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Abstract

Exposure to ambient PM2.5 is estimated to be associated with ˜3 million
deaths globally in 2017. Reducing this number requires targeted health-
protective interventions, especially in urban areas with higher pollution
burden, however obtaining high-resolution PM2.5 data in urban environ-
ments is challenging due to sparse sensor and regulatory monitor distribu-
tion as well as the complex spatial heterogeneity of urban air quality. In
this study, we evaluate various spatial interpolation methods to estimate
PM2.5 concentrations in Brookline, a municipality in Greater Boston, ex-
plicitly examining the trade-offs between sensor network size and interpola-
tion performance. Random Forest achieves RMSE of 0.68µg/m3 (MAPE of
7.5%), significantly outperforming other methods. The RMSE for all meth-
ods decreased by less than 0.02 µg/m3 when 15 (40%) fewer sensors were
used to train the models. These findings highlight the potential of data-
driven spatial interpolation techniques in mitigating tradeoffs between cost
and sensor network comprehensiveness in complex urban environments.

1 Introduction

Figure 1: PM2.5 concentrations (µg/m3) in
Brookline, MA on July 28,2024 at 15:00 as re-
ported by QuantAQ air quality monitoring sen-
sors. Significant spatial variation is observed
across this area (approximately 2.25 km2 shown),
with points located one block apart having con-
centration difference up to 20µg/m3.

PM2.5 refers to suspended particles in the
air for which the aerodynamic diameter is
2.5µm or less (U.S. EPA, 2009). Ambient
(outdoor) PM2.5 poses a significant health
risk, estimated to be responsible for ˜3
million deaths and ˜83 million disability-
adjusted life years (DALY) worldwide in
2017 (Bu et al., 2021). Access to local data
on PM2.5 level, particularly in urban en-
vironments, could help individuals to avoid
exposure to poor air quality and municipali-
ties to implement measures aimed at reduc-
ing air pollution. Regulatory monitors are,
however, sparsely located due to cost con-
straints, and interpolating between existing
stations is challenging due to the significant
spatial variability of urban air quality aris-
ing from the heterogeneous structures and
diverse emission sources. In the Greater
Boston area, regulatory monitors are 2-10
km apart, but urban air quality can vary
between city blocks (100m) as shown for our
study area in Figure 1, where measurement differences reach up to 20µg/m3 (around 50%)
across distances of less than 1.5 km.
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In this study, we apply various spatial interpolation methods to PM2.5 data in one munic-
ipality of the Greater Boston Area while varying the number of sensors used to train the
models. Our study yields insights into how interpolation performance changes with sen-
sor density, which can provide guidance for decision-making in designing next-generation
systems for urban air quality monitoring.

2 Related Work

Spatial interpolation methods, broadly categorized into statistical and machine learning ap-
proaches, are widely used to analyze and predict spatial data in air quality monitoring (Lin
et al., 2020). For instance, Zhang et al. (2018) employed statistical approaches (inverse dis-
tance weighting, Kriging, and spline interpolation) using PM2.5 data from 54 air monitoring
stations in Shanghai, China, and achieved a minimum root mean square error(RMSE) of
4.3µg/m3 with inverse distance weighting. In recent years, machine learning techniques
have gained popularity, offering flexibility in handling non-linear relationships and complex
data patterns. For example, Guo et al. (2022) utilize an XGBoost model that estimates the
PM2.5 levels at a 500 m × 500 m spatial resolution using data from 448 micro stations in
Lanzhou City, China with an RMSE of 11.0µg/m3. Cheng et al. (2018) developed ADAIN,
a neural attention model that integrates air quality data from 36 monitoring stations with
POIs, road networks, and meteorological data achieving an RMSE of 42.6 for PM2.5.

