξ1)] =
1

2
x2 + x

∫
ξ1 dξ1

does not exist due to extreme stochasticity. That is, even though CL(0, γ) is symmetric around O, Eξ1 [ξ1] is not Lebesgue
integrable. Most importantly, this implies that the law of large numbers cannot be applied. Note that such a construction
dislocates this example from the vast majority of convergence results, as most assume bounded variance or controlled
gradient noise which sidesteps the consideration of the kind of stochasticity that we explore here entirely. To proceed with
the analysis, we use symmetry to define the reasonable objective

E[F1(x, ξ1)] =
1

2
x2

which is consistent with the desired population objective that is distributed across all other clients, though with less noise.
As before, we have the convex global objective f(x) = x2/2. Note that it can be shown that the empirical mean of the
Cauchy distribution follows the Cauchy distribution, that is, the CL-distribution is stable.

As the general case has been handled in Theorem A.1 (i), we specialize to K = 1. To simplify notation, assume that
participating clients have been selected as St, where client 1 participates. Then, the FedAvg update may be written

xt+1 = xt −
ηℓ
|St|

∑
i∈St

gti,1

which gives the length of the global gradient under expectation as

E∥∇f(xt+1)∥ = E

∥∥∥∥∥xt − ηℓ
|St|

∑
i∈St

(
∇f(xti,0) + ξti,1

)∥∥∥∥∥
≥ E

∥∥∥∥ ηℓ
|St|

ξt1,1

∥∥∥∥− E

∥∥∥∥∥∥
(
1− ηℓ
|St|

)
xt −

ηℓ
|St|

∑
i∈St\{1}

(
∇f(xti,0) + ξti,1

)∥∥∥∥∥∥
≥ E

∥∥∥∥ ηℓ
|St|

ξt1,1

∥∥∥∥− E

∥∥∥∥∥∥(1− ηℓ)xt − ηℓ
|St|

∑
i∈St\{1}

ξti,1

∥∥∥∥∥∥
≥ E

∥∥∥∥ ηℓ
|St|

ξt1,1

∥∥∥∥− E ∥(1− ηℓ)xt∥ −
ηℓ
|St|

∑
i∈St\{1}

E
∥∥ξti,1∥∥

Note that we allow ηℓ = 1. As E
∥∥ξti,1∥∥ <∞ for i ∈ {2, . . . , N}, we thus have

E∥∇f(xt+1)∥+ |1− ηℓ|E ∥∇f(xt)∥ ≥ ∞

which gives the desired result.

Proof of (ii). As we intervened only on gradient noise while preserving client objectives, an analogous proof strategy used
in Theorem A.1 (ii) carries through. The only difference is the value of B, which may be computed as being upper bounded
by 2 for γ < 1/3.

A.2. FedAvg and Stochastic Gradient Descent are deeply remorseful

In Appendix A, we have provided two localized examples of how heavy-tailed gradient noise can destabilize distributed
training. In this subsection, we prove that this is an instantiation of a more general phenomenon in which federated learning
with a µ-strongly convex global objective collapses to an analogous failure mode. We begin by motivating a precise
definition of heavy-tailed noise previously reported in the literature (Zhang et al., 2020) for completeness.

16

Efficient Adaptive Federated Optimization

Definition A.3. A random variable ξ ∼ D follows a heavy-tailed distribution if the α-moment is infinite for α ≥ 2.

Intuitively, this expresses that the α-moment is not sparsely supported outside a compact interval. That is,∫
∥ξ∥>R

∥ξ∥αp(ξ) dξ < ∞ indicates a dense support integrating to infinity in the closed ball B0(R), and a light tail
for B0(R)c. Definition 3.1 enforces that the noise must not decay rapidly outside said compact ball, i.e. that light tails
must be excluded. This follows from the observation that

∫
∥ξ∥>R

∥ξ∥αp(ξ) dξ =∞ for all α ≥ 2 and any R ≥ 0 because∫
∥ξ∥≤R

∥ξ∥αp(ξ) dξ ≤ Rα <∞ via continuity and the extremal value theorem. By equivalence of norms on Rd and hence
their preserved continuity, we analogously have for ∥ · ∥∞ the supremum norm,∫

∥ξ∥∞>R

cα∥ξ∥α2 p(ξ) dξ ≥
∫
∥ξ∥∞>R

∥ξ∥α∞ p(ξ) dξ =∞

for some c > 0. To proceed with the analysis, we impose an integrability condition on the mean, which gives E[ξ] = µ ∈ Rd.

Problem Setup. The local objectives are determined by Fi(x) = Ez[Fi(x, z)], where z integrates over the randomness
in the stochastic objective. The gradient noise ξ is additively modeled via a possibly uncentered random variable with
E(ξ) = µ. Minibatches are sampled with replacement, implying that gradient noise in each client epoch are independent
amongst and in between any two possibly identical clients. We analyze the case where noise is identically distributed
conditional on client ID i. The global objective is given as the expected client objective under the uniform sampling prior,
f(x) =

∑
i∈[N] Fi(x)/N .

We now present the following definition.

Definition A.4. A learning algorithm A is deeply remorseful if it incurs infinite or undefined regret in expectation. If
A is guaranteed to instantly incur such regret due to sampling even a single client with a heavy-tailed stochastic gradient
distribution, then we say A is resentful of heavy-tailed noise.

We are now ready to prove the following theorem.

Theorem A.5. Let the global objectives ft(x) of a distributed training problem satisfy µ-strong convexity for t = 1, . . . , T .
Assume that the participation probability of a client with a heavy-tailed stochastic gradient distribution is non-zero. Then,
FedAvg becomes a deeply remorseful algorithm and is resentful of heavy-tailed noise. Furthermore, if the probability of
the heavy tailed client being sampled at step t is nontrivial, then the variance of the global objective at t + 1 satisfies
E∥ft+1(xt+1)∥2 =∞.

Proof. Assuming that a heavy-tailed client may be subsampled at step t with non-zero probability, let us show that the regret

R(T) :=

T∑
t=1

ft(xt)−
T∑

t=1

ft(x
∗)

is infinite under expectation, assuming it is well-defined. Here, x∗ is taken to be the argument uniformly minimizing the
materialized global objectives up to step T , x∗ := argminx

∑T
t=1 ft(x). For notational simplicity, we carry out the analysis

conditioned on the event that the heavy-tailed client has been subsampled. We aim to show that E[ft+1(xt+1)]−ft+1(x
∗) =

∞ where x∗ is arbitrarily fixed and ft+1 satisfies µ-strong convexity. Clearly,

ft+1(xt+1) ≥ ft+1(xt)−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

K∑
ℓ=1

gti,ℓ

〉
+

µη2ℓ
2|St|2

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

gti,ℓ

∥∥∥∥∥
2

≥ ft+1(xt)−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)〉

+
µη2ℓ
2|St|2

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

.

17

Efficient Adaptive Federated Optimization

Denoting Et+ [·] to be the expectation conditional over all stochastic realizations up to step t and ℓ = K − 1, we have

Et+ [ft+1(xt+1)] ≥ ft+1(xt)−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)〉

−

〈
∇ft+1(xt),

ηℓ
|St|

∑
i∈St

Et+
[
ξti,K−1

]〉
+

µη2ℓ
2|St|2

Et+

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

. (5)

As the means of all gradient noise are finite (typically centered at 0), it suffices to show that

Et+

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=∞.

However, this is clear as expanding the norm gives

Et+

∥∥∥∥∥∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈St

K−1∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)
+
∑
i∈St

∇f(xti,K−1)

∥∥∥∥∥
2

+ 2

〈∑
i∈St

K−1∑
ℓ=1

(
∇f(xti,ℓ−1) + ξti,ℓ−1

)
+
∑
i∈St

∇f(xti,K−1),
∑
i∈St

Et+ [ξ
t
i,K−1]

〉
+
∑
i∈St

E∥ξti,K−1∥2,

where in the final line we used the independence of the noise random variables. As there exists i ∈ St that satisfies
heavy-tailed noise, we obtain

Et+ [ft+1(xt+1)] ≥ ∞.
Taking expectations on both sides gives that E[ft+1(xt+1)] ≥ ∞ under the law of iterated expectations, assuming that the
expectation is well-defined. Thus, FedAvg is deeply resentful of the influence of heavy-tailed noise.

Now, we change perspectives and write the general form of (5) as

ft+1(y) ≥ ft+1(x) + ⟨∇ft+1(x), y − x⟩+
µ

2
∥y − x∥2

= ft+1(x) +

d∑
j=1

(∇ft+1(x))j(yj − xj) +
µ

2

d∑
j=1

(yj − xj)2.

For any arbitrarily fixed x, there exists ãt+1,j > 0, Rj > 0, and b̃t+1,j < 0 such that

f̃t+1,j(yj) =

ãt+1,j(yj −Rj) for yj > Rj ,

0 for |yj | ≤ Rj ,

b̃t+1,j(yj +Rj) for yj < −Rj ,

(6)

and

0 ≤ f̃t+1,j(yj) ≤
ft+1(x)

d
+ (∇ft+1(x))j(yj − xj) +

µ

2
(yj − xj)2

for |yj | > Rj . Without loss of generality, we may substitute ãt+1,j ← ã = minj ãt+1,j , b̃t+1,j ← b̃ = maxj b̃t+1,j , and
Rj ← R := maxj∈[d]Rj . We thus have

Et+ [∥ft+1(xt+1)∥2] ≥ Et+
[
χ{xt+1 ∈ B∞

R (0)c}∥ft+1(xt+1)∥2
]

where χ is the indicator and B∞
R (0) is the closed ball in Rd under the infinity norm centered at 0. As ft+1(y) ≥∑d

j=1 f̃t+1,j(yj) for y ∈ B∞
R (0)c,

Et+ [∥ft+1(xt+1)∥2] ≥ Et+ [χ{xt+1 ∈ B∞
R (0)c}∥

d∑
j=1

f̃t+1,j(xt+1)∥2]

≥ Et+ [χ{xt+1 ∈ B∞
R (0)c}∥

d∑
j=1

f̃t+1,j

(
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1)j + (ξti,ℓ−1)j

))
∥2].

18

Efficient Adaptive Federated Optimization

The integrand on the final line is non-negatively lower bounded given xt+1 ∈ B∞
R (0)c byc d∑

j=1

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

+
ηℓ
|St|

∑
i∈St

(ξti,K−1)j ±Rj

∣∣∣∣∣∣
2

≥
d∑

j=1

c2

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

+
ηℓ
|St|

∑
i∈St

(ξti,K−1)j ±Rj

∣∣∣∣∣∣
2

≥
d∑

j=1

c2

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj

∣∣∣∣∣∣
2

+ 2

d∑
j=1

c2

〈
ηℓ
|St|

∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj ,
ηℓ
|St|

∑
i∈St

(ξti,K−1)j

〉

+

d∑
j=1

c2η2ℓ
|St|2

(∑
i∈St

(ξti,K−1)j

)2

where c = min{|ã|, |b̃|}. The sign on Rj is determined by the sign of the value (xt+1)j and equation (6).

