
Under review as submission to TMLR

Stochastic Frank Wolfe
for Constrained Nonconvex Optimization

Anonymous authors
Paper under double-blind review

Abstract

We provide a practical convergence analyses of Stochastic Frank Wolfe (SFW) and SFW
with momentum with constant and decaying learning rates for constrained nonconvex op-
timization problems. We show that a convergence measure called the Frank Wolfe gap
converges to zero only when we decrease the learning rate and increase the batch size. We
apply FW algorithms to adversarial attacks and propose a new adversarial attack method,
Auto-FW. Finally, we compare existing methods with the FW algorithms in attacks against
the latest robust models.

1 Introduction

1.1 Background

Nonconvex optimization is necessary for training deep neural networks. First-order methods, such as stochas-
tic gradient descent (SGD) (Robbins & Monro, 1951), adaptive moment estimation (Adam) (Kingma & Ba,
2015) and their variants (Polyak, 1964; Nesterov, 1983; Duchi et al., 2011; Tieleman & Hinton, 2012; Reddi
et al., 2018), are still very powerful methods, and their convergence analysis for nonconvex optimization has
been widely studied (Fehrman et al., 2020; Bottou et al., 2018a; Scaman & Malherbe, 2020; Loizou et al.,
2021; Zaheer et al., 2018; Zou et al., 2019; Chen et al., 2019; Zhou et al., 2020; Chen et al., 2021; Iiduka,
2022).

When solving constrained optimization problems with these methods, it is necessary to compute the pro-
jection onto the constraint set at each iteration. In many problem settings, the computational cost of
projections to the constraint set such as the Euclidean norm ball can be very high, and in extreme cases the
projections can even be computationally infeasible (Collins et al., 2008). Here, we focus on the Frank Wolfe
algorithm (Frank & Wolfe, 1956), also called the conditional gradient algorithm (Levitin & Polyak, 1966), a
projection-free first-order method for constrained optimization.

The Frank Wolfe algorithm is a classical first-order method for solving convex optimization problems with
compact convex constraint sets. In recent years, it has received renewed attention thanks to its ability
to efficiently handle structured constraints that appear in machine learning. The algorithm and its many
variants, such as stochastic Frank Wolfe (SFW), have been well studied in the convex or strongly convex
setting (Jaggi, 2013; Freund & Grigas, 2014; Lacoste-Julien & Jaggi, 2015; Goldfarb et al., 2017; Locatello
et al., 2017; Zhang et al., 2019c; Tang et al., 2022), and they have been applied to matrix completion (Freund
et al., 2017; Locatello et al., 2019), regression (Négiar et al., 2020; Dvurechensky et al., 2023; Wirth et al.,
2023), and support vector machine (SVM)(Hazan & Luo, 2016; Lu & Freund, 2021). Even in the nonconvex
setting, convergence analyses have been provided for many variants (Reddi et al., 2016; Gu et al., 2019;
Grigas et al., 2019; Yurtsever et al., 2019; Chen et al., 2020a; Pokutta et al., 2020; Sahu & Kar, 2020;
Combettes et al., 2021; Nazykov et al., 2024), and some have been successful in experiments on deep neural
networks (DNNs) (Berrada et al., 2019; Miao et al., 2022). In particular, Frank Wolfe-type algorithms have
been shown to be effective in making adversarial attacks (see Section 4).

1

Under review as submission to TMLR

1.2 Motivation

1. Weak convergence analysis. Several previous studies provide convergence analyses of SFW methods
for nonconvex optimization, but many analyses do not actually show that some convergence measure tends to
0 as the number of steps T →∞. Some of the previous studies present guarantees of convergence by deriving
the inequality, 1

T

∑T −1
t=0 gap ≤ A

T γ + Bγ, and use γ = 1√
T

to derive 1
T

∑T −1
t=0 gap ≤ A√

T
+ B√

T
= O

(
1√
T

)
,

where gap is the convergence criterion, T the number of steps, γ > 0 the learning rate, and A, B > 0 constants
for simplicity. Recall that convergence of a sequence (an) to 0 is a necessary and sufficient condition of the
following: ∀ϵ > 0,∃n0 ∈ N : ∀n ≥ n0 ⇒ |an| < ϵ. Therefore, if the learning rate is set as γ = 1√

T
, the total

number of iterations T is predetermined and fixed, so A√
T

+ B√
T

is a constant, T cannot approach infinity,
and gap is not guaranteed to converge to 0. This is evident from the fact that 1

T

∑T −1
t=0 gap ≤ A

T γ + Bγ
for any T , and even if T → ∞, convergence of gap to 0 is still not guaranteed due to the extra term Bγ.
Thus, these analyses do not exactly show 1

T

∑T −1
t=0 gap = O

(
1√
T

)
and 1

T

∑T −1
t=0 gap→ 0 (T →∞). Instead,

from A+B√
T

< ϵ i.e. T > (A+B)2

ϵ2 , one can figure out the behavior of the number of iterations T for a fixed
threshold ϵ. Thus, these convergence analysis focuses on how many iterations T are required for a certain
fixed threshold ϵ, and their convergence rate of O

(
1√
T

)
does not necessarily mean that gap converges to 0

at rate of O
(

1√
T

)
. Therefore, the purpose of this paper is to perform a convergence analysis of SFW such

that gap converges to 0 based on the definition of convergence of a sequence.

Table 1: Summary of previous studies of SFW methods in nonconvex optimization. T means the total
number of iterations and t ∈ [T] denotes an iteration or time. L means Lipschitz constant. γt = O

(√
1

T L

)
in Learning Rate column indicates that the learning rate γt is set at γt = K

T L using some positive constant
K, emphasizing in particular that it is based on T and L. “Noise” in the Batch Size column means that
algorithm uses noisy observation, i.e., g(θ) = ∇f(θ)+ (Noise), of the full gradient ∇f(θ), while b = X in the
Batch Size column means that algorithm uses a mini-batch gradient ∇fSt

(θ) = 1
b

∑
i∈[b] Gξt,i

with a batch
size b (≤ n), where Gξt,i is stochastic gradient and n is the number of training data. The Momentum column
states whether the SFW algorithm includes a momentum factor. These results were presented in (1)(Reddi
et al., 2016, Theorem 2), (2)(Gu et al., 2019, Theorem 1), (3)(Grigas et al., 2019, Theorem 2.1), (4)(Négiar
et al., 2020, Theorem 2), (5)(Combettes et al., 2021, Theorem 3.3), and (6)(Nazykov et al., 2024, Theorem
2.3), where G(θ) is Frank Wolfe gap (see Section 2.1) and D > 0 means diameter of the constraint set (see
Assumption (A1)).

Algorithm Learning Rate Batch Size Momentum Convergence Analysis

(1) SFW γt = O
(√

1
T L

)
b = T No 1

T

∑
t∈[T] E[G(θt)] = O

(
1√
T

)
(2) AsySFW γt = O

(√
1

T L

)
b = T No 1

T

∑
t∈[T] E[G(θt)] = O

(
1√
T

)
(3) FW-SD γt = O

(√
1
L

)
b = T No E [G(θT)] = O

(
1√
T

)
γt = O

(√
1
L

)
b = t No E [G(θT)] = O

(√
log(T)

T

)
(4) SFW γt = 2

t+2 b ≤ n No lim inft→∞ E[G(θt)] = 0

(5) AdaSFW γt =
√

1
T bt = O

(
T
L

)
No 1

T

∑
t∈[T] E[G(θt)] = O

(
1√
T

)
γt = 1

t+1 bt = O
(

t
L2

)
No lim supt→∞ E[G(θt)] ≤ 0

(6) any SFW
methods γt =

√
1
T Noise No min

t∈[T]
E [G(θt)] = O

(
1√
T

+ D

)

2

Under review as submission to TMLR

Table 1 summarizes previous studies on SFW methods for nonconvex optimization. Some of the previous
studies on Frank Wolfe methods (Reddi et al., 2016; Gu et al., 2019; Chen et al., 2020a; Mokhtari et al.,
2020; Nazykov et al., 2024) used a learning rate γ that includes the total number of iterations T such that
γ = 1√

T
. Even if T is predetermined, this setup may be experimentally unrealistic, since T can be very

large depending on the training dataset and the number of epochs. Reddi et al. (2016); Gu et al. (2019)
used a batch size determined by b = T , but this setting is not realistic from the standpoint of computational
complexity because b becomes too large for medium-sized or larger experiments. Some studies (Reddi et al.,
2016; Gu et al., 2019; Grigas et al., 2019) also include a Lipschitz constant in the learning rate. Since
that information is not available in advance, this setup would also be impractical. A few studies (Négiar
et al., 2020; Combettes et al., 2021) used a traditional learning rate that decreases as γt := 2

t+2 depending
on time t. This setting may not be suitable for practical use, especially for large-scale optimizations such
as DNN training, because the learning rate quickly becomes too small. These analyses do not explain the
effectiveness of SFW methods in large-scale optimization of DNNs as is evident in (Miao et al., 2022). We
therefore aim to provide an analysis of the convergence of SFW when using constant and decaying learning
rates, which would be experimentally realistic. We also aim to provide a similar analysis for SFW with
momentum (SFWM), a natural extension of SFW.

2. Are FW attacks effective against robust models? Chen et al. (2020a) showed that the Frank
Wolfe algorithm is effective in adversarial attacks against non-robust models. Therefore, we would like to
clarify whether it is effective against robust models. Furthermore, we propose Auto-FW (AFW), inspired
by Auto-Projected Gradient Descent (APGD) (Croce & Hein, 2020) and Auto-Conjugate Gradient Descent
(ACG) (Yamamura et al., 2022), and clarify its performance for robust models (see Section 4 for details).

1.3 Contribution

1. Practical convergence analysis of SFW and SFW with momentum (Section 3). We provide
convergence analyses of SFW (Algorithm 2) and SFW with momentum (Algorithms 3) using a user-defined
learning rate that is independent of unknowns that cannot be known a priori. To evaluate convergence, we
use the Frank Wolfe gap G(θ), which is a commonly used measure in convergence analyses of Frank Wolfe
algorithms (see Section 2.1 for details).