3 Methodology

3.1 Problem Statement

The study aim is to develop a model that can infer the PM2.5 value of a geographic location
based on PM2.5 values from available data sources (e.g., sensors). Formally, suppose we
have sensors S = {1, 2, 3 . . . , N}, monitored over a time window T = {1, 2, 3 . . . , T} with
T time steps. Let yi,t ∈ R+ be the PM2.5 value observed at sensor i ∈ S at time t ∈ T .
We divide sensors in to two non-overlapping sets: context set C and target set G. We wish
to solve the following regression problem: at each time t ∈ {1, 2, 3, ..., T} given (a) the
sensor measurements from sensors in C and (b) the distance between a target sensor j ∈ G
and each context sensor i ∈ C denoted as d(i, j), predict the PM2.5 value ŷj,t at sensor
j. (Generally, such an algorithm could estimate PM2.5 at any location, however limiting
targets to locations with sensors provides a pathway for model evaluation.) Stated another
way, for each sensor j in target set G we wish to regress a parametric model f(xj,t;β) with

hyperparameters β that predicts yj,t ∈ R from vector xj,t ∈ R2|C|. The latter contains (a)

measurements from sensors in the context set C (∈ R|C|), and (b) distances from each of the
context set (C) sensors (∈ R|C|).

We explore the following two questions: (a) What is the spatial interpolation performance of
various algorithms? (b) How does the performance differ depending on the dimensionality
of C? We will investigate this by applying various spatial interpolation methods on PM2.5

concentration data from a network of sensors in the town of Brookline, a municipality located
adjacent to the city of Boston, MA.

3.2 Dataset

We use hourly PM2.5 data retrieved from 35 QuantAQ (QuantAQ, 2025) air quality sensors
located in Brookline, MA, a town of ˜17.6 km2 (see Figure 2). The analysis period spans
from May 24 to September 19, 2024, and all sensors used had over 90% complete data during
the study period. Table 1 presents summary statistics across all sensors for the study period;
Figure 3(b) presents the distribution of PM2.5 values, which follows a lognormal pattern.
Figure 3(a) illustrates hourly mean dynamics in PM2.5 concentrations in Brookline over 10
days in August, highlighting the significant temporal fluctuations. The overlay in Figure
3(b) shows that the standard deviation of PM2.5 among sensors is generally low (≤ 2µg/m3)
but, as can be observed in Figure 3(a), tends to increase when PM2.5 concentrations are
high. This is consistent with the presence of spatially and temporally diverse sources of air
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Figure 2: Map of sensors used in this study: violet
dots show individual sensors, and the red line indi-
cates municipal limits. Figure created using Open-
StreetMap (OpenStreetMap contributors, 2017).

Statistic Value
(µg/m3)

Mean 8.8
Median 7.2
Standard deviation 5.7
Minimum 0.4
Maximum 65.0
Lowest mean for 1 sensor 6.7
Highest mean for 1 sensor 11.5

Table 1: Summary Statistics for PM2.5

data measured using 35 QuantAQ sensors
across the Town of Brookline from May 24
to September 19, 2024.

pollution in cities, highlighting a challenge for achieving accurate spatial interpolation in a
highly imbalanced data scenario.
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Figure 3: (a) Hourly mean (± 1 σ) of PM2.5 across all 35 sensors over 10 days (gray bars indicate
nighttime). The values show significant temporal variation and higher standard deviation during
hours with elevated PM2.5. (b) Probability distribution of hourly PM2.5 values for all 35 sensors
during the entire study period with overlay showing the probability density of hourly standard
deviation of PM2.5.