Clearly, there exists compact intervals [āi,j , b̄i,j] such that with non-zero probability, (ξti,K−1)j ∈ [āi,j , b̄i,j]. For the
setminus operation subtracting only one selection of client i from the multiset St and 1 ∈ St being the heavy-tailed client,
let R̂ be equal to

|St|
ηℓ

|R|+max
i,j

ηℓ max{|āi,j |, |b̄i,j |}
|St|

+

∣∣∣∣∣∣ ηℓ|St|
∑
ĩ∈St

((
K−1∑
ℓ=1

∇f(xt
ĩ,ℓ−1

) + ξt
ĩ,ℓ−1

)
+∇f(xt

ĩ,K−1
)

)
j

∣∣∣∣∣∣
 .

Then as

χ{xt+1 ∈ B∞
R (0)c} ≥ χ{xt+1 ∈ B∞

R (0)c}Πi∈St\{1}χ{(ξti,K−1)j ∈ [āi,j , b̄i,j]}

≥ χ+
j := χ{|(ξt1,K−1)j | > R̂}Πi∈St\{1}χ{(ξti,K−1)j ∈ [āi,j , b̄i,j]},

we may conclude

Et+ [∥ft+1(xt+1)∥2] ≥ Et+

χ+
j ∥

d∑
j=1

f̃t+1,j

(
ηℓ
|St|

∑
i∈St

K∑
ℓ=1

(
∇f(xti,ℓ−1)j + (ξti,ℓ−1)j

))
∥2

≥
d∑

j=1

c2Et+[χ
+
j]

∣∣∣∣∣∣ ηℓ|St|
∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj

∣∣∣∣∣∣
2

+ 2

d∑
j=1

c2

〈
ηℓ
|St|

∑
i∈St

((
K−1∑
ℓ=1

∇f(xti,ℓ−1) + ξti,ℓ−1

)
+∇f(xti,K−1)

)
j

±Rj ,
ηℓ
|St|

∑
i∈St

Et+[χ
+
j (ξ

t
i,K−1)j]

〉

+

d∑
j=1

c2η2ℓ
|St|2

Et+

(∑
i∈St

(ξti,K−1)j

)2

≥ C1(t
+) +

d∑
j=1

c2η2ℓ
|St|2

Et+

χ+
j

(∑
i∈St

(ξti,K−1)j

)2

Noting that

Et+[χ
+
j (ξ

t
i,K−1)j] =

∫ b̄i,j

āi,j

(ξti,K−1)j dp(ξ
t
i,K−1),

19

Efficient Adaptive Federated Optimization

we deduce that the existence of E(ξti,K−1)j ∈ R (from all noise having finite mean) enforces that Et+[χ
+
j (ξ

t
i,K−1)j] must

also exist and be finite. Thus, C1(t
+) is finite and well-defined given t+. It remains to analyze the final term

d∑
j=1

Et+

χ+
j

(∑
i∈St

(ξti,K−1)j

)2
 =

d∑
j=1

Et+

[
χ+
j

∑
i∈St

(ξti,K−1)
2
j

]
+ 2Et+

[
χ+
j

∑
i1<i2

(ξti1,K−1)j(ξ
t
i2,K−1)j

]

=

d∑
j=1

∑
i∈St

Et+

[
χ+
j (ξ

t
i,K−1)

2
j

]
+ 2

∑
i1<i2

Et+

[
χ+
j (ξ

t
i1,K−1)j

]
Et+

[
χ+
j (ξ

t
i2,K−1)j

]
where we used the independence of ξti,ℓ which is preserved across coordinate projections. Finally, note that for C2 :=

minj∈[d] Πi∈St\{1}P((ξti,K−1)j ∈ [āi,j , b̄i,j]) ̸= 0, we have

d∑
j=1

∑
i∈St

Et+

[
χ+
j (ξ

t
i,K−1)

2
j

]
≥ C2

d∑
j=1

∫
|(ξt1,K−1)j |>R̂

∥(ξt1,K−1)j∥2 dp(ξt1,K−1)

≥ C2

∫
∥(ξt1,K−1)∥∞>R̂

∥ξt1,K−1∥2 dp(ξt1,K−1) =∞.

Thus, we have as before
Et+ [∥ft+1(xt+1)∥2] ≥ ∞.

As the variance is well-defined, we conclude that E[∥ft+1(xt+1)∥2] =∞ under the tower law of expectation.

For federated learning, we typically have ft(x) ≡ f(x) for all t = 1, . . . , T . We saw from Proposition A.1 that inserting
local adaptivity successfully breaks the generality of remorse and heavy-tailed resent for FedAvg. A high-level, intuitive
overview is that client-side AdaGrad clips the local updates of each iteration, which mollifies the impact of stochasticity in
perturbing the weight updates. We present the following proposition, formulated loosely without utilizing any advantages
provided via local adaptivity except for clipping which leaves room for far sharper generalization. For this reason, we view
local adaptive methods to be more desirable than clipped SGD in large-scale applications, if memory and computation
constraints of the clients can be addressed.

Proposition A.6. Let ft ∈ C(Rd) for t = 1, . . . , T for ft not necessarily convex. Introducing client-side adaptivity via
AdaGrad into the setting in Theorem 3.4 produces a non-remorseful and a non-resentful algorithm.

Proof. By Jensen, we have that ∥Ef(xt)∥ ≤ E∥f(xt)∥. Thus, it is enough to show E∥f(xt)∥ <∞ which guarantees that
the t-th regret update E[ft(xt)]− ft(x∗) is finite for any x∗ arbitrarily fixed. However, this is immediate as xt ∈ BKt(x0),
where K is the number of local SGD iterations prior to server synchronization. Thus, by the extremal value theorem, there
exists an M ∈ R≥0 such that

0 ≤ E∥f(xt)∥ ≤ E[M] <∞.
Similarly, we may also show that the variance E∥f(xt)∥2 <∞.

B. SM3 with Delayed Preconditioner Updates
We now present a description of SM3-I/II with delayed preconditioner updates as Algorithms 2 and 3. SM3-II capitalizes on
a tighter approximation of the second moment, and empirically demonstrates better results. We have opted to implement a
smoothing term ε instead of treating any zero denominator as zero as done in the original work. We provide the analysis for
SM3-II which generalizes the analysis for SM3-I.

To enhance clarity, we present several lemmas before giving the proof of Theorem 5.1. Note that Lemma B.1 is written in
broadcasting notation, where the scalars in the right hand side have 1 ∈ Rd implicitly multiplied and the inequality holds
coordinatewise. For notational convenience, we will view ΦK

1 , ΦK
2 as vectors.

Lemma B.1. Under Algorithm 1, |∆t
i| is bounded by

|∆t
i| ≤ ΦK

1 := ηℓ

(√⌈
K

z

⌉
· log

1
2

(
1 +

⌈
K
z

⌉
G2

ε2

)
+
ηℓ(K −

⌈
K
z

⌉
)G

√
v0 + ε

)
.

20

Efficient Adaptive Federated Optimization

Algorithm 2 Delayed preconditioner SM3-I

Require: Client learning rate ηℓ, step delay z ∈ Z≥1, and ε-smoothing term ε > 0

Require: A full cover {S1, . . . , Sk} ⊂ P([d]) where
⋃k

ℓ=1 Sℓ = {1, . . . , d}
1: Initialize: x1 = 0 and µ0(r) = 0 for ∀r ∈ {1, . . . , k}
2: for t = 1, . . . ,K do
3: gt ← ∇ℓ(xt)
4: if (t− 1)/z ∈ Z then
5: for r = 1, . . . , k do
6: µt(r)← µt−1(r) + maxj∈Sr

g2t (j)
7: end for
8: end if
9: for j = 1, . . . , d do

10: νt(j)← minr:Sr∋j µt(r) (minimum taken over all r such that j ∈ Sr)
11: xt+1(j)← xt(j)− ηℓgt(j)√

νt(j)+ε

12: end for
13: end for

Algorithm 3 Delayed preconditioner SM3-II

Require: Client learning rate ηℓ, step delay z ∈ Z≥1, and ε-smoothing term ε > 0

Require: A full cover {S1, . . . , Sk} ⊂ P([d]) where
⋃k

ℓ=1 Sℓ = {1, . . . , d}
1: Initialize: x1 = 0 and µ′

0(r) = 0 for ∀r ∈ {1, . . . , k}
2: for t = 1, . . . ,K do
3: gt ← ∇ℓ(xt)
4: µ′

t(r)← 0 for ∀r ∈ [k]
5: for j = 1, . . . , d do
6: if (t− 1)/z ∈ Z then
7: ν′t(j)← minr:Sr∋j µ

′
t−1(r) + g2t (j)

8: for all r : Sr ∋ j do
9: set µ′

t(r)← max{µ′
t(r), ν

′
t(j)}

10: end for
11: else
12: ν′t(j)← ν′t−1(j)
13: end if
14: xt+1(j)← xt(j)− ηℓgt(j)√

ν′
t(j)+ε

15: end for
16: end for

21

Efficient Adaptive Federated Optimization

Proof. Forming a bound for the pseudogradients is not trivial due to delayed preconditioner updates. We begin by noting
that delayed gradient updates are initiated at local timesteps k = nz + 1 for n ∈ Z≥0. We now split cases k/z /∈ Z and
k/z ∈ Z. In the first case, there exists n ∈ Z≥0 such that nz + 1 ≤ k < (n+ 1)z, and the latest preconditioner update by
client step k is given at timestep (⌈k/z⌉ − 1)z + 1 = ⌊k/z⌋z + 1. In the second case, if z ̸= 1, then step k is just one step
shy of a preconditioner update. The latest update is therefore held at step (⌈k/z⌉ − 1)z + 1 which is no longer identical to
⌊k/z⌋z + 1.

With this observation, it is easy to show by induction that

vk(j) ≥ v0(j) +
⌈ k
z ⌉∑

ℓ=1

(
gti,(ℓ−1)z+1(j)

)2
for j ∈ {1, . . . , d} and k ∈ {1, . . . ,K}.

Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = xti,K − xti,0. By telescoping for K local steps and the definition of gradient
updates in AdaSquare-SM3, we obtain

|∆t
i| =

∣∣∣∣∣
K∑

p=1

ηℓ
mp√
vp + ε

∣∣∣∣∣ ≤ ηℓ
K∑

p=1

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

For F = {0, 1, . . . , ⌈K/z⌉ − 1}z + 1, we thus have that

|∆t
i| ≤ ηℓ

∑
p∈F

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

+ ηℓ
∑

p∈[K]\F

|gti,p|√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε
.

