
Enhancing Concept-based Learning with Logic

Deepika Vemuri 1 Gautham Bellamkonda 1 Vineeth N Balasubramanian 1

Abstract

Concept-based models promote learning in terms
of high-level transferrable abstractions. These
models offer one additional level of transparency
compared to a black box model, as the predictions
are a weighted combination of concepts. The rela-
tions between concepts are a rich source of infor-
mation that would compliment learning. We pro-
pose using the propositional logic derived from
the concepts to model these relations and to ad-
dress the expressivity-vs-interpretability tradeoff
in these models. Three architectural variants that
give rise to logic-enhanced models are introduced.
We analyse several ways of training them and
experimentally show that logic-enhanced concept-
based models give better concept alignment and
interpretability, while not loosing out on perfor-
mance. These models allow for a richer formal
expression of predictions, paving the way for log-
ical reasoning with symbolic concepts.

1. Introduction
Humans learn concepts and their relations to each other,
rather than learning each new object they encounter inde-
pendently. Besides, sub-symbolic features like raw pixels
are difficult to reason with. So, when a model is learning to
classify, it is useful to learn the high level transferable con-
cepts that make up the classes. Say the model has learnt that
the class elephant is made up of the concepts {huge, grey,
mammal, etc}. Now that the model has some understanding
of what huge and grey mean, it could use these concepts to
learn about an object like a boulder. Concept-based models
perform classification using such concepts in a two-step
process; they learn to predict the concepts from the inputs
and then use the concepts to predict classes. The concept
to class step is deliberately kept simple (it’s usually just a
linear layer) so that we can infer the importance of each con-

1Indian Institute of Technology Hyderabad, India. Correspon-
dence to: Deepika Vemuri <ai22resch11001@iith.ac.in>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

cept present in a particular class. However, there are more
complex interactions that these models fail to capture. One
of which would be to model the concepts’ relations to each
other. Besides, with atomic 1 concepts we can only model so
much and can only induce so much interpretability. Work-
ing with combinations of concepts increases the expressivity
of the layer, enabling the layer to learn more complicated
functions. Giving the model the ability to represent such re-
lations could also help it learn knowledge at varying degrees
of abstraction and give way to an architecture amenable to
performing more complicated tasks like reasoning. So how
can we give our model a relation learning capability while
retaining, or better still, improving its interpretability?

Logic rules can be used to express such relations. They en-
able consistency and provide a framework to perform sym-
bolic reasoning. Since concepts are, in a sense, “symbols”;
i.e. the units of information we want to reason with, we need
a mechanism to extract the logic that maps these symbols to
classes. We show that this can be done by adding a learn-
able logic module that takes in pairs of concepts and learns
meaningful combinations of them (Figure 1). Each neuron,
belonging to a layer in this module, learns a distribution over
a number of possible logic gates for the two concepts that
are selected to be input to it. Logic gates are interpretable
non-linearities, which means that we give the model more
capacity with the added benefit of better interpretability. We
propose two concept pair selection mechanisms, to select
the concepts pairs to input to the logic layer - (1) a large,
sparse layer with fixed pairings and (2) a shorter, denser,
fully connected layer where the pairings are learnt. Since
we have access to concept ground truths, the logic module
can either be incorporated into the existing architecture and
be trained end-to-end or it can be trained as an indepen-
dent component and then fine-tuned with any concept-based
architecture.

Contributions:

1. We introduce a module to extract meaningful logical
combinations, which we refer to as predicates, from
atomic concepts.

2. We demonstrate that adding such a logic module on
top of several existing concept-based architectures con-
sistently improves performance and propose metrics to

1Used in the propositional logic sense of the word

1



Enhancing Concept-based Learning with Logic

.

.

.

.

.

.

.

.

.

0 1 0 1

Figure 1. A high-level overview of how our method works. Concept-based models can be improved by giving them the ability to extract
logic and form meaningful combinations of the concepts at their disposal. We introduce a logic module for this purpose.

quantify this.
3. We investigate the effect of logic layer size, number of

connections and logic gates used on performance.
4. We propose a mechanism to perform better feature

extraction using the logic learnt by our module.

