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Abstract

We provide a practical convergence analyses of Stochastic Frank Wolfe (SFW) and SFW
with momentum with constant and decaying learning rates for constrained nonconvex op-
timization problems. We show that a convergence measure called the Frank Wolfe gap
converges to zero only when we decrease the learning rate and increase the batch size. We
apply FW algorithms to adversarial attacks and propose a new adversarial attack method,
Auto-FW. Finally, we compare existing methods with the FW algorithms in attacks against
the latest robust models.

1 Introduction

1.1 Background

Nonconvex optimization is necessary for training deep neural networks. First-order methods, such as stochas-
tic gradient descent (SGD) (Robbins & Monro, 1951), adaptive moment estimation (Adam) (Kingma & Ba,
2015) and their variants (Polyak, 1964; Nesterov, 1983; Duchi et al., 2011; Tieleman & Hinton, 2012; Reddi
et al., 2018), are still very powerful methods, and their convergence analysis for nonconvex optimization has
been widely studied (Fehrman et al., 2020; Bottou et al., 2018a; Scaman & Malherbe, 2020; Loizou et al.,
2021; Zaheer et al., 2018; Zou et al., 2019; Chen et al., 2019; Zhou et al., 2020; Chen et al., 2021; Iiduka,
2022).

When solving constrained optimization problems with these methods, it is necessary to compute the pro-
jection onto the constraint set at each iteration. In many problem settings, the computational cost of
projections to the constraint set such as the Euclidean norm ball can be very high, and in extreme cases the
projections can even be computationally infeasible (Collins et al., 2008). Here, we focus on the Frank Wolfe
algorithm (Frank & Wolfe, 1956), also called the conditional gradient algorithm (Levitin & Polyak, 1966), a
projection-free first-order method for constrained optimization.

The Frank Wolfe algorithm is a classical first-order method for solving convex optimization problems with
compact convex constraint sets. In recent years, it has received renewed attention thanks to its ability
to efficiently handle structured constraints that appear in machine learning. The algorithm and its many
variants, such as stochastic Frank Wolfe (SFW), have been well studied in the convex or strongly convex
setting (Jaggi, 2013; Freund & Grigas, 2014; Lacoste-Julien & Jaggi, 2015; Goldfarb et al., 2017; Locatello
et al., 2017; Zhang et al., 2019c; Tang et al., 2022), and they have been applied to matrix completion (Freund
et al., 2017; Locatello et al., 2019), regression (Négiar et al., 2020; Dvurechensky et al., 2023; Wirth et al.,
2023), and support vector machine (SVM)(Hazan & Luo, 2016; Lu & Freund, 2021). Even in the nonconvex
setting, convergence analyses have been provided for many variants (Reddi et al., 2016; Gu et al., 2019;
Grigas et al., 2019; Yurtsever et al., 2019; Chen et al., 2020a; Pokutta et al., 2020; Sahu & Kar, 2020;
Combettes et al., 2021; Nazykov et al., 2024), and some have been successful in experiments on deep neural
networks (DNNs) (Berrada et al., 2019; Miao et al., 2022). In particular, Frank Wolfe-type algorithms have
been shown to be effective in making adversarial attacks (see Section 4).
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1.2 Motivation

1. Weak convergence analysis. Several previous studies provide convergence analyses of SFW methods
for nonconvex optimization, but many analyses do not actually show that some convergence measure tends to
0 as the number of steps T →∞. Some of the previous studies present guarantees of convergence by deriving
the inequality, 1

T

∑T −1
t=0 gap ≤ A

T γ + Bγ, and use γ = 1√
T

to derive 1
T

∑T −1
t=0 gap ≤ A√

T
+ B√

T
= O

(
1√
T

)
,

where gap is the convergence criterion, T the number of steps, γ > 0 the learning rate, and A, B > 0 constants
for simplicity. Recall that convergence of a sequence (an) to 0 is a necessary and sufficient condition of the
following: ∀ϵ > 0,∃n0 ∈ N : ∀n ≥ n0 ⇒ |an| < ϵ. Therefore, if the learning rate is set as γ = 1√

T
, the total

number of iterations T is predetermined and fixed, so A√
T

+ B√
T

is a constant, T cannot approach infinity,
and gap is not guaranteed to converge to 0. This is evident from the fact that 1

T

∑T −1
t=0 gap ≤ A

T γ + Bγ
for any T , and even if T → ∞, convergence of gap to 0 is still not guaranteed due to the extra term Bγ.
Thus, these analyses do not exactly show 1

T

∑T −1
t=0 gap = O

(
1√
T

)
and 1

T

∑T −1
t=0 gap→ 0 (T →∞). Instead,

from A+B√
T

< ϵ i.e. T > (A+B)2

ϵ2 , one can figure out the behavior of the number of iterations T for a fixed
threshold ϵ. Thus, these convergence analysis focuses on how many iterations T are required for a certain
fixed threshold ϵ, and their convergence rate of O

(
1√
T

)
does not necessarily mean that gap converges to 0

at rate of O
(

1√
T

)
. Therefore, the purpose of this paper is to perform a convergence analysis of SFW such

that gap converges to 0 based on the definition of convergence of a sequence.

Table 1: Summary of previous studies of SFW methods in nonconvex optimization. T means the total
number of iterations and t ∈ [T ] denotes an iteration or time. L means Lipschitz constant. γt = O

(√
1

T L

)
in Learning Rate column indicates that the learning rate γt is set at γt = K

T L using some positive constant
K, emphasizing in particular that it is based on T and L. “Noise” in the Batch Size column means that
algorithm uses noisy observation, i.e., g(θ) = ∇f(θ)+ (Noise), of the full gradient ∇f(θ), while b = X in the
Batch Size column means that algorithm uses a mini-batch gradient ∇fSt

(θ) = 1
b

∑
i∈[b] Gξt,i

with a batch
size b (≤ n), where Gξt,i is stochastic gradient and n is the number of training data. The Momentum column
states whether the SFW algorithm includes a momentum factor. These results were presented in (1)(Reddi
et al., 2016, Theorem 2), (2)(Gu et al., 2019, Theorem 1), (3)(Grigas et al., 2019, Theorem 2.1), (4)(Négiar
et al., 2020, Theorem 2), (5)(Combettes et al., 2021, Theorem 3.3), and (6)(Nazykov et al., 2024, Theorem
2.3), where G(θ) is Frank Wolfe gap (see Section 2.1) and D > 0 means diameter of the constraint set (see
Assumption (A1)).

Algorithm Learning Rate Batch Size Momentum Convergence Analysis

(1) SFW γt = O
(√

1
T L

)
b = T No 1

T

∑
t∈[T ] E[G(θt)] = O

(
1√
T

)
(2) AsySFW γt = O

(√
1

T L

)
b = T No 1

T

∑
t∈[T ] E[G(θt)] = O

(
1√
T

)
(3) FW-SD γt = O

(√
1
L

)
b = T No E [G(θT )] = O

(
1√
T

)
γt = O

(√
1
L

)
b = t No E [G(θT )] = O

(√
log(T )

T

)
(4) SFW γt = 2

t+2 b ≤ n No lim inft→∞ E[G(θt)] = 0

(5) AdaSFW γt =
√

1
T bt = O

(
T
L

)
No 1

T

∑
t∈[T ] E[G(θt)] = O

(
1√
T

)
γt = 1

t+1 bt = O
(

t
L2

)
No lim supt→∞ E[G(θt)] ≤ 0

(6) any SFW
methods γt =

√
1
T Noise No min

t∈[T ]
E [G(θt)] = O

(
1√
T

+ D

)
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Table 1 summarizes previous studies on SFW methods for nonconvex optimization. Some of the previous
studies on Frank Wolfe methods (Reddi et al., 2016; Gu et al., 2019; Chen et al., 2020a; Mokhtari et al.,
2020; Nazykov et al., 2024) used a learning rate γ that includes the total number of iterations T such that
γ = 1√

T
. Even if T is predetermined, this setup may be experimentally unrealistic, since T can be very

large depending on the training dataset and the number of epochs. Reddi et al. (2016); Gu et al. (2019)
used a batch size determined by b = T , but this setting is not realistic from the standpoint of computational
complexity because b becomes too large for medium-sized or larger experiments. Some studies (Reddi et al.,
2016; Gu et al., 2019; Grigas et al., 2019) also include a Lipschitz constant in the learning rate. Since
that information is not available in advance, this setup would also be impractical. A few studies (Négiar
et al., 2020; Combettes et al., 2021) used a traditional learning rate that decreases as γt := 2

t+2 depending
on time t. This setting may not be suitable for practical use, especially for large-scale optimizations such
as DNN training, because the learning rate quickly becomes too small. These analyses do not explain the
effectiveness of SFW methods in large-scale optimization of DNNs as is evident in (Miao et al., 2022). We
therefore aim to provide an analysis of the convergence of SFW when using constant and decaying learning
rates, which would be experimentally realistic. We also aim to provide a similar analysis for SFW with
momentum (SFWM), a natural extension of SFW.

2. Are FW attacks effective against robust models? Chen et al. (2020a) showed that the Frank
Wolfe algorithm is effective in adversarial attacks against non-robust models. Therefore, we would like to
clarify whether it is effective against robust models. Furthermore, we propose Auto-FW (AFW), inspired
by Auto-Projected Gradient Descent (APGD) (Croce & Hein, 2020) and Auto-Conjugate Gradient Descent
(ACG) (Yamamura et al., 2022), and clarify its performance for robust models (see Section 4 for details).