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉],
p ∈ [K] \ F . Therefore, we form the upper bound (where

∑0
1 := 0 by definition)

∣∣∆t
i

∣∣ ≤ ηℓ ∑
p∈F

|gti,p|√
v0 + |gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε︸ ︷︷ ︸

T1

+
ηℓ√
v0 + ε

 ∑
p∈[K]\F

∣∣gti,p∣∣
 (7)

≤ ηℓT1 +
ηℓ(K −

⌈
K
z

⌉
)G

√
v0 + ε

.

As 0 is trivially bounded by any non-negative upper bound, we may without loss of generality assume that gti,(r−1)z+1 ̸= 0

for at least one r ∈ [⌈pz ⌉]. We further bound T1 as follows:

T1 ≤
∑
p∈F

|gti,p|√
|gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε

≤
∑
p∈F

√
|gti,p|2

ε2 +
∑

r∈[p]∩F |gti,r|2

≤
√
|F|

√√√√√
∑

p∈F

|gti,p|2

ε2 +
∑

r∈[p]∩F |gti,r|2

≤

√⌈
K

z

⌉
· log

1
2

1 +
∑
p∈F

|gti,p|2

ε2

Note the use of Cauchy Schwartz in the third inequality. A detailed proof of the log inequality used in the third line may be
found as part of the proof of Theorem 5.1, equation (12) which uses similar techniques. By Assumption 2, we are done.

22

Efficient Adaptive Federated Optimization

The server-side pseudogradient updates may also be bounded as follows.

Lemma B.2. Under Algorithm 1, each server step size is bounded in absolute value by

ΦK
2 := min

{
η

√
(1− β̃1)(1− β̃2t

1),
η

τ
ΦK

1

}
.

Proof. Without loss of generality, we may let τ = 0 when forming the first upper bound for expository purposes.

η
|m̃t|√
ṽt + τ

≤
η(1− β̃1)

∑t
ℓ=1 β̃

t−ℓ
1 |∆ℓ|√∑t

ℓ=1 ∆
2
ℓ + τ2 + τ

≤
η(1− β̃1)

(∑t
ℓ=1 β̃

t−ℓ
1 |∆ℓ|

)√∑t
ℓ=1 β̃

2t−2ℓ
1√∑t

ℓ=1 ∆
2
ℓ

√∑t
ℓ=1 β̃

2t−2ℓ
1

≤ η
√
1− β̃1

√
1− β̃2

1

√√√√ t∑
ℓ=1

β̃2t−2ℓ
1

= η

√
1− β̃1

√
1− β̃2t

1 .

Note that the final inequality is obtained using Cauchy-Schwartz, while the second bound in the lemma statement follows
from the first inequality and Lemma B.1.

Finally, we form a loose upper bound for the gradient variance.

Lemma B.3. For k ∈ {1, . . . ,K}, the uncentered variance estimate vk as well as µk in Algorithm 1 are bounded by

(B1) : 0 ≤ µk(b) ≤ dkG2 for and b ∈ {1, . . . , q},
(B2) : 0 ≤ vk(j) ≤ dkG2 for j ∈ {1, . . . , d}.

Proof. Non-negativity of the variance estimates vk is trivial and implies the non-negativity of µk, thus we focus on the
upper bound for which we use dual induction. The case k = 1 is satisfied by zero initialization. Assuming the inequality
holds for k ← k − 1, we have for each j

vk(j) = min
b:Sb∋j

µk−1(b) +
(
gti,k(j)

)2 ≤ d(k − 1)G2 +G2 ≤ dkG2.

Now, µk is initialized to zero at the start of each step k and its entries are increased while broadcasting over each coordinate
j ∈ {1, . . . , d} by

µk(b)← max{µk(b), vk(j)} for ∀b : j ∈ Sb.

For j = 1, it is clear that
µk(b)← vk(j) ≤ dkG2 for ∀b ∈ {1, . . . , q}.

For j ≥ 2, inductively, we have
µk(b)← max{µk(b), vk(j)} ≤ dkG2

as both arguments of the maximum function are upper bounded by dkG2. This completes the proof.

B.1. Precompact Convergence Analysis

We aim to analyze the convergence of learning algorithms under the general, non-convex setting. However, extremely
popular and well known adaptive optimizers such as Adam whose efficacy is strongly supported by empirical evidence have
been shown to fail to converge even for convex settings (Reddi et al., 2018). Therefore, recent works have investigated the
asymptotic stabilization of gradients, instead of requiring strict convergence to local or global optima of the objective (Xie
et al., 2019; Tong et al., 2020; Chen et al., 2020; Zhang et al., 2020; Reddi et al., 2021; Wang et al., 2022; Sun et al., 2023).
Such convergence bounds are of the form mint ∥∇f(xt)∥ ≤ O(T−α), and are interpreted via the following lemma:

23

Efficient Adaptive Federated Optimization

Lemma B.4. For xt the t-step parameters of any objective f(x) learned by an algorithm, let min1≤t≤T ∥∇f(xt)∥ ≤
O(T−α) for α > 0. Then, there exists a learning algorithm which outputs parameters {x̃1, x̃2, . . .} such that ∥∇f(x̃t)∥ → 0
as t→∞.

Proof. Assuming otherwise gives that ∥∇f(xt)∥ is ε-bounded away from 0 for some ε > 0, for any parameter xt realized
by the algorithm. Clearly, min1≤t≤T ∥∇F (xt)∥ → 0 as T → ∞ gives a contradiction. More constructively, note that
∀ε > 0, ∃ T̃ (ε) ∈ N such that T ≥ T̃ (ε) =⇒ min1≤t≤T ∥∇f(xt)∥ < ε. Letting ε = 1/n for n ∈ N and Tn := T̃ (1/n),
we have that there exists tn ∈ [Tn] such that ∥∇f(xtn)∥ < 1/n. Letting x̃i := xti extracts the desired parameter
sequence.

This notion of convergence can be formalized as precompact convergence which is consistent with sequence properties
of precompact normed sets. In this paper, we explicitly formalize the conventions used in prior works, and take the term
convergence to mean precompact convergence unless stated otherwise.

Definition B.5 (Precompact convergence). A sequence {yn}n∈N in a normed space Y is said to converge precompactly to
y ∈ Y if there exists φ : N→ N such that yφ(n) → y.

Our goal is to develop principled federated algorithms whose global gradients are guaranteed to converge precompactly to 0
regardless of parameter initialization, in the general, non-convex setting. Note that precompact convergence must allow for
convergence to each element yn of the sequence. Now, we are ready to present the following theorem.

Theorem 5.1. In Algorithm 1, we have that

min
t∈[T]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where

Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 =
(1− β̃T

1)ηηℓKL̃T∥ΦK
1 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ4 =
(1− β̃1)ηηℓKLTc(β̃1)∥ΦK

2 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) .
Here, the constant c is defined with respect to β̃1 as

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx for ũ0(β̃1) = inf{u ∈ N : β̃v

1v
2 <

1

v2
for ∀v ≥ u}

and the intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
K√

v0 + dKG2 + ε
, α̃1 :=

1

2
√
v0 + dKG2 + 2ε

.

Proof. To enhance readability, we use both coordinatewise and broadcasting notation, where a [·]j subscript is attached
for the j-th coordinate. In particular, the arguments are detailed mostly in the latter notation as it significantly clarifies the

24

Efficient Adaptive Federated Optimization

intuitions behind the proof. By L-smoothness, we have

f(xt) ≤ f(xt−1) + ⟨∇f(xt−1), xt − xt−1⟩+
L

2
∥xt − xt−1∥2

= f(xt−1) + η

〈
∇f(xt−1),

β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

〉
+
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

= f(xt−1) + ηT0,0 + (1− β̃1)η
t∑

r=1

T0,r +
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

(8)

where for r ∈ [t],

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

〉
and T0,0 =

〈
∇f(xt−1),

β̃t
1m̃0√
ṽt + τ

〉
. (9)

Note that T0,0 can only decay exponentially as training progresses, as
√
ṽt is monotonically increasing with respect to t and

∇f(xt−1) is coordinatewise bounded by G. We decompose T0,r further by

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

.

A bound for T1,r can be obtained as:

T1,r = β̃t−r
1

〈
∇f(xt−1),

∆r(
√
ṽt−1 −

√
ṽt)

(
√
ṽt + τ)(

√
ṽt−1 + τ)

〉

= β̃t−r
1

〈
∇f(xt−1),

−∆r∆
2
t

(
√
ṽt + τ)(

√
ṽt−1 + τ)(

√
ṽt−1 +

√
ṽt)

〉

≤ β̃t−r
1

〈
|∇f(xt−1)| ,

|∆r|∆2
t

(ṽt + τ2)(
√
ṽt−1 + τ)

〉

≤ β̃t−r
1

d∑
j=1

G

[
|∆r|∆2

t

(ṽt + τ2)(
√
ṽt−1 + τ)

]
j

≤ ∥Φ
K
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

Lemma E.2 is used to obtain the final inequality. For T2,r, we apply a further decomposition for γr > 0 allowed to be
arbitrary within a compact interval ϵηℓ-bounded away from 0,

T2,r = β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉
︸ ︷︷ ︸

T 1
2,r

−γrβ̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

.

For expository purposes, we present the case in which local gradient clipping is not triggered. The analysis directly
generalizes to the setting where clipping activates. Unraveling the definition of ∆r gives

∆r =
−ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

gri,p√
vri,p + ε

,

25

Efficient Adaptive Federated Optimization

which intuits the following value

γr :=
ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

1√
vri,p + ε

.

We have by Assumption 2 and Lemma B.3 that

γr ∈ [γ̃1, γ̃2] :=

[
ηℓ

K∑
p=1

1√
v0 + dKG2 + ε

,
ηℓK√
v0 + ε

]
.

Expanding T 1
2,r for αr > 0 to be fixed,

β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉

=
β̃t−r
1

|Sr|
∑
i∈Sr

K∑
p=1

〈
∇f(xt−1)√
ṽt−1 + τ

,
ηℓ
(
∇f(xt−1)− gri,p

)
√
vp + ε

〉

≤ ηℓβ̃
t−r
1 αrK

2|Sr|
∑
i∈Sr

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2|Sr|αr

∑
i∈Sr

K∑
p=1

∥∥∥∥∥∥
(
∇f(xt−1)−∇Fi(x

r
i,p−1)

)√√
ṽt−1 + τ

(√
vp + ε

)
∥∥∥∥∥∥
2

≤ ηℓβ̃
t−r
1 αrK

2

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2|Sr|αrτ(
√
v0 + ε)2

∑
i∈Sr

K∑
p=1

∥∥∇f(xt−1)−∇Fi(x
r
i,p−1)

∥∥2 .
where in the first inequality we drew the deterministic gradient instead of accessing the stochastic sample via full gradient
descent. The first term is controlled by setting

αr =
γr

2ηℓK
∈ [α̃1, α̃2] :=

[
1

2
√
v0 + dKG2 + 2ε

,
1

2
√
v0 + 2ε

]
.