3.3 Interpolation Methods and Metrics

We implement Inverse Distance Weighting (IDW) (Li and Heap, 2008), Ordinary Kriging
(OK) (Oliver and Webster, 2014; Lin et al., 2020; Webster and Oliver, 2007), and Random
Forest (RF) (Breiman, 2001; Yang et al., 2016) for spatial interpolation (see details in
Appendix A). We also use the mean (MEAN) as a baseline method against which to
evaluate performance of the more sophisticated methods. Performance is assessed using
Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), R2 and
the mean/median of R2 (see Appendix B). We split the dataset into 80% training, 10%
validation, and 10% test set (see Appendix C). Hyperparameter ranges and their optimal
values (with respect to the validation set RMSE) are listed in Table 2 in Appendix A.
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Figure 4: X-axis indicates the fraction of C used in training the models (i.e., 0.1 is 10% of C used).
Shaded areas in these plots indicate the standard deviation of the performance. RF performs the
best while the performance of IDW and OK are comparable to that of MEAN.
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Figure 5: Sample of interpolation results for (a) PM2.5 during September 14-19, 2024 at sensor
00199 where all methods use 100% of C and all methods predict PM2.5 relatively accurately. (b)
PM2.5 during September 14-19, 2024 at sensor 00291 where all methods use 100% of C but all
methods fail to effectively capture the peaks.

4 Results

Figure 4 illustrates the spatial interpolation performance with respect to the size of C used
in training. RF significantly outperforms other methods. In contrast, the performance of
IDW and OK is comparable to that of MEAN. As both IDW and OK share the assumption
of stationarity in the data, this suggests that the variability in PM2.5 values cannot be fully
explained by spatial distance alone. Furthermore, all methods fail to capture peaks in PM2.5

concentrations, which is critical for accurate air quality modeling. Figure 5 illustrates this
limitation: a significant discrepancy in predictions is observed during peaks, with Figure
5(b) showing more prominent errors due to its sharper peaks. Additional results including
the mean of R2 values are available in Appendix D.

Another notable observation from Figure 4 is that, across all algorithms, the regression
performance saturates at around 60%. Thus, retaining only 60% of sensors in C causes
minimal performance degradation. This suggests that simply adding more sensors may not
improve performance, and more sophisticated site selection and/or algorithm development
is needed. Furthermore, as shown in Figure 4(c), the maximum R2

median value achieved is
0.75, indicating room for improvement.

5 Conclusion

We evaluate several algorithms for spatial interpolation of air quality data in an urban
environment. Among the methods tested Random Forest performed best even when 40%
of available training data were omitted but still struggled to adequately capture PM2.5
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variability. These findings illustrate the potential of spatial interpolation techniques in
balancing the trade-off between data comprehensiveness and cost while emphasizing the
need for improved methods that can better capture the heterogeneity of urban air quality.

References

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Xiang Bu, Zhonglei Xie, Jing Liu, Linyan Wei, Xiqiang Wang, Mingwei Chen, and Hui Ren.
Global pm2. 5-attributable health burden from 1990 to 2017: Estimates from the global
burden of disease study 2017. Environmental Research, 197:111123, 2021.

Weiyu Cheng, Yanyan Shen, Yanmin Zhu, and Linpeng Huang. A neural attention model for
urban air quality inference: Learning the weights of monitoring stations. In Proceedings
of the AAAI conference on artificial intelligence, volume 32, 2018.

Rong Guo, Ying Qi, Bu Zhao, Ziyu Pei, Fei Wen, Shun Wu, and Qiang Zhang. High-
resolution urban air quality mapping for multiple pollutants based on dense monitoring
data and machine learning. International journal of environmental research and public
health, 19(13):8005, 2022.

Jin Li and Andrew D Heap. A review of spatial interpolation methods for environmental
scientists. Geoscience Australia Canberra, Record 2008/23, 2008.

Yuan-Chien Lin, Wan-Ju Chi, and Yong-Qing Lin. The improvement of spatial-temporal
resolution of pm2. 5 estimation based on micro-air quality sensors by using data fusion
technique. Environment international, 134:105305, 2020.

MA Oliver and R Webster. A tutorial guide to geostatistics: Computing and modelling
variograms and kriging. Catena, 113:56–69, 2014.

OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org .
https://www.openstreetmap.org , 2017.

Inc QuantAQ. Quantaq, 2025. URL https://quant-aq.com/products/modulair. Ac-
cessed: 2025-02-D2.

U.S. EPA. Integrated science assessment (isa) for particulate matter (final report, dec
2009). Technical Report EPA/600/R-08/139F, U.S. Environmental Protection Agency,
Washington, DC, December 2009.