1.3 Contribution

1. Practical convergence analysis of SFW and SFW with momentum (Section 3). We provide
convergence analyses of SFW (Algorithm 2) and SFW with momentum (Algorithms 3) using a user-defined
learning rate that is independent of unknowns that cannot be known a priori. To evaluate convergence, we
use the Frank Wolfe gap G(θ), which is a commonly used measure in convergence analyses of Frank Wolfe
algorithms (see Section 2.1 for details).

Let (θt) ∈ Rd be the sequence generated by each of SFW (Algorithm 2) and SFWM (Algorithm 3). In Section
3, we will show that, under certain assumptions, the average of E [G(θt)] has an upper bound as shown in
Table 2, where the constant learning rate is γt := γ and the constant batch size is bt = b. In addition, for
fixed natural numbers K and E, the decaying learning rate and increasing batch size are defined as follows:

Decaying Learning Rate (I): γt := 1
t + 1

,

Decaying Learning Rate (II): γt := 1
(t + 1)a

(a ∈ [0.5, 1)),

Decaying Learning Rate (III): γt := (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), (1)

Increasing Batch Size: bt := (b, b, · · · , b︸ ︷︷ ︸
E

, λb, λb, · · · , λb︸ ︷︷ ︸
E

, · · · , λQ−1b, λQ−1b, · · · , λQ−1b︸ ︷︷ ︸
E

), (2)

where η ∈ (0, 1), λ > 1, PK = T , and QE = T . γ > 0 is the initial learning rate and b (≤ n) is the initial
batch size, where n is the number of training data. In addition, in Decaying Learning Rate (III), we set a
lower bound γ > 0, and if γt computed according to the definition (1) is less than the lower bound γ (≤ γt),
we set γt = γ. Similarly, in the increasing batch size, we set bt := n if bt computed according to the definition
(2) is above the upper bound n.

Note that all of our theorems are common to SFW and SFWM and that the momentum factor does not
appear. This is due to our key lemma (Lemma A.3) and is one of our technical contributions. Table 2
shows that the extra term independent of T disappears from the upper bound of gap only when using
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Table 2: Convergence rate of our analysis. (LR: learning rate). Note that C > 0 is a constant.
Constant Batch Size Increasing Batch Size

Constant LR O
(

1
T

+ 1√
b

+ γ

)
(Theorem 3.1) O

(
1
T

+ γ

)
(Theorem 3.2)

Decaying LR (I) O
(

log T

T
+ 1√

b
+ C

)
(Theorem 3.3(i)) O

(
log T

T
+ C

)
(Theorem 3.4(i))

Decaying LR (II) O
(

1
T min{1−a,a} + 1√

b

)
(Theorerm 3.3(ii)) O

(
1

T min{1−a,a}

)
(Theorem 3.4(ii))

Decaying LR (III) O
(

1
T

+ 1√
b

)
(Theorem 3.3(iii)) O

(
1
T

)
(Theorem 3.4(iii))

both decreasing learning rates (II) and (III) and an increasing batch size, resulting in 1
T

∑T −1
t=0 E [G(θt)]→ 0

(T →∞). In particular, SFW and SFWM have a convergence rate of O(1/T ) when using a decaying learning
rate (III) and an increasing batch size. We applied these algorithms to deep-learning training to verify their
performance (Section 3.3). Note that SFW with increasing batch sizes has been studied by (Goldfarb et al.,
2017; Hazan & Luo, 2016; Reddi et al., 2016) and SGD with increasing batch size also has been well studied
by (Byrd et al., 2012; Friedlander & Schmidt, 2012; Balles et al., 2017; De et al., 2017; Bottou et al., 2018b;
Smith et al., 2018).

2. Application to adversarial attack (Section 4). Our convergence analysis can be applied to any
constrained nonconvex optimization problem. In this paper, the SFW algorithms are used to generate
adversarial examples. In Section 4.3, we propose a new adversarial attack method, Auto-FW (AFW), an
adaptation of the APGD approach to SFW. Furthermore, we show that AFW has comparable performance
to APGD, which itself has state-of-the-art performance, and discuss its limitation in Section 4.5.

2 Preliminaries

Let N be the set of non-negative integers. For m ∈ N \ {0}, define [m] := {1, 2, . . . , m}. Let Rd be
a d-dimensional Euclidean space with inner product ⟨·, ·⟩, which induces the norm ∥ · ∥. The DNNs is
parameterized by a vector x ∈ Rd, which is optimized by minimizing the empirical loss function f(θ) :=
1
n

∑
i∈[n] fi(θ), where fi(θ) is the loss function for θ ∈ Rd and the i-th training data (xi, yi) (i ∈ [n]).

(θt)t∈N, or simply (θt), represents the points sequence (θ0, θ1, · · · ). Let ξ be a random variable that does
not depend on θ ∈ Rd, and let Eξ[X] denote the expectation with respect to ξ of a random variable X. ξt,i

is a random variable generated from the i-th sampling at time t, and ξt := (ξt,1, ξt,2, . . . , ξt,b) is independent
of (θk)t

k=0:= (θ0, θ1, . . . , θt) ⊂ Rd, where b (≤ n) is the batch size. The independence of ξ0, ξ1, . . . allows
us to define the total expectation E as E = Eξ0Eξ1 · · ·Eξt

. Let Gξt
(θ) be the stochastic gradient of f(·) at

θ ∈ Rd. The mini-batch St consists of bt samples at time t, and the mini-batch stochastic gradient of f(θt)
for St is defined as ∇fSt

(θt) := 1
bt

∑
i∈[bt] Gξt,i

(θt).

We will impose the following conditions, which are standard ones for nonconvex optimization in deep neural
networks (see, e.g., (Chen et al., 2019)).
Assumption 2.1.

(A1) The domain Ω ⊂ Rd is convex and compact with diameter D such that ∀x, y ∈ Ω: ∥x− y∥ ≤ D.

(A2) fi : Rd → R (i ∈ [n]) are continuously differentiable and L-smooth on Ω, i.e.,

∀x, y ∈ Ω : ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

(A3) Let (θt)t∈N ⊂ Rd be the sequence generated by an optimizer.
(i) For each iteration t, Eξt

[Gξt
(θt)] = ∇f(θt).

(ii) There exists a nonnegative constant σ2 such that Eξt

[
∥Gξt(θt)−∇f(θt)∥2] ≤ σ2.
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(A4) For each iteration t, the optimizer samples the mini-batch St ⊂ S and estimates the full gradient ∇f
as

∇fSt
(θt) := 1

bt

∑
i∈[b]

Gξt,i
(θt) = 1

bt

∑
{i : (xi,yi)∈St}

∇fi(θt).

Problem 2.1. Under Assumption 2.1, we would like to minimize f(θ) := 1
n

∑n
i=1 fi(θ) over Ω.

2.1 Stochastic Frank Wolfe algorithm

Algorithm 1 Frank Wolfe
Require: (γt)t∈N ⊂ R++

t← 0, θ0 ∈ Ω
loop

vt = argmax
v∈Ω

⟨v,−∇f(θt)⟩

dt = vt − θt

θt+1 = θt + γtdt

t← t + 1
end loop

Algorithm 2 Stochastic Frank Wolfe (SFW)
Require: (γt)t∈N ⊂ R++

t← 0, θ0 ∈ Ω
loop

vt = argmax
v∈Ω

⟨v,−∇fSt
(θt)⟩

dt = vt − θt

θt+1 = θt + γtdt

t← t + 1
end loop

In general, ∥∇f(θ)∥ cannot be used as a measure of convergence in constrained optimization. So instead,
the Frank Wolfe gap G(θ) such that

G(θ) := max
v∈Ω
⟨v − θ,−∇f(θ)⟩,

is introduced as a measure of convergence. Suppose that θ⋆ is a local minimizer of f over Ω; from the
optimality conditions,

∀v ∈ Ω : ⟨v − θ⋆,∇f(θ⋆)⟩ ≥ 0 i.e. G(θ⋆) ≤ 0.

Therefore, our goal is to make G(θ) small. Note that G(θ) = 0 does not necessarily imply that θ is a
local minimizer of f . We will consider the following optimizer that uses the mini-batch stochastic gradient
∇fSt(θt) instead of the full gradient ∇f(θt), described by Algorithm 2, for solving Problem 2.1. In addition,
attempts have been made to add a momentum term in several different variants and under many different
names (Mokhtari et al., 2018; Chen et al., 2018; Mokhtari et al., 2020; Xie et al., 2020; Chen et al., 2020a;
Pokutta et al., 2020; Pethick et al., 2025). In accordance with Pokutta et al. (2020), we will refer to Algorithm
3 as SFW with momentum (SFWM). Note that our SFWM have fixed momentum factor β.

Algorithm 3 SFW with momentum (SFWM)
Require: (γt)t∈N ⊂ R++, β ∈ [0, 1)

t← 0, θ0 ∈ Ω, m−1 ← 0
loop

mt = βmt−1 + (1− β)∇fSt
(θt)

vt = argmax
v∈Ω

⟨v,−mt⟩

dt = vt − θt

θt+1 = θt + γtdt

t← t + 1
end loop
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3 Theoretical Main Results

3.1 Convergence analyses of SFW algorithms using a constant learning rate

Assumption 3.1. (C1) γt := γ for all t ∈ N.

