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Abstract

Cooperative multi-agent reinforcement learning (MARL) is typically formalised as a
Decentralised Partially Observable Markov Decision Process (Dec-POMDP), where
agents must reason about the environment and other agents’ behaviour. In practice,
current model-free MARL algorithms use simple recurrent function approximators to
address the challenge of reasoning about others using partial information. In this po-
sition paper, we argue that the empirical success of these methods is not due to ef-
fective Markov signal recovery, but rather to learning simple conventions that bypass
environment observations and memory. Through a targeted case study, we show that
co-adapting agents can learn brittle conventions, which then fail when partnered with
non-adaptive agents. Crucially, the same models can learn grounded policies when the
task design necessitates it, revealing that the issue is not a fundamental limitation of the
learning models but a failure of the benchmark design. Our analysis also suggests that
modern MARL environments may not adequately test the core assumptions of Dec-
POMDPs. We therefore advocate for new cooperative environments built upon two
core principles: (1) behaviours grounded in observations and (2) memory-based rea-
soning about other agents, ensuring success requires genuine skill rather than fragile,
co-adapted agreements.

1 Introduction

In many real-world scenarios, teams of agents must make decisions and cooperate under uncertainty
without accessing the full conditions of the environment they act upon. This is remarkably the
central challenge of multi-agent learning: contending with imperfect information. Decentralised
Partially Observable Markov decision processes (Dec-POMDPs, Bernstein et al., 2002; Oliehoek
et al., 2016) are the prominent decision-making model in these scenarios, as each agent perceives
only their own actions and observations.

As such, they are the more common generalisation of single-agent Partially Observable Markov
Decision Processes (POMDP, ;\strém, 1965; Kaelbling et al., 1998). Yet, despite their ubiquity
in practice, our understanding of MARL (Albrecht et al., 2024) in such settings remains limited.
This is somewhat expected since even in single-agent settings, planning and learning under partial
observability suffer from well-known computational and statistical hardness results (Papadimitriou
& Tsitsiklis, 1987; Lusena et al., 2001), and the presence of multiple agents hinders the ability to
build a full history of the performed actions and perceived observations, or to recover a distribution
over the latent state of the environment, known as belief (Kaelbling et al., 1998). In principle, each
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(a) POMDP: If you can’t see, you must remem- (b) Dec-POMDP: If you can’t see, you must pre-
ber (Kaelbling et al., 1998). dict (Oliehoek et al., 2016).

Figure 1: Hidden State Requirements in (Dec-)POMDPs. (a) In POMDPs, the agent uses memory
or beliefs to approximate the state. (b) In Dec-POMDPs, each agent must additionally predict the
behaviour of other agents under uncertainty.

agent should build and update a belief over the joint state and other agents’ policies (or equivalently
individual histories) — “multi-agent belief” — to recover a Markovian signal (Olichoek et al., 2016).
As visually represented in Fig. 1, agents should approximate the environment state and be able to
predict the behaviour of other agents to act optimally.

However, exact multi-agent belief-state computation in Dec-POMDPs is known to be NEXP-
complete (Bernstein et al., 2002). As a result, practical model-free MARL methods rely on finite-
memory or recurrent policy representations (e.g., RNNs or GRUs), originally used to handle partial
observability in single-agent RL (Hausknecht & Stone, 2015). These are usually instantiated in the
centralised training with decentralised execution (CTDE) (Oliehoek et al., 2008; Kraemer & Baner-
jee, 2016) paradigm, where agents have access to additional information (sometimes from other
agents) during training, to improve efficiency.

While the practical success of model-free MARL methods (among others, Yu et al., 2022; Pa-
poudakis et al., 2020) might suggest that these methods are adequately recovering the Markov sig-
nal by reasoning about the environment and other agents. In this paper, we argue to the contrary.
Through a focused case study (Section 4), we demonstrate that co-adapting agents often sidestep
true state recovery by converging on brittle conventions that depend neither on grounded observa-
tions nor on the recurrent hidden state. Yet, the same architectures can learn state-grounded policies
once the task is not amenable to conventions, hinting that the shortfall lies not in the learning or
modelling capacity of the models but in the environment design.