Richard Webster and Margaret A Oliver. Geostatistics for environmental scientists. John
Wiley & Sons, 2007.

Ren-Min Yang, Gan-Lin Zhang, Feng Liu, Yuan-Yuan Lu, Fan Yang, Fei Yang, Min Yang,
Yu-Guo Zhao, and De-Cheng Li. Comparison of boosted regression tree and random
forest models for mapping topsoil organic carbon concentration in an alpine ecosystem.
Ecological indicators, 60:870–878, 2016.

Xuanyi Zhang, Runhe Shi, and Maosi Chen. Comparative study of the spatial interpolation
methods for the shanghai regional air quality evaluation. In Remote Sensing and Modeling
of Ecosystems for Sustainability XV, volume 10767, pages 188–196. SPIE, 2018.

5



A Interpolation Methods

We review the three methods we implemented below. Hyperparameters explored and their
optimal values (selected using the validation set) are listed in Table 2.

Inverse Distance Weighting Inverse distance weighting (IDW) estimates the values of
an attribute at unsampled points by using a linear combination of values from sampled
points, weighted by an inverse function of the distance between the point of interest and the
sampled points where p ∈ N is an exponent that determines the decay in distance. Formally,
it can be written as Equation 1.

ŷj,t =

∑
i∈C

1
d(i,j)p yi,t∑

i∈C
1

d(i,j)p

. (1)

The underlying assumption is that sampled points closer to the unsampled point are more
similar in value than those farther away (Li and Heap, 2008).

Ordinary Kriging Kriging is a term used for a family of least-squares regression methods
used for spatial interpolation (Oliver and Webster, 2014). Ordinary Kriging assumes that
the spatial random variable satisfies the second-order stationarity assumption, meaning its
mean is constant and its covariance depends only on the distance between points (Lin
et al., 2020). OK predicts the random variable at an unobserved location as a weighted
sum of observed values, with weights determined by solving a system of linear equations
that incorporate semivariances derived from a fitted variogram model (Webster and Oliver,
2007). We use the Pykrige library to implement Ordinary Kriging.

Random Forest Random Forest is a machine learning technique that combines the pre-
dictions of multiple decision trees to reduce overfitting and improve accuracy (Breiman,
2001). During training, each tree is built using a random subset of the original data, sam-
pled with replacement, and a randomly selected subset of predictors is chosen for splitting
at each node (Breiman, 2001; Yang et al., 2016). We use the scikit-learn library for our
Random Forest experiments.

Table 2: Hyperparameters explored with the optimal values identified via the validation set (with
respect to RMSE) in bold. For IDW, p represents the power of the inverse distance weight. In
RF, ‘number of trees’ specifies the number of trees in the forest, while ‘max features’ denotes the
number of features to consider when determining the best split. Among ‘max features’ used, ‘sqrt’
indicates that the maximum number of features considered for a split is the square root of the total
number of features, and ‘log2’ specifies that it is the base-2 logarithm of the number of features.
‘oob score’ determines whether out-of-bag samples are used to estimate the generalization score.

Algorithms Hyperparameters
IDW p = [1,2,3]
OK variogram model = [linear, power, gaussian, spherical]
RF number of trees : [40,60,80,100, 120, 140], max features = [1.0,

sqrt, log2], oob score=[True, False]

B Metrics

The following equations define the Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE), R2, R2

mean, R
2
median. Let ŷi,t ∈ R+ denote the predicted PM2.5

value for sensor i at time t. The target set is denoted by G, and the number of time steps
is represented by T .
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RMSE =

√
1

|G|T
∑
t∈T

∑
i∈G

(yi,t − ŷi,t)2, (2)

MAPE =
100%

|G|T
∑
t∈T

∑
i∈G

∣∣∣∣yi,t − ŷi,t
yi,t

∣∣∣∣ , (3)

R2 = 1−
∑

i∈G(yi,t − ŷi,t)
2∑

i∈G(yi,t − ȳt)2
, (4)