2. Background: Concept-based Learning
A concept-based model [1] learns a mapping from x ∈ X
to y ∈ Y via an intermediate concept encoder. Hence, it re-
quires a dataset of three-tuples {X,C, Y } where X ⊂ Rh1 ,
C ⊆ {0, 1}h2 , Y = {1, 2, . . . , h3} and h1, h2, h3 ∈ Z,
correspond to the image, concept and label space respec-
tively. Each prediction is of the form ŷ = f(g(x)) where,
g : X 7→ C (bird image → {white body, flat yellow bill,
etc}) and f : C 7→ Y ({white body, flat yellow bill, etc} →
“Duck”).

3. Learning Logic from Concepts
With the goal of going beyond the atomic concept strengths
obtained from linear layer weights, we extract the proposi-
tional logic that maps concepts to classes. In order to do
this, we add a learnable logic gate layer [2] after the concept
layer, where each neuron takes two concepts as inputs. This
layer is parameterized by the choice of logic gate at each
neuron. Now, each prediction becomes ŷ = f(h(g(x))),
where h : {0, 1}h2 7→ Rt, t ∈ {m, p}, based on the two
architectural variants discussed subsequently.

Let there be p logic gate neurons in the logic layer. Each
logic gate neuron learns a distribution over q possible logic
gates. In order to make the logic gates learnable through
gradient-based methods, they have to be made (1) differ-
entiable and (2) continuous. To make them differentiable,
we use the fuzzy logic alternative of each logic gate (Table
9). The obtained concept activations are passed through
the logic gate neurons, where the q fuzzy logic alternatives
are computed for the p neurons. To make them continu-
ous, a weighted sum of all these operations is computed per
neuron, which gives us a relaxed logic gate output.

Zk =

q∑
i=1

eUki∑q
j=1 e

Ukj
· zi(ca, cb) where, 1 ≤ k ≤ p,

Uk ∈ Rq are trainable weights, ca and cb are atomic con-
cepts. The output of each neuron in this layer can be thought
of as a relaxed logical predicate Zk.

But how do we decide which concepts to input to which
logic gate neuron in the first place? We describe two concept
selection mechanisms next:

1. Fixed pairings: Here we follow the paradigm of a deep
differentiable logic gate network [2], where the connections
to the logic layer are fixed, i.e. they don’t have weights and
the layer is large and sparse. The connections are pseudo
randomly initialised such that for each logic gate neuron,
two concepts {ca, cb} are randomly chosen. Since the layer
is large, we subsequently assign contiguous neurons into
m groups and then have a linear layer onto the classifier
(Figure 2 (a)). So, the additional parameters that the model
learns here are Up×q and Vm×h3

.

Fj =

m∑
i=1

VijGi where, Gi =

(i+1)p/m∑
k=ip/m+1

Zk

2. Learned pairings: Although the logic layer with fixed
pairings has a larger logic space, since the combinations
are chosen pseudo randomly, not all of them might be rel-
evant. Since we would like to consider only the relevant
combinations of concepts, we use a smaller fully connected
layer between the concept and logic gate layer and learn this
relevance. We select the two highest weighted concepts to
pass to the logic gate neuron they are connected to. Since
this layer is small and dense, we discard the grouping of
the previous variant and simply have a linear layer onto the
classifier (Figure 2(b)). So, the additional parameters being
learnt here are Up×q , Vp×h3

and Wh2×p

Fj =

p∑
k=1

VkjZk where, 1 ≤ j ≤ h3

Once the concept selection mechanism is chosen, we pass
the learnt predicates through a softmax to get the class logits.

ŷi =
eFi∑h3

j=1 e
Fj

where, Fi is a logical formula.

2



Enhancing Concept-based Learning with Logic

Figure 2. The concept selection mechanisms (a) The fixed pairings
variant, where the logic layer is large, sparse and connections are
random and fixed, (b) The learnt pairings variant, where the logic
layer is short, dense and the connections are learnt

Since we have access to concept ground truths, we use
a binary cross-entropy loss (LBCE) to train the model to
perform concept classification. After the predicates are
obtained from these concepts, we use them to perform clas-
sification using a standard cross-entropy loss (LCE). So, to
train the model, we use a weighted combination of these
two losses.