Let (θt) ∈ Rd be the sequence generated by each of SFW (Algorithm 2) and SFWM (Algorithm 3). In Section
3, we will show that, under certain assumptions, the average of E [G(θt)] has an upper bound as shown in
Table 2, where the constant learning rate is γt := γ and the constant batch size is bt = b. In addition, for
fixed natural numbers K and E, the decaying learning rate and increasing batch size are defined as follows:

Decaying Learning Rate (I): γt := 1
t + 1

,

Decaying Learning Rate (II): γt := 1
(t + 1)a

(a ∈ [0.5, 1)),

Decaying Learning Rate (III): γt := (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), (1)

Increasing Batch Size: bt := (b, b, · · · , b︸ ︷︷ ︸
E

, λb, λb, · · · , λb︸ ︷︷ ︸
E

, · · · , λQ−1b, λQ−1b, · · · , λQ−1b︸ ︷︷ ︸
E

), (2)

where η ∈ (0, 1), λ > 1, PK = T , and QE = T . γ > 0 is the initial learning rate and b (≤ n) is the initial
batch size, where n is the number of training data. In addition, in Decaying Learning Rate (III), we set a
lower bound γ > 0, and if γt computed according to the definition (1) is less than the lower bound γ (≤ γt),
we set γt = γ. Similarly, in the increasing batch size, we set bt := n if bt computed according to the definition
(2) is above the upper bound n.

Note that all of our theorems are common to SFW and SFWM and that the momentum factor does not
appear. This is due to our key lemma (Lemma A.3) and is one of our technical contributions. Table 2
shows that the extra term independent of T disappears from the upper bound of gap only when using

3

Under review as submission to TMLR

Table 2: Convergence rate of our analysis. (LR: learning rate). Note that C > 0 is a constant.
Constant Batch Size Increasing Batch Size

Constant LR O
(

1
T

+ 1√
b

+ γ

)
(Theorem 3.1) O

(
1
T

+ γ

)
(Theorem 3.2)

Decaying LR (I) O
(

log T

T
+ 1√

b
+ C

)
(Theorem 3.3(i)) O

(
log T

T
+ C

)
(Theorem 3.4(i))

Decaying LR (II) O
(

1
T min{1−a,a} + 1√

b

)
(Theorerm 3.3(ii)) O

(
1

T min{1−a,a}

)
(Theorem 3.4(ii))

Decaying LR (III) O
(

1
T

+ 1√
b

)
(Theorem 3.3(iii)) O

(
1
T

)
(Theorem 3.4(iii))

both decreasing learning rates (II) and (III) and an increasing batch size, resulting in 1
T

∑T −1
t=0 E [G(θt)]→ 0

(T →∞). In particular, SFW and SFWM have a convergence rate of O(1/T) when using a decaying learning
rate (III) and an increasing batch size. We applied these algorithms to deep-learning training to verify their
performance (Section 3.3). Note that SFW with increasing batch sizes has been studied by (Goldfarb et al.,
2017; Hazan & Luo, 2016; Reddi et al., 2016) and SGD with increasing batch size also has been well studied
by (Byrd et al., 2012; Friedlander & Schmidt, 2012; Balles et al., 2017; De et al., 2017; Bottou et al., 2018b;
Smith et al., 2018).

2. Application to adversarial attack (Section 4). Our convergence analysis can be applied to any
constrained nonconvex optimization problem. In this paper, the SFW algorithms are used to generate
adversarial examples. In Section 4.3, we propose a new adversarial attack method, Auto-FW (AFW), an
adaptation of the APGD approach to SFW. Furthermore, we show that AFW has comparable performance
to APGD, which itself has state-of-the-art performance, and discuss its limitation in Section 4.5.

2 Preliminaries

Let N be the set of non-negative integers. For m ∈ N \ {0}, define [m] := {1, 2, . . . , m}. Let Rd be
a d-dimensional Euclidean space with inner product ⟨·, ·⟩, which induces the norm ∥ · ∥. The DNNs is
parameterized by a vector x ∈ Rd, which is optimized by minimizing the empirical loss function f(θ) :=
1
n

∑
i∈[n] fi(θ), where fi(θ) is the loss function for θ ∈ Rd and the i-th training data (xi, yi) (i ∈ [n]).

(θt)t∈N, or simply (θt), represents the points sequence (θ0, θ1, · · ·). Let ξ be a random variable that does
not depend on θ ∈ Rd, and let Eξ[X] denote the expectation with respect to ξ of a random variable X. ξt,i

is a random variable generated from the i-th sampling at time t, and ξt := (ξt,1, ξt,2, . . . , ξt,b) is independent
of (θk)t

k=0:= (θ0, θ1, . . . , θt) ⊂ Rd, where b (≤ n) is the batch size. The independence of ξ0, ξ1, . . . allows
us to define the total expectation E as E = Eξ0Eξ1 · · ·Eξt

. Let Gξt
(θ) be the stochastic gradient of f(·) at

θ ∈ Rd. The mini-batch St consists of bt samples at time t, and the mini-batch stochastic gradient of f(θt)
for St is defined as ∇fSt

(θt) := 1
bt

∑
i∈[bt] Gξt,i

(θt).

We will impose the following conditions, which are standard ones for nonconvex optimization in deep neural
networks (see, e.g., (Chen et al., 2019)).
Assumption 2.1.

(A1) The domain Ω ⊂ Rd is convex and compact with diameter D such that ∀x, y ∈ Ω: ∥x− y∥ ≤ D.

(A2) fi : Rd → R (i ∈ [n]) are continuously differentiable and L-smooth on Ω, i.e.,

∀x, y ∈ Ω : ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

(A3) Let (θt)t∈N ⊂ Rd be the sequence generated by an optimizer.
(i) For each iteration t, Eξt

[Gξt
(θt)] = ∇f(θt).

(ii) There exists a nonnegative constant σ2 such that Eξt

[
∥Gξt(θt)−∇f(θt)∥2] ≤ σ2.

4

Under review as submission to TMLR

(A4) For each iteration t, the optimizer samples the mini-batch St ⊂ S and estimates the full gradient ∇f
as

∇fSt
(θt) := 1

bt

∑
i∈[b]

Gξt,i
(θt) = 1

bt

∑
{i : (xi,yi)∈St}

∇fi(θt).

Problem 2.1. Under Assumption 2.1, we would like to minimize f(θ) := 1
n

∑n
i=1 fi(θ) over Ω.

2.1 Stochastic Frank Wolfe algorithm

Algorithm 1 Frank Wolfe
Require: (γt)t∈N ⊂ R++

t← 0, θ0 ∈ Ω
loop

vt = argmax
v∈Ω

⟨v,−∇f(θt)⟩

dt = vt − θt

θt+1 = θt + γtdt

t← t + 1
end loop

Algorithm 2 Stochastic Frank Wolfe (SFW)
Require: (γt)t∈N ⊂ R++

t← 0, θ0 ∈ Ω
loop

vt = argmax
v∈Ω

⟨v,−∇fSt
(θt)⟩

dt = vt − θt

θt+1 = θt + γtdt

t← t + 1
end loop

In general, ∥∇f(θ)∥ cannot be used as a measure of convergence in constrained optimization. So instead,
the Frank Wolfe gap G(θ) such that

G(θ) := max
v∈Ω
⟨v − θ,−∇f(θ)⟩,

is introduced as a measure of convergence. Suppose that θ⋆ is a local minimizer of f over Ω; from the
optimality conditions,

∀v ∈ Ω : ⟨v − θ⋆,∇f(θ⋆)⟩ ≥ 0 i.e. G(θ⋆) ≤ 0.

Therefore, our goal is to make G(θ) small. Note that G(θ) = 0 does not necessarily imply that θ is a
local minimizer of f . We will consider the following optimizer that uses the mini-batch stochastic gradient
∇fSt(θt) instead of the full gradient ∇f(θt), described by Algorithm 2, for solving Problem 2.1. In addition,
attempts have been made to add a momentum term in several different variants and under many different
names (Mokhtari et al., 2018; Chen et al., 2018; Mokhtari et al., 2020; Xie et al., 2020; Chen et al., 2020a;
Pokutta et al., 2020; Pethick et al., 2025). In accordance with Pokutta et al. (2020), we will refer to Algorithm
3 as SFW with momentum (SFWM). Note that our SFWM have fixed momentum factor β.

Algorithm 3 SFW with momentum (SFWM)
Require: (γt)t∈N ⊂ R++, β ∈ [0, 1)

t← 0, θ0 ∈ Ω, m−1 ← 0
loop

mt = βmt−1 + (1− β)∇fSt
(θt)

vt = argmax
v∈Ω

⟨v,−mt⟩

dt = vt − θt

θt+1 = θt + γtdt

t← t + 1
end loop

5

Under review as submission to TMLR

3 Theoretical Main Results

3.1 Convergence analyses of SFW algorithms using a constant learning rate

Assumption 3.1. (C1) γt := γ for all t ∈ N.

The following are convergence analyses of Algorithm 3 with a constant learning rate. The proofs of Theorems
3.1 and 3.2 are given in Appendix B.
Theorem 3.1 (Constant Learning Rate and Constant Batch Size). Suppose that Assumptions 2.1
and 3.1 hold and consider the sequence (θt)t∈N generated by each of Algorithms 2 and 3 with a constant batch
size bt := b. Then, the following holds:

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ√

b
+ LD2γ

2
= O

(
1
T

+ 1√
b

+ γ

)
,

where θ⋆ := argmin
θ∈Ω

f(θ).

Theorem 3.2 (Constant Learning Rate and Increasing Batch Size). Suppose that Assumptions 2.1
and 3.1 hold and consider the sequence (θt)t∈N generated by each of Algorithms 2 and 3 with an increasing
batch size (2).Then, the following holds:

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2γ

2
= O

(
1
T

+ γ

)
,

where θ⋆ := argmin
θ∈Ω

f(θ).