The following are convergence analyses of Algorithm 3 with a constant learning rate. The proofs of Theorems
3.1 and 3.2 are given in Appendix B.
Theorem 3.1 (Constant Learning Rate and Constant Batch Size). Suppose that Assumptions 2.1
and 3.1 hold and consider the sequence (θt)t∈N generated by each of Algorithms 2 and 3 with a constant batch
size bt := b. Then, the following holds:

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ√

b
+ LD2γ

2
= O

(
1
T

+ 1√
b

+ γ

)
,

where θ⋆ := argmin
θ∈Ω

f(θ).

Theorem 3.2 (Constant Learning Rate and Increasing Batch Size). Suppose that Assumptions 2.1
and 3.1 hold and consider the sequence (θt)t∈N generated by each of Algorithms 2 and 3 with an increasing
batch size (2).Then, the following holds:

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2γ

2
= O

(
1
T

+ γ

)
,

where θ⋆ := argmin
θ∈Ω

f(θ).

3.2 Convergence analyses of SFW algorithms using a decaying learning rate

The following are convergence analyses of Algorithm 3 with a decaying learning rates (I), (II), and (III). The
proofs of Theorems 3.3 and 3.4 are given in Appendices C and D.
Theorem 3.3 (Decaying Learning Rate (I, II, III) and Constant Batch Size). Suppose that Assump-
tion 2.1 and the monotone decreasing property of (γt)t∈N hold and consider the sequence (θt)t∈N generated
by each of Algorithms 2 and 3 with a constant batch size bt := b. Then, the following is true:

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

TγT −1
+ Dσ√

b
+ LD2

2T

T −1∑
t=0

γt,

where θ⋆ := argmin
θ∈Ω

f(θ), and f̄ is an upper bound of f .

(i) If we use γt = 1
(t+1) , then

1
T

T −1∑
t=0

E [G(θt)] ≤ 2 max{f̄ , |f(θ⋆)|}+ Dσ√
b

+ LD2(1 + log T )
2T

= O
(

log T

T
+ 1√

b
+ C

)
.

(ii) If we use γt = 1
(t+1)a (a ∈ [ 1

2 , 1)), then

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

T 1−a
+ Dσ√

b
+ LD2

2(1− a)T a
= O

(
1

T min{1−a,a} + 1√
b

)
.

(iii) If we use γt = (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), then

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

Tγ
+ Dσ√

b
+ LD2

2T

Kγ

1− η
= O

(
1
T

+ 1√
b

)
,

6
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where γ > 0, η ∈ (0, 1), C > 0 is a constant, γ is the lower bound of γt defined as (1), and for a fixed natural
number K, PK = T .
Theorem 3.4 (Decaying Learning Rate (I, II, III) and Increasing Batch Size). Suppose that
Assumption 2.1 and the monotone decreasing property of (γt)t∈N hold and consider the sequence (θt)t∈N
generated by each of Algorithms 2 and 3 with an increasing batch size (2).Then, the following is true:

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

TγT −1
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2T

T −1∑
t=0

γt,

where θ⋆ := argmin
θ∈Ω

f(θ), and f̄ is an upper bound of f .

(i) If we use γt = 1
(t+1) , then

1
T

T −1∑
t=0

E [G(θt)] ≤ 2 max{f̄ , |f(θ⋆)|}+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2(1 + log T )

T
= O

(
log T

T
+ C

)
.

(ii) If we use γt = 1
(t+1)a (a ∈ [ 1

2 , 1)), then

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

T 1−a
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2(1− a)T a
= O

(
1

T min{1−a,a}

)
.

(iii) If we use γt = (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), then

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

Tγ
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2T

Kγ

1− η
= O

(
1
T

)
.

where γ > 0, η ∈ (0, 1), C > 0 is a constant, γ is the lower bound of γt defined as (1), and for a fixed natural
number K, PK = T .

Our theorems were analyzed for the sequence (θt) generated by SFWM (Algorithm 3), but the momentum
factor β does not appear in the upper bound for the Frank Wolfe gap, thanks to the key lemma (Lemma
A.3). Therefore, Theorems 3.1-3.4 also hold for the sequence (θt) generated by SFW (Algorithm 2).

3.3 Numerical Results

To verify the performance of Algorithms 2 and 3, we conducted numerical experiments on training ResNet18
(He et al., 2016) with the CIFAR100 (Krizhevsky, 2009) dataset under the L2 constraint. The training took
200 epochs. The initial learning rate γ0 was 0.1 for all algorithms and the momentum factor β was 0.9 for
SFWM. The radius of the L2 constraint was set to 300. Figure 1 plots the top-1 test accuracy and loss
function values with the SFW methods. SFW (constant bs), SFWM (constant bs), SVFW (Reddi et al.,
2016), SAGAFW (Reddi et al., 2016), and Mokhtari’s SFW (Mokhtari et al., 2020) used a constant batch
size of 210 and a constant learning rate γt = γ0 = 0.1, i.e., this setting is based on Theorem 3.1. SFW
(increasing bs) and SFWM (increasing bs) used batch sizes that quadruple every 40 epochs; i.e., this setting
is based on Theorem 3.2. We tuned Adam with learning rates {0.0001, 0.001, 0.01}, β1 values {0, 0.5, 0.7,
0.9} and β2 values {0.9, 0.99, 0.999}. Based on our tuning results, we selected a learning rate of 0.001,
and betas of (0.9, 0.999) for our experiments. Adam (Kingma & Ba, 2015) used 0.001 of learning rate and
(0.9, 0.999) of betas. Note that Mokhtari’s SFW have momentum factor that varies with iteration t. This is
different from SFWM (Algorithm 3) where the momentum factor is fixed. The rising curve is test accuracy
and the falling curve is the training loss function.

Figure 2 similarly plots test accuracy and the loss function values for a batch size of 210 and a decaying
learning rate that halves every 40 epochs; i.e., this setting is based on Theorem 3.3(ii). SFW (increasing bs)
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Training ResNet18 on CIFAR100 dataset with constant learning rate
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Figure 1: Accuracy score for the testing and loss function value for training versus the number of epochs in
training ResNet18 on the CIFAR100 dataset with the L2 constraint and a constant learning rate. The solid
line represents the mean value, and the shaded area represents the maximum and minimum over three runs.
The batch size was increased every 40 epochs as [8, 32, 128, 512, 2048] for SFW (increasing bs) and SFWM
(increasing bs). (bs: batch size).
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Training ResNet18 on CIFAR100 dataset with decaying learning rate (III)
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Figure 2: Accuracy score for the testing and loss function value for training versus the number of epochs in
training ResNet18 on the CIFAR100 dataset with the L2 constraint and a decaying learning rate. The solid
line represents the mean value, and the shaded area represents the maximum and minimum over three runs.
For SFW and SFWM, the learning rate was decreased every 40 epochs as [0.1, 0.05, 0.025, 0.0125, 0.00625]
and batch size was fixed at 210. The batch size was increased every 40 epochs as [8, 32, 128, 512, 2048] and
the learning rate was decreased using the same rule for SFW (increasing bs) and SFWM (increasing bs).
(bs: batch size).

and SFWM (increasing bs) used batch sizes that quadruple every 40 epochs; i.e., this setting is based on
Theorem 3.4(ii).

Both figures show that SFWM (constant bs) achieve higher test accuracy and lower loss function values than
those of SFW (constant bs). Note, however, that this is due to the large batch size. We have performed
similar experiments with different batch sizes and observed that the exact opposite results are obtained when
the batch size is small (see Figures 3 and 4 in Appendix E.1). Thus, for SFW, adding momentum helps when

8



Under review as submission to TMLR

the batch size is large, but has the opposite effect when the batch size is small. Note that we only consider
a fixed momentum factor. This is the same phenomenon observed in SGD and SGD with momentum that
some previous studies have observed experimentally (Shallue et al., 2019; Jelassi & Li, 2022; Kunstner et al.,
2023). In addition, Figures 1 and 2 show that, for all methods, the decaying learning rate achieves higher test
accuracy and lower loss function values than the constant learning rate does. This finding is theoretically
supported by Theorems 3.1 and 3.3(ii) (see also Table 2). Furthermore, Figures 1 and 2 show that, for SFW,
the increasing batch size achieves higher test accuracy and lower loss function values than the constant batch
size does. For SFWM, however, using a decaying learning rate and increasing batch size improves the test
accuracy, but worsens the loss function value. This cannot be explained by our theorem and is a limitation
of our theory.

We also performed similar experiments for decaying learning rates (I) γt := 1
t+1 based on Theorem 3.3(i)

and (II) γt := 1√
t+1 based on Theorem 3.3(ii) (see Figures 5 and 6 in Appendix E.1) and observed their

limitations.

In fact, the ResNet18 training we have performed in this section does not need to be constrained, and
unconstrained optimization algorithms such as SGD are sufficient.

4 Application to Adversarial Attacks

In this section, we explain that the optimization problem for the adversarial attack is an instance of a
constrained non-convex optimization problem and experimentally verify whether this attack succeeds with
FW methods.

Deep neural networks are vulnerable to adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015),
which are generated by adding perturbations to real images that are too small for the human eye to perceive.
Improving the robustness of classifiers to adversarial examples has become one of the most studied topics in
the machine learning community. Adversarial training (Goodfellow et al., 2015), which includes adversarial
examples in the training data, is effective in improving robustness. Generating adversarial examples is also
important for robust model development because adversarial examples can be used to evaluate the robustness
of a model. An adversarial attack is a method to create adversarial examples, and various algorithms have
been proposed. Depending on the amount of information an attacker has access to, adversarial attacks
can be divided into white-box attacks (Szegedy et al., 2014; Goodfellow et al., 2015) and black-box attacks
(Papernot et al., 2016; Chen et al., 2017). In a white-box attack, the attacker has access to the complete
information including the weights of the target model, while in a black-box attack, the adversary has access
only to the inputs and outputs of the target model. In this paper, we focus on white-box attacks.