L = LCE + α · LBCE

where, α is the weighting hyperparameter. We would like
to highlight that the addition of the logic module does not
necessitate the usage of any extra loss, as it does not require
any ground-truth logic.

Using logic to learn better features: Logic not only im-
proves performance and alignment, but we find that it can
also be used as feedback, to improve backbone features and
hence concepts. Some kinds of logical relations like impli-
cations may not strictly help in improving performance, but
rather help in understanding (e.g. mammal → dog). This
could be thought of as a sort of common sense, which isn’t
task specific - which motivated a knowledge-based variant
of our framework.

We use two classifier heads (Figure 3) - one taken from a
CBM (clf1) and the other from the logic module (clf2).
The backbone and concept part of the architecture essen-
tially branch out into two parts - one that has the logic
module and hence works with predicates, and the other that
works with atomic concepts. The logic module is trained
independently using the concept and class ground truths at

Figure 3. We introduce an auxiliary classifier to get a knowledge-
based architecture that uses logic as feedback to get better features
from the backbone

VARIANTS CUB CIFAR100

CBM
STANDARD 75.37 83.33
FIXED 80.13 (+4.76) 84.13 (+0.80)
LEARNED 77.12 (+1.75) 84.55 (+1.22)

LF CBM
STANDARD 72.94 65.29
FIXED 70.55 65.09
LEARNED 72.11 65.82 (+0.53)

BOTCL
STANDARD 58.29 74.51
FIXED 49.5 72.69
LEARNED 58.59 (+0.3) 74

Table 1. Results on CUB and CIFAR100. Standard indicates the
vanilla base model, Fixed and Learnt are the two logic-based
architectural variants

its disposal and acts as the knowledge 2.

4. Experiments
We empirically study our method in the following two as-
pects:

• Performance: How does logic impact performance?
Do different ways of training these models lead to
different levels of generalization? Can logical relation
understanding lead to better predictive performance?

• Interpretability: Do logic-enhanced models offer bet-
ter interpretability? Are they more stable and reliable?

4.1. Experimental Setup

Datasets and Baselines: We perform analysis on two
datasets: CUB200 and CIFAR100, to evaluate our method
on both instance-level and class-level concept annotated
datasets. The class-level concept annotation acquisition
procedure is described in the appendix (D).

We compare our approach with existing works that also
work with concepts and show that adding a logic layer to
them consistently improves performance. The term concept
here is used in a general sense. It could be used to indi-
cate a prototype, a text-based phrase or an LLM-generated
description. The works we consider are the following: (1)
BotCL [3] and (2) Label-Free CBMs [4]. BotCL proposes
a self-supervised slot attention based [5] concept discovery
method, learning to represent an image solely through such
concepts and Label-Free CBMs propose an LLM-based

2Check Appendix A for other knowledge-based works

3



Enhancing Concept-based Learning with Logic

Figure 4. Top contributing predicates for the class ‘Laysan Albatross’ in the CUB dataset - green indicates a positive contribution, while
red indicates a negative contribution

class-level concept annotation method which uses CLIP-
Dissect [6] for concept alignment.

4.2. Logic works well on instance-level concepts

We experiment with several ways of training based on the
concept selection mechanism chosen. These include pre-
training and fine-tuning different parts of the architecture,
the details of which are provided in the appendix (B). A
comparison among these methods is done, the best results
of which are reported per mechanism in Table 1. We ob-
serve that our methods consistently perform on par or better
than the base models on both datasets. We also see that the
confidence3 of the model significantly increases on CUB
when a logic layer is added.

Logic as Knowledge: The motivation here is to use logic
as knowledge for better feature learning. We follow the
architecture of Figure 3, where the logic module of the
architecture is frozen, while the rest of the network is fine-
tuned using this knowledge.