3.2 Convergence analyses of SFW algorithms using a decaying learning rate

The following are convergence analyses of Algorithm 3 with a decaying learning rates (I), (II), and (III). The
proofs of Theorems 3.3 and 3.4 are given in Appendices C and D.
Theorem 3.3 (Decaying Learning Rate (I, II, III) and Constant Batch Size). Suppose that Assump-
tion 2.1 and the monotone decreasing property of (γt)t∈N hold and consider the sequence (θt)t∈N generated
by each of Algorithms 2 and 3 with a constant batch size bt := b. Then, the following is true:

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

TγT −1
+ Dσ√

b
+ LD2

2T

T −1∑
t=0

γt,

where θ⋆ := argmin
θ∈Ω

f(θ), and f̄ is an upper bound of f .

(i) If we use γt = 1
(t+1) , then

1
T

T −1∑
t=0

E [G(θt)] ≤ 2 max{f̄ , |f(θ⋆)|}+ Dσ√
b

+ LD2(1 + log T)
2T

= O
(

log T

T
+ 1√

b
+ C

)
.

(ii) If we use γt = 1
(t+1)a (a ∈ [1

2 , 1)), then

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

T 1−a
+ Dσ√

b
+ LD2

2(1− a)T a
= O

(
1

T min{1−a,a} + 1√
b

)
.

(iii) If we use γt = (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), then

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

Tγ
+ Dσ√

b
+ LD2

2T

Kγ

1− η
= O

(
1
T

+ 1√
b

)
,

6

Under review as submission to TMLR

where γ > 0, η ∈ (0, 1), C > 0 is a constant, γ is the lower bound of γt defined as (1), and for a fixed natural
number K, PK = T .
Theorem 3.4 (Decaying Learning Rate (I, II, III) and Increasing Batch Size). Suppose that
Assumption 2.1 and the monotone decreasing property of (γt)t∈N hold and consider the sequence (θt)t∈N
generated by each of Algorithms 2 and 3 with an increasing batch size (2).Then, the following is true:

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

TγT −1
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2T

T −1∑
t=0

γt,

where θ⋆ := argmin
θ∈Ω

f(θ), and f̄ is an upper bound of f .

(i) If we use γt = 1
(t+1) , then

1
T

T −1∑
t=0

E [G(θt)] ≤ 2 max{f̄ , |f(θ⋆)|}+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2(1 + log T)

T
= O

(
log T

T
+ C

)
.

(ii) If we use γt = 1
(t+1)a (a ∈ [1

2 , 1)), then

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

T 1−a
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2(1− a)T a
= O

(
1

T min{1−a,a}

)
.

(iii) If we use γt = (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), then

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

Tγ
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2T

Kγ

1− η
= O

(
1
T

)
.

where γ > 0, η ∈ (0, 1), C > 0 is a constant, γ is the lower bound of γt defined as (1), and for a fixed natural
number K, PK = T .

Our theorems were analyzed for the sequence (θt) generated by SFWM (Algorithm 3), but the momentum
factor β does not appear in the upper bound for the Frank Wolfe gap, thanks to the key lemma (Lemma
A.3). Therefore, Theorems 3.1-3.4 also hold for the sequence (θt) generated by SFW (Algorithm 2).

3.3 Numerical Results

To verify the performance of Algorithms 2 and 3, we conducted numerical experiments on training ResNet18
(He et al., 2016) with the CIFAR100 (Krizhevsky, 2009) dataset under the L2 constraint. The training took
200 epochs. The initial learning rate γ0 was 0.1 for all algorithms and the momentum factor β was 0.9 for
SFWM. The radius of the L2 constraint was set to 300. Figure 1 plots the top-1 test accuracy and loss
function values with the SFW methods. SFW (constant bs), SFWM (constant bs), SVFW (Reddi et al.,
2016), SAGAFW (Reddi et al., 2016), and Mokhtari’s SFW (Mokhtari et al., 2020) used a constant batch
size of 210 and a constant learning rate γt = γ0 = 0.1, i.e., this setting is based on Theorem 3.1. SFW
(increasing bs) and SFWM (increasing bs) used batch sizes that quadruple every 40 epochs; i.e., this setting
is based on Theorem 3.2. We tuned Adam with learning rates {0.0001, 0.001, 0.01}, β1 values {0, 0.5, 0.7,
0.9} and β2 values {0.9, 0.99, 0.999}. Based on our tuning results, we selected a learning rate of 0.001,
and betas of (0.9, 0.999) for our experiments. Adam (Kingma & Ba, 2015) used 0.001 of learning rate and
(0.9, 0.999) of betas. Note that Mokhtari’s SFW have momentum factor that varies with iteration t. This is
different from SFWM (Algorithm 3) where the momentum factor is fixed. The rising curve is test accuracy
and the falling curve is the training loss function.

Figure 2 similarly plots test accuracy and the loss function values for a batch size of 210 and a decaying
learning rate that halves every 40 epochs; i.e., this setting is based on Theorem 3.3(ii). SFW (increasing bs)

7

Under review as submission to TMLR

1

0.1

0.01

lo
ss

 fu
nc

tio
n

va
lu

e
fo

r t
ra

in
in

g

Training ResNet18 on CIFAR100 dataset with constant learning rate

0 40 80 120 160 200
epoch

45

50

55

60

65

70

ac
cu

ra
cy

 sc
or

e
fo

r t
es

t

SFW
SFWM
SVFW
SAGAFW

SFW (increasing bs)
SFWM (increasing bs)
Mokhtari's SFW
Adam

Figure 1: Accuracy score for the testing and loss function value for training versus the number of epochs in
training ResNet18 on the CIFAR100 dataset with the L2 constraint and a constant learning rate. The solid
line represents the mean value, and the shaded area represents the maximum and minimum over three runs.
The batch size was increased every 40 epochs as [8, 32, 128, 512, 2048] for SFW (increasing bs) and SFWM
(increasing bs). (bs: batch size).

1

0.1

0.01

0.002

lo
ss

 fu
nc

tio
n

va
lu

e
fo

r t
ra

in
in

g

Training ResNet18 on CIFAR100 dataset with decaying learning rate (III)

0 40 80 120 160 200
epoch

45

50

55

60

65

70

75

ac
cu

ra
cy

 sc
or

e
fo

r t
es

t

SFW (constant bs)
SFWM (constant bs)
SFW (increasing bs)
SFWM (increasing bs)
Adam

Figure 2: Accuracy score for the testing and loss function value for training versus the number of epochs in
training ResNet18 on the CIFAR100 dataset with the L2 constraint and a decaying learning rate. The solid
line represents the mean value, and the shaded area represents the maximum and minimum over three runs.
For SFW and SFWM, the learning rate was decreased every 40 epochs as [0.1, 0.05, 0.025, 0.0125, 0.00625]
and batch size was fixed at 210. The batch size was increased every 40 epochs as [8, 32, 128, 512, 2048] and
the learning rate was decreased using the same rule for SFW (increasing bs) and SFWM (increasing bs).
(bs: batch size).

and SFWM (increasing bs) used batch sizes that quadruple every 40 epochs; i.e., this setting is based on
Theorem 3.4(ii).

Both figures show that SFWM (constant bs) achieve higher test accuracy and lower loss function values than
those of SFW (constant bs). Note, however, that this is due to the large batch size. We have performed
similar experiments with different batch sizes and observed that the exact opposite results are obtained when
the batch size is small (see Figures 3 and 4 in Appendix E.1). Thus, for SFW, adding momentum helps when

8

Under review as submission to TMLR

the batch size is large, but has the opposite effect when the batch size is small. Note that we only consider
a fixed momentum factor. This is the same phenomenon observed in SGD and SGD with momentum that
some previous studies have observed experimentally (Shallue et al., 2019; Jelassi & Li, 2022; Kunstner et al.,
2023). In addition, Figures 1 and 2 show that, for all methods, the decaying learning rate achieves higher test
accuracy and lower loss function values than the constant learning rate does. This finding is theoretically
supported by Theorems 3.1 and 3.3(ii) (see also Table 2). Furthermore, Figures 1 and 2 show that, for SFW,
the increasing batch size achieves higher test accuracy and lower loss function values than the constant batch
size does. For SFWM, however, using a decaying learning rate and increasing batch size improves the test
accuracy, but worsens the loss function value. This cannot be explained by our theorem and is a limitation
of our theory.

We also performed similar experiments for decaying learning rates (I) γt := 1
t+1 based on Theorem 3.3(i)

and (II) γt := 1√
t+1 based on Theorem 3.3(ii) (see Figures 5 and 6 in Appendix E.1) and observed their

limitations.

In fact, the ResNet18 training we have performed in this section does not need to be constrained, and
unconstrained optimization algorithms such as SGD are sufficient.

4 Application to Adversarial Attacks

In this section, we explain that the optimization problem for the adversarial attack is an instance of a
constrained non-convex optimization problem and experimentally verify whether this attack succeeds with
FW methods.

Deep neural networks are vulnerable to adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015),
which are generated by adding perturbations to real images that are too small for the human eye to perceive.
Improving the robustness of classifiers to adversarial examples has become one of the most studied topics in
the machine learning community. Adversarial training (Goodfellow et al., 2015), which includes adversarial
examples in the training data, is effective in improving robustness. Generating adversarial examples is also
important for robust model development because adversarial examples can be used to evaluate the robustness
of a model. An adversarial attack is a method to create adversarial examples, and various algorithms have
been proposed. Depending on the amount of information an attacker has access to, adversarial attacks
can be divided into white-box attacks (Szegedy et al., 2014; Goodfellow et al., 2015) and black-box attacks
(Papernot et al., 2016; Chen et al., 2017). In a white-box attack, the attacker has access to the complete
information including the weights of the target model, while in a black-box attack, the adversary has access
only to the inputs and outputs of the target model. In this paper, we focus on white-box attacks.