We aim to bound the second term via majorization and telescoping arguments. We have by L-smoothness, Lemmas B.1, B.2,
and Assumption 2 that∥∥∇f(xt−1)−∇Fi(x

r
i,p−1)

∥∥2 ≤ 1

N

∑
i′∈[N]

∥∥(∇Fi′(xt−1)−∇Fi(x
r
i,p−1)

)∥∥2
=

1

N

∑
i′∈[N]

∥∥(∇Fi′(xt−1)−∇Fi′(xr−1) +∇Fi′(xr−1)−∇Fi(x
r
i,p−1)

)∥∥2
≤ 2

N

∑
i′∈[N]

(
∥∇Fi′(xt−1)−∇Fi′(xr−1)∥2 +

∥∥∇Fi′(xr−1)−∇Fi(x
r
i,p−1)

∥∥2)

≤ 2L

N

∑
i′∈[N]

∥xt−1 − xr−1∥2 +
2L̃

N

∑
i′∈[N]

∥xri,p−1 − xri,0∥2

= 2L ∥xt−1 − xr−1∥2 + 2L̃
∥∥xri,p−1 − xri,0

∥∥2
≤ 2L(t− r)

t−1∑
o=r

∥xo − xo−1∥2 + 2L̃∥Φp
1∥2

≤ 2L(t− r)2∥ΦK
2 ∥2 + 2L̃∥ΦK

1 ∥2.

26

Efficient Adaptive Federated Optimization

Note that the first inequality was obtained by Jensen, while the third inequality uses that the client weights xri,0 are
synchronized to the global weights xr−1 for ∀i ∈ [N] at the start of training. Now, we have

ηℓβ̃
t−r
1

2|Sr|αrτ(
√
v0 + ε)2

∑
i∈Sr

K∑
p=1

(
2L(t− r)2∥ΦK

2 ∥2 + 2L̃∥ΦK
1 ∥2

)
≤ ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

.

Collecting terms gathered thus far gives

(1− β̃1)η
t∑

r=1

T0,r ≤ (1− β̃1)η
t∑

r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

− 3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+ (1− β̃1)η
t∑

r=1

(
ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

)
.

Now, let us bound the final term in equation (8),∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃1)
∑t

r=1 β̃
t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃1)
∑t

r=1 β̃
t−r
1 maxr∈[t] |∆r|√

ṽt + τ

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ (1− β̃t
1)√

ṽt + τ

∥∥∥∥∥
2

∥ΦK
1 ∥2

≤ 2

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+ 2d
∥ΦK

1 ∥2

τ2
.

Substituting into equation (8) gives that

f(xt) ≤ f(xt−1) + ηT0,0 + η2L

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+
η2Ld∥ΦK

1 ∥2

τ2
+ (1− β̃1)η

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

+ (1− β̃1)η

t∑
r=1

(
ηℓβ̃

t−r
1 KL(t− r)2∥ΦK

2 ∥2

αrτ(
√
v0 + ε)2

+
ηℓβ̃

t−r
1 L̃K∥ΦK

1 ∥2

αrτ(
√
v0 + ε)2

)

+ (1− β̃1)η
t∑

r=1

−3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2
 . (10)

Note that the exponential decay caused by β̃1 in the third term will expectedly dominate the effect of first order moment
initialization m̃0 as training progresses, and summation over t ∈ [T] gives O(1). We initialize m̃0 ← 0 to further simplify
the equations. We also further exacerbate the upper bound by substituting γ̃1, α̃1 into γr, αr respectively, which achieves
independence from r. Telescoping equation (10) then gives

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≤ f(x0)− f(x∗) +
(1− β̃1)η||ΦK

1 ||G
τ

T∑
t=1

t∑
r=1

d∑
j=1

β̃t−r
1

[
∆2

t

ṽt

]
j

+
η2LTd∥ΦK

1 ∥2

τ2
+

(1− β̃1)ηηℓK
α̃1τ(

√
v0 + ε)2

T∑
t=1

t∑
r=1

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
. (11)

27

Efficient Adaptive Federated Optimization

To complete the proof, we aim to ease a logarithm out from the third term on the right hand side. For this purpose, we
induce a recursion with a log bound

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤
T∑

t=1

(1− β̃t
1)

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ aT + cT log (1 + bT) . (12)

Setting T = 1 gives

(1− β̃1)
∆2

1,j

∆2
1,j + τ2

≤ a1 + c1 log(1 + b1),

and setting aT = 1− β̃1 satisfies this inequality (among other choices). Assuming formula (12) holds for T , let us explore
the induction condition for T + 1, which is

T∑
t=1

(1− β̃t
1)

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

+ (1− β̃T+1
1)

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ aT+1 + cT+1 log (1 + bT+1) .

For simplicity, we impose that ct is a monotonically increasing non-negative sequence of t. We intend to contain the increase
in the left hand side as T grows in the log argument only, in the right hand side. Therefore, we select aT+1 = aT . For a
suitable choice of bT+1 satisfying strong induction, it is enough to resolve

(1− β̃T+1
1)

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ cT+1 log

(
1 + bT+1

1 + bT

)
= cT+1 log

(
1 +

bT+1 − bT
1 + bT

)
.

Here, we used monotonicity of ct. Noting that log(1 + x) ≥ x/(1 + x), it is again enough to resolve

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

≤ cT+1(bT+1 − bT)
bT+1 + 1

⇐⇒
∆2

T+1,j∑T+1
ℓ=1 ∆2

ℓ,j + τ2
+ cT+1bT ≤

(
cT+1 −

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

)
bT+1.

By positivity of bt for t > 1, a necessary condition is therefore that

cT+1 ≥
∆2

T+1,j∑T+1
ℓ=1 ∆2

ℓ,j + τ2

In order to enhance the tightness of our bound, we choose the minimal permissible value ct = 1 uniformly, which is attained
as a suprema. In this setting, we are left with a recursion

∆2
T+1,j∑T+1

ℓ=1 ∆2
ℓ,j + τ2

=
bT+1 − bT
bT+1 + 1

,

and collecting the terms in the form bT+1 = bTω1(∆) + ω2(∆) would provide an optimal recursive bound given our
simplifying assumptions, starting with b1 = 0. A less optimal but simpler bound can be formed by selecting bT+1 =
bT +∆2

T+1,j/τ
2 for b1 = ∆2

1,j/τ
2. Therefore, we arrive at

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ 1− β̃1 + log

(
1 +

T∑
ℓ=1

(
∆ℓ,j

τ

)2
)

≤ 1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

)
. (13)

The remaining term to be bounded in equation (11) is given

(1− β̃1)ηηℓKL
α̃1τ(

√
v0 + ε)2

T∑
t=1

t∑
r=1

(
β̃t−r
1 (t− r)2∥ΦK

2 ∥2
)
.

28

Efficient Adaptive Federated Optimization

The trick is to notice that the explosion of the series caused by double summation is culled selectively in reverse chronological
order by the exponential, rendering the tail end asymptotically vacuous. Note that (1 − β̃1) stabilizes the divergence as
β̃1 → 1− in the limit. By a change of variable u = t− r,

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 = (1− β̃1)

T−1∑
u=0

β̃u
1 u

2(T − u).

Defining

ũ0(β̃1) = inf{u ∈ N : β̃v
1v

2 <
1

v2
for ∀v ≥ u},

let

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx.

Then, I claim that

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 ≤ (1− β̃1)c(β̃1)T.

We prove this by induction. The case T = 1 is trivial. Now, assume the desired inequality holds until T . For T + 1, we
want to show

(1− β̃1)
T∑

u=0

β̃u
1 u

2(T − u+ 1) ≤ (1− β̃1)c(β̃1)(T + 1)

⇐⇒ (1− β̃1)
T−1∑
u=0

β̃u
1 u

2(T − u) + (1− β̃1)
T∑

u=0

β̃u
1 u

2 ≤ (1− β̃1)c(β̃1)(T + 1)

and thus by the inductive hypothesis it is enough to show

T∑
u=0

β̃u
1 u

2 ≤ c(β̃1).

However, this is trivial by the definition of c(β̃1). Upon substitution into equation (11) and noting that

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≥ 3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T]

∥∇f(xt−1)∥2

we simplify as

3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T]

∥∇f(xt−1)∥2 ≤ f(x0)− f(x∗) +
η2LTd∥ΦK

1 ∥2

τ2

+
(1− β̃T

1)ηηℓKTL̃∥ΦK
1 ∥2

α̃1τ(v0 + ε)2
+

(1− β̃1)ηηℓKTLc(β̃1)∥ΦK
2 ∥2

α̃1τ(v0 + ε)2
(14)

+
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

Therefore, we immediately conclude that

min
t∈[T]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

29

Efficient Adaptive Federated Optimization

where

Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 =
(1− β̃T

1)ηηℓKL̃T∥ΦK
1 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ4 =
(1− β̃1)ηηℓKLTc(β̃1)∥ΦK

2 ∥2

α̃1τ(
√
v0 + ε)2

,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) .
Here, the constant c is defined with respect to β̃1 as

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx for ũ0(β̃1) = inf{u ∈ N : β̃v

1v
2 <

1

v2
for ∀v ≥ u}

and the intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
K√

v0 + dKG2 + ε
, α̃1 :=

1

2
√
v0 + dKG2 + 2ε

.

This concludes the proof.

Note that we have also shown the following two useful lemmas:

Lemma B.6. For β̃1 ∈ [0, 1) and T ∈ Z≥0, let

ũ0(β̃1) = inf{u ∈ N : β̃v
1v

2 <
1

v2
for ∀v ≥ u},

and

c(β̃1) :=

ũ0(β̃1)∑
u=0

β̃u
1 u

2 +

∫ ∞

ũ0(β̃1)

1

x2
dx.

Then, we have that
T∑

t=1

t∑
r=1

β̃t−r
1 (t− r)2 ≤ c(β̃1)T.

Lemma B.7. Let ∆ℓ,j ∈ R, β̃1 ∈ [0, 1), and T ∈ Z≥0. Then,

(1− β̃1)
T∑

t=1

t∑
r=1

β̃t−r
1

∆2
t,j∑t

ℓ=1 ∆
2
ℓ,j + τ2

≤ 1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

)
.

We present the following corollary.

Corollary B.8. Any of the following conditions are sufficient to ensure convergence of Algorithm 1:

(A) : ηℓ ≤ O(T−1/2) for Ω(T−1) < ηηℓ < O(1),

(B) : ηℓ = Θ(T− 49
100) for Ω(T− 1

2) < η < O(T 12
25).