MODEL CUB CIFAR100

CBM 75.37 83.33
KBV1 80.21 75.5
KBV2 81.97 85.32

Table 2. Performance of knowledge-
based variants. KBV1 uses frozen logic,
while KBV2 has a trainable one

We see that this
way of learning
the backbone,
does better than
a standard CBM.
Additionally, we
try training the
whole network
end-to-end to
assess how the
auxiliary classifier could help improve performance. These
methods are compared with a standard CBM in Table 2.

4.3. Logic leads to better concept alignment and
interpretability

We would like the concept activations of inputs of the same
class to be similar to each other. We measure this using
concept-alignment by computing the average degree of simi-
larity in concept activations of images belonging to the same

3See Appendix C

DATASET STANDARD FIXED LEARNED

CUB 0.30 0.37 0.35
CIFAR100 0.30 0.31 0.30

Table 3. Mean concept alignment score across all the classes

class. Let ni denote the number of samples belonging to
class i and g indicate the concept encoder of the model we
are measuring concept-alignment for.

CA(i) =

ni∑
j1=1

ni∑
j2=j1+1

g(xj1) · g(xj2)

We compute this score on a standard CBM and the two
logic-based variants , on CUB200 and CIFAR100. The logic
variants consistently help better align concepts on CUB200.
Although on CIFAR100, the alignment scores seem to be
slightly noisier, similar to the change in confidence we see.
We show the mean alignment scores on both datasets across
all classes in Table 3. Some logical predicates learnt by
our framework are shown in Figure 4. We present further
analysis and details in the appendix (E).

5. Conclusion
In this work, we presented how concept-based models can
be enhanced with logic, showing that these models perform
better or on par with the base models while offering better
concept alignment (logic leads to better concept learning),
interpretability (the predictions are in terms of propositional
logic predicates which are much more expressive) and flex-
ibility (the logic module can be trained as an independent
component). We described three variants of the logic mod-
ule and analysed them.

Overall, we see that logic works best with instance-level
concept annotations. The logic module seems to be slightly
noisier on class-level annotations, although it might require
some further analysis to confirm this behaviour. While there
is still room for improvement on the goodness of the logic
learnt by each class, we see this as an initial effort under the
broader goal of improving a model’s predictive performance
by giving it the ability to logically reason.

4



Enhancing Concept-based Learning with Logic

References
[1] P. W. Koh, T. Nguyen, Y. S. Tang, et al., “Concept bot-

tleneck models,” (International Conference on Machine
Learning (ICML)), PMLR, 2020, pp. 5338–5348.

[2] F. Petersen, C. Borgelt, H. Kuehne, and O. Deussen, “Deep
differentiable logic gate networks,” in Advances in Neural
Information Processing Systems, A. H. Oh, A. Agarwal,
D. Belgrave, and K. Cho, Eds., 2022.

[3] B. Wang, L. Li, Y. Nakashima, and H. Nagahara, “Learn-
ing bottleneck concepts in image classification,” in IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023.

[4] T. Oikarinen, S. Das, L. M. Nguyen, and T.-W. Weng,
“Label-free concept bottleneck models,” (The Eleventh
International Conference on Learning Representations
(ICLR)), 2023.

[5] F. Locatello, D. Weissenborn, T. Unterthiner, et al., “Object-
centric learning with slot attention,” in Advances in Neural
Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33,
Curran Associates, Inc., 2020, pp. 11 525–11 538.

[6] T. Oikarinen and T.-W. Weng, “CLIP-dissect: Automatic
description of neuron representations in deep vision net-
works,” in The Eleventh International Conference on Learn-
ing Representations, 2023.

[7] A. Margeloiu, M. Ashman, U. Bhatt, Y. Chen, M. Jamnik,
and A. Weller, “Do concept bottleneck models learn as in-
tended?” ArXiv, vol. abs/2105.04289, 2021. [Online]. Avail-
able: https : / / api . semanticscholar . org /
CorpusID:234339919.

[8] E. Marconato, A. Passerini, and S. Teso, “Glancenets: In-
terpretabile, leak-proof concept-based models,” in Neural
Information Processing Systems, 2022. [Online]. Avail-
able: https : / / api . semanticscholar . org /
CorpusID:249209924.