4.1 White-box attack

For white-box attacks, Szegedy et al. (2014) proposed to use the box-constrained limited-memory Broyden-
Fletcher-Goldferb-Shanno (L-BFGS) algorithm. Goodfellow et al. (2015) proposed the fast gradient sign
method (FGSM) to overcome the speed limitation of L-BFGS. Kurakin et al. (2016) proposed an iterative-
FGSM (I-FGSM) algorithm that iterates over the one-iteration FGSM algorithm. Madry et al. (2018) showed
that I-FGSM with the L∞ norm is approximately equivalent to projected gradient descent (PGD). PGD is
the most popular attack because it is computationally inexpensive and has been successful in many cases.
Auto-PGD (APGD) (Croce & Hein, 2020) is an attack that searches for perturbations while dynamically
varying the learning rate of PGD. In this paper, FW is used to attack. Note that we are not the first
to use FW-type algorithms in adversarial attacks. Several previous studies tackled adversarial attacks
using the Frank Wolfe algorithm or its variants. Chen et al. (2020a) applied Frank Wolfe with momentum
factor to white-box and black-box attacks against a non-robust model and showed that FW has better
attack performance than PGD. Several previous results studies the effectiveness of FW-type zeroth order
optimization algorithms against black-box attack (Chen et al., 2020a; Sahu & Kar, 2020; Huang et al., 2020a).
Imtiaz et al. (2022) proposed the Sparse Adversarial and Interpretable Attack Framework (SAIF), an attack
method that minimizes magnitude and sparsity of perturbations using FW, and showed that it outperforms
conventional methods, especially when the perturbation constraints are tight. Kazemi et al. (2021) consider

9

Under review as submission to TMLR

several structured constraints different from the traditional Lp norm constraints, and standard FW is used
to generate the adversarial example.

4.2 Problem setting

Given a training dataset S = {(xi, yi)|xi ∈ Rd, yi ∈ Rc}n−1
i=0 drawn i.i.d. from the distribution, where

c ∈ N is the number of classes in the training dataset, consider a classification with a neural network
g(x, θ). Here, xi ∈ Rd is the real image, yi is the label for xi, and θ is the parameter of the model g.
Let g(x) be the predicted labels of the classifier and fi(g(xi), yi) be the loss function. The parameters of
the neural network are updated to minimize f(θ) := 1

n

∑n−1
i=0 fi(g(xi), yi). When training is completed, the

classifier g will be able to classify the input image x with high accuracy. We aim to skew the predictions
of the trained classifier by adding a miniscule amount of noise to the input image x. Given a distance
function d(·, ·) and a positive number ϵ > 0, the generated adversarial example xadv can be expressed as
xadv ∈ {x̂i | g(x̂i) ̸= yi, d(x̂i, xi) ≤ ϵ}. The adversarial attack can be formulated as follows:

max
x̂∈Rd

f(g(x̂), y) s.t. d(x̂, x) ≤ ϵ.

This is an example of Problem 2.1, and the constraint set Ω in Problem 2.1 can be expressed as Ω = {x̂ ∈
Rd | d(x̂, x) ≤ ϵ}, which satisfies Assumption (A1). In experiments, the Euclidean norm or maximum norm
is often chosen as the distance function d(·, ·). ϵ is important because it controls the amount of noise that
can be added to the real images. The larger ϵ is, the more it can distort the real image and increase the
success rate of the attack. However, since we want to add noise that is imperceptible to humans, we should
use a small value of ϵ. In experiments, ϵ is often set to a small value such as 8/255 or 4/255. See Section 4.5
for the detailed experimental setup.

4.3 Auto-Frank Wolfe Attack

We propose the Auto-Frank Wolfe (AFW) attack as a new adversarial attack derived from the FW approach.
The proposed scheme is summarized in Algorithm 4.

Algorithm 4 Auto-Frank Wolfe
Require: f, Ω, x0, γ0, Niter, W = {w0, · · · , wn}

xadv ← x0, m−1 ← 0
for t = 0 to Niter − 1 do

vt = argmax
v∈Ω

⟨v,∇f(xt)⟩

dt = vt − xt

xt+1 = xt + γtdt

if f(xt+1) > f(xadv) then
xadv ← xt+1

end if
if t ∈W then

if Condition (i) or (ii) is satisfied then
γt+1 ← γt/2
xt+1 ← xadv

end if
end if

end for

In the part of Algorithm 4 that calculates vt, ⟨v,∇f(xt)⟩ is used instead of ⟨v,−∇f(xt)⟩. This is because we
are trying to increase the function value. In Algorithm 4, the method proposed in APGD is used for step size
selection (Croce & Hein, 2020). The initial step size γ0 is set to 2ϵ. When the number of iterations reaches
the pre-calculated checkpoint wj ∈ W , the step size γt is halved if either of the following two conditions is
satisfied. These conditions indicate that the attack is not going well.

10

Under review as submission to TMLR

(i) Nc < ρ · (wj − wj−1),
(ii) γwj−1 = γwj and f

(wj−1)
max = f

(wj)
max ,

where Nc := #{i = wj−1, · · · , wj − 1 | f(xt+1) > f(xt)}, ρ > 0, and f
(t)
max := max {f(xk)|k = 0, · · · , t} .

Regarding the convergence guarantee of AFW, we see from Theorem 3.1 that AFW has a convergence rate
of O

(
1

Niter
+ γ0

)
if the attacks by AFW are consistently successful, since AFW uses the same learning rate

for all iterations. Note, however, that since AFW is a deterministic algorithm, the term involving batch size
b disappears in Theorem 3.1. On the other hand, if the AFW attack is not effective, the point sequence is
pulled back to the checkpoints and the learning rate is halved. For every n checkpoints, the number of cases
to consider is 2n − 1. This makes it difficult to theoretically show the convergence of AFW, and this is also
true for APGD and ACG.

4.4 Adversarial robustness

Many methods have been proposed to improve the robustness of models, such as gradient regularization
(Ross & Doshi-Velez, 2018), curvature regularization (Moosavi-Dezfooli et al., 2018; Huang et al., 2020c),
randomized smoothing (Cohen et al., 2019), local linearization (Qin et al., 2019), and adversarial training
(Goodfellow et al., 2015; Madry et al., 2018; Zhang et al., 2019b; Wu et al., 2020; Wang et al., 2020; Zhang
et al., 2020; Huang et al., 2021b; Balaji et al., 2019; Zhang et al., 2021; Pang et al., 2022; Wang et al., 2023).
Among these methods, adversarial training is the most standard one to improve adversarial robustness. It
improves robustness by learning adversarial examples in addition to the usual training data. For non-robust
models, almost all methods can achieve a classification accuracy of 0% (for example, see (Chen et al., 2020a,
Table 1 and 2)). So in this paper, we evaluate the attack performance of FW algorithms by attacking robust
models trained with adversarial training and compare it with PGD and APGD.

4.5 Numerical Results

To evaluate the attack performance of AFW, we conducted an experiment comparing the performance of
APGD and AFW against state-of-the-art robust models listed in RobustBench (Croce et al., 2021). Table
3 shows the results of APGD and AFW intercepting the classification task of the CIFAR100 dataset with
several robust models. The loss function was the cross entropy loss. The constraint set was L∞ with diameter
ϵ = 8/255 and the attack was executed over the course of 100 steps. In all experiments, both APGD and
AFW use an initial learning rate of 4ϵ. This is the default value in the APGD implementation (Croce & Hein,
2020). Clean accuracy refers to the classification accuracy achieved by the model before the attack, while
adversarial accuracy refers to the classification accuracy achieved by the model after the attack. Therefore,
a lower adversarial accuracy implies a more successful attack. Table 3 shows that AFW has an attack
performance almost equal to that of APGD, a state-of-the-art attack method. We also performed PGD,
FW, APGD, and AFW attacks on the image classification task of the CIFAR10, CIFAR100, and ImageNet
dataset and obtained similar results (see Tables 5-8 in Appendix E.2).

In addition, Table 4 shows the results of APGD and AFW intercepting the classification task of the CIFAR10,
CIFAR100, and ImageNet dataset with robust model proposed by (Jiang et al., 2023). The adversarial
perturbations is bounded by an L1 norm and the threshold ϵ for each dataset follows their setting. Note that
Fast-EG-L1 is the method proposed by (Jiang et al., 2023) and nuclear norm adversarial training (NuAT) is
the method proposed by (Sriramanan et al., 2021). Table 4 also shows that AFW has an attack performance
almost equal to that of APGD.

Throughout all of the experimental results, the difference in performance between AFW and APGD is less
than 1 percent. This is also the case in previous study that proposed ACG (Yamamura et al., 2022) and
may be due to the very small size of the constraint set in an adversarial attack. In terms of computational
complexity and time, AFW performs similarly to APGD, and we found no advantage of AFW over APGD.
Although we have indeed shown that AFW is effective for adversarial attacks, the choice of optimization
method may not be so important for adversarial attacks.