30

Efficient Adaptive Federated Optimization

Proof. The proof is formed by comparing orders of T . Recall that γ̃1 = Θ(ηℓ) and L̃ = Θ(η−1
ℓ). As ΦK

1 = Θ(ηℓ) and
ΦK

2 = Θ(min {η, ηηℓ}), we have for η = Θ(T p1) and ηℓ = Θ(T p2),

ψ1 = Θ(1)

ψ2 = η2η2ℓT

ψ3 = ηη2ℓT

ψ4 =

{
η3η3ℓT if O(ηℓ) ≤ O(1)
η3ηℓT if Θ(ηℓ) > Ω(1)

ψ5 = ηηℓ log(1 + Tη2ℓ)

ψ6 =

{
ηηℓT if O(Tη2ℓ) ≤ O(1)

η
√
T if Θ(Tη2ℓ) > Ω(1)

.

If O(Tη2ℓ) ≤ O(1), then O(ηℓ) ≤ O(1) which implies

ψ1

ψ6
: (ηηℓT)

−1 = Θ
(
T−(p1+p2+1)

)
ψ2

ψ6
: ηηℓ = Θ

(
T p1+p2

)
ψ3

ψ6
: ηℓ = Θ(T p2)

ψ4

ψ6
: η2η2ℓ = Θ

(
T 2p1+2p2

)
ψ5

ψ6
:
log(1 + Tη2ℓ)

T
= O(T−1)

This implies that we must have that p2 ≤ −1/2 and −1 < p1 + p2 < 0 for guaranteed convergence. Thus, ηℓ ≤ O(T−1/2)
such that Ω(T−1) < ηηℓ < O(1) is a sufficient condition. For instance, let ηℓ = Θ(T−1/2) and Ω(T−1/2) < η < O(T 1/2).

Now, assume Θ(Tη2ℓ) > Ω(1). If Θ(ηℓ) > Ω(1), Ψ3/Ψ6 diverges. Therefore, let ηℓ ≤ O(1). We have

ψ1

ψ6
: (η
√
T)−1 = Θ(T−p1− 1

2)

ψ2

ψ6
: ηη2ℓ

√
T = Θ(T p1+2p2+

1
2)

ψ3

ψ6
: η2ℓ
√
T = Θ(T 2p2+

1
2)

ψ4

ψ6
: η2η3ℓ

√
T = Θ(T 2p1+3p2+

1
2)

ψ5

ψ6
:
ηℓ log(1 + Tη2ℓ)√

T
< O(T− 1

2+p2)

Therefore, it suffices to satisfy

−1

2
< p2 ≤ −

1

4
, −1

2
< p1, p1 + 2p2 < −

1

2
, 2p1 + 3p2 < −

1

2
.

An example satisfying these conditions are

ηℓ = Θ(T− 49
100), Ω(T− 1

2) < η < O(T 12
25).

31

Efficient Adaptive Federated Optimization

Note that for all cases, ηℓ must decay to establish convergence. However, striking a balance between local and global
learning rates provably allows for greater than Ω(T 1/3) divergence in the server learning rate without nullifying desirable
convergence properties. This theoretically demonstrates the enhanced robustness properties of adaptive client-side federated
learning algorithms to mitigate suboptimal choices of server learning rates.

Corollary B.9. Algorithm 1 converges at rate O(T−1/2).

Proof. IfO(Tη2ℓ) ≤ O(1), then we juxtapose ψ1/ψ6 and ψ2/ψ6. It is clear that the minimax value of the respective powers
are attained at p1 + p2 = −1/2, realized by p2 = −1/2 and p1 = 0. In this case, clearly Θ(ψi/ψ6) ≤ O(T−1/2) for
1 ≤ i ≤ 5. If Θ(Tη2ℓ) > Ω(1), then our strategy should be to minimize p2 due to positive coefficients in the powers
ψi/ψ6. Thus, let p2 = −1/2 + ε for 1≫ ε > 0. Then, the order of decay in ψ2/ψ6 is p1 − 1/2 + 2ε, which is once again
matched against −p1 − 1/2, the power of ψ1/ψ6. Taking the limit ε→ 0+, minimax{p1 − 1/2,−p1 − 1/2} for the range
−1/2 < p1 is attained at p1 = 0. This sets the maximal decay rate to O(T−1/2) for the second case.

B.2. Extension to Adam

The extension to the case where Adam is selected as the optimizer for the server, or for both the server and client is
straightforward. We present the latter as it generalizes the former analysis. As in Lemma B.1, we have the following bound
for the compressed SM3 estimates of the second moment,

vk(j) ≥ v0(j) +
⌈ k
z ⌉∑

ℓ=1

(
gti,(ℓ−1)z+1(j)

)2
for j ∈ {1, . . . , d} and k ∈ {1, . . . ,K},

which allows bounds to be established for the local and global pseudogradients following analogous logic as Lemmas B.2, D.2.
As before, we arrive at equation (9) where due to exponential moving averaging on the server-side, we have

ṽt = β̃t
2ṽ0 + (1− β̃2)

t∑
ℓ=1

β̃t−r
2 ∆ℓ.

Now, decompose T0,r as

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
β̃2ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

,

where T1,r may be bounded via

T1,r = β̃t−r
1

〈
∇f(xt−1),

∆r(

√
β̃2ṽt−1 −

√
ṽt)

(
√
ṽt + τ)(

√
β̃2ṽt−1 + τ)

〉

= β̃t−r
1

〈
∇f(xt−1),

−∆r∆
2
t (1− β̃2)

(
√
ṽt + τ)(

√
β̃2ṽt−1 + τ)(

√
β̃2ṽt−1 +

√
ṽt)

〉

≤ ∥Φ
K
1 ∥Gβ̃t−r

1 (1− β̃2)
τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

Due to the exponential decay parameter in the first pseudogradient moment, we have

η

T∑
t=1

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1 (1− β̃2)
τ

d∑
j=1

[
∆2

t

ṽt

]
j

≤ η
T∑

t=1

t∑
r=1

∥ΦK
1 ∥3Gβ̃t−r

1 (1− β̃2)
τ2

≤ η∥ΦK
1 ∥3GT (1− β̃2)

τ2
.

32

Efficient Adaptive Federated Optimization

An analogue of the arguments made in the proof of Theorem 5.1 with appropriate modifications, e.g.,

γr :=
ηℓ
|Sr|

∑
i∈Sr

K∑
p=1

(1− β1)
∑p

ℓ=1 β
p−ℓ
1√

(1− β2)
∑⌈ p

z ⌉
ℓ=1 β

⌈ p
z ⌉−ℓ

2 (gri,(ℓ−1)z+1)
2 + ε

,

gives the main change as the asymptotic behavior of Ψ5, which now satisfies

Ψ5 = Θ
(
ηη3ℓT

)
.

The convergence rate is still dominated by Ψ1, Ψ2 as in Corollary B.9, which gives O(T−1/2).

C. Federated Blended Optimization
In federated blended optimization, we distribute local optimizer strategies during the subsampling process which may be
formalized as functions that take as input the availability of client resources, and outputs the number of local epochs, K(Oi

l),
as well as additional hyperparameters such as delay step size z or preconditioner initialization. These may be chosen to
streamline model training based on a variety of factors, such as straggler mitigation or dynamically restricted availability of
local resources.

Algorithm 4 Server-side ADAGRAD and client-side optimizer mixture (Blended Optimization)

Require: Local optimizer strategies O1, . . . , OOp (e.g. Adam, AdaGrad, SGD...)
Require: Initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0
Require: Global decay parameter β̃1 ∈ [0, 1)

1: for t = 1, . . . , T do
2: Sample participating client multiset St

l for each optimizer strategy l ∈ [Op]
3: for each sampled client collection l ∈ [Op] (in parallel) do
4: for each client i ∈ St

l (in parallel) do
5: xt,li,0 ← xt−1

6: xt,l
i,K(Oi

l)
← Optimize(Ol, i, x

t,l
i,0, Clip = True)

7: ∆t,l
i = w(Ol)

(
xt,l
i,K(Oi

l)
− xt−1

)
8: end for
9: end for

10: S ←
∑

l∈[Op] |St
l |

11: ∆t =
1
S

∑
l∈[Op]

∑
i∈St

l
∆t,l

i

12: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

13: ṽt = ṽt−1 +∆2
t

14: xt = xt−1 + η m̃t√
ṽt+τ

15: end for

Federated blended optimization allows the trainer to utilize the unique strengths of each individual optimizer, balancing
resource constraints and client noise. Each client has the option to run different optimizer strategies as the training rounds
progress, depending on varying individual resource constraints or distribution shift in the local data stream. This faithfully
corresponds to real-world settings where the availability of local resources are actively dynamic. Future work will provide
empirical results on the performance of blended optimization, including identifying the settings in which mixing optimizer
strategies are advantageous for distributed learning. The following theorem shows that under certain non-restrictive
conditions, blended optimization still allows for convergence of the global gradient objective.

Theorem C.1. Given client i ∈ [N], strategy l ∈ [Op], global timestep r, and local timestep p, assume that the optimizer
strategies satisfy the parameter update rule

xr,li,p = xr,li,p−1 − ηℓ
p∑

ℓ=1

ar,li,ℓg
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

33

Efficient Adaptive Federated Optimization

where
0 < ml ≤ ϑr,li,ℓ(g

r,l
i,1, . . . , g

r,l
i,ℓ) ≤Ml and 0 < al ≤ ar,li,ℓ ≤ Al

for all possible values of i, ℓ, r, l. If 1 ≤ K(Oi
l) ≤ K and 0 < Ξ− < w(Oi

l) < Ξ+, then Algorithm 4 admits an identical
convergence bound as Theorem 5.1, with Ψ3, Ψ4 replaced by

Ψ3 = (1− β̃T
1)ηηℓCTL̃∥ΦK

1 ∥2,

Ψ4 = (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2,

C =
(Ξ+)2K(K + 1)(maxl∈[Op]A

2
l)

2α̃1τ minl∈[Op]m
2
l

.

The intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
Ξ− minl∈[Op] al

maxl∈[Op]Ml
, α̃1 :=

Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
.

We have opted to provide a looser bound for expository purposes, and the proof straightforwardly generalizes to finer bounds
that depend on the individual characteristics of the optimizer strategy (e.g. ml,Ml, Al, etc). The extension to server-side
Adam updates follows analogous steps to Section B.2.

It is easy to show that under the bounded gradient assumption (Assumption 2), Adam, AdaGrad, and SGD all satisfy the
optimizer condition depicted in Theorem C.1. In Appendix D and E, we materialize two realizations of this framework as an
example, using client-side Adam and AdaGrad with delayed preconditioner updates. Note that delayed updates require the
debiasing term in Adam to be adjusted accordingly. To prove Theorem C.1, we begin with the following lemma.