[9] E. Kim, D. Jung, S. Park, S. Kim, and S.-H.
Yoon, “Probabilistic concept bottleneck models,” ArXiv,
vol. abs/2306.01574, 2023. [Online]. Available: https:
/ / api . semanticscholar . org / CorpusID :
259063823.

[10] S. Sinha, M. Huai, J. Sun, and A. Zhang, “Understand-
ing and enhancing robustness of concept-based models,”
in AAAI Conference on Artificial Intelligence, 2022. [On-
line]. Available: https://api.semanticscholar.
org/CorpusID:254069697.

[11] A. Stein, A. Naik, Y. Wu, M. Naik, and E. Wong, “Towards
compositionality in concept learning.” [Online]. Avail-
able: https : / / api . semanticscholar . org /
CorpusID:268932793.

[12] G. Ciravegna, P. Barbiero, F. Giannini, et al., “Logic
explained networks,” Artificial Intelligence, vol. 314,
p. 103 822, Jan. 2023, ISSN: 0004-3702. DOI: 10.1016/
j.artint.2022.103822. [Online]. Available: http:
//dx.doi.org/10.1016/j.artint.2022.
103822.

[13] S. Lee, X. Wang, S. Han, X. Yi, X. Xie, and M. Cha, “Self-
explaining deep models with logic rule reasoning,” in Ad-
vances in Neural Information Processing Systems, A. H.
Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022.
[Online]. Available: https://openreview.net/
forum?id=8SY8ete3zu.

[14] P. Barbiero, G. Ciravegna, F. Giannini, et al., “In-
terpretable neural-symbolic concept reasoning,” ArXiv,
vol. abs/2304.14068, 2023. [Online]. Available: https:
/ / api . semanticscholar . org / CorpusID :
258352760.

[15] M. E. Zarlenga, P. Barbiero, G. Ciravegna, et al., “Con-
cept embedding models,” ArXiv, vol. abs/2209.09056,
2022. [Online]. Available: https : / / api .
semanticscholar.org/CorpusID:252367901.

[16] Y. Huang, J. Tang, Z. Chen, et al., Structure-clip: Towards
scene graph knowledge to enhance multi-modal structured
representations, 2023. arXiv: 2305.06152 [cs.CL].

[17] H. Rajaby Faghihi, A. Nafar, C. Zheng, et al., “Glue-
cons: A generic benchmark for learning under constraints,”
Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 37, no. 8, pp. 9552–9561, Jun. 2023. DOI:
10.1609/aaai.v37i8.26143. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/
article/view/26143.

[18] L. Li, W. Wang, and Y. Yang, “Logicseg: Parsing visual
semantics with neural logic learning and reasoning,” in
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), Oct. 2023, pp. 4122–4133.

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
CoRR, vol. abs/1512.00567, 2015. arXiv: 1512.00567.
[Online]. Available: http://arxiv.org/abs/1512.
00567.

[20] C. Wah, S. Branson, P. Welinder, P. Perona, and S. J.
Belongie, “The caltech-ucsd birds-200-2011 dataset,”
2011. [Online]. Available: https : / / api .
semanticscholar.org/CorpusID:16119123.

[21] A. Krizhevsky, “Learning multiple layers of features from
tiny images,” 2009. [Online]. Available: https://api.
semanticscholar.org/CorpusID:18268744.