11

Under review as submission to TMLR

Table 3: Adversarial accuracy achieved by APGD and AFW. CIFAR100 dataset/L∞ with ϵ = 8/255
paper Architecture clean accuracy APGD AFW

(Wang et al., 2023) WideResNet-70-16 75.22 48.11 48.16
(Wang et al., 2023) WideResNet-28-10 72.58 44.05 44.12

(Debenedetti et al., 2023) XCiT-L12 70.76 38.97 39.02
(Rebuffi et al., 2021) WideResNet-70-16 63.56 38.28 38.31

(Debenedetti et al., 2023) XCiT-M12 69.21 38.69 38.77
(Pang et al., 2022) WideResNet-70-16 65.56 36.66 36.71

(Debenedetti et al., 2023) XCiT-S12 67.34 37.08 37.06
(Rebuffi et al., 2021) WideResNet-28-16 62.41 35.73 35.8

(Jia et al., 2022) WideResNet-34-20 67.31 36.46 36.62
(Addepalli et al., 2022a) WideResNet-34-10 68.75 36.84 36.92

(Cui et al., 2021) WideResNet-34-10 62.97 37.05 37.17
(Sehwag et al., 2022) WideResNet-34-10 65.93 35.77 35.89
(Pang et al., 2022) WideResNet-28-10 63.66 35.25 35.26
(Jia et al., 2022) WideResNet-34-10 64.89 35.28 35.53

(Addepalli et al., 2022b) WideResNet-34-10 65.73 35.64 36.07
(Cui et al., 2021) WideResNet-34-20 62.55 34.08 34.27
(Cui et al., 2021) WideResNet-34-10 60.64 33.99 34.10

(Rade & Moosavi-Dezfooli, 2021) PreActResNet-18 61.50 32.58 32.61
(Wu et al., 2020) WideResNet-34-10 60.38 33.25 33.34

(Rebuffi et al., 2021) PreActResNet-18 56.87 31.77 31.8
(Hendrycks et al., 2019) WideResNet-28-10 59.23 32.88 33.01
(Addepalli et al., 2022a) ResNet-18 65.45 33.55 33.68

(Cui et al., 2021) WideResNet-34-10 70.25 29.98 30.02
(Addepalli et al., 2022b) PreActResNet-18 62.02 32.88 32.94

(Chen et al., 2022) WideResNet-34-10 62.15 30.98 31.13
(Rice et al., 2020) PreActResNet-18 53.83 20.63 20.57

Table 4: Adversarial accuracy achieved by APGD and AFW with L1 constraints.
dataset (threshold) Architecture (method) clean accuracy APGD AFW
CIFAR10 (ϵ = 12) PreActResNet-18 (Fast-EG-L1) 76.22 51.87 52.03
CIFAR10 (ϵ = 12) PreActResNet-18 (Fast-EG-L1+NuAT) 73.73 53.22 53.27
CIFAR100 (ϵ = 6) PreActResNet-18 (Fast-EG-L1) 59.43 39.56 39.61
CIFAR100 (ϵ = 6) PreActResNet-18 (Fast-EG-L1+NuAT) 58.50 41.73 41.65

ImageNet100 (ϵ = 72) ResNet34 (Fast-EG-L1) 67.62 48.80 48.76
ImageNet100 (ϵ = 72) ResNet34 (Fast-EG-L1+NuAT) 62.34 50.50 50.48

5 Conclusions

We provided a practical convergence analysis of SFW and SFW with momentum with a constant or decaying
learning rate for solving constrained nonconvex optimization problems. In our analysis, the learning rate
and the batch size are independent of unknown parameters and are experimentally realistic. We showed that
when the momentum factor is zero or fixed, the Frank Wolfe gap has a convergence rate of O(1/T) only
when we decrease the learning rate and increase the batch size. Our numerical experiments show that SFW
with momentum outperforms SFW in both test accuracy and loss function value when the batch size is large
and that using a decaying learning rate and increasing batch size achieves higher test accuracy and lower
loss function values than does using a constant learning rate in image classification tasks with ResNet18.
We also showed experimentally that FW algorithms perform as well as PGD in adversarial attacks and that
our proposed AFW performs as well as APGD.

12

Under review as submission to TMLR

References
Sravanti Addepalli, Samyak Jain, and Venkatesh Babu R. Efficient and effective augmentation strategy for

adversarial training. In Advances in Neural Information Processing Systems 36, 2022a.

Sravanti Addepalli, Samyak Jain, Gaurang Sriramanan, and R. Venkatesh Babu. Scaling adversarial training
to large perturbation bounds. In European Conferene on Computer Vision, volume 13665, pp. 301–316,
2022b.

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial training.
In Advances in Neural Information Processing Systems 34, 2020.

Yogesh Balaji, Tom Goldstein, and Judy Hoffman. Instance adaptive adversarial training: Improved accuracy
tradeoffs in neural nets. https://arxiv.org/abs/1910.08051, 2019.

Lukas Balles, Javier Romero, and Philipp Hennig. Coupling adaptive batch sizes with learning rates. In
Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence, 2017.

Leonard Berrada, Andrew Zisserman, and M. Pawan Kumar. Deep Frank-Wolfe For Neural Network Opti-
mization. International Conference on Learning Representations, 2019.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018a.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311, 2018b.

Richard H. Byrd, Gillian M. Chin, Jorge Nocedal, and Yuchen Wu. Sample size selection in optimization
methods for machine learning. Mathematical Programming, 134(1):127–155, 2012.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C. Duchi, and Percy Liang. Unlabeled data
improves adversarial robustness. In Advances in Neural Information Processing Systems 32, pp. 11190–
11201, 2019.

Jinghui Chen, Dongruo Zhou, Jinfeng Yi, and Quanquan Gu. A frank-wolfe framework for efficient and
effective adversarial attacks. In the 34th AAAI Conference on Artificial Intelligence, pp. 3486–3494,
2020a.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the gen-
eralization gap of adaptive gradient methods in training deep neural networks. In Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, volume 452, pp. 3267–3275, 2021.

Jinghui Chen, Yu Cheng, Zhe Gan, Quanquan Gu, and Jingfeng Zhang. Efficient robust training via backward
smoothing. In Thirty-Sixth AAAI Conference on Artificial Intelligence, pp. 6222–6230, 2022.

Lin Chen, Christopher Harshaw, Hamed Hassani, and Amin Karbasi. Projection-free online optimization with
stochastic gradient: From convexity to submodularity. In Proceedings of 35th International Conference on
Machine Learning, volume 80, pp. 813–822, 2018.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO: Zeroth order optimization
based black-box attacks to deep neural networks without training substitute models. In Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26, 2017.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial robustness:
From self-supervised pre-training to fine-tuning. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 696–705, 2020b.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of Adam-type
algorithms for non-convex optimization. In Proceedings of the International Conference on Learning Rep-
resentations, 2019.

13

https://arxiv.org/abs/1910.08051

Under review as submission to TMLR

Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized
smoothing. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pp.
1310–1320, 2019.

Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and Peter L. Bartlett. Exponentiated gradient
algorithms for conditional random fields and max-margin markov networks. Journal of Machine Learning
Research, 9:1775–1822, 2008.

Cyrille W. Combettes, Christoph Spiegel, and Sebastian Pokutta. Projection-Free Adaptive Gradients for
Large-Scale Optimization. https://arxiv.org/pdf/2009.14114.pdf, 2021.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In Proceedings of the 37th International Conference on Machine Learning, volume
119, pp. 2206–2216, 2020.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flammarion,
Mung Chiang, Prateek Mittal, and Matthias Hein. RobustBench: a standardized adversarial robust-
ness benchmark. In Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, 2021.

Jiequan Cui, Shu Liu, Liwei Wang, and Jiaya Jia. Learnable boundary guided adversarial training. In 2021
IEEE/CVF International Conference on Computer Vision, pp. 15701–15710, 2021.

Sihui Dai, Saeed Mahloujifar, and Prateek Mittal. Parameterizing activation functions for adversarial ro-
bustness. In 2022 IEEE Security and Privacy Workshops (SPW), pp. 80–87, 2022.

Soham De, Abhay Kumar Yadav, David W. Jacobs, and Tom Goldstein. Automated inference with adaptive
batches. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
volume 54, pp. 1504–1513, 2017.

Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train robust vision transformers.
In First IEEE Conference on Secure and Trustworthy Machine Learning, 2023.

Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Max-margin adversarial
(MMA) training: Direct input space margin maximization through adversarial training. In Proceedings of
the 6th International Conference on Learning Represantations, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Pavel Dvurechensky, Kamil Safin, Shimrit Shtern, and Mathias Staudigl. Generalized self-concordant analysis
of Frank–Wolfe algorithms. Mathematical Programming, 198(1):255–323, 2023.

Benjamin Fehrman, Benjamin Gess, and Arnulf Jentzen. Convergence rates for the stochastic gradient
descent method for non-convex objective functions. Journal of Machine Learning Research, 21:1–48, 2020.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 1956.

Robert M. Freund and Paul Grigas. New analysis and results for the Frank-Wolfe method. Mathematical
Programming, 155(1):199–230, 2014.

Robert M. Freund, Paul Grigas, and Rahul Mazumder. An extended frank–wolfe method with “in-face”
directions, and its application to low-rank matrix completion. SIAM Journal on Optimization, 27(1):
319–346, 2017.

Michael P. Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data fitting. SIAM
Journal on Scientific Computing, 34(3), 2012.

14

https://arxiv.org/pdf/2009.14114.pdf

Under review as submission to TMLR

Donald Goldfarb, Garud Iyengar, and Chaoxu Zhou. Linear Convergence of Stochastic Frank Wolfe Variants.
In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, volume 54,
pp. 1066–1074, 2017.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In 3rd International Conference on Learning Representations, 2015.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and Timothy
Mann. Improving robustness using generated data. In Advances in Neural Information Processing Systems,
volume 34, pp. 4218–4233, 2021.

Paul Grigas, Alfonso Lobos, and Nathan Vermeersch. Stochastic In-Face Frank-Wolfe Methods for Non-
Convex Optimization and Sparse Neural Network Training. https://arxiv.org/pdf/1906.03580.pdf,
2019.

Bin Gu, Wenhan Xian, and Heng Huang. Asynchronous Stochastic Frank-Wolfe Algorithms for Non-Convex
Optimization. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI-19, pp. 737–743, 2019.

Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimization. In Proceedings
of The 33rd International Conference on Machine Learning, volume 48, pp. 1263–1271, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness and
uncertainty. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pp.
2712–2721, 2019.

Feihu Huang, Lue Tao, and Songcan Chen. Accelerated stochastic gradient-free and projection-free methods.
In Proceedings of the 37th International Conference on Machine Learning, volume 119, pp. 4519–4530,
2020a.

Hanxun Huang, Yisen Wang, Sarah M. Erfani, Quanquan Gu, James Bailey, and Xingjun Ma. Exploring
architectural ingredients of adversarially robust deep neural networks. In Advances in Neural Information
Processing Systems 34, pp. 5545–5559, 2021a.

Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical risk minimization.
In Advances in Neural Information Processing Systems 33, 2020b.

Tianjin Huang, Vlado Menkovski, Yulong Pei, and Mykola Pechenizky. Bridging the performance gap
between FGSM and PGD adversarial training. https://arxiv.org/abs/2011.05157, 2020c.