4.1 White-box attack

For white-box attacks, Szegedy et al. (2014) proposed to use the box-constrained limited-memory Broyden-
Fletcher-Goldferb-Shanno (L-BFGS) algorithm. Goodfellow et al. (2015) proposed the fast gradient sign
method (FGSM) to overcome the speed limitation of L-BFGS. Kurakin et al. (2016) proposed an iterative-
FGSM (I-FGSM) algorithm that iterates over the one-iteration FGSM algorithm. Madry et al. (2018) showed
that I-FGSM with the L∞ norm is approximately equivalent to projected gradient descent (PGD). PGD is
the most popular attack because it is computationally inexpensive and has been successful in many cases.
Auto-PGD (APGD) (Croce & Hein, 2020) is an attack that searches for perturbations while dynamically
varying the learning rate of PGD. In this paper, FW is used to attack. Note that we are not the first
to use FW-type algorithms in adversarial attacks. Several previous studies tackled adversarial attacks
using the Frank Wolfe algorithm or its variants. Chen et al. (2020a) applied Frank Wolfe with momentum
factor to white-box and black-box attacks against a non-robust model and showed that FW has better
attack performance than PGD. Several previous results studies the effectiveness of FW-type zeroth order
optimization algorithms against black-box attack (Chen et al., 2020a; Sahu & Kar, 2020; Huang et al., 2020a).
Imtiaz et al. (2022) proposed the Sparse Adversarial and Interpretable Attack Framework (SAIF), an attack
method that minimizes magnitude and sparsity of perturbations using FW, and showed that it outperforms
conventional methods, especially when the perturbation constraints are tight. Kazemi et al. (2021) consider
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several structured constraints different from the traditional Lp norm constraints, and standard FW is used
to generate the adversarial example.

4.2 Problem setting

Given a training dataset S = {(xi, yi)|xi ∈ Rd, yi ∈ Rc}n−1
i=0 drawn i.i.d. from the distribution, where

c ∈ N is the number of classes in the training dataset, consider a classification with a neural network
g(x, θ). Here, xi ∈ Rd is the real image, yi is the label for xi, and θ is the parameter of the model g.
Let g(x) be the predicted labels of the classifier and fi(g(xi), yi) be the loss function. The parameters of
the neural network are updated to minimize f(θ) := 1

n

∑n−1
i=0 fi(g(xi), yi). When training is completed, the

classifier g will be able to classify the input image x with high accuracy. We aim to skew the predictions
of the trained classifier by adding a miniscule amount of noise to the input image x. Given a distance
function d(·, ·) and a positive number ϵ > 0, the generated adversarial example xadv can be expressed as
xadv ∈ {x̂i | g(x̂i) ̸= yi, d(x̂i, xi) ≤ ϵ}. The adversarial attack can be formulated as follows:

max
x̂∈Rd

f(g(x̂), y) s.t. d(x̂, x) ≤ ϵ.

This is an example of Problem 2.1, and the constraint set Ω in Problem 2.1 can be expressed as Ω = {x̂ ∈
Rd | d(x̂, x) ≤ ϵ}, which satisfies Assumption (A1). In experiments, the Euclidean norm or maximum norm
is often chosen as the distance function d(·, ·). ϵ is important because it controls the amount of noise that
can be added to the real images. The larger ϵ is, the more it can distort the real image and increase the
success rate of the attack. However, since we want to add noise that is imperceptible to humans, we should
use a small value of ϵ. In experiments, ϵ is often set to a small value such as 8/255 or 4/255. See Section 4.5
for the detailed experimental setup.

4.3 Auto-Frank Wolfe Attack

We propose the Auto-Frank Wolfe (AFW) attack as a new adversarial attack derived from the FW approach.
The proposed scheme is summarized in Algorithm 4.

Algorithm 4 Auto-Frank Wolfe
Require: f, Ω, x0, γ0, Niter, W = {w0, · · · , wn}

xadv ← x0, m−1 ← 0
for t = 0 to Niter − 1 do

vt = argmax
v∈Ω

⟨v,∇f(xt)⟩

dt = vt − xt

xt+1 = xt + γtdt

if f(xt+1) > f(xadv) then
xadv ← xt+1

end if
if t ∈W then

if Condition (i) or (ii) is satisfied then
γt+1 ← γt/2
xt+1 ← xadv

end if
end if

end for

In the part of Algorithm 4 that calculates vt, ⟨v,∇f(xt)⟩ is used instead of ⟨v,−∇f(xt)⟩. This is because we
are trying to increase the function value. In Algorithm 4, the method proposed in APGD is used for step size
selection (Croce & Hein, 2020). The initial step size γ0 is set to 2ϵ. When the number of iterations reaches
the pre-calculated checkpoint wj ∈ W , the step size γt is halved if either of the following two conditions is
satisfied. These conditions indicate that the attack is not going well.
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(i) Nc < ρ · (wj − wj−1),
(ii) γwj−1 = γwj and f

(wj−1)
max = f

(wj)
max ,

where Nc := #{i = wj−1, · · · , wj − 1 | f(xt+1) > f(xt)}, ρ > 0, and f
(t)
max := max {f(xk)|k = 0, · · · , t} .

Regarding the convergence guarantee of AFW, we see from Theorem 3.1 that AFW has a convergence rate
of O

(
1

Niter
+ γ0

)
if the attacks by AFW are consistently successful, since AFW uses the same learning rate

for all iterations. Note, however, that since AFW is a deterministic algorithm, the term involving batch size
b disappears in Theorem 3.1. On the other hand, if the AFW attack is not effective, the point sequence is
pulled back to the checkpoints and the learning rate is halved. For every n checkpoints, the number of cases
to consider is 2n − 1. This makes it difficult to theoretically show the convergence of AFW, and this is also
true for APGD and ACG.

4.4 Adversarial robustness

Many methods have been proposed to improve the robustness of models, such as gradient regularization
(Ross & Doshi-Velez, 2018), curvature regularization (Moosavi-Dezfooli et al., 2018; Huang et al., 2020c),
randomized smoothing (Cohen et al., 2019), local linearization (Qin et al., 2019), and adversarial training
(Goodfellow et al., 2015; Madry et al., 2018; Zhang et al., 2019b; Wu et al., 2020; Wang et al., 2020; Zhang
et al., 2020; Huang et al., 2021b; Balaji et al., 2019; Zhang et al., 2021; Pang et al., 2022; Wang et al., 2023).
Among these methods, adversarial training is the most standard one to improve adversarial robustness. It
improves robustness by learning adversarial examples in addition to the usual training data. For non-robust
models, almost all methods can achieve a classification accuracy of 0% (for example, see (Chen et al., 2020a,
Table 1 and 2)). So in this paper, we evaluate the attack performance of FW algorithms by attacking robust
models trained with adversarial training and compare it with PGD and APGD.

4.5 Numerical Results

To evaluate the attack performance of AFW, we conducted an experiment comparing the performance of
APGD and AFW against state-of-the-art robust models listed in RobustBench (Croce et al., 2021). Table
3 shows the results of APGD and AFW intercepting the classification task of the CIFAR100 dataset with
several robust models. The loss function was the cross entropy loss. The constraint set was L∞ with diameter
ϵ = 8/255 and the attack was executed over the course of 100 steps. In all experiments, both APGD and
AFW use an initial learning rate of 4ϵ. This is the default value in the APGD implementation (Croce & Hein,
2020). Clean accuracy refers to the classification accuracy achieved by the model before the attack, while
adversarial accuracy refers to the classification accuracy achieved by the model after the attack. Therefore,
a lower adversarial accuracy implies a more successful attack. Table 3 shows that AFW has an attack
performance almost equal to that of APGD, a state-of-the-art attack method. We also performed PGD,
FW, APGD, and AFW attacks on the image classification task of the CIFAR10, CIFAR100, and ImageNet
dataset and obtained similar results (see Tables 5-8 in Appendix E.2).

In addition, Table 4 shows the results of APGD and AFW intercepting the classification task of the CIFAR10,
CIFAR100, and ImageNet dataset with robust model proposed by (Jiang et al., 2023). The adversarial
perturbations is bounded by an L1 norm and the threshold ϵ for each dataset follows their setting. Note that
Fast-EG-L1 is the method proposed by (Jiang et al., 2023) and nuclear norm adversarial training (NuAT) is
the method proposed by (Sriramanan et al., 2021). Table 4 also shows that AFW has an attack performance
almost equal to that of APGD.