Lemma C.2. Under Algorithm 4, |∆t,l
i | is bounded by

ΦK
1 := ηℓΞ

+K(K + 1)maxl∈[Op]AlG

2minl∈[Op]ml
,

and the server-side pseudogradient is bounded in absolute value by

ΦK
2 := min

{
η

√
(1− β̃1)(1− β̃2t

1),
η

τ
ΦK

1

}
.

Proof. Unraveling the definition of ∆t,l
i , we have

∆t,l
i := −ηℓw(Ol)

K(Oi
l)∑

p=1

p∑
ℓ=1

ar,li,ℓg
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

 ,

which immediately gives

|∆t,l
i | ≤ ηℓΞ

+

(
K∑

p=1

p∑
ℓ=1

AlG

ml

)
= ηℓΞ

+K(K + 1)AlG

2ml
.

For the server bound, the proof is identical to Lemma B.2.

We are now ready to prove Theorem C.1.

Proof. As the proof follows a similar structure to Theorem 5.1, we provide only an outline for repetitive steps while focusing
on differing aspects. As before, L-smoothness gives that

f(xt) ≤ f(xt−1) + ηT0,0 + (1− β̃1)η
t∑

r=1

T0,r +
η2L

2

∥∥∥∥∥ β̃t
1m̃0 + (1− β̃1)

∑t
r=1 β̃

t−r
1 ∆r√

ṽt + τ

∥∥∥∥∥
2

(15)

34

Efficient Adaptive Federated Optimization

where for r ∈ [t],

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

〉
and T0,0 =

〈
∇f(xt−1),

β̃t
1m̃0√
ṽt + τ

〉
.

Decomposing T0,r as

T0,r = β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt + τ

− ∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T1,r

+ β̃t−r
1

〈
∇f(xt−1),

∆r√
ṽt−1 + τ

〉
︸ ︷︷ ︸

T2,r

,

T1,r is bounded by

T1,r ≤
∥ΦK

1 ∥Gβ̃t−r
1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

.

For T2,r, we aim to apply a further decomposition for γr > 0,

T2,r = β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉
︸ ︷︷ ︸

T 1
2,r

−γrβ̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

.

Unraveling the definition of ∆r gives

∆r =
1∑

l∈[Op] |Sr
l |
∑

l∈[Op]

∑
i∈Sr

l

∆r,l
i =

−ηℓ∑
l∈[Op] |Sr

l |
∑

l∈[Op]

∑
i∈Sr

l

K(Oi
l)∑

p=1

p∑
ℓ=1

w(Ol)a
r,l
i,ℓg

r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

,

which induces the following value

γr :=
ηℓ∑

l∈[Op] |St
l |
∑

l∈[Op]

∑
i∈St

l

K(Oi
l)∑

p=1

p∑
ℓ=1

w(Ol)a
r,l
i,ℓ

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

=
∑

l∈[Op]

γlr.

For the purposes of the proof, we shall consider a local device to have been dropped and unsampled if any runs less than 1
epoch. Then, we have

γr ∈ [γ̃1, γ̃2] :=

[
ηℓ

Ξ− minl∈[Op] al

maxl∈[Op]Ml
, ηℓ

Ξ+K(K + 1)maxl∈[Op] al

2minl∈[Op]Ml

]
.

35

Efficient Adaptive Federated Optimization

Expanding T 1
2,r for αl

r > 0 to be fixed,

β̃t−r
1

〈
∇f(xt−1)√
ṽt−1 + τ

,∆r + γr∇f(xt−1)

〉

=
β̃t−r
1∑

l∈[Op] |Sr
l |
∑

l∈[Op]

∑
i∈Sr

l

K(Oi
l)∑

p=1

p∑
ℓ=1

〈
∇f(xt−1)√
ṽt−1 + τ

,
ηℓw(Ol)a

r,l
i,ℓ(∇f(xt−1)− gr,li,ℓ)

ϑr,li,ℓ(g
r,l
i,1, . . . , g

r,l
i,ℓ)

〉

≤ ηℓβ̃
t−r
1

4
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

αl
r

∑
i∈Sr

l

K(Oi
l)(K(Oi

l) + 1)

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1

2
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

1

αl
r

∑
i∈Sr

l

K(Oi
l)∑

p=1

p∑
ℓ=1

∥∥∥∥∥∥
w(Ol)a

r,l
i,ℓ

(
∇f(xt−1)−∇Fi(x

r,l
i,ℓ−1)

)
ϑr,li,ℓ(g

r,l
i,1, . . . , g

r,l
i,ℓ)
√√

ṽt−1 + τ

∥∥∥∥∥∥
2

≤
ηℓβ̃

t−r
1 maxl∈[Op] α

l
rK(K + 1)

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

+
ηℓβ̃

t−r
1 (Ξ+)2

2τ
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

A2
l

αl
rm

2
l

∑
i∈Sr

l

K(Oi
l)∑

p=1

p∑
ℓ=1

∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2

We aim to control the first term by setting for all l ∈ [Op]

αl
r =

γr
ηℓK(K + 1)

∈ [α̃1, α̃2] :=

[
Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
,
Ξ+K(K + 1)maxl∈[Op] al

2K(K + 1)minl∈[Op]Ml

]
.

Via gradient clipping as before, we have∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2 ≤ 2L(t− r)2∥ΦK
2 ∥2 + 2L̃∥ΦK

1 ∥2.

Noting that

ηℓβ̃
t−r
1 (Ξ+)2

2τ
∑

l∈[Op] |Sr
l |
∑

l∈[Op]

A2
l

αl
rm

2
l

∑
i∈Sr

l

K(Oi
l)∑

p=1

p∑
ℓ=1

∥∥∥∇f(xt−1)−∇Fi(x
r,l
i,ℓ−1)

∥∥∥2
≤
ηℓ(Ξ

+)2K(K + 1)(maxl∈[Op]A
2
l)

2α̃1τ minl∈[Op]m
2
l

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
,

collecting terms into equation (15) gives that

f(xt) ≤ f(xt−1) + ηT0,0 + η2L

∥∥∥∥∥ β̃t
1m̃0√
ṽt + τ

∥∥∥∥∥
2

+
η2Ld∥ΦK

1 ∥2

τ2
+ (1− β̃1)η

t∑
r=1

∥ΦK
1 ∥Gβ̃t−r

1

τ

d∑
j=1

[
∆2

t

ṽt

]
j

+ (1− β̃1)ηηℓ

t∑
r=1

(Ξ+)2K(K + 1)(maxl∈[Op]A
2
l)

2α̃1τ minl∈[Op]m
2
l︸ ︷︷ ︸

C

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)

+ (1− β̃1)η
t∑

r=1

−3γrβ̃
t−r
1

4

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2
 . (16)

36

Efficient Adaptive Federated Optimization

By initializing m̃0 ← 0 and enhancing the upper bound by substituting γ̃1 into γr, telescoping gives

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≤ f(x0)− f(x∗) +
(1− β̃1)η||ΦK

1 ||G
τ

T∑
t=1

t∑
r=1

d∑
j=1

β̃t−r
1

[
∆2

t

ṽt

]
j

+
η2LTd∥ΦK

1 ∥2

τ2
+ (1− β̃1)ηηℓC

T∑
t=1

t∑
r=1

(
Lβ̃t−r

1 (t− r)2∥ΦK
2 ∥2 + L̃β̃t−r

1 ∥ΦK
1 ∥2

)
. (17)

Again by noting that

3(1− β̃1)ηγ̃1
4

T∑
t=1

t∑
r=1

β̃t−r
1

∥∥∥∥∥∥ ∇f(xt−1)√√
ṽt−1 + τ

∥∥∥∥∥∥
2

≥ 3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T]

∥∇f(xt−1)∥2 ,

Lemmas B.6 and B.7 give that

3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) min
t∈[T]

∥∇f(xt−1)∥2 ≤ f(x0)− f(x∗) +
η2LTd∥ΦK

1 ∥2

τ2

+ (1− β̃T
1)ηηℓCTL̃∥ΦK

1 ∥2 + (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2

+
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

.

This implies that

min
t∈[T]

∥∇f(xt−1)∥2 ≤
Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5

Ψ6
,

where

Ψ1 = f(x0)− f(x∗),

Ψ2 =
η2LTd∥ΦK

1 ∥2

τ2
,

Ψ3 = (1− β̃T
1)ηηℓCTL̃∥ΦK

1 ∥2,

Ψ4 = (1− β̃1)ηηℓCTLc(β̃1)∥ΦK
2 ∥2,

Ψ5 =
ηd∥ΦK

1 ∥G
(
1− β̃1 + log

(
1 +

T∥ΦK
1 ∥2

τ2

))
τ

,

Ψ6 =
3(1− β̃1)ηγ̃1T

4
(√

T∥ΦK
1 ∥2 + ṽ0 + τ

) ,
C =

(Ξ+)2K(K + 1)(maxl∈[Op]A
2
l)

2α̃1τ minl∈[Op]m
2
l

.

The intermediary γ̃1, α̃1 values are defined as

γ̃1 := ηℓ
Ξ− minl∈[Op] al

maxl∈[Op]Ml
, α̃1 :=

Ξ− minl∈[Op] al

K(K + 1)maxl∈[Op]Ml
.

D. Adam Delayed Moment Updates (ADMU)
We begin with a brief description of ADAM (Kingma & Ba, 2015).

37

Efficient Adaptive Federated Optimization

Algorithm 5 Adam Optimization Algorithm

Require: ηℓ: Step size
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(x): Stochastic objective function with parameters x
Require: ε > 0: Smoothing term
Require: x0: Initial parameter vector

1: Initialize m0 ← 0 (1st moment vector)
2: Initialize v0 ← 0 (2nd moment vector)
3: Initialize t← 0 (Timestep)
4: while not converged do
5: t← t+ 1
6: gt ← ∇xft(xt−1)
7: mt ← β1 ·mt−1 + (1− β1) · gt
8: vt ← β2 · vt−1 + (1− β2) · g2t
9: m̂t ← mt/(1− βt

1)
10: v̂t ← vt/(1− βt

2)
11: xt ← xt−1 − ηℓ · m̂t/(

√
v̂t + ε)

12: end while
13: return xt

Algorithm 6 Adam with Delayed Moment Updates (ADMU)

Require: ηℓ: Step size
Require: z ∈ Z≥1: Step delay for second moment estimate updates (where z = 1 gives no delay)
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(x): Stochastic objective function with parameters x
Require: x0: Initial parameter vector
Require: ε > 0: Smoothing term

1: Initialize m0 ← 0 (1st moment vector)
2: Initialize v0 ← 0 (2nd moment vector)
3: Initialize t← 0 (Timestep)
4: while not converged do
5: t← t+ 1
6: gt ← ∇xft(xt−1)
7: mt ← β1 ·mt−1 + (1− β1) · gt
8: m̂t ← mt/(1− βt

1)
9: if (t− 1)/z ∈ Z then

10: vt ← β2 · vt−1 + (1− β2) · g2t
11: v̂t ← vt/(1− β

⌊ t−1
z ⌋+1

2)
12: else
13: v̂t ← v̂t−1

14: end if
15: xt ← xt−1 − ηℓ · m̂t/(

√
v̂t + ε)

16: end while
17: return xt

38

Efficient Adaptive Federated Optimization

Considering client-side resource constraints in the federated setting, we propose an adapted version of Adam with delayed
precondtioner updates aimed at relieving the cost of moment estimate computation in Algorithm 6 which we call ADMU.