Additionally, we highlight this misalignment in modern benchmarks such as Hanabi (Bard et al.,
2020), MaBrax (Rutherford et al., 2023; Peng et al., 2021) and SMAX (Rutherford et al., 2023),
where either memoryless feed-forward policies can paradoxically outperform or match their recur-
rent counterparts or the learned policies do not adequately require dependence on observations or
history (Section 5). Such results imply that many MARL tasks do not in fact demand the kind of
temporal reasoning and belief maintenance that Dec-POMDP theory considers essential.

Collectively, these findings expose a gap between the reasoning abilities agents possess and the be-
haviours that current environments test for. Whereas prior work has proposed algorithms to mitigate
conventions (Hu et al., 2020; Foerster et al., 2019; Hu et al., 2021), we reframe the emergence of
conventions as a diagnostic signal: when a benchmark allows effortless coordination through non-
generalisable shortcuts, it is the benchmark, rather than the algorithm, that requires re-evaluation.
We therefore advocate for new cooperative environments built upon two core principles: (1) be-
haviours grounded in observations and (2) memory-based reasoning about other agents, ensur-
ing agents must recover and exploit the true Markov structure of MARL problems to succeed.
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2 Related Work

Conventions. Prior work has shown that co-trained MARL agents can form conventions that can
be brittle to new unseen partners and propose augmenting learning algorithms to tackle this (Hu
et al., 2020; Foerster et al., 2019; Hu et al., 2021). In contrast, we reframe conventions as a diagnos-
tic signal that the benchmark itself might be ill-posed and fail to test for the intended Dec-POMDP
reasoning. Using mutual information metrics, we show that agents can learn to ignore their observa-
tions entirely, yet these same methods are capable of learning reliable, grounded policies when the
task design necessitates it. Furthermore, although we show some cases of zero-shot coordination
failures in Section 4, our primary focus (Section 5) is the standard MARL setting where agents are
trained and evaluated together.

Environments. SMAC V2 (Ellis et al., 2023) showed that many original SMAC (Samvelyan et al.,
2019) maps could be solved by open-loop policies that ignored local observations (only conditioned
on time steps) and introduced "meaningful partial observability" to mitigate this flaw. We show that
other modern MARL environments such as MaBrax (Rutherford et al., 2023) suffer from an even
stronger variant of the same pathology: "blind" agents that receive no observations (even without
time steps) still obtain non-trivial returns on a range of configurations (Fig. 8 in the Appendix). We
extend this line of inquiry by analysing a broader range of environments and looking beyond just
partial observability to evaluate the need for grounded, memory-based policies.

Agent Modelling. Agent modelling techniques aim to predict other agents’ actions, goals, or be-
liefs to improve coordination or competition (Albrecht & Stone, 2018). Modern methods focus on
learning latent representations from observation histories, often using auto-encoders with auxiliary
prediction losses, to modelling the behaviour of other agents (Papoudakis et al., 2021; Zintgraf et al.,
2021; Rabinowitz et al., 2018; Xie et al., 2021). While such architectures are powerful, model-free
recurrent policies remain the dominant baseline in cooperative MARL (Yu et al., 2022; Papoudakis
et al., 2020). Recent partner modelling work showed that model-free RNNs can encode teammates’
abilities when the environment enables influence over them, in two-player Overcooked environ-
ments (Mon-Williams et al., 2025). They focused on the ad-hoc teamwork settings with a single
controllable agents. Our investigation complements their results as we show memory-based rea-
soning and grounded policies can emerge when the environment requires it; however, we focus on
MARL settings where all agents are co-trained together.

3 Background
We next introduce the main concepts that will be covered throughout the paper.

Interaction Protocol. As a base model for interaction, we consider a dis-
counted Dec-POMDP (Bernstein et al., 2002), defined by the tuple M =
(N, S, T,0, p, {A}ienr, {O}ienrs R,7y). Here, N is the set of N € N agents and S is the
set of global states. At each time step ¢, the system is in some state s; € S. Each agenti € N/
selects an action ai € A%, forming a joint action a; = (a},...,a}) in the joint action space
A = Hiv=1 A®.  This action leads to a state transition according to the probability function
T(st+1]8¢,a¢) and a shared reward R(s;,a;). Agents do not observe the global state s;, instead
they receive a local observation o} € (. The joint observation o; is drawn according to the
observation function Q(o¢|s¢,a:—1). The goal is to learn a joint policy 7 that maximises the
expected discounted return, given an initial state distribution p € A(S) and a discount factor
v €[0,1): w* = argmaxy Eggmp, ayom [Dpeo YV R(st, a1)] -