Tianjin Huang, Vlado Menkovski, Yulong Pei, and Mykola Pechenizky. Calibrated adversarial training. In
Proceedings of the 13th Asian Conference on Machine Learning, volume 157, pp. 626–641, 2021b.

Hideaki Iiduka. Appropriate learning rates of adaptive learning rate optimization algorithms for training
deep neural networks. IEEE Transactions on Cybernetics, 52(12):13250–13261, 2022.

Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, and Hadi Salman. Robustness library.
https://github.com/MadryLab/robustness, 2019.

Tooba Imtiaz, Morgan Kohler, Jared Miller, Zifeng Wang, Mario Sznaier, Octavia Camps, and Jennifer Dy.
Saif: Sparse adversarial and interpretable attack framework. , 2022.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the 30th
International Conference on Machine Learning, volume 28, pp. 427–435, 2013.

Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization in deep
learning. In Proceedings of the 39th International Conference on Machine Learning, volume 162, pp.
9965–10040, 2022.

15

https://arxiv.org/pdf/1906.03580.pdf
https://arxiv.org/abs/2011.05157
https://github.com/MadryLab/robustness

Under review as submission to TMLR

Xiaojun Jia, Yong Zhang, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun Cao. LAS-AT: adversarial training
with learnable attack strategy. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13388–13398, 2022.

Yulun Jiang, Chen Liu, Zhichao Huang, Mathieu Salzmann, and Sabine Süsstrunk. Towards stable and effi-
cient adversarial training against l1 bounded adversarial attacks. In Proceedings of the 40th International
Conference on Machine Learning, volume 202, pp. 15089–15104, 2023.

Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ode with lyapunov-stable equilibrium
points for defending against adversarial attacks. In Advances in Neural Information Processing Systems,
volume 34, pp. 14925–14937, 2021.

Ehsan Kazemi, Thomas Kerdreux, and Liquang Wang. Generating structured adversarial attacks using
frank-wolfe method. https://arxiv.org/abs/2102.07360, 2021.

Diederik P Kingma and Jimmy Lei Ba. A method for stochastic optimization. In Proceedings of the Inter-
national Conference on Learning Representations, pp. 1–15, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. https://www.cs.toronto.edu/
~kriz/learning-features-2009-TR.pdf, 2009.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the main
factor behind the gap between SGD and adam on transformers, but sign descent might be. In Proceedings
of the 8th International Conference on Learning Representations, 2023.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. https:
//arxiv.org/abs/1607.02533, 2016.

Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of Frank-Wolfe optimization
variants. In Advances in Neural Information Processing Systems, pp. 496–504, 2015.

E.S. Levitin and Boris T. Polyak. Constrained minimization methods. USSR Computational Mathematics
and Mathematical Physics, 6(5):1–50, 1966.

Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan He, Hui Xue,
and Shibao Zheng. A comprehensive study on robustness of image classification models: Benchmarking
and rethinking. https://arxiv.org/abs/2302.14301, 2023.

Francesco Locatello, Rajiv Khanna, Michael Tschannen, and Martin Jaggi. A Unified Optimization View on
Generalized Matching Pursuit and Frank-Wolfe. In Aarti Singh and Xiaojin (Jerry) Zhu (eds.), Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April
2017, Fort Lauderdale, FL, USA, volume 54, pp. 860–868, 2017.

Francesco Locatello, Alp Yurtsever, Olivier Fercoq, and Volkan Cevher. Stochastic Frank-Wolfe for Com-
posite Convex Minimization. In Advances in Neural Information Processing Systems 32, 2019.

Nicolas Loizou, Sharan Vaswani, Issam Laradji, and Simon Lacoste-Julien. Stochastic polyak step-size for
SGD: An adaptive learning rate for fast convergence: An adaptive learning rate for fast convergence.
In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS),
volume 130, 2021.

Haihao Lu and Robert M. Freund. Generalized stochastic Frank–Wolfe algorithm with stochastic “substi-
tute” gradient for structured convex optimization. Mathematical Programming, 187(1):317–349, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In Proceedings of the 6th International Conference
on Learning Represantations, 2018.

16

https://arxiv.org/abs/2102.07360
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/1607.02533
https://arxiv.org/abs/2302.14301

Under review as submission to TMLR

Lu Miao, Xiaolong Luo, Tianlong Chen, Wuyang Chen, Dong Liu, and Zhangyang Wang. Learning pruning-
friendly networks via Frank-Wolfe: One-shot, any-sparsity, and no retraining. In Proceedings of the 10th
International Conference on Learning Representations, 2022.

Aryan Mokhtari, S. Hamed Hassani, and Amin Karbasi. Conditional gradient method for stochastic submod-
ular maximization: Closing the gap. In International Conference on Artificial Intelligence and Statistics,
volume 84, pp. 1886–1895, 2018.

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional gradient methods: From convex
minimization to submodular maximization. Journal of Machine Learning Research, 21(105):1–49, 2020.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard. Robustness via
curvature regularization, and vice versa. http://arxiv.org/abs/1811.09716, 2018.

Ruslan Nazykov, Aleksandr Shestakov, Vladimir Solodkin, Aleksandr Beznosikov, Gauthier Gidel, and
Alexander V. Gasnikov. Stochastic Frank-Wolfe: Unified analysis and zoo of special cases. In Pro-
ceedings of the 27th International Conference on Artificial Intelligence and Statistics, volume 238, pp.
4870–4878, 2024.

Geoffrey Négiar, Gideon Dresdner, Alicia Tsai, Laurent El Ghaoui, Francesco Locatello, and Fabian Pe-
dregosa. Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization. Proceedings of the 37th In-
ternational Conference on Machine Learning, 2020.

Yurii Evgen’evich Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2). Doklady AN USSR, 269:543–547, 1983.

Tianyu Pang, Xiao Yang, Yinpeng Dong, Kun Xu, Hang Su, and Jun Zhu. Boosting adversarial training
with hypersphere embedding. In Advances in Neural Information Processing Systems 33, 2020.

Tianyu Pang, Min Lin, Xiao Yang, Jun Zhu, and Shuicheng Yan. Robustness and accuracy could be
reconcilable by (Proper) definition. In Proceedings of the 39th International Conference on Machine
Learning, volume 162, pp. 17258–17277, 2022.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from phe-
nomena to black-box attacks using adversarial samples. https://arxiv.org/abs/1605.07277, 2016.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and Volkan
Cevher. Training deep learning models with norm-constrained lmos. arXiv, https://arxiv.org/abs/
2502.07529, 2025.

Sebastian Pokutta, Christoph Spiegel, and Max Zimmer. Deep Neural Network Training with Frank-Wolfe.
https://arxiv.org/pdf/2010.07243.pdf, 2020.

Boris T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4:1–17, 1964.

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein Fawzi,
Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial robustness through local linearization.
http://arxiv.org/abs/1907.02610, 2019.

Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli. Helper-based adversarial training: Reducing excessive
margin to achieve a better accuracy vs. robustness trade-off. In International Conference on Machine
Learning 2021 Workshop on A Blessing in Disguise: The Prospects and Perlis of Adversarial Machine
Learning, 2021.

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A. Calian, Florian Stimberg, Olivia Wiles, and Timothy Mann.
Fixing data augmentation to improve adversarial robustness. https://arxiv.org/abs/2103.01946, 2021.

17

http://arxiv.org/abs/1811.09716
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2502.07529
https://arxiv.org/pdf/2010.07243.pdf
http://arxiv.org/abs/1907.02610
https://arxiv.org/abs/2103.01946

Under review as submission to TMLR

Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic Frank-Wolfe Methods for Non-
convex Optimization. In 54th Annual Allerton Conference on Communication, Control, and Computing,
pp. 1214–1251, 2016.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. Proceedings
of The International Conference on Learning Representations, 2018.

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In Proceedings of
the 37th International Conference on Machine Learning, volume 119, pp. 8093–8104, 2020.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22:400–407, 1951.

Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability of
deep neural networks by regularizing their input gradients. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, pp. 1660–1669, 2018.

Anit Kumar Sahu and Soummya Kar. Decentralized zeroth-order constrained stochastic optimization algo-
rithms: Frank–wolfe and variants with applications to black-box adversarial attacks. Proceedings of the
IEEE, 108(11):1890–1905, 2020.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially
robust imagenet models transfer better? In Advances in Neural Information Processing Systems 33, 2020.

Kevin Scaman and Cedric Malherbe. Robustness analysis of non-convex stochastic gradient descent using
biased expectations. In Advances in Neural Information Processing Systems, volume 33, pp. 16377–16387,
2020.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. HYDRA: pruning adversarially robust neural
networks. In Advances in Neural Information Processing Systems 33, 2020.

Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chiang, and Prateek
Mittal. Robust learning meets generative models: Can proxy distributions improve adversarial robustness?
In Proceedings of the International Conference on Learning Representations, 2022.

Christopher J. Shallue, Jaehoon Lee, Joseph M. Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E.
Dahl. Measuring the effects of data parallelism on neural network training. Journal of Machine Learning
Research, 20(112):1–49, 2019.

Naman D Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for imagenet: Archi-
tectures, training and generalization across threat models. https://arxiv.org/abs/2303.01870, 2023.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning rate,
increase the batch size. In Proceedings of the 6th International Conference on Learning Representations,
2018.

Kaustubh Sridhar, Oleg Sokolsky, Insup Lee, and James Weimer. Improving neural network robustness via
persistency of excitation. In American Control Conference, pp. 1521–1526, 2022.

Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and Venkatesh Babu R. Towards efficient and
effective adversarial training. In Proceedings of the 34th Conference on Neural Information Processing
Systems, pp. 11821–11833, 2021.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In 2nd International Conference on Learning
Representations, 2014.

Tongyi Tang, Krishna Balasubramanian, and Thomas Chun Man Lee. High-probability bounds for robust
stochastic Frank-Wolfe algorithm. In Proceedings of the Thirty-Eighth Conference on Uncertainty in
Artificial Intelligence, volume 180, pp. 1917–1927, 2022.