5

https://api.semanticscholar.org/CorpusID:234339919
https://api.semanticscholar.org/CorpusID:234339919
https://api.semanticscholar.org/CorpusID:249209924
https://api.semanticscholar.org/CorpusID:249209924
https://api.semanticscholar.org/CorpusID:259063823
https://api.semanticscholar.org/CorpusID:259063823
https://api.semanticscholar.org/CorpusID:259063823
https://api.semanticscholar.org/CorpusID:254069697
https://api.semanticscholar.org/CorpusID:254069697
https://api.semanticscholar.org/CorpusID:268932793
https://api.semanticscholar.org/CorpusID:268932793
https://doi.org/10.1016/j.artint.2022.103822
https://doi.org/10.1016/j.artint.2022.103822
http://dx.doi.org/10.1016/j.artint.2022.103822
http://dx.doi.org/10.1016/j.artint.2022.103822
http://dx.doi.org/10.1016/j.artint.2022.103822
https://openreview.net/forum?id=8SY8ete3zu
https://openreview.net/forum?id=8SY8ete3zu
https://api.semanticscholar.org/CorpusID:258352760
https://api.semanticscholar.org/CorpusID:258352760
https://api.semanticscholar.org/CorpusID:258352760
https://api.semanticscholar.org/CorpusID:252367901
https://api.semanticscholar.org/CorpusID:252367901
https://arxiv.org/abs/2305.06152
https://doi.org/10.1609/aaai.v37i8.26143
https://ojs.aaai.org/index.php/AAAI/article/view/26143
https://ojs.aaai.org/index.php/AAAI/article/view/26143
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://api.semanticscholar.org/CorpusID:16119123
https://api.semanticscholar.org/CorpusID:16119123
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744


Enhancing Concept-based Learning with Logic

Appendix
In this part of the paper, we provide additional details of our work. Related work is discussed in Section A. Section B
provides details about the architecture and implementation of our models. Section D gives details about the datasets used in
our experiments. Finally, we conclude with an analysis of the logic layer in Section E.

A. Related Work
Concept-based Models: This family of models introduced the idea of predicting labels in terms of concepts. However,
owing to the criticism of whether these models actually learn as intended [7] lead to several works that address various
limitations in their concept learning process. These include addressing concept leakage [8], uncertainty quantification [9],
robustness [10] and extracting concepts that are more amenable to composition [11]. Our work, on the other hand, aims to
extract combinations of concepts and use them as the basis for classification.

Logic-based Interpretability: Several works attempt to derive logic from a model. Logic-explained networks [12] introduce
a family of such models that have a mapping between an input concept space and an output concept space, the SELOR [13]
framework gives a probabilistic formulation for logic rule generation that work with interpretable features and the DCR
[14] model that builds upon concept embeddings [15] by giving explanations in terms of logical rules. However, all of
these works use logic as a means of explanation, whereas we use logic gates with the aim of getting meaningful concept
combinations and incorporate it as a learnable module.

Knowledge-augmented methods: These methods use knowledge-base to augment their learning. Some works use a
scene-graph [16] as external knowledge. Logic rules are also often used to represent knowledge - as a way of constraining
predictions. GLUECons [17] present a benchmark for constraint integration with deep neural networks. LogicSeg [18] does
this for the task of semantic segmentation, where the relations derived from a class-hierarchy are enforced in the form of
logic rules. To the best of our knowledge, we are the first to learn and represent knowledge as a part of a network and use it
to improve the feature learning process.

B. Architecture and Implementation Details
The feature extractor g used in all the experiments was an Inception V3 [19] and the concept and classifiers are single linear
layers. We extend the difflogic 4 library for implementing the logic layer variants.
Hyperparameter details: For both CUB200 and CIFAR100, we train the models for 40 epochs, with a learning rate of 0.001,
a weight decay of 0.0004 and a batch size of 64. We take m = 2l wherever applicable.

Training details: We experiment with several ways of training the 2 variants: (1) Naive - where the whole backbone +
concept + logic module + classifier - architecture is trained end-to-end. We try this method with the fixed pairings variant
and henceforth refer to it as LCBM1. (2) Pretrained CBM - where the model is trained in a two-step fashion; the CBM
is trained separately using the concept and class ground truths and the logic layer is then learnt using the backbone and
concept parameters loaded from the trained CBM. We try this method only on learned pairings and refer to it as LCBM3
henceforth. (3) Finetuning both components - also a two-step training process, where the CBM is trained separately, and the
logic module is trained separately using the concept and class ground truths, after which both components are finetuned
together. We try this method with both variants henceforth referred to as LCBM2 (fixed pairings) and LCBM4 (learned
pairings).