Markov Property. A Dec-POMDP has the Markov property if the current state contains all rel-
evant information for predicting the future (Sutton & Barto, 1998; Oliehoek et al., 2016). Formally,
this means the transition dynamics do not depend on the full history, T(s¢+1 | st,a:) = T(S¢41 |
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Sty 8¢, St—1,8t—1,--.,80,80), Where s; is the environment state and a; is the joint action. While
the dynamics are Markovian in the joint state, individual agents cannot observe this state directly
and must act based on partial observations, typically attempting to recover a Markovian signal by
forming beliefs or approximations over the state and other agents’ actions (Oliehoek et al., 2016).

Mutual Information.  To study the information embedded in our agent’s policies, we propose

metrics based on mutual information (MI) I(X; Y'), measuring the information shared between two
discrete random variables X and Y, defined as [(X;Y) = 3" y p(z, y) log p’(’gp%;) . We measure
the MI between an agent’s observation and action, I(O; A), and its recurrent hidden state and action,
I(H; A), to quantify dependence on sensory input and memory, respectively. We estimate these
using the k-NN estimator (Kraskov et al., 2004; Ross, 2014; Garcin et al., 2025), while averaging

all values across agents.

4 On the Recovery of Markovian Information in MARL

A plethora of recent works (among others, Yu et al., 2022; Papoudakis et al., 2020) provided exten-
sive evidence of the empirical effectiveness of MARL in addressing a wide range of tasks. Such a
success story might implicitly suggest that these algorithms do indeed manage to recover essential
information for decision-making in multi-agent environments, namely a Markov signal reconstruct-
ing the environment’s state and other agent’s actions. In this section, we address the following
fundamental question:

Are deep MARL policies truly recovering a Markov state? If no, what allows for their
success?

In the following, we will control for the information agents have access to so as to analyse the
interplay between their ability to recover or extract essential features of the environment and the
other agents as well as their ability to solve the tasks. Wijmans et al. (2023); Mon-Williams et al.
(2025) provided extensive evidence that purely egocentric information, i.e., changes in one’s location
or orientation, can still give rise to emergent goal-navigation and implicit partner-modelling. We
address push this idea further: We construct blind environment instantiations, in which agents have
access to no observation at all. In other words, these blind agents receive no sensory input about the
environment, their teammates or even their past actions, and thus they have to rely solely on reward
feedback to learn. Concurrently, we will control for their ability to recover a Markovian signal
by analysing two different instantiations of Independent PPO (IPPO, De Witt et al., 2020): MLP
(feed-forward), a standard multilayer perceptron that processes each observation independently,
and GRU (recurrent), a gated recurrent unit encoder capable of integrating information over time
to form an implicit history representation. All methods do not use parameter sharing.

Warm-up Environment: Prediction Game. As a first experiment instantiation, we design the
Prediction Game (see Fig. 2a): A cooperative task involving agents that act in an environment
where at each timestep ¢, an agent i receives a partial observation o} consisting of the previous
actions of its two immediate neighbours, namely a:~} and ai*]. Esch agent then selects a multi-
discrete action a} = (ai,a; "), made of two components: own action (@}) being the agent’s actual
action; action prediction (G, %) being a vector of predictions for the actions of the set of other agents
—i = {j € N # i}. Finally, agents share the same reward R; explicitly defined as its prediction
accuracy at timestep ¢, in other words Ry = 1 3. I[a; * = @; ‘], where L is the indicator func-
tion. By means of this reward function, Prediction Game ensures that agents will have to accurately
model and predict the behaviour of others in order to succeed. In this way, the problem explicitly
models Dec-POMDPs instances where recovering the Markovian signal requires agents to not only
estimate the environment’s state but also to predict the behaviour of others.

Emergence of Conventions in Concurrently Learning Agents.  First, we addressed homo-
geneous settings where four IPPO agents learn concurrently (see Fig. 2b). As shown in Fig. 3a,
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Figure 2: Overview of Predictive Game environment and the specific agent configurations used in
the experiments.