18

https://arxiv.org/abs/2303.01870

Under review as submission to TMLR

Tijmen Tieleman and Geoffrey Hinton. Rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine learning, 4:26–31, 2012.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving adversarial
robustness requires revisiting misclassified examples. In Proceedings of the 8th International Conference
on Learning Represantations, 2020.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion models
further improve adversarial training. In Proceedings of the 40th International Conference on Machine
Learning, volume 202, pp. 36246–36263, 2023.

Elias Wirth, Thomas Kerdreux, and Sebastian Pokutta. Acceleration of Frank-Wolfe Algorithms with
Open Loop Step-Sizes. In Proceedings of the 26th International Conference on Artificial Intelligence and
Statistics, 2023.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training. In
Proceedings of the 8th International Conference on Learning Represantations, 2020.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust generalization.
In Advances in Neural Information Processing Systems 33, 2020.

Jiahao Xie, Zebang Shen, Boyu Wang, and Hui Qian. Efficient projection-free online methods with stochastic
recursive gradient. In the 34th AAAI Conference on Artificial Intelligence, pp. 6446–6453, 2020.

Yuancheng Xu, Yanchao Sun, Micah Goldblum, Tom Goldstein, and Furong Huang. Exploring and exploiting
decision boundary dynamics for adversarial robustness. In Proceedings of the International Conference on
Learning Representations, 2023.

Keiichiro Yamamura, Haruki Sato, Nariaki Tateiwa, Nozomi Hata, Toru Mitsutake, Issa Oe, Hiroki Ishikura,
and Katsuki Fujisawa. Diversified adversarial attacks based on conjugate gradient method. In Proceedings
of the 39th International Conference on Machine Learning, volume 162, pp. 24872–24894, 2022.

Alp Yurtsever, Suvrit Sra, and Volkan Cevher. Conditional gradient methods via stochastic path-integrated
differential estimator. In Proceedings of the 36th International Conference on Machine Learning, volume 97,
pp. 7282–7291, 2019.

Manzil Zaheer, Sashank J. Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for
nonconvex optimization. In Advances in Neural Information Processing Systems, volume 31, 2018.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate once:
Accelerating adversarial training via maximal principle. In Advances in Neural Information Processing
Systems 32, pp. 227–238, 2019a.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theo-
retically principled trade-off between robustness and accuracy. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pp. 7472–7482, 2019b.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankanhalli. At-
tacks which do not kill training make adversarial learning stronger. In Proceedings of the 37th International
Conference on Machine Learning, volume 119, pp. 11278–11287, 2020.

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan S. Kankanhalli. Geometry-
aware instance-reweighted adversarial training. In Proceedings of the 9th International Conference on
Learning Represantations, 2021.

Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. One Sample Stochastic
Frank-Wolfe. In International Conference on Artificial Intelligence and Statistics, 2019c.

19

Under review as submission to TMLR

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the convergence
of adaptive gradient methods for nonconvex optimization. 12th Annual Workshop on Optimization for
Machine Learning, 2020.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for convergences of
adam and rmsprop. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 11119–11127, 2019.

20

Under review as submission to TMLR

A Proposition and Lemmas

Propositions A.1 and Lemma A.2 are general results with no novelty.
Proposition A.1. For all x, y ∈ Rd and all α ∈ R, the following holds:

∥αx + (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

Proof. Since 2⟨x, y⟩ = ∥x∥2 + ∥y∥2 − ∥x− y∥2 holds, for all x, y ∈ Rd and all α ∈ R,

∥αx + (1− α)y∥2 = α∥x∥2 + 2α(1− α)⟨x, y⟩+ (1− α)2∥y∥2

= α∥x∥2 + α(1− α)(∥x∥2 + ∥y∥2 − ∥x− y∥2) + (1− α)2∥y∥2

= α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2.

This completes the proof.

Lemma A.1. Suppose that (A1)-(A4) hold and consider Algorithm 3. Then, the following holds:

γtE [G(θt)] ≤ E [f(θt)]− E [f(θt+1)] + Dσγt√
bt

+ LD2γ2
t

2
.

Proof. Let t ∈ N. (A2) and the definition of θt+1 guarantee that

f(θt+1) ≤ f(θt) + ⟨∇f(θt), θt+1 − θt⟩+ L

2
∥θt+1 − θt∥2

= f(θt) + ⟨∇f(θt), (θt + γt(vt − θt))− θt⟩+ L

2
∥θt+1 − θt∥2

= f(θt) + γt⟨∇f(θt), vt − θt⟩+ Lγ2
t

2
∥vt − θt∥2

≤ f(θt) + γt⟨∇f(θt), vt − θt⟩+ LD2γ2
t

2
.

Let v̂t := argmax
v∈Ω

⟨v,−∇f(θt)⟩ for all t ∈ N. From the definition of vt, ∀v ∈ Ω : ⟨∇fSt(θt), vt⟩ ≤

⟨∇fSt(θt), v⟩. Then,

f(θt+1) ≤ f(θt) + γt⟨mt, vt − θt⟩+ γt⟨∇f(θt)−mt, vt − θt⟩+ LD2γ2
t

2

≤ f(θt) + γt⟨mt, v̂t − θt⟩+ γt⟨∇f(θt)−mt, vt − θt⟩+ LD2γ2
t

2

= f(θt) + γt⟨∇f(θt), v̂t − θt⟩+ γt⟨mt −∇f(θt), v̂t − θt⟩+ γt⟨∇f(θt)−mt, vt − θt⟩+ LD2γ2
t

2

= f(θt) + γt⟨∇f(θt), v̂t − θt⟩+ γt⟨mt −∇f(θt), v̂t − vt⟩+ LD2γ2
t

2

= f(θt)− γtG(θt) + γt⟨mt −∇f(θt), v̂t − vt⟩+ LD2γ2
t

2

≤ f(θt)− γtG(θt) + γt∥mt −∇f(θt)∥D + LD2γ2
t

2
.

The last inequality follows from the Cauchy-Schwarz inequality and (A1). Taking the expectation with
respect to ξt on both sides and using Lemma A.3, we have

E [f(θt+1)] ≤ E [f(θt)]− γtE [G(θt)] + DγtE [∥mt −∇f(θt)∥] + LD2γ2
t

2
(3)

≤ E [f(θt)]− γtE [G(θt)] + Dγt

√
σ2

bt
+ LD2γ2

t

2
.

This completes the proof.

21

Under review as submission to TMLR

Lemma A.2. Algorithm 3 has the property that, under (A3)(ii) and (A4), for all t ∈ N,

E
[
∥∇fSt(θt)−∇f(θt)∥2] ≤ σ2

bt
.

Proof. (A3) and the definition of ∇fSt
(θt) guarantee that

E
[
∥∇fSt

(θt)−∇f(θt)∥2] = E

∥∥∥∥∥ 1
bt

bt∑
i=1

Gξt,i
(θt)−∇f(θt)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1
bt

bt∑
i=1

Gξt,i(θt)−
1
bt

bt∑
i=1
∇f(θt)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1
bt

bt∑
i=1

(Gξt,i
(θt)−∇f(θt))

∥∥∥∥∥
2

= 1
b2

t

E

∥∥∥∥∥
bt∑

i=1
(Gξt,i

(θt)−∇f(θt))

∥∥∥∥∥
2

= 1
b2

t

E

[
bt∑

i=1

∥∥Gξt,i(θt)−∇f(θt)
∥∥2
]

≤ σ2

bt
.

This completes the proof.

Lemma A.3. Algorithm 3 has the property that, under (A3)(ii) and (A4), for all t ∈ N,

E [∥mt −∇f(θt)∥] ≤

√
σ2

bt
.

Proof. The definition of mt implies that

∥mt −∇f(θt)∥2 = ∥βmt−1 + (1− β)∇fSt
(θt)−∇f(θt)∥2

= ∥β(mt−1 −∇f(θt)) + (1− β)(∇fSt
−∇f(θt))∥2

= β2∥mt−1 −∇f(θt)∥2 + (1− β)2∥∇fSt
(θt)−∇f(θt)∥2

+ 2β(1− β)⟨∇fSt
(θt)−∇f(θt), mt−1 −∇f(θt)⟩.

Therefore, from Assumption (A3)(i) and β < 1, we obtain

E
[
∥mt −∇f(θt)∥2] = (1− β)2E

[
∥∇fSt

(θt)−∇f(θt)∥2]+ β2E
[
∥mt−1 −∇f(θt)∥2] (4)

< (1− β)2E
[
∥∇fSt

(θt)−∇f(θt)∥2]+ E
[
∥mt−1 −∇f(θt)∥2] . (5)

On the other hand, Proposition A.1 guarantees that

E
[
∥mt −∇f(θt)∥2] = (1− β)E

[
∥∇fSt

(θt)−∇f(θt)∥2]+ βE
[
∥mt−1 −∇f(θt)∥2] (6)

− β(1− β)E
[
∥mt−1 −∇fSt

(θt)∥2] . (7)

From (4) and (7), we have

E
[
∥mt−1 −∇f(θt)∥2

]
= E

[
∥mt−1 −∇fSt

(θt)∥2
]
− E

[
∥∇fSt

(θt)−∇f(θt)∥2
]

(8)

≤ E
[
∥mt−1 −∇fSt

(θt)∥2
]

. (9)

22

Under review as submission to TMLR

Therefore, from (5) and (8), we obtain

E
[
∥mt −∇f(θt)∥2

]
≤ β(−2 + β)E

[
∥∇fSt

(θt)−∇f(θt)∥2
]

+ E
[
∥mt−1 −∇fSt

(θt)∥2
]

. (10)

Now, let us show that, for all t ∈ N,

E
[
∥mt−1 −∇fSt(θt)∥2

]
≤ β(2− β)E

[
∥∇fSt(θt)−∇f(θt)∥2

]
. (11)

If (11) does not hold, there exists t0 ∈ N such that

E
[∥∥mt0−1 −∇fSt0

(θt0)
∥∥2
]

> β(2− β)E
[∥∥∇fSt0

(θt0)−∇f(θt0)
∥∥2
]

,

which implies

E
[∥∥∇fSt0

(θt0)−∇f(θt0)
∥∥2
]

<
1

β(2− β)
E
[∥∥mt0−1 −∇fSt0

(θt0)
∥∥2
]

. (12)

Hence, from (10) and (12),

E
[
∥mt0 −∇f(θt0)∥2

]
< β(−2 + β)

{
1

β(2− β)
E
[∥∥mt0−1 −∇fSt0

(θt0)
∥∥2
]}

+ E
[∥∥mt0−1 −∇fSt0

(θt0)
∥∥2
]

= 0.