Throughout all of the experimental results, the difference in performance between AFW and APGD is less
than 1 percent. This is also the case in previous study that proposed ACG (Yamamura et al., 2022) and
may be due to the very small size of the constraint set in an adversarial attack. In terms of computational
complexity and time, AFW performs similarly to APGD, and we found no advantage of AFW over APGD.
Although we have indeed shown that AFW is effective for adversarial attacks, the choice of optimization
method may not be so important for adversarial attacks.
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Table 3: Adversarial accuracy achieved by APGD and AFW. CIFAR100 dataset/L∞ with ϵ = 8/255
paper Architecture clean accuracy APGD AFW

(Wang et al., 2023) WideResNet-70-16 75.22 48.11 48.16
(Wang et al., 2023) WideResNet-28-10 72.58 44.05 44.12

(Debenedetti et al., 2023) XCiT-L12 70.76 38.97 39.02
(Rebuffi et al., 2021) WideResNet-70-16 63.56 38.28 38.31

(Debenedetti et al., 2023) XCiT-M12 69.21 38.69 38.77
(Pang et al., 2022) WideResNet-70-16 65.56 36.66 36.71

(Debenedetti et al., 2023) XCiT-S12 67.34 37.08 37.06
(Rebuffi et al., 2021) WideResNet-28-16 62.41 35.73 35.8

(Jia et al., 2022) WideResNet-34-20 67.31 36.46 36.62
(Addepalli et al., 2022a) WideResNet-34-10 68.75 36.84 36.92

(Cui et al., 2021) WideResNet-34-10 62.97 37.05 37.17
(Sehwag et al., 2022) WideResNet-34-10 65.93 35.77 35.89
(Pang et al., 2022) WideResNet-28-10 63.66 35.25 35.26
(Jia et al., 2022) WideResNet-34-10 64.89 35.28 35.53

(Addepalli et al., 2022b) WideResNet-34-10 65.73 35.64 36.07
(Cui et al., 2021) WideResNet-34-20 62.55 34.08 34.27
(Cui et al., 2021) WideResNet-34-10 60.64 33.99 34.10

(Rade & Moosavi-Dezfooli, 2021) PreActResNet-18 61.50 32.58 32.61
(Wu et al., 2020) WideResNet-34-10 60.38 33.25 33.34

(Rebuffi et al., 2021) PreActResNet-18 56.87 31.77 31.8
(Hendrycks et al., 2019) WideResNet-28-10 59.23 32.88 33.01
(Addepalli et al., 2022a) ResNet-18 65.45 33.55 33.68

(Cui et al., 2021) WideResNet-34-10 70.25 29.98 30.02
(Addepalli et al., 2022b) PreActResNet-18 62.02 32.88 32.94

(Chen et al., 2022) WideResNet-34-10 62.15 30.98 31.13
(Rice et al., 2020) PreActResNet-18 53.83 20.63 20.57

Table 4: Adversarial accuracy achieved by APGD and AFW with L1 constraints.
dataset (threshold) Architecture (method) clean accuracy APGD AFW
CIFAR10 (ϵ = 12) PreActResNet-18 (Fast-EG-L1) 76.22 51.87 52.03
CIFAR10 (ϵ = 12) PreActResNet-18 (Fast-EG-L1+NuAT) 73.73 53.22 53.27
CIFAR100 (ϵ = 6) PreActResNet-18 (Fast-EG-L1) 59.43 39.56 39.61
CIFAR100 (ϵ = 6) PreActResNet-18 (Fast-EG-L1+NuAT) 58.50 41.73 41.65

ImageNet100 (ϵ = 72) ResNet34 (Fast-EG-L1) 67.62 48.80 48.76
ImageNet100 (ϵ = 72) ResNet34 (Fast-EG-L1+NuAT) 62.34 50.50 50.48

5 Conclusions

We provided a practical convergence analysis of SFW and SFW with momentum with a constant or decaying
learning rate for solving constrained nonconvex optimization problems. In our analysis, the learning rate
and the batch size are independent of unknown parameters and are experimentally realistic. We showed that
when the momentum factor is zero or fixed, the Frank Wolfe gap has a convergence rate of O(1/T ) only
when we decrease the learning rate and increase the batch size. Our numerical experiments show that SFW
with momentum outperforms SFW in both test accuracy and loss function value when the batch size is large
and that using a decaying learning rate and increasing batch size achieves higher test accuracy and lower
loss function values than does using a constant learning rate in image classification tasks with ResNet18.
We also showed experimentally that FW algorithms perform as well as PGD in adversarial attacks and that
our proposed AFW performs as well as APGD.
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A Proposition and Lemmas

Propositions A.1 and Lemma A.2 are general results with no novelty.
Proposition A.1. For all x, y ∈ Rd and all α ∈ R, the following holds:

∥αx + (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

Proof. Since 2⟨x, y⟩ = ∥x∥2 + ∥y∥2 − ∥x− y∥2 holds, for all x, y ∈ Rd and all α ∈ R,

∥αx + (1− α)y∥2 = α∥x∥2 + 2α(1− α)⟨x, y⟩+ (1− α)2∥y∥2

= α∥x∥2 + α(1− α)(∥x∥2 + ∥y∥2 − ∥x− y∥2) + (1− α)2∥y∥2

= α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

This completes the proof.

Lemma A.1. Suppose that (A1)-(A4) hold and consider Algorithm 3. Then, the following holds:

γtE [G(θt)] ≤ E [f(θt)]− E [f(θt+1)] + Dσγt√
bt

+ LD2γ2
t

2
.

Proof. Let t ∈ N. (A2) and the definition of θt+1 guarantee that

f(θt+1) ≤ f(θt) + ⟨∇f(θt), θt+1 − θt⟩+ L

2
∥θt+1 − θt∥2

= f(θt) + ⟨∇f(θt), (θt + γt(vt − θt))− θt⟩+ L

2
∥θt+1 − θt∥2

= f(θt) + γt⟨∇f(θt), vt − θt⟩+ Lγ2
t

2
∥vt − θt∥2

≤ f(θt) + γt⟨∇f(θt), vt − θt⟩+ LD2γ2
t

2
.

Let v̂t := argmax
v∈Ω

⟨v,−∇f(θt)⟩ for all t ∈ N. From the definition of vt, ∀v ∈ Ω : ⟨∇fSt(θt), vt⟩ ≤

⟨∇fSt(θt), v⟩. Then,

f(θt+1) ≤ f(θt) + γt⟨mt, vt − θt⟩+ γt⟨∇f(θt)−mt, vt − θt⟩+ LD2γ2
t

2

≤ f(θt) + γt⟨mt, v̂t − θt⟩+ γt⟨∇f(θt)−mt, vt − θt⟩+ LD2γ2
t

2

= f(θt) + γt⟨∇f(θt), v̂t − θt⟩+ γt⟨mt −∇f(θt), v̂t − θt⟩+ γt⟨∇f(θt)−mt, vt − θt⟩+ LD2γ2
t

2

= f(θt) + γt⟨∇f(θt), v̂t − θt⟩+ γt⟨mt −∇f(θt), v̂t − vt⟩+ LD2γ2
t

2

= f(θt)− γtG(θt) + γt⟨mt −∇f(θt), v̂t − vt⟩+ LD2γ2
t

2

≤ f(θt)− γtG(θt) + γt∥mt −∇f(θt)∥D + LD2γ2
t

2
.

The last inequality follows from the Cauchy-Schwarz inequality and (A1). Taking the expectation with
respect to ξt on both sides and using Lemma A.3, we have

E [f(θt+1)] ≤ E [f(θt)]− γtE [G(θt)] + DγtE [∥mt −∇f(θt)∥] + LD2γ2
t

2
(3)

≤ E [f(θt)]− γtE [G(θt)] + Dγt

√
σ2

bt
+ LD2γ2

t

2
.

This completes the proof.
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Lemma A.2. Algorithm 3 has the property that, under (A3)(ii) and (A4), for all t ∈ N,

E
[
∥∇fSt(θt)−∇f(θt)∥2] ≤ σ2

bt
.

Proof. (A3) and the definition of ∇fSt
(θt) guarantee that

E
[
∥∇fSt

(θt)−∇f(θt)∥2] = E

∥∥∥∥∥ 1
bt

bt∑
i=1

Gξt,i
(θt)−∇f(θt)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1
bt

bt∑
i=1

Gξt,i(θt)−
1
bt

bt∑
i=1
∇f(θt)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1
bt

bt∑
i=1

(Gξt,i
(θt)−∇f(θt))

∥∥∥∥∥
2

= 1
b2

t

E

∥∥∥∥∥
bt∑

i=1
(Gξt,i

(θt)−∇f(θt))

∥∥∥∥∥
2

= 1
b2

t

E

[
bt∑

i=1

∥∥Gξt,i(θt)−∇f(θt)
∥∥2
]

≤ σ2

bt
.

This completes the proof.

Lemma A.3. Algorithm 3 has the property that, under (A3)(ii) and (A4), for all t ∈ N,

E [∥mt −∇f(θt)∥] ≤

√
σ2

bt
.

Proof. The definition of mt implies that

∥mt −∇f(θt)∥2 = ∥βmt−1 + (1− β)∇fSt
(θt)−∇f(θt)∥2

= ∥β(mt−1 −∇f(θt)) + (1− β)(∇fSt
−∇f(θt))∥2

= β2∥mt−1 −∇f(θt)∥2 + (1− β)2∥∇fSt
(θt)−∇f(θt)∥2

+ 2β(1− β)⟨∇fSt
(θt)−∇f(θt), mt−1 −∇f(θt)⟩.