Mean Return

6 10, A)
FF_blind |
4 RNN_blind- | I(H, A)
FF I RNN_blind- |
R R e T RNN- | RNN- I
Env Steps (Millions) 0.0 0.2 0.4 0.6 0.000 0.015 0.030
(a) Mean Return, 95% CI. (b) I(O, A) (c)I(H,A)

Figure 3: Concurrent Learning Agents Experiment: (a) Learning performances ; (b) Mutual In-
formation between actions and observations; (c) Mutual Information between agents’ actions and
histories. We report the mean and bootstrapped 95% Confidence Intervals (CI) over 10 seeds.

learning both recurrent (RNIN) and feed-forward (FF) policies lead to near-optimal performances.
Strikingly, the blind agents, i.e., the ones lacking both memory and observations, also converge to
high-performing policies. We claim that this surprising success does not stem from sophisticated,
grounded reasoning, but rather agents learn to ignore their observations and form simple, synchro-
nised policies. Indeed, Figures 3b, 3¢ show that the MI between observations and actions 7(O, A)
and hidden state of the recurrent network H and actions I (H, A) is low, as the maximum MI possible
for these experiments is 8. In other words, the agents are not learning to rely on their grounded ob-
servations or hidden state, but rather simple, emergent conventions that bypass the need for complex
reasoning (we refer to Figure 6 in Appendix for action distributions plots).

Failure of Conventions in Concurrently Learning Agents.  To test the robustness of the con-
ventions emerging in the previous case, we test resulting policies by substituting two of the agents
with fixed-policy agents (we report details on such fixed policies in Appendix). Indeed, this zero-
shot coordination task results in breaking the learned conventions and requires agents to infer the
partners’ behaviour from observation or history alone: The results in Table 1 show a drastic drop in
performance for all agent types. This demonstrates that the learned policies are indeed brittle and fail
to generalise. The conventions learned during concurrent learning are a shortcut that completely by-
passes the challenge of robustly modelling other agents, failing immediately when partners behave
unexpectedly.
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Table 1: Performance Comparison: Baseline vs Adding Heuristic Agents

Scenario RNN FF RNN_blind FF_blind

Baseline 9.97 (9.92,10.03) 9.59(9.55,9.63) 8.94(8.91,897) 9.23(9.12,9.34)
Add Heuristic ~ 4.80 (4.41,5.20)  4.04 (3.26,4.81) 4.57 (4.18,4.95) 4.62 (4.25,4.99)

-
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Figure 4: Partially Concurrent Learning Agents Experiment: (a) Learning performances; (b) Mutual
Information between actions and observations; (c) Mutual Information between agents’ actions and
histories. We report the mean and bootstrapped 95% Confidence Intervals (CI) over 10 seeds.

On the Necessity of Grounded Policies.  Finally, we investigate whether agents can learn robust
policies when the task requires it. To do so, we train agents from scratch in the environment with
two fixed partners, deterministically selecting different actions in a repetitive way by following
specific cycles (see Appendix A.1 for details). Since these agents start each episode in a random
phase of their cycle, a learning agent cannot rely on a pre-arranged convention and is forced to infer
the hidden state (the current phase and phase length) of its partners from observations. Interestingly,
RNN policies do learn effective policies, demonstrating a successful use of memorization to identify
the cycles and predict future actions In contrast, memoryless MLP policies perform worse, and blind
agents fail to model the non-learning agents (Fig. 4a). Importantly, in both cases the MI between
observations and actions (Fig. 4b) and the hidden state and actions (Fig. 4c) is now significantly
higher. This indicates that, unlike in the previous setting, the agent’s policy is now actively and
necessarily grounded in its observation history: the mechanism for success has changed.

5 Do Modern Environments Require Complex Reasoning Relying on
Markovian Information?

Section 4 revealed a crucial principle: When an environment is structured to prevent convention-
based shortcuts, agents are capable of learning the desired, more complex behaviours of extracting
Markovian signals from the environment. This naturally leads to a critical question for the broader
MARL community:

Do modern MARL environments actually require (1) behaviours grounded in observations
and (2) memory-based reasoning about other agents?

The answer to this question is paramount: Demanding behaviour that is grounded in observation
is necessary to prevent agents from learning brittle conventions, while requiring memory-based
reasoning ensures a task truly embodies the challenges of a Dec-POMDP. Without environments
that enforce both, we risk measuring progress on benchmarks that can be solved with the same non-
generalisable shortcuts identified in our case study. In this section, we investigate a small sample of
popular MARL benchmarks to explore this question.
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Figure 5: (a—c) Sample-efficiency (interquartile-mean) across Hanabi, MaBrax, and SMAX. (d-g)
Mutual information between observations and actionsI(O; A)and between hidden state and actions
I(H; A), stacked per environment for Hanabi (d—e) and SMAX (f-g).