Training Method bb+c (pretrained) logic (pretrained) bb+c (finetune) logic (finetune)

LCBM1
LCBM3 ✓ ✓

LCBM2,4 ✓ ✓ ✓ ✓

Table 4. Training schemes experimented with. bb+c - (backbone + concept) part of the architecture

4https://github.com/Felix-Petersen/difflogic

6



Enhancing Concept-based Learning with Logic

C. Confidence Improvement
Using the logic module allows us to improve the confidence of the model. We calculate the confidence of a prediction as the
maximum of the softmax probabilities. Confidence of a model is then defined as the average of the confidence of all the
predictions. Ideally, we would want the model to be confident when it makes a correct prediction (✓) and less confident
when it makes an incorrect prediction (×), as shown in Figure 5. The confidence change on CBMs is shown in Table 5. We
see a significant improvement on the instance-level annotated data.

Confidence =
1

n

n∑
i=1

max(logits(xi))

(a) Confidence should increase for correct predictions (b) Confidence should decrease for incorrect predictions

Figure 5. Visualizations describing expected confidence change

VARIANT CUB CIFAR100
✓ × ✓ ×

CBM 92.12 42.15 94.64 57.07
FIXED 96.61 26.65 99.97 84.32

LEARNED 96.83 34.47 99.99 80.41

Table 5. Confidence improvement. ✓ means right predictions (higher is better), and × means wrong predictions (lower is better)

D. Dataset Details
• CUB: The Caltech-UCSD Birds-200-2011 (CUB) dataset [20] is a fine-grained bird species identification dataset. It

consists of 11,788 images of 200 bird categories, 5,994 for training and 5,794 for testing. We use the 312 concepts
expert-annotated in the dataset representing bird attributes like beak length, size, wing color, etc.

• CIFAR100: CIFAR100 (Canadian Institute for Advanced Research) is a subset of the Tiny Images dataset [21]
comprising 100 classes. It consists of 60000 images, 50000 for training and 10000 for testing. Since this dataset does
not have manually annotated concepts, we query an LLM to get 925 concepts [4].

Some example concepts from both datasets are given in Table 7.

E. Analysis of the Logic Layer
E.1. Effect of logic layer size

Since the fixed pairings variant works with a wide logic layer, we study the effect of the size of the logic layer on the
performance of the model. We vary the size of the logic layer from 4000 logic gate neurons to 16000 logic gate neurons and

7



Enhancing Concept-based Learning with Logic

observe that the performance of the model increases with the size of the logic layer. These results on LCBM1 and LCBM2
for both CUB and CIFAR100 are shown in Figure 6a. We do a study on increasing the layer size for the learned pairings
model as well. For this variant, the logic layer size was chosen such that #concepts ≤ logic layer size ≤ #classes.
These results are reported in Table 6b.

Model CUB CIFAR100
200 250 500 600

LCBM3 74.87 77.12 84.55 83.94
LCBM4 73.46 76.96 80.98 73.27

Figure 6. Effect of number of neurons in (a) Fixed logical CBMs (left) (b) Learnt logical CBMs (right)

E.2. Effect of number of logic gate types used

As shown in Figure 7, the distribution of logic gates learnt is quite spread out. We analyse this behaviour by reducing the
number of logic gate types used and checking whether the model is able to learn good logic with a reduced logical operation
set. We observe that the number of logic gate types used have a marked impact on performance. The number of logic gates
used in all the experiments in the main results are 16. These gates along with their fuzzy logic relaxations are shown in
Table 9 [2]. We run an ablation by reducing the number of logic gates to 8. These consist of only the following operations -
∧,∨, 1, 0, c1, c2,¬c1,¬c2. As evidenced from Table 6, fine-grained datasets seem to require more expressive logic gates
like implication and xor, as there is a significant performance drop without them; whereas class-level annotated datasets
seem to perform well even without such gates, indicating that they do not need very complicated logic.