R2
mean = MeanTt=1

[
1−

∑
i∈G(yi,t − ŷi,t)

2∑
i∈G(yi,t − ȳt)2

]
, (5)

R2
median = MedianTt=1

[
1−

∑
i∈G(yi,t − ŷi,t)

2∑
i∈G(yi,t − ȳt)2

]
, (6)

where ȳt =
1

|G|
∑
i∈G

yi,t. (7)

For R2
mean, we calculate the mean of the R2 values for each time step instead of computing

a single R2 value for the entire test set. Likewise for R2
median, we compute the median of

the R2 values for each time step. This approach is adopted because in our dataset temporal
fluctuations are generally much larger than spatial variability. As a result, even when spatial
interpolation is suboptimal, the overall R2 for the entire dataset may be disproportionately
high. We included R2

median in the results section because we observed that R2
mean was

distorted by extreme outliers, which often occur when the variance in the data is very small.

C Experimental setup
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Figure 6: Evaluation strategy and dataset divi-
sion. The dataset is divided both in the temporal
domain and spatial domain.

As shown in Figure 6, the dataset is di-
vided in three chunks along both the spa-
tial and temporal axes. Firstly, in the
spatial dimension, CTRN , CV AL, CTST ∈ S
(where S = {1, 2, 3 . . . , N} is a set of all
sensors in the dataset) refer to the context
set (observed sensors) used in the training,
validation, and testing phase respectively.
Likewise, GTRN ,GV AL,GTST ∈ S denotes
the target set for the training, validation,
and testing phase respectively. The train-
ing and validation phases use an identical
set of sensors as context set and target set.
The following equations hold for the train-
ing/validation data.

CTRN = CV AL, GTRN = GV AL (8)

|CTRN | = |CV AL| = 0.55× |S| (9)

|GTRN | = |GV AL| = 0.15× |S| (10)

Meanwhile, for the testing phase the fol-
lowing equations hold, where the target set
GTST refers to a subset of the data held back
both in space and time.

CTST = CTRN ∪ GTRN (11)

|CTST | = 0.7× |S| (12)

|GTST | = 0.3× |S| (13)
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Figure 7: Model performance reported using two R2 metrics where the x-axis indicates the size of
the subset of C used in the models. Shaded areas indicate the standard deviation of the performance.
RF outperforms other models which are comparable to using the mean (MEAN).

As can be seen in Equation 11, in the testing stage (using the optimal hyperparameters deter-
mined in the validation set) the model is trained using all sensors in the training/validation
set (CTRN ∪ GTRN ). Then it is tested on the target set GTST . It is important to note
that GTST is not used in the training / validation set, as they are used to evaluate the
generalization performance of the models.

In the temporal domain, the data are sequentially divided into three consecutive chunks for
the training, validation, and test sets. The first 80% of the data is used for the training set,
the next 10% is used for the validation set, and the remaining 10% is used for the test set.

The performance varies significantly depending on the randomly sampled combination of
context and target sensors. To account for various combinations of context and target sets,
this process is repeated 30 times with different sensor combinations. The mean performance
on the validation set (measured using RMSE) is used to determine the best hyperparameters.
Additionally, experiments were conducted using varying sizes of the context set C. To achieve
this, multiple subsets of the context set, each of different sizes, were randomly sampled and
used in the modeling pipeline to estimate the values of the target set. In our experiment, we
used subsets with at step sizes of 10 percentage points (10%, 20%, 30%, etc.) each randomly
sampled 30 times.

D Additional Results

Figure 7 shows the performance of the models in terms of the mean of R2 (R2
mean) computed

at each time step and conventionally used R2 values respectively. Interestingly, while the
performance of IDW and OK are reasonable in terms of RMSE, MAPE, and R2

mean values
are less than zero. This occurs because low PM2.5 levels are much more frequent than high
PM2.5 levels and the variance is also low when PM2.5 levels are low. When the variance
is low, small errors can lead to extremely small R2 values. These extreme outliers cause
R2

mean to be smaller than R2
median.
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