Agent Modeling: Hanabi. As a first environment instance, we consider Hanabi (Bard et al.,
2020)'. It is a partially observable cooperative MARL environment based on the card game, where
players see their teammates’ cards but not their own. To succeed, players need to exchange clues and
use them to infer information about the cards in their possession. The core challenge moves beyond
a clue’s literal meaning to inferring the teammate’s intent—that is, why that specific clue was given.
This has made Hanabi a popular benchmark when testing theory of mind, agents’ modelling or
ad-hoc coordination (Hu et al., 2020; Foerster et al., 2019; Nekoei et al., 2023; Hu et al., 2021).

Since an agent’s only source of information comes from the clues provided by its partner, this design
encourages policies to be grounded in observation. Our findings confirm this: the MI analysis shows
that both RNN and FF policies learn to actively use their observations (Fig. 5d) or the RNN hidden
state (Fig. 5Se). However, our results also show that FF achieves nearly identical performance to the
RNN, suggesting that memory provides no significant advantage in this specific task instantiation
(see Fig. 5a). This implies that while Hanabi successfully necessitates grounded policies, it does not
adequately test for complex, memory-based reasoning about other agents over time. The task can be
solved with no notion of history, revealing a limitation in its ability to evaluate the full spectrum of
reasoning required in complex Dec-POMDPs.?

Continuous Control: MABrax.  To explore our central questions in more complex, contin-
uous control MARL, we next evaluate our policies on five difference instances of Multi-Agent
Brax (MABrax, Rutherford et al., 2023). MABrax is a JAX-accelerated version of the MaMu-
JoCo (Peng et al., 2021), where a robot’s body parts are controlled by different agents. Each agent
receives only ego-centric observations, such as its own joint angles and velocities, along with those
of its immediate neighbours, with the goal being to collaborate to move forward.

The results reported in Figure 5b present a potentially surprising result:> memoryless feed-forward
architectures outperform their RNN counterparts. We posit that this is because in locomotion-style
tasks, current proprioception fully determines the optimal torque, making memory less relevant for
these tasks. Furthermore, limited observability of distant agents also reduces any incentive for com-

'In the following, we use the two-player version of this game, where the maximum score is 25.

2As a side note, we highlight that throughout the experiments agents’ observations included the entire discard pile and
not just the top card. Different observation functions might call for the need for memorization.

3The interested reader can refer to Figure 7 in Appendix for the detailed plots.
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plex partner modelling. As a side note, we highlight that while MaMuJoCo-inspired environments
are currently ubiquitous as multi-agent benchmarking, they hide a crucial limitation: agents com-
pletely unaware of others can still achieve non-trivial performances in a set of instances. We reported
these results in Fig. 8 in the Appendix, unlike previous results by Ellis et al. (2023), we also removed
remove time steps from agents’ observations.

Overall, these results provide strong evidence that popular locomotion benchmarks may not ad-
equately evaluate challenging multi-agent learning. We also caution against using the fully-
observable variants of these environments found in some recent work (Wang et al., 2023; Zhong
et al., 2024), as they deviate from the Dec-POMDP problem structure.

Meaningful Partial Observability: SMAX.  As a final experiment, we evaluate IPPO agents on
SMAX (Rutherford et al., 2023), a JAX-accelerated version of the SMAC (Samvelyan et al., 2019).
Specifically, we focus on SMAC-v2 (Ellis et al., 2023), which was introduced to address limitations
in the original SMAC, such as a simple open-loop policies could succeed while ignoring observa-
tions. In contrast, SMAC-v2 incorporates stochastic starting positions and enforcing "meaningful
partial observability", where agents must infer critical information held by their teammates.

Our results confirm that these changes successfully create a memory-dependent task. As shown in
Figure 5c, RNN policies outperform their FF counterparts by a large margin, a finding also noted
by Ellis et al. (2023). However, a deeper analysis reveals a more nuanced picture. When we look
at[(O; A) and I(H; A), we see a moderate dependence between these variables and actions, which
correspond to approximately 22% and 33% of the theoretical maximum H(A) = ln10 =~ 2.30
for a 10-action space, which is significantly lower than in coordination-centric benchmarks like
Hanabi (69% and 32% of their maximum). This suggests that while SMAC-v2 maps are a significant
improvement, there is still potential to design environments that demand an even stronger reliance
on history-based reasoning to fully capture the complexity of Dec-POMDPs.