Figure 7. Distribution of gates learnt by the models

DATASET GATES 16K 8K 4K

CUB 8 18.44 9.26 3.58
16 63.35 49.49 28.54

CIFAR100 8 81.54 79.32 79.71
16 84.13 72.9 70.95

Table 6. Effect of number of gates on performance

8



Enhancing Concept-based Learning with Logic

Dataset Class Concepts

CUB

Black-footed Albatross
back pattern: solid, under tail color: rufous, wing shape: long-wings,
belly color: red, wing color: red, upperparts color: brown, breast pattern:
multi-colored, upperparts color: rufous, bill shape: cone, tail shape:
notched tail, back color: blue

American Crow

back pattern: solid, wing shape: long-wings, upperparts color: brown,
bill shape: cone, tail shape: notched tail, back color: blue, under tail
color: grey, wing shape: tapered-wings, belly color: iridescent, wing
color: iridescent

Lazuli Bunting
back pattern: solid, under tail color: rufous, throat color: pink, wing
shape: long-wings, wing color: red, upper tail color: pink, upperparts
color: brown, breast pattern: multi-colored, bill shape: cone

CIFAR100

Bicycle
a tire, object, a helmet, a handlebar, a bicycle seat, pedals attached to the
frame, mode of transportation, two wheels of equal size, a seat affixed to
the frame, a chain

Chair furniture, a person, object, legs to support the seat, an office, a computer,
a desk, four legs, a backrest, armrests on either side

Kangaroo a grassland, short front legs, an animal, a safari, mammal, a long, power-
ful tail, brown or gray fur, marsupial, long, powerful hind legs, Australia

Table 7. Some sample classes and a subset of their corresponding concepts for both the datasets

E.3. Feedback as a way of incorporating more logic layers:

We find that incorporating more than one logic layer hurts the classifier’s accuracy in general, on both the variants. Using
multi-layered logic in our knowledge-based variant gives us a means to use more complicated relational logic to improve
the base classifier. We compare performance with and without the feedback loop and observe that the accuracy of the base
model CBM significantly increases when the feedback loop is added. Our results are shown in Table 8 along with additional
results in Table 10.

DATASET CBM 4K X 2 2K X 3 4K X 2 WITH FEEDBACK 2K X 3 WITH FEEDBACK

CUB 75.37 2.92 3.12 79.54 80.78
CIFAR100 83.33 65.91 1.6 85.05 83.47

Table 8. Effect of feedback loop on performance

Figure 8. Concept alignment scores on 10 random classes (x-axis) of CUB and CIFAR100

9



Enhancing Concept-based Learning with Logic

ID Operator real-valued 00 01 10 11

0 False 0 0 0 0 0
1 A ∧B A ·B 0 0 0 1
2 ¬(A ⇒ B) A−AB 0 0 1 0
3 A A 0 0 1 1
4 ¬(A ⇐ B) B −AB 0 1 0 0
5 B B 0 1 0 1
6 A⊕B A+B − 2AB 0 1 1 0
7 A ∨B A+B −AB 0 1 1 1
8 ¬(A ∨B) 1− (A+B −AB) 1 0 0 0
9 ¬(A⊕B) 1− (A+B − 2AB) 1 0 0 1

10 ¬B 1−B 1 0 1 0
11 A ⇐ B 1−B +AB 1 0 1 1
12 ¬A 1−A 1 1 0 0
13 A ⇒ B 1−A+AB 1 1 0 1
14 ¬(A ∧B) 1−AB 1 1 1 0
15 True 1 1 1 1 1

Table 9. List of all real-valued binary logic ops.

CBM 16, 16k x 1 16, 8k x 1 16, 4k x 1 16, 4k x 2 16, 2k x 3

CUB 75.37 80.38 79.04 79.54 79.54 78.96
CIFAR100 83.33 85.12 85.37 84.23 85.05 83.47

Table 10. Effect of number of gates and number of layers on performance using the knowledge-based variant

Dataset Standard Fixed Learned

CUB 0.56 0.81 0.74
CIFAR100 0.52 0.77 0.71

Table 11. Cosine similarity scores between the concept embeddings of the same class (averaged across all classes)

10



Enhancing Concept-based Learning with Logic

Figure 9. Logical predicates on 3 more classes

11