Following (Kingma & Ba, 2015), we provide an intuitive justification for the initialization bias correction employed in
ADMU. Recall that the motivation for adaptive step-size in ADAM is updating the parameters via empirical estimates of the
pseudo-gradient E[g]/

√
E[g2], which allows for both momentum and autonomous annealing near steady states. The square

root is taken in the denominator to homogenize the degree of the gradient. Bias correction for ADMU adheres to the same
principle, while requiring an additional assumption of gradient stabilization during the z-step preconditioner update delay.
An equivalent formulation of the moment estimates in Algorithm 6 for general t is given

mt = m0β
t
1 + (1− β1)

t∑
r=1

βt−r
1 · gr,

vt = v0β
⌊ t−1

z ⌋+1
2 + (1− β2)

t∑
r=1

β
⌊ t−1

z ⌋+1−⌈ r
z ⌉

2 · g⌈ r
z ⌉z−z+1 ⊙ g⌈ r

z ⌉z−z+1 · χ{ r−1
z ∈Z≥0}

= v0β
⌊ t−1

z ⌋+1
2 + (1− β2)

⌈ t
z ⌉∑

r=1

β
⌈ t
z ⌉−r

2 g(r−1)z+1 ⊙ g(r−1)z+1. (18)

We work with vt as the proof for mt is analogous with z = 1. Assume that the gradients g1, . . . , gt are drawn from a latent
gradient distribution gi ∼ D̃(gi). We aim to extract a relation between the expected delayed exponential moving average of
the second moment E[vt] and the true gradient expectation E[g2t]. Taking expectation of both sides in equation (18),

E[vt] = v0β
⌊ t−1

z ⌋+1

1 + (1− β2)
⌈ t
z ⌉∑

r=1

β
⌈ t
z ⌉−r

2 E
[
g2(r−1)z+1

]

≈ ζ + (1− β2)E
[
g2t
] ⌈ t

z ⌉∑
r=1

β
⌈ t
z ⌉−r

2

≈ E[g2t]
(
1− β⌊

t−1
z ⌋+1

1

)
.

Here, we have used zero initialization for the first moment estimate, while accumulating any error terms in ζ. Several
assumptions can lead to small ζ . As in (Kingma & Ba, 2015), we assume that β1 is chosen small enough that the exponential
moving average decay undermines the influence of non-recent gradients gi for i <

⌈
t
z

⌉
z − z + 1. A second assumption is

that the latent gradient distribution remains stable during the z-step delay as training progresses, allowing the approximation
E[gt] ≈ E[g⌈ t

z ⌉z−z+1]. This leaves the residual scaling of the true gradient second moment of the form 1− βφ, which is

caused by (zero) initialization as setting v0 = E[g2t] eliminates βφ. Therefore, bias correction is enforced by scaling the
empirical vt estimate by the inverse. We note that v0 need not be initialized to 0, in which case we should additionally

translate vt by −v0β
⌊ t−1

z ⌋+1

1 prior to the inverse scaling.

D.1. Non-convex convergence analysis

A description of FedAdaAdam is given as Algorithm 7. A few remarks are in order. Firstly, to allow for straggler mitigation,
we allow the number of client i epochs K

t

i at timestep t to vary among the clients i ∈ Si. Although Algorithm 7 sets
a schedule for client epochs and pseudogradient weights for clarity of exposition, dynamic allocation still allows the
convergence proof to go through, as long as the schedule weights are bounded. By default, we set K

t
= K and Ξt = B = 1

to avoid tuning a large number of hyperparameters or having to sample from a client epoch count distribution for the client
subsampling case.

Secondly, for the purposes of the proof we shall consider a local device to have been dropped and unsampled if any runs less
than 1 epoch. We also enforce that pseudogradient weights are bounded positively from below, i.e. Ξt

i > εw > 0. We now
provide a convergence bound for the general, non-convex case which holds for both full and partial client participation.

39

Efficient Adaptive Federated Optimization

Algorithm 7 Adaptive server-side ADAGRAD and client-side ADAM (FedAdaAdam)

Require: Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global and local decay parameters β̃1, β̃2, β1, β2 ∈ [0, 1)

Require: Pseudogradient weighting schedule Ξ1 × · · · × ΞT ∈ R|S1| × · · · × R|ST | for ∥Ξt∥∞ ≤ B
Require: Client epoch schedule K

1 × · · · ×KT ∈ Z|S1|
≥1 × · · · × Z|ST |

≥1 for ∥Kt∥∞ ≤ K, ∀t ∈ [T]
Require: Local epsilon smoothing term εs > 0

1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N] of clients
3: for each client i ∈ St (in parallel) do
4: xti,0 ← xt−1

5: Initialize m0, v0 ≥ 0 with default values m0, v0 ← 0

6: for k = 1, . . . ,K
t

i do
7: Draw stochastic gradient gti,k ∼ D(xti,k−1) with mean∇Fi(x

t
i,k−1) ∈ Rd

8: mk ← β1 ·mk−1 + (1− β1) · gti,k
9: m̂k ← mk/(1− βk

1)
10: if (k − 1)/z ∈ Z then
11: vk ← β2 · vk−1 + (1− β2) · gti,k ⊙ gti,k
12: v̂k ← vk/(1− β

⌊ k−1
z ⌋+1

2)
13: else
14: vk ← vk−1

15: end if
16: if 0 < ∥m̂k/(

√
v̂k + ϵ)∥ < εs then

17: mk ← 0
18: end if
19: xti,k ← xti,k−1 − ηℓ · m̂k/(

√
v̂k + ϵ)

20: end for
21: ∆t

i = Ξt
i

(
xt
i,K

t
i

− xt−1

)
22: end for
23: ∆t =

1
|St|

∑
i∈St ∆t

i

24: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

25: ṽt = ṽt−1 +∆2
t

26: xt = xt−1 + η m̃t√
ṽt+τ

27: end for

40

Efficient Adaptive Federated Optimization

Corollary D.1. For Algorithm 7, we have an identical bound to Theorem 5.1 with Ψ3,Ψ4 replaced by

Ψ3 =
(1− β̃T

1)ηηℓ(1− β2K
1)KL̃B2T∥ΦK

1 ∥2

2α̃1τε2
,

Ψ4 =
(1− β̃1)ηηℓ(1− β2K

1)KLTB2c(β̃1)∥ΦK
2 ∥2

2α̃1τε2
.

Here, the intermediary γ̃1, α̃1 values are defined for K− := mini,tK
t

i ≥ 1 as

γ̃1 := ηℓεw

K−∑
p=1

1− βp
1

G

√
1− β⌈ p

z ⌉
2 + ε

, α̃1 :=

K−∑
p=1

εw (1− βp
1)(

G

√
1− β⌈ p

z ⌉
2 + ε

)
(K + 1)2

.

The proof is subsumed by or analogous to Theorems 5.1 and C.1, with changes summarized in the following lemma.
Lemma D.2. Under Algorithm 7, |∆t

i| is bounded by

|∆t
i| ≤ Φ

K
t
i

1 := |Ξt
i| ·

ηℓKt

i

√√√√√√
⌈Kt

i
z ⌉∑

r=1

β
2⌈Kt

i
z ⌉−2r

1

β
⌈Kt

i
z ⌉−r

2

+Φ
K

t
i

0

where

Φ
K

t
i

0 :=
K

t

iGηℓ(1− β
K

t
i

1)

ε
.

Proof. Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = Ξt
i

(
xt
i,K

t
i

− xti,0
)

. By telescoping for K
t

i local steps and the
definition of gradient updates in ADMU, we obtain

∆t
i =

K
t
i∑

p=1

−ηℓΞt
i

m̂p√
v̂p + ε

= −ηℓΞt
i

K
t
i∑

p=1

m0β
p
1 + (1− β1)

∑p
r=1 β

p−r
1 · gti,r√

v0β
⌊ p−1

z ⌋+1
2 + (1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

We assume m0, v0 ← 0 for expository purposes, although v0 > 0 also suffices for the analysis (ending in a slightly different

Φ
K

t
i

1). This gives that

∆t
i = −ηℓΞt

i

K
t
i∑

p=1

(1− β1)
∑p

r=1 β
p−r
1 · gti,r√

(1− β2)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

= −ηℓΞt
i

K
t
i∑

p=1

(1− β1)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

1 · gti,(r−1)z+1√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

− ηℓΞt
i

K
t
i∑

p=1

(1− β1)
∑p

r=1 β
p−r
1 · gti,r · χ{ p−1

z /∈Z}√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

.

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉].
Therefore, we form the intermediary upper bound

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|

K
t
i∑

p=1

(1− β1)
∑⌈ p

z ⌉
r=1 β

⌈ p
z ⌉−r

1 ·
∣∣∣gti,(r−1)z+1

∣∣∣√
(1− β2)

∑⌈ p
z ⌉

r=1 β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2 + ε

+
ηℓ|Ξt

i|(1− β1)
ε

K
t
i∑

p=1

p∑
r=1

βp−r
1 ·

∣∣gti,r∣∣ · χ{ p−1
z /∈Z}

 . (19)

41

Efficient Adaptive Federated Optimization

Note that the first term is 0 in the worst-case scenario above, which implies that any non-negative upper bound is trivially
satisfied. Therefore, we may assume without loss of generality that at least one sampled gradient gti,(r−1)z+1 is nontrivial
and remove ε from the denominator to obtain an upper bound. By Cauchy-Schwartz, we have⌈ p

z ⌉∑
r=1

β
⌈ p
z ⌉−r

2 (gti,(r−1)z+1)
2

⌈ p
z ⌉∑

r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

 ≥
⌈ p

z ⌉∑
r=1

β
⌈ p
z ⌉−r

1 ·
∣∣∣gti,(r−1)z+1

∣∣∣
2

which implies

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|

K
t
i∑

p=1

√√√√√
⌈ p

z ⌉∑
r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

+
ηℓ|Ξt

i|(1− β1)
ε

K
t
i∑

p=1

p∑
r=1

βp−r
1 ·

∣∣gti,r∣∣ · χ{ p−1
z /∈Z}

≤ ηℓ|Ξt
i|

K
t
i∑

p=1

√√√√√
⌈ p

z ⌉∑
r=1

β
2⌈ p

z ⌉−2r
1

β
⌈ p
z ⌉−r

2

+
K

t

iGηℓ|Ξt
i|(1− β1)
ε

· (1− β
K

t
i

1)

(1− β1)

≤ ηℓ|Ξt
i|K

t

i

√√√√√√
⌈Kt

i
z ⌉∑

r=1

β
2⌈Kt

i
z ⌉−2r

1

β
⌈Kt

i
z ⌉−r

2

+
K

t

iGηℓ|Ξt
i|(1− β

K
t
i

1)

ε
.