6 Conclusions and Takeaway

In this paper, we provide empirical evidence that suggests robust and generalisable MARL systems
are fundamentally gated by the design of evaluation environments: These environments must be de-
signed to necessitate and reward policies grounded in the known hardness of Dec-POMDPs (Fig. 1).
By removing the possibility of convention-based shortcuts, we showed in Section 4 that agents can
be encouraged to develop more meaningful and grounded policies. Additionally, we showed in
Section 5, that many common benchmarks do not require temporal reasoning or grounded policies.

Takeaway. We advocate for the design and adoption of benchmarks that compel agents to develop
policies built upon two core principles: (1) behaviours grounded in observations and (2) memory-
based reasoning about other agents. We claim that enforcing these properties is essential to ensure
that environments capture the true complexities of Dec-POMDPs and drive the development of more
reliable multi-agent systems. While modern benchmarks show promise, our analysis indicates they
too can be improved to more rigorously test these foundational capabilities.

Next-steps. We acknowledge several avenues for future research. Our analysis focused on Indepen-
dent PPO (IPPO) with non-shared parameters, and an important next step would be to investigate
how these findings extend to algorithms with parameter sharing and methods with centralised critics
such as MAPPO (Yu et al., 2022). Furthermore, while our study spanned several distinct environ-
ments, extending this diagnostic approach across an even wider range of MARL benchmarks would
help to build a more comprehensive understanding of the MARL evaluation landscape.
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A Appendix

A.1 Prediction Game: Heuristic Agents

A heuristic (non-learning) agent ¢ follows a simple periodic policy. At environment step ¢ its action

18
t

a'(t) = ((imod 4) + Lﬁ

J + gzbi) mod A,
where

» A = |A| is the number of discrete actions;

* k; € N> 0 is the cycle length: the agent repeats the same action for %; steps before advancing to
the next in a modulo-A loop;

* ¢; ~ Uniform{0, ..., k; — 1} is a fresh initial phase drawn at the start of every episode, so each
episode begins at a random point in the cycle.

Example. Assume A = 4 (actions {0, 1,2, 3}).
» Agent 0 with ky = 3 and ¢y = 1 executes the sequence

(1,1,1, 2,2,2, 3,3,3, 0,0,0,...).

» Agent 2 with k; = 2 and ¢» = 0 executes

(2,2, 3,3, 0,0, 1,1, 2,2,...).
This produces predictable but non-trivial periodic behaviour. Furthermore, learning agents only have
1/4 of selecting the first action correctly since there is no previous action to help them make this

selection and no information from previous episodes that can be used to determine the starting point
in a cycle.

A.2 Prediction Game: Additional Plots

In Figure 6, we show the action histograms of our concurrently learning agents during evaluation.
We see that they form conventions and stick to specific action patterns.

A.3 MaBrax: Additional Results

Here we show more detailed results of the individual MaBrax tasks in figure 7. In 8 we show a
comparison of results of blind agents who don’t receive an observation at all.

A.4 Hyperparameters
A4.1 Prediction Game

For each experiment in the Prediction Game, we perform a sweep over the following hyperparame-
ters: learning rate (LR € {1x107%, 3x 1074, 5x107%, 1x1073}), clipping epsilon (CLIP_EPS €
{0.1, 0.2, 0.5}), and whether to anneal the learning rate (ANNEAL_LR € {True, False}). We re-
port the best performance per method in Table 2.

A.4.2 MaBrax

For each MaBrax environment, we perform random sweeps over 32 different learning rates, where
LR € [0.0001,0.01]. Each selected learning rate is evaluated across 5 random seeds, separately
for both the RNN and feed-forward (FF) implementations. The final selected hyperparameters are
provided in Table 3.
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Figure 6: Action Histograms for FF and RNN IPPO agents on the Prediction Game, evaluated over
1000 episodes at the end of training.