Therefore, from Assumption (A3)(i) and β < 1, we obtain

E
[
∥mt −∇f(θt)∥2] = (1− β)2E

[
∥∇fSt

(θt)−∇f(θt)∥2]+ β2E
[
∥mt−1 −∇f(θt)∥2] (4)

< (1− β)2E
[
∥∇fSt

(θt)−∇f(θt)∥2]+ E
[
∥mt−1 −∇f(θt)∥2] . (5)

On the other hand, Proposition A.1 guarantees that

E
[
∥mt −∇f(θt)∥2] = (1− β)E

[
∥∇fSt

(θt)−∇f(θt)∥2]+ βE
[
∥mt−1 −∇f(θt)∥2] (6)

− β(1− β)E
[
∥mt−1 −∇fSt

(θt)∥2] . (7)

From (4) and (7), we have

E
[
∥mt−1 −∇f(θt)∥2

]
= E

[
∥mt−1 −∇fSt

(θt)∥2
]
− E

[
∥∇fSt

(θt)−∇f(θt)∥2
]

(8)

≤ E
[
∥mt−1 −∇fSt

(θt)∥2
]

. (9)
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Therefore, from (5) and (8), we obtain

E
[
∥mt −∇f(θt)∥2

]
≤ β(−2 + β)E

[
∥∇fSt

(θt)−∇f(θt)∥2
]

+ E
[
∥mt−1 −∇fSt

(θt)∥2
]

. (10)

Now, let us show that, for all t ∈ N,

E
[
∥mt−1 −∇fSt(θt)∥2

]
≤ β(2− β)E

[
∥∇fSt(θt)−∇f(θt)∥2

]
. (11)

If (11) does not hold, there exists t0 ∈ N such that

E
[∥∥mt0−1 −∇fSt0

(θt0)
∥∥2
]

> β(2− β)E
[∥∥∇fSt0

(θt0)−∇f(θt0)
∥∥2
]

,

which implies

E
[∥∥∇fSt0

(θt0)−∇f(θt0)
∥∥2
]

<
1

β(2− β)
E
[∥∥mt0−1 −∇fSt0

(θt0)
∥∥2
]

. (12)

Hence, from (10) and (12),

E
[
∥mt0 −∇f(θt0)∥2

]
< β(−2 + β)

{
1

β(2− β)
E
[∥∥mt0−1 −∇fSt0

(θt0)
∥∥2
]}

+ E
[∥∥mt0−1 −∇fSt0

(θt0)
∥∥2
]

= 0.

Since E
[
∥mt0 −∇f(θt0)∥2

]
≥ 0, there is a contradiction. Therefore, (11) holds for all t ∈ N. Thus, Lemmas

A.2, (4), (9), and (11) ensure that

E
[
∥mt −∇f(θt)∥2

]
≤ (1− β)2E

[
∥∇fSt(θt)−∇f(θt)∥2]+ β3(2− β)E

[
∥∇fSt(θt)−∇f(θt)∥2

]
=
{

(1− β)2 + β3(2− β)
}
E
[
∥∇fSt(θt)−∇f(θt)∥2

]
≤ σ2

bt
.

This completes the proof.

Lemma A.4. Let the batch size increase as bt := (b, b, · · · , b︸ ︷︷ ︸
E

, λb, λb, · · · , λb︸ ︷︷ ︸
E

, · · · , λQ−1b, λQ−1b, · · · , λQ−1b︸ ︷︷ ︸
E

).

Then, for all t ∈ N,

T −1∑
t=0

1√
bt

≤ E
√

λ√
b(
√

λ− 1)
,

where λ > 1 and QE = T .

Proof. From the definition of bt,

T −1∑
t=0

1√
bt

= E√
b

+ E√
λb

+ · · ·+ E√
λQ−1b

= E√
b

(
1 + 1√

λ
+ · · ·+ 1√

λQ−1

)
≤ E√

b
·
√

λ√
λ− 1

.

This completes the proof.
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Lemma A.5. Let the learning rate decrease as γt := (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

).

Then, for all t ∈ N,
T −1∑
t=0

γt ≤
Kγ

1− η
,

where η ∈ (0, 1) and PK = T .

Proof. From the definition of γt,
T −1∑
t=0

γt = Kγ + Kηγ + · · ·+ KηP −1γ

= Kγ
(
1 + η + · · ·+ ηP −1)

≤ Kγ

1− η
.

This completes the proof.

B Proofs of Theorems 3.1 and 3.2

The following is a convergence analysis of Algorithm 3 using a constant learning rate.

Proof. From Lemma A.1, we have

γtE [G(θt)] ≤ E [f(θt)]− E [f(θt+1)] + Dσγt√
bt

+ LD2γ2
t

2
.

Summing over t, we get
T −1∑
t=0

γtE [G(θt)] ≤ E [f(θ0)]− E [f(θT )] + Dσ

T −1∑
t=0

γt√
bt

+ LD2

2

T −1∑
t=0

γ2
t

≤ f(θ0)− f(θ⋆) + Dσ
T −1∑
t=0

γt√
bt

+ LD2

2

T −1∑
t=0

γ2
t .

Assumption (C1) guarantees that

γ

T −1∑
t=0

E [G(θt)] ≤ f(θ0)− f(θ⋆) + Dσγ

T −1∑
t=0

1√
bt

+ LD2

2
Tγ2.

Hence,

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ

T

T −1∑
t=0

1√
bt

+ LD2γ

2
.

Then, for a constant batch size bt := b, we have

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ√

b
+ LD2γ

2

= O
(

1
T

+ 1√
b

+ γ

)
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This completes the proof for Theorem 3.1.
Next, for an increasing batch size bt := (b, b, · · · , b︸ ︷︷ ︸

E

, λb, λb, · · · , λb︸ ︷︷ ︸
E

, · · · , λQ−1b, λQ−1b, · · · , λQ−1b︸ ︷︷ ︸
E

), from

Lemma A.4, we have

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2γ

2

= O
(

1
T

+ γ

)
.

This completes the proof for Theorem 3.2.

C Proof of Theorem 3.3

Proof. From Lemma A.1 and bt := b, we have

E [G(θt)] ≤
1
γt

(E [f(θt)]− E [f(θt+1)]) + Dσ√
b

+ LD2γt

2
.

Summing over t, we get

T −1∑
t=0

E [G(θt)] ≤
T −1∑
t=0

1
γt

(E [f(θt)]− E [f(θt+1)])︸ ︷︷ ︸
ΓT

+Dσ√
b

T + LD2

2

T −1∑
t=0

γt.

From (A4), there exists a real number f̄ such that ∀θ ∈ Ω⇒ f(θ) ≤ f̄ . Accordingly, we have

ΓT = E [f(θ0)]
γ0

+
T −1∑
t=1

(
E [f(θt)]

γt
− E [f(θt)]

γt−1

)
− E [f(θT )]

γT −1

= E [f(θ0)]
γ0

+
T −1∑
t=1

(
1
γt
− 1

γt−1

)
E [f(θt)]−

E [f(θT )]
γT −1

≤ f̄

γ0
+ f̄

T −1∑
t=1

(
1
γt
− 1

γt−1

)
− f(θ⋆)

γT −1

≤ f̄

γ0
+ f̄

(
1

γT −1
− 1

γ0

)
− f(θ⋆)

γT −1

= 1
γT −1

(
f̄ − f(θ⋆)

)
≤ 1

γT −1

(
f̄ + |f(θ⋆)|

)
≤ 2

γT −1
max{f̄ , |f(θ⋆)|} (13)

The first inequality follows from E [f(θT )] ≥ f(θ⋆) and 1
γt
− 1

γt−1
≥ 0 since γt is monotone decreasing. Hence,

T −1∑
t=0

E [G(θt)] ≤
2

γT −1
max{f̄ , |f(θ⋆)|}+ Dσ√

b
T + LD2

2

T −1∑
t=0

γt,

1
T

T −1∑
t=0

E [G(θt)] ≤
2

TγT −1
max{f̄ , |f(θ⋆)|}+ Dσ√

b
+ LD2

2T

T −1∑
t=0

γt.
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(i) If we use γt = 1
t+1 , then

γT −1 = 1
T

and 1
T

T −1∑
t=0

γt ≤
1
T

(
1 +

∫ T −1

0

dt

(t + 1)

)
≤ 1 + log T

T
.

Therefore,

1
T

T −1∑
t=0

E [G(θt)] ≤ 2 max{f̄ , |f(θ⋆)|}+ Dσ√
b

+ LD2(1 + log T )
2T

= O
(

log T

T
+ σ√

b
+ C

)
,

where C := 2 max{f̄ , |f(θ⋆)|}.

(ii) If we use γt = 1
(t+1)a (a ∈ [ 1

2 , 1)), then

γT −1 = 1
T a

and 1
T

T −1∑
t=0

γt ≤
1
T

(
1 +

∫ T −1

0

dt

(t + 1)a

)
≤ 1

1− a
· 1

T a
.

Therefore,

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

T 1−a
+ Dσ√

b
+ LD2

2(1− a)T a

= O
(

1
T min{1−a,a} + σ√

b

)
.

(iii) If we use γt = (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), then there exist real number

γ such that γT −1 = ηP −1γ ≥ γ. Hence, from Lemma A.5, we have that

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

Tγ
+ Dσ√

b
+ LD2

2T

Kγ

1− η

= O
(

1
T

+ σ√
b

)
.

This completes the proof.

D Proof of Theorem 3.4

Proof. From Lemma A.1, we have

E [G(θt)] ≤
1
γt

(E [f(θt)]− E [f(θt+1)]) + Dσ√
bt

+ LD2γt

2
.

Summing over t, we get
T −1∑
t=0

E [G(θt)] ≤
T −1∑
t=0

1
γt

(E [f(θt)]− E [f(θt+1)])︸ ︷︷ ︸
ΓT

+Dσ

T −1∑
t=0

1√
bt

+ LD2

2

T −1∑
t=0

γt.

From Equation (13) and Lemma A.4, we have

1
T

T −1∑
t=0

E [G(θt)] ≤
2

TγT −1
max{f̄ , |f(θ⋆)|}+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2T

T −1∑
t=0

γt.
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(i) If we use γt = 1
(t+1) , then

γT −1 = 1
T

and 1
T

T −1∑
t=0

γt ≤
1
T

(
1 +

∫ T −1

0

dt

(t + 1)

)
≤ 1 + log T

T
.