It can be shown that case of no update delay z = 1 allows for ΦK
t
i

0 = 0, following a similar proof to the one given above.

Note that ΦK
t
i

0 handles the superfluous gradient terms cemented by delaying preconditioner updates for the second moment,
while moving averaging is performed for the first moment estimate. It also follows that ∆t is also upper bounded by the
identical bound scaled by maxt ∥Ξt∥∞ ≤ B, as the average of the ∆t

i.

E. AdaGrad with Delayed Updates (AGDU)
We present AdaGrad with delayed preconditioner as Algorithm 8 for completeness.

Algorithm 8 AdaGrad with Delayed Updates (AGDU)

Require: ηℓ: Step size
Require: z ∈ Z≥1: Step delay for second moment estimate updates (where z = 1 gives no delay)
Require: f(x): Stochastic objective function with parameters x
Require: x0: Initial parameter vector
Require: ε > 0: Smoothing term

1: Initialize v0 ← 0 (2nd moment vector)
2: Initialize t← 0 (Timestep)
3: while not converged do
4: t← t+ 1
5: gt ← ∇xft(xt−1)
6: if (t− 1)/z ∈ Z then
7: vt ← vt−1 + g2t
8: else
9: vt ← vt−1

10: end if
11: xt ← xt−1 − ηℓ · gt/(

√
vt + ε)

12: end while
13: return xt

42

Efficient Adaptive Federated Optimization

Note that due to delayed updates, local gradient updates are not necessarily elementwise bounded in absolute value by ηℓ.
We may expand the delayed updates for vt as

vt = v0 +

⌈ t
z ⌉∑

r=1

g(r−1)z+1 ⊙ g(r−1)z+1.

Algorithm 9 Adaptive server and client-side ADAGRAD (FedAdaAdagrad)

Require: Update delay step size z ∈ Z≥1, initializations x0, ṽ0 ≥ τ2 and m̃0 ← 0

Require: Global decay parameter β̃1 ∈ [0, 1)

Require: Pseudogradient weighting schedule Ξ1 × · · · × ΞT ∈ R|S1| × · · · × R|ST | for ∥Ξt∥∞ ≤ B
Require: Client epoch schedule K

1 × · · · ×KT ∈ Z|S1|
≥1 × · · · × Z|ST |

≥1 for ∥Kt∥∞ ≤ K, ∀t ∈ [T]
Require: Local epsilon smoothing term εs > 0, global smoothing term τ > 0

1: for t = 1, . . . , T do
2: Sample subset St ⊂ [N] of clients
3: for each client i ∈ St (in parallel) do
4: xti,0 ← xt−1

5: Initialize v0 ≥ 0 with default value v0 ← 0 (what if use τ here?)
6: for k = 1, . . . ,K

t

i do
7: Draw stochastic gradient gti,k ∼ D(xti,k−1) with mean∇Fi(x

t
i,k−1) ∈ Rd

8: mk ← gti,k
9: if (k − 1)/z ∈ Z then

10: vk ← vk−1 + gti,k ⊙ gti,k
11: else
12: vk ← vk−1

13: end if
14: if 0 < ∥mk/(

√
vk + ϵ)∥ < εs then

15: mk ← 0
16: end if
17: xti,k ← xti,k−1 − ηℓ ·mk/(

√
vk + ϵ)

18: end for
19: ∆t

i = Ξt
i

(
xt
i,K

t
i

− xt−1

)
20: end for
21: ∆t =

1
|St|

∑
i∈St ∆t

i

22: m̃t = β̃1m̃t−1 + (1− β̃1)∆t

23: ṽt = ṽt−1 +∆2
t

24: xt = xt−1 + η m̃t√
ṽt+τ

25: end for

We have the following convergence bound.

Corollary E.1. Let K− := mini,tK
t

i ≥ 1 and

γ̃1 := ηℓεw

K−∑
p=1

1√
v0 + ⌈Kz ⌉G2 + ε

, α̃1 :=
εwK

−

2K
(√

v0 + ⌈Kz ⌉G2 + ε
) .

Then Algorithm 9 has an identical convergence bound to Theorem 5.1.

Similar to delayed Adam, the proof is analogous to Theorem 5.1 with changes summarized in the following lemma.

Lemma E.2. Under Algorithm 9, |∆t
i| is bounded by

|∆t
i| ≤ ΦK

1 := ηℓB

(⌊
K − 1

z

⌋
+ 1 +

KG
√
v0 + ε

)
.

43

Efficient Adaptive Federated Optimization

Proof. Recall that ∆t = 1/|St|
∑

i∈St ∆t
i and ∆t

i = Ξt
i

(
xt
i,K

t
i

− xti,0
)

. By telescoping for K
t

i local steps and the
definition of gradient updates in FedAdaAdagrad, we obtain

∆t
i =

K
t
i∑

p=1

−ηℓΞt
i

mp√
vp + ε

= −ηℓΞt
i

K
t
i∑

p=1

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

For F = {0, 1, . . . , ⌊(Kt

i − 1)/z⌋}z + 1, we thus have that

∆t
i = −ηℓΞt

i

∑
p∈F

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε

− ηℓΞt
i

∑
p∈[K

t
i]\F

gti,p√
v0 +

∑⌈ p
z ⌉

r=1(g
t
i,(r−1)z+1)

2 + ε
.

To obtain a deterministic bound, we cannot ignore the worst-case stochastic realization that gti,(r−1)z+1 = 0 for ∀r ∈ [⌈pz ⌉].
Therefore, we form the upper bound

∣∣∆t
i

∣∣ ≤ ηℓ|Ξt
i|
∑
p∈F

|gti,p|√
v0 + |gti,p|2 +

∑⌈ p
z ⌉−1

r=1 (gti,(r−1)z+1)
2 + ε

+
ηℓ|Ξt

i|√
v0 + ε

 ∑
p∈[K

t
i]\F

∣∣gti,p∣∣
 (20)

≤ ηℓ|Ξt
i|
(⌊

K − 1

z

⌋
+ 1

)
+
ηℓ|Ξt

i|KG√
v0 + ε

where the last line uses that the local epoch schedules are upper bounded by K. Noting that ∥Ξt
i∥∞ ≤ B, we are done.

F. Dataset and Models
Below we summarize dataset statistics, the number of clients with each dataset, and models used to train.

Table 2. Summary of datasets

Datasets # Devices Data Partitions Models Tasks

CIFAR-10 (Krizhevsky, 2009) 1000 LDA ViT-S Image classification
GLD-23K (Weyand et al., 2020) 233 natural (each device is a photograher) ViT-S 203-class classification

F.1. GLD-23K Dataset

The GLD-23k dataset is a subset of the GLD-160k dataset introduced in (Weyand et al., 2020). It contains 23,080 training
images, 203 landmark labels, and 233 clients. In Figure 4 we show the convergence of FedAda2 as compared to FedAdam
and FedAvg GLD-23K dataset.

F.2. CIFAR-10 Dataset

The CIFAR-10 dataset (Krizhevsky, 2009) consists of 32 × 32 × 3 images with 10 labels. There are 50,000 training examples
and 10,000 test examples. In Figure 5 we show the convergence of FedAda2 as compared to FedAdam and FedAvg using
CIFAR-10.

44

Efficient Adaptive Federated Optimization

Figure 4. GLD23K Dataset Training Accuracy and Loss.

Figure 5. CIFAR10 Dataset Training Accuracy and Loss.

5 10 15 20 25 30
Rounds

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 Test Accuracy

Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAda2

5 10 15 20 25 30
Rounds

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

CIFAR-10 Test Loss
Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAda2

5 10 15 20 25 30
Rounds

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CIFAR-10 Test Accuracy

Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAda2

FedAda2

With Delayed Precond. Updates

5 10 15 20 25 30
Rounds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

CIFAR-10 Test Loss
Joint Adaptivity
w/o Precond. Communication

Naive Joint Adaptivity

FedAda2

FedAda2

With Delayed Precond. Updates

Figure 6. An analogue of Figure 3 for the CIFAR-10 dataset, showing performance of low-memory preconditioned federated learning and
delayed updates.

G. Hyperparameters Selection
For both the CIFAR-10 and the GLD-23K dataset, we used Adam optimizer at the client and the server-side. At the
client-side β1 is set to 0.9 and β2 is 0.999 whereas at the server, β1 is again 0.9 but β2 0.9 in accordance with Reddi et al.
2021. The hyperparameter grid utilized in the grid search to locate optimal parameters for the optimizers at both the server

45

Efficient Adaptive Federated Optimization

and the client-side for all our experiments are given as:

ηl ∈
{
10−6, 10−5, . . . , 100

}
ηs ∈

{
10−6, 10−5, . . . , 100

}
τl ∈

{
10−6, 10−5, . . . , 10−1

}
τs ∈

{
10−6, 10−5, . . . , 10−1

}

In tables below we summarize the best performing hyperparameters specific to each dataset. The parameters are Log
Base-10 that achieve best accuracies.

Table 3. Sever Side Learning Rate (ηs)

FedAvg FedAdam FedAda2

CIFAR-10 0 -2 -4
GLD-23K 0 -4 -4

Table 4. Client-Side Learning Rate (ηl)

FedAvg FedAdam FedAda2

CIFAR-10 -2 -2 -4
GLD-23K -1 -2 -3

Table 5. Sever Side Tau (τs)

FedAvg FedAdam FedAda2

CIFAR-10 0 -3 -5
GLD-23K 0 -5 -6

Table 6. Client-Side Tau (τl)

FedAvg FedAdam FedAda2

CIFAR-10 0 0 -5
GLD-23K 0 0 -2

G.1. Compute Resources

For our experiments, we utilized eight NVIDIA GeForce RTX 2080 Ti GPUs. The entire hyperparameter tuning process
along with the data creation process, encompassing both the CIFAR-10 and GLD-23k datasets, required approximately 80
hours of computation time.

46