Table 2: Hyperparameters used for Prediction Game

Hyperparameter RNN FF
Network parameters

Agent parameter sharing False False
Embedding dimension 128 -
GRU hidden dimension 128 -
Actor hidden dimension - 128
Critic hidden dimension - 128
Activation function relu relu
Training parameters

Total time steps 1.0 x 107 1.0 x 107
Number of steps 128 128
Number of environments 16 16
Number of evaluation episodes - -
Number of seeds 10 10
Update epochs 4 4
Number of minibatches 4 4
Learning rate annealing False True
Learning rate 5.0 x 107%* 2.5 x107*
Entropy coefficient 1.0x 1072 1.0x 1072
Clipping epsilon 0.2 0.2
Scale clipping epsilon False -
Ratio clipping epsilon - -
Gamma 0.99 0.99
GAE lambda 0.95 0.95
Value function coefficient 0.5 0.5

Max gradient norm 0.5 0.5
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Table 3: Hyperparameters used for MaBrax Experiments

Hyperparameter RNN FF
Network parameters

Agent parameter sharing False False
Embedding dimension 128 -
GRU hidden dimension 128 -
Actor hidden dimension - 128
Critic hidden dimension - 128
Activation function tanh tanh
Training parameters

Total time steps 1.0 x 10" 1.0 x 107
Number of steps 64 64
Number of environments 256 256
Number of evaluation episodes 32 32
Number of seeds 16 16
Update epochs 4 4
Number of minibatches 4 4
Learning rate annealing False False
Learning rate Ant 2 x 4 3.0x 1072 3.0x107*
Learning rate Half-Cheetah 6 x 1 2.1 x 10™* 1.0 x 1073
Learning rate Hopper 3 x 1 1.0x 1072 2.5x 1073
Learning rate Humanoid 819 1.8x 1073 85x1074
Learning rate Walker2d 2 x 3 9.5x107% 34x1073
Entropy coefficient 1.0x107* 1.0 x10~*
Clipping epsilon 0.2 0.2
Scale clipping epsilon False False
Ratio clipping epsilon False False
Gamma 0.99 0.99
GAE lambda 0.95 0.95
Value function coefficient 1.0 1.5
Max gradient norm 0.5 0.5
Adam epsilon 1.0x107% 1.0x107®
Advantage unroll depth 8 8
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Figure 8: MABrax environments comparing partially-observable, to blind performances showcasing
mean returns and 95% bootstrapped confidence intervals across 16 seeds

A.4.3 Hanabi

For Hanabi we use the same hyperparameter settings as JaxMARL (Rutherford et al., 2023), these

can be found in Table 4 below.

A44 SMAX

For SMAX we use the hyperparameters from JAXMARL Rutherford et al. (2023), as shown in Table

5.
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Table 4: Hyperparameters used for Hanabi Experiments

Hyperparameter FF RNN
Network parameters

Agent parameter sharing False False
Embedding dimension - 128
GRU hidden dimension - 128
Actor hidden dimension 128 -
Critic hidden dimension 128 -
Activation function tanh tanh
Training parameters

Total time steps 1.0 x 1019 1.0 x 101°
Number of steps 128 128
Number of environments 1024 1024
Number of evaluation episodes 128 128
Number of seeds 8 8
Number of checkpoints 256 256
Update epochs 4 4
Number of minibatches 4 4
Learning rate annealing True True
Learning rate 5.0 x 107* 5.0 x 10~*
Entropy coefficient 1.0x 1072 1.0x 1072
Clipping epsilon 0.2 0.2
Scale clipping epsilon False False
Ratio clipping epsilon False False
Gamma 0.99 0.99
GAE lambda 0.95 0.95
Value function coefficient 1.0 1.0
Max gradient norm 0.5 0.5
Adam epsilon 1.0x 1078 1.0x 1078
Advantage unroll depth 8 8
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Table 5: Hyperparameters used for SMAX Experiments

Hyperparameter FF RNN
Network parameters

Recurrent False True
GRU hidden dimension - 128
Fully connected dimension - 128
Activation function relu relu
Training parameters

Total time steps 1.0 x 107 1.0 x 107
Number of steps 128 128
Number of environments 128 128
Update epochs 4 2
Number of minibatches 4 2
Learning rate annealing True True
Learning rate 4.0 x 1073 4.0 x 1073
Entropy coefficient 0.0 0.0
Clipping epsilon 0.1 0.2
Scale clipping epsilon - False
Gamma 0.99 0.99
GAE lambda 0.95 0.95
Value function coefficient 0.5 0.5
Max gradient norm 0.5 0.5
Seed 30 30
Map name smacv2_5_units smacv2_5_units
See enemy actions True True
Walls cause death True True
Attack mode closest closest
Max steps 100 100