Therefore,

1
T

T −1∑
t=0

E [G(θt)] ≤ 2 max{f̄ , |f(θ⋆)|}+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2(1 + log T )

2T

= O
(

log T

T
+ C

)
,

where C := 2 max{f̄ , |f(θ⋆)|}.

(ii) If we use γt = 1
(t+1)a (a ∈ [ 1

2 , 1)), then

γT −1 = 1
T a

and 1
T

T −1∑
t=0

γt ≤ 1 +
∫ T −1

0

dt

(t + 1)a
≤ 1

1− a
· 1

T a
.

Therefore,

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

T 1−a
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2(1− a)T a

= O
(

1
T min{1−a,a}

)
.

(iii) If we use γt = (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), then there exist real number

γ such that γT −1 = ηP −1γ ≥ γ . Hence, from Lemma A.5, we have that

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

Tγ
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2T

Kγ

1− η

= O
(

1
T

)
.

This completes the proof.

E Full Experimental Results

The code used is available at our GitHub repository (https://anonymous.4open.science/r/sfw25). The
experimental environment consisted of NVIDIA DGX A100×8GPU and Dual AMD Rome7742 2.25-GHz, 128
Cores×2CPU. The software environment was Python 3.8.2, Pytorch 1.6.0, and CUDA 11.6. All experiments
were performed using a single GPU.

E.1 Supplemental Results for Section 3.3

Figure 3 plots the test accuracy and loss function values for a batch size of 25 and a constant learning rate
γt = γ0 = 0.1. Figure 4 similarly plots the test accuracy and loss function values for a batch size of 25 and
a decaying learning rate that halves every 40 epochs; i.e., this setting is based on Theorems 3.3(ii). Both
figures show that SFW achieves higher test accuracy and lower loss function values than those of SFWM, in
contrast to Figures 1 and 2.
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Training ResNet18 on CIFAR100 dataset with constant learning rate (b=32)
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Figure 3: Accuracy score for the testing and loss func-
tion value for training versus the number of epochs in
training ResNet18 on the CIFAR100 dataset with the
L2 constraint and a constant learning rate. The solid
line represents the mean value, and the shaded area
represents the maximum and minimum over three
runs.
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Training ResNet18 on CIFAR100 dataset with decaying learning rate (III) (b=32)
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Figure 4: Accuracy score for the testing and loss func-
tion value for training versus the number of epochs
in training ResNet18 on the CIFAR100 dataset with
the L2 constraint and a decaying learning rate. The
solid line represents the mean value, and the shaded
area represents the maximum and minimum over
three runs. The learning rate was decreased every 40
epochs as [0.1, 0.05, 0.025, 0.0125, 0.00625] and batch
size was fixed at 25.

We also performed similar experiments for decaying learning rates (I) γt := 1
t+1 based on Theorems 3.3(i)

and (II) γt := 1√
t+1 based on Theorems 3.3(ii). Theoretically, this is an excellent learning rate setting that

can remove the extra term in the upper bound of the Frank Wolfe gap, but experimentally, it is found to be
unusable because the learning rate becomes too small from the early stages of learning (see Figures 5 and
6).
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Figure 5: Accuracy score for the testing versus the
number of epochs in training ResNet18 on the CI-
FAR100 dataset with the L2 constraint and a de-
caying learning rate (I) γt := 1

t+1 . The batch size
was fixed at 210. The solid line represents the mean
value, and the shaded area represents the maximum
and minimum over three runs.
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Figure 6: Accuracy score for the testing versus the
number of epochs in training ResNet18 on the CI-
FAR100 dataset with the L2 constraint and a decay-
ing learning rate (II) γt := 1√

t+1 . The batch size
was fixed at 210.The solid line represents the mean
value, and the shaded area represents the maximum
and minimum over three runs.

E.2 Supplemental Results for Section 4.5

We attacked the robust models listed in RobustBench (Croce et al., 2021) with PGD, FW, APGD, and AFW
to verify their performance.
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Table 5: Adversarial accuracy achieved by PGD and FW. CIFAR100 dataset/L∞ with ϵ = 8/255
paper Architecture clean accuracy PGD FW

(Wang et al., 2023) WideResNet-70-16 75.22 48.41 48.44
(Wang et al., 2023) WideResNet-28-10 72.58 44.21 44.26

(Debenedetti et al., 2023) XCiT-L12 70.76 39.28 39.39
(Rebuffi et al., 2021) WideResNet-70-16 63.56 38.58 38.69

(Debenedetti et al., 2023) XCiT-M12 69.21 39.22 39.25
(Pang et al., 2022) WideResNet-70-16 65.56 36.87 36.94

(Debenedetti et al., 2023) XCiT-S12 67.34 37.47 37.42
(Rebuffi et al., 2021) WideResNet-28-16 62.41 36.09 36.13

(Jia et al., 2022) WideResNet-34-20 67.31 37.20 37.66
(Addepalli et al., 2022a) WideResNet-34-10 68.75 37.03 37.21

(Cui et al., 2021) WideResNet-34-10 62.97 37.48 37.8
(Sehwag et al., 2022) WideResNet-34-10 65.93 36.04 36.15
(Pang et al., 2022) WideResNet-28-10 63.66 35.39 35.43
(Jia et al., 2022) WideResNet-34-10 64.89 36.19 36.57

(Addepalli et al., 2022b) WideResNet-34-10 65.73 36.90 36.64
(Cui et al., 2021) WideResNet-34-20 62.55 34.62 34.63
(Cui et al., 2021) WideResNet-34-10 60.64 34.55 34.71

(Rade & Moosavi-Dezfooli, 2021) PreActResNet-18 61.50 32.69 32.75
(Wu et al., 2020) WideResNet-34-10 60.38 33.65 33.73

(Rebuffi et al., 2021) PreActResNet-18 56.87 31.95 32.0
(Hendrycks et al., 2019) WideResNet-28-10 59.23 33.75 33.79
(Addepalli et al., 2022a) ResNet-18 65.45 33.79 33.97

(Cui et al., 2021) WideResNet-34-10 70.25 30.41 30.51
(Addepalli et al., 2022b) PreActResNet-18 62.02 33.14 33.29

(Chen et al., 2022) WideResNet-34-10 62.15 31.53 31.87
(Rice et al., 2020) PreActResNet-18 53.83 20.95 21.01

Table 6: Adversarial accuracy achieved by PGD and FW. ImageNet dataset/L∞ with ϵ = 4/255
paper Architecture clean accuracy PGD FW

(Liu et al., 2023) ConvNeXt-L 78.02 60.66 60.68
(Singh et al., 2023) ConvNeXt-L + ConvStem 77.00 59.26 59.26
(Singh et al., 2023) ConvNeXt-B + ConvStem 75.88 58.56 58.60
(Liu et al., 2023) ConvNeXt-B 76.7 58.30 58.32

(Singh et al., 2023) ViT-B + ConvStem 76.30 57.12 57.18
(Singh et al., 2023) ConvNeXt-S + ConvStem 74.08 55.22 55.24
(Singh et al., 2023) ConvNeXtt-T + ConvStem 72.70 53.32 53.36
(Singh et al., 2023) ViT-S + ConvStem 72.58 51.34 51.36

(Debenedetti et al., 2023) XCiT-L12 73.76 49.88 49.9
(Debenedetti et al., 2023) XCiT-M12 74.04 48.14 48.1
(Debenedetti et al., 2023) XCiT-S12 72.34 45.28 45.3

(Salman et al., 2020) WideResNet-50-2 68.64 41.42 41.60
(Salman et al., 2020) ResNet-50 64.06 39.18 39.28

(Ilyas et al., 2019) ResNet-50 62.52 33.24 33.40
(Wong et al., 2020) ResNet-50 55.64 30.50 30.12

(Salman et al., 2020) ResNet-18 52.92 29.98 30.14
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Table 7: Adversarial accuracy achieved by PGD and FW. CIFAR10 dataset/L∞ with ϵ = 8/255
paper Architecture clean accuracy PGD FW

(Wang et al., 2023) WideResNet-70-16 93.25 73.62 73.62
(Wang et al., 2023) WideResNet-28-10 92.44 70.39 70.38

(Rebuffi et al., 2021) WideResNet-70-16 92.23 69.86 69.99
(Gowal et al., 2021) WideResNet-70-16 88.74 68.97 69.05
(Rebuffi et al., 2021) WideResNet-106-16 88.50 68.07 68.26
(Rebuffi et al., 2021) WideResNet-70-16 88.54 67.65 67.84
(Kang et al., 2021) WideResNet-70-16 93.73 90.86 90.72
(Xu et al., 2023) WideResNet-28-10 93.69 67.21 67.13

(Gowal et al., 2021) WideResNet-28-10 87.50 65.94 66.09
(Pang et al., 2022) WideResNet-70-16 89.01 66.81 66.83

(Rade & Moosavi-Dezfooli, 2021) WideResNet-34-10 91.47 65.89 65.89
(Sehwag et al., 2022) ResNest152 87.30 65.25 65.28
(Huang et al., 2021a) WideResNet-34-R 91.23 65.06 65.23
(Huang et al., 2021a) WideResNet-34-R 90.56 64.12 64.42

(Dai et al., 2022) WideResNet-28-10-PSSiLU 87.02 64.14 64.18
(Pang et al., 2022) WideResNet-28-10 88.61 64.87 64.86

(Rade & Moosavi-Dezfooli, 2021) WideResNet-28-10 88.16 64.87 63.89
(Rebuffi et al., 2021) WideResNet-28-10 87.33 64.22 64.39
(Sridhar et al., 2022) WideResNet-34-15 86.53 63.20 63.43

(Wu et al., 2020) WideResNet-28-10 88.25 63.58 63.7
(Sridhar et al., 2022) WideResNet-28-10 89.46 62.56 62.65
(Zhang et al., 2021) WideResNet-28-10 89.36 67.64 67.81

(Carmon et al., 2019) WideResNet-28-10 89.69 62.31 62.39
(Gowal et al., 2021) PreActResNet-18 87.35 61.13 61.14

(Addepalli et al., 2022b) WideResNet-34-10 85.32 64.86 65.06
(Addepalli et al., 2022a) WideResNet-34-10 88.71 61.10 61.16

(Rade & Moosavi-Dezfooli, 2021) PreActResNet-18 89.02 61.58 61.52
(Jia et al., 2022) WideResNet-70-16 85.66 60.96 61.18

(Debenedetti et al., 2023) XCiT-L12 91.73 59.18 59.31
(Debenedetti et al., 2023) XCiT-M12 91.30 59.09 59.26

(Sehwag et al., 2020) WideResNet-28-10 88.98 59.94 60.08
(Rebuffi et al., 2021) PreActResNet-18 83.53 59.66 59.82
(Wang et al., 2020) WideResNet-28-10 87.50 62.65 62.69

(Jia et al., 2022) WideResNet-34-10 84.98 59.79 60.04
(Wu et al., 2020) WideResNet-34-10 85.36 59.17 59.24

(Debenedetti et al., 2023) XCiT-S12 90.06 58.98 58.99
(Sehwag et al., 2022) ResNet-18 84.59 58.81 58.79

(Hendrycks et al., 2019) WideResNet-28-10 87.11 57.58 57.68
(Pang et al., 2020) WideResNet-34-20 85.14 62.19 62.37
(Cui et al., 2021) WideResNet-34-20 88.70 55.44 55.53

(Zhang et al., 2020) WideResNet-34-10 84.52 57.09 57.13
(Rice et al., 2020) WideResNet-34-20 85.34 57.32 57.33

(Huang et al., 2020b) WideResNet-34-10 83.48 56.15 56.20
(Zhang et al., 2019b) WideResNet-34-10 84.92 55.09 55.13

(Cui et al., 2021) WideResNet-34-10 88.22 54.24 54.35
(Addepalli et al., 2022a) ResNet-18 85.71 56.56 56.58

(Chen et al., 2020b) ResNet-50 86.04 54.34 54.37
(Chen et al., 2022) WideResNet-34-10 85.32 54.60 55.12

(Addepalli et al., 2022b) ResNet-18 80.24 56.19 56.29
(Zhang et al., 2019a) WideResNet-34-10 87.20 46.37 46.38

(Andriushchenko & Flammarion, 2020) PreActResNet-18 79.84 47.42 47.49
(Wong et al., 2020) PreActResNet-18 83.34 46.55 46.74
(Ding et al., 2018) WideResNet-28-4 84.36 51.18 51.43
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Table 8: Adversarial accuracy achieved by APGD and AFW. CIFAR10 dataset/L∞ with ϵ = 8/255
paper Architecture clean accuracy APGD AFW

(Wang et al., 2023) WideResNet-70-16 93.25 73.51 73.5
(Wang et al., 2023) WideResNet-28-10 92.44 70.23 70.32

(Rebuffi et al., 2021) WideResNet-70-16 92.23 69.4 69.54
(Gowal et al., 2021) WideResNet-70-16 88.74 68.52 68.56
(Rebuffi et al., 2021) WideResNet-106-16 88.50 67.64 67.82
(Rebuffi et al., 2021) WideResNet-70-16 88.54 67.27 67.37
(Kang et al., 2021) WideResNet-70-16 93.73 84.98 86.98
(Xu et al., 2023) WideResNet-28-10 93.69 67.05 67.16

(Gowal et al., 2021) WideResNet-28-10 87.50 65.56 65.77
(Pang et al., 2022) WideResNet-70-16 89.01 66.69 66.74

(Rade & Moosavi-Dezfooli, 2021) WideResNet-34-10 91.47 65.66 65.73
(Sehwag et al., 2022) ResNest152 87.30 65.08 65.06
(Huang et al., 2021a) WideResNet-34-R 91.23 64.52 64.77
(Huang et al., 2021a) WideResNet-34-R 90.56 63.55 63.8

(Dai et al., 2022) WideResNet-28-10-PSSiLU 87.02 63.99 64.02
(Pang et al., 2022) WideResNet-28-10 88.61 64.73 64.73

(Rade & Moosavi-Dezfooli, 2021) WideResNet-28-10 88.16 63.78 63.81
(Rebuffi et al., 2021) WideResNet-28-10 87.33 63.99 64.08
(Sridhar et al., 2022) WideResNet-34-15 86.53 62.96 63.03

(Wu et al., 2020) WideResNet-28-10 88.25 63.35 63.49
(Sridhar et al., 2022) WideResNet-28-10 89.46 62.06 62.27
(Zhang et al., 2021) WideResNet-28-10 89.36 66.38 66.58

(Carmon et al., 2019) WideResNet-28-10 89.69 61.71 62.06
(Gowal et al., 2021) PreActResNet-18 87.35 60.84 60.94

(Addepalli et al., 2022b) WideResNet-34-10 85.32 64.41 64.52
(Addepalli et al., 2022a) WideResNet-34-10 88.71 60.79 60.96

(Rade & Moosavi-Dezfooli, 2021) PreActResNet-18 89.02 61.39 61.46
(Jia et al., 2022) WideResNet-70-16 85.66 60.63 60.61

(Debenedetti et al., 2023) XCiT-L12 91.73 58.98 59.18
(Debenedetti et al., 2023) XCiT-M12 91.30 59.01 59.03

(Sehwag et al., 2020) WideResNet-28-10 88.98 59.62 59.79
(Rebuffi et al., 2021) PreActResNet-18 83.53 59.58 59.64
(Wang et al., 2020) WideResNet-28-10 87.50 61.72 61.95

(Jia et al., 2022) WideResNet-34-10 84.98 59.51 59.58
(Wu et al., 2020) WideResNet-34-10 85.36 58.79 58.91

(Debenedetti et al., 2023) XCiT-S12 90.06 58.78 58.84
(Sehwag et al., 2022) ResNet-18 84.59 58.4 58.54

(Hendrycks et al., 2019) WideResNet-28-10 87.11 57.2 57.38
(Pang et al., 2020) WideResNet-34-20 85.14 61.59 61.78
(Cui et al., 2021) WideResNet-34-20 88.70 55.03 55.29

(Zhang et al., 2020) WideResNet-34-10 84.52 56.73 56.95
(Rice et al., 2020) WideResNet-34-20 85.34 56.89 57.04

(Huang et al., 2020b) WideResNet-34-10 83.48 55.77 55.99
(Zhang et al., 2019b) WideResNet-34-10 84.92 54.79 55.00

(Cui et al., 2021) WideResNet-34-10 88.22 53.84 54.11
(Addepalli et al., 2022a) ResNet-18 85.71 56.25 56.36

(Chen et al., 2020b) ResNet-50 86.04 54.22 54.29
(Chen et al., 2022) WideResNet-34-10 85.32 53.72 54.11

(Addepalli et al., 2022b) ResNet-18 80.24 55.84 55.97
(Zhang et al., 2019a) WideResNet-34-10 87.20 46.1 46.23

(Andriushchenko & Flammarion, 2020) PreActResNet-18 79.84 46.95 47.1
(Wong et al., 2020) PreActResNet-18 83.34 45.89 46.16
(Ding et al., 2018) WideResNet-28-4 84.36 50.14 50.33
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Table 9: Adversarial accuracy achieved by APGD and AFW. ImageNet dataset/L∞ with ϵ = 4/255
paper Architecture clean accuracy APGD AFW

(Liu et al., 2023) ConvNeXt-L 78.02 60.28 60.34
(Singh et al., 2023) ConvNeXt-L + ConvStem 77.00 58.98 59.02
(Singh et al., 2023) ConvNeXt-B + ConvStem 75.88 58.36 58.4
(Liu et al., 2023) ConvNeXt-B 76.7 58.02 58.06

(Singh et al., 2023) ViT-B + ConvStem 76.30 56.92 57.0
(Singh et al., 2023) ConvNeXt-S + ConvStem 74.08 55.00 55.06
(Singh et al., 2023) ConvNeXtt-T + ConvStem 72.70 52.94 53.08
(Singh et al., 2023) ViT-S + ConvStem 72.58 50.98 51.04

(Debenedetti et al., 2023) XCiT-L12 73.76 49.6 49.66
(Debenedetti et al., 2023) XCiT-M12 74.04 47.6 47.7
(Debenedetti et al., 2023) XCiT-S12 72.34 44.76 44.94

(Salman et al., 2020) WideResNet-50-2 68.64 40.86 40.9
(Salman et al., 2020) ResNet-50 64.06 38.50 38.76

(Ilyas et al., 2019) ResNet-50 62.52 32.18 32.42
(Wong et al., 2020) ResNet-50 55.64 29.38 28.54

(Salman et al., 2020) ResNet-18 52.92 29.26 29.48
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