Since E
[
∥mt0 −∇f(θt0)∥2

]
≥ 0, there is a contradiction. Therefore, (11) holds for all t ∈ N. Thus, Lemmas

A.2, (4), (9), and (11) ensure that

E
[
∥mt −∇f(θt)∥2

]
≤ (1− β)2E

[
∥∇fSt(θt)−∇f(θt)∥2]+ β3(2− β)E

[
∥∇fSt(θt)−∇f(θt)∥2

]
=
{

(1− β)2 + β3(2− β)
}
E
[
∥∇fSt(θt)−∇f(θt)∥2

]
≤ σ2

bt
.

This completes the proof.

Lemma A.4. Let the batch size increase as bt := (b, b, · · · , b︸ ︷︷ ︸
E

, λb, λb, · · · , λb︸ ︷︷ ︸
E

, · · · , λQ−1b, λQ−1b, · · · , λQ−1b︸ ︷︷ ︸
E

).

Then, for all t ∈ N,

T −1∑
t=0

1√
bt

≤ E
√

λ√
b(
√

λ− 1)
,

where λ > 1 and QE = T .

Proof. From the definition of bt,

T −1∑
t=0

1√
bt

= E√
b

+ E√
λb

+ · · ·+ E√
λQ−1b

= E√
b

(
1 + 1√

λ
+ · · ·+ 1√

λQ−1

)
≤ E√

b
·
√

λ√
λ− 1

.

This completes the proof.

23

Under review as submission to TMLR

Lemma A.5. Let the learning rate decrease as γt := (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

).

Then, for all t ∈ N,
T −1∑
t=0

γt ≤
Kγ

1− η
,

where η ∈ (0, 1) and PK = T .

Proof. From the definition of γt,
T −1∑
t=0

γt = Kγ + Kηγ + · · ·+ KηP −1γ

= Kγ
(
1 + η + · · ·+ ηP −1)

≤ Kγ

1− η
.

This completes the proof.

B Proofs of Theorems 3.1 and 3.2

The following is a convergence analysis of Algorithm 3 using a constant learning rate.

Proof. From Lemma A.1, we have

γtE [G(θt)] ≤ E [f(θt)]− E [f(θt+1)] + Dσγt√
bt

+ LD2γ2
t

2
.

Summing over t, we get
T −1∑
t=0

γtE [G(θt)] ≤ E [f(θ0)]− E [f(θT)] + Dσ

T −1∑
t=0

γt√
bt

+ LD2

2

T −1∑
t=0

γ2
t

≤ f(θ0)− f(θ⋆) + Dσ
T −1∑
t=0

γt√
bt

+ LD2

2

T −1∑
t=0

γ2
t .

Assumption (C1) guarantees that

γ

T −1∑
t=0

E [G(θt)] ≤ f(θ0)− f(θ⋆) + Dσγ

T −1∑
t=0

1√
bt

+ LD2

2
Tγ2.

Hence,

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ

T

T −1∑
t=0

1√
bt

+ LD2γ

2
.

Then, for a constant batch size bt := b, we have

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ√

b
+ LD2γ

2

= O
(

1
T

+ 1√
b

+ γ

)

24

Under review as submission to TMLR

This completes the proof for Theorem 3.1.
Next, for an increasing batch size bt := (b, b, · · · , b︸ ︷︷ ︸

E

, λb, λb, · · · , λb︸ ︷︷ ︸
E

, · · · , λQ−1b, λQ−1b, · · · , λQ−1b︸ ︷︷ ︸
E

), from

Lemma A.4, we have

1
T

T −1∑
t=0

E [G(θt)] ≤
f(θ0)− f(θ⋆)

γT
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2γ

2

= O
(

1
T

+ γ

)
.

This completes the proof for Theorem 3.2.

C Proof of Theorem 3.3

Proof. From Lemma A.1 and bt := b, we have

E [G(θt)] ≤
1
γt

(E [f(θt)]− E [f(θt+1)]) + Dσ√
b

+ LD2γt

2
.

Summing over t, we get

T −1∑
t=0

E [G(θt)] ≤
T −1∑
t=0

1
γt

(E [f(θt)]− E [f(θt+1)])︸ ︷︷ ︸
ΓT

+Dσ√
b

T + LD2

2

T −1∑
t=0

γt.

From (A4), there exists a real number f̄ such that ∀θ ∈ Ω⇒ f(θ) ≤ f̄ . Accordingly, we have

ΓT = E [f(θ0)]
γ0

+
T −1∑
t=1

(
E [f(θt)]

γt
− E [f(θt)]

γt−1

)
− E [f(θT)]

γT −1

= E [f(θ0)]
γ0

+
T −1∑
t=1

(
1
γt
− 1

γt−1

)
E [f(θt)]−

E [f(θT)]
γT −1

≤ f̄

γ0
+ f̄

T −1∑
t=1

(
1
γt
− 1

γt−1

)
− f(θ⋆)

γT −1

≤ f̄

γ0
+ f̄

(
1

γT −1
− 1

γ0

)
− f(θ⋆)

γT −1

= 1
γT −1

(
f̄ − f(θ⋆)

)
≤ 1

γT −1

(
f̄ + |f(θ⋆)|

)
≤ 2

γT −1
max{f̄ , |f(θ⋆)|} (13)

The first inequality follows from E [f(θT)] ≥ f(θ⋆) and 1
γt
− 1

γt−1
≥ 0 since γt is monotone decreasing. Hence,

T −1∑
t=0

E [G(θt)] ≤
2

γT −1
max{f̄ , |f(θ⋆)|}+ Dσ√

b
T + LD2

2

T −1∑
t=0

γt,

1
T

T −1∑
t=0

E [G(θt)] ≤
2

TγT −1
max{f̄ , |f(θ⋆)|}+ Dσ√

b
+ LD2

2T

T −1∑
t=0

γt.

25

Under review as submission to TMLR

(i) If we use γt = 1
t+1 , then

γT −1 = 1
T

and 1
T

T −1∑
t=0

γt ≤
1
T

(
1 +

∫ T −1

0

dt

(t + 1)

)
≤ 1 + log T

T
.

Therefore,

1
T

T −1∑
t=0

E [G(θt)] ≤ 2 max{f̄ , |f(θ⋆)|}+ Dσ√
b

+ LD2(1 + log T)
2T

= O
(

log T

T
+ σ√

b
+ C

)
,

where C := 2 max{f̄ , |f(θ⋆)|}.

(ii) If we use γt = 1
(t+1)a (a ∈ [1

2 , 1)), then

γT −1 = 1
T a

and 1
T

T −1∑
t=0

γt ≤
1
T

(
1 +

∫ T −1

0

dt

(t + 1)a

)
≤ 1

1− a
· 1

T a
.

Therefore,

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

T 1−a
+ Dσ√

b
+ LD2

2(1− a)T a

= O
(

1
T min{1−a,a} + σ√

b

)
.

(iii) If we use γt = (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), then there exist real number

γ such that γT −1 = ηP −1γ ≥ γ. Hence, from Lemma A.5, we have that

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

Tγ
+ Dσ√

b
+ LD2

2T

Kγ

1− η

= O
(

1
T

+ σ√
b

)
.

This completes the proof.

D Proof of Theorem 3.4

Proof. From Lemma A.1, we have

E [G(θt)] ≤
1
γt

(E [f(θt)]− E [f(θt+1)]) + Dσ√
bt

+ LD2γt

2
.

Summing over t, we get
T −1∑
t=0

E [G(θt)] ≤
T −1∑
t=0

1
γt

(E [f(θt)]− E [f(θt+1)])︸ ︷︷ ︸
ΓT

+Dσ

T −1∑
t=0

1√
bt

+ LD2

2

T −1∑
t=0

γt.

From Equation (13) and Lemma A.4, we have

1
T

T −1∑
t=0

E [G(θt)] ≤
2

TγT −1
max{f̄ , |f(θ⋆)|}+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2T

T −1∑
t=0

γt.

26

Under review as submission to TMLR

(i) If we use γt = 1
(t+1) , then

γT −1 = 1
T

and 1
T

T −1∑
t=0

γt ≤
1
T

(
1 +

∫ T −1

0

dt

(t + 1)

)
≤ 1 + log T

T
.

Therefore,

1
T

T −1∑
t=0

E [G(θt)] ≤ 2 max{f̄ , |f(θ⋆)|}+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2(1 + log T)

2T

= O
(

log T

T
+ C

)
,

where C := 2 max{f̄ , |f(θ⋆)|}.

(ii) If we use γt = 1
(t+1)a (a ∈ [1

2 , 1)), then

γT −1 = 1
T a

and 1
T

T −1∑
t=0

γt ≤ 1 +
∫ T −1

0

dt

(t + 1)a
≤ 1

1− a
· 1

T a
.

Therefore,

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

T 1−a
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2(1− a)T a

= O
(

1
T min{1−a,a}

)
.

(iii) If we use γt = (γ, γ, · · · , γ︸ ︷︷ ︸
K

, ηγ, ηγ, · · · , ηγ︸ ︷︷ ︸
K

, · · · , ηP −1γ, ηP −1γ, · · · , ηP −1γ︸ ︷︷ ︸
K

), then there exist real number

γ such that γT −1 = ηP −1γ ≥ γ . Hence, from Lemma A.5, we have that

1
T

T −1∑
t=0

E [G(θt)] ≤
2 max{f̄ , |f(θ⋆)|}

Tγ
+ Dσ

T

E
√

λ√
b(
√

λ− 1)
+ LD2

2T

Kγ

1− η

= O
(

1
T

)
.

This completes the proof.

E Full Experimental Results

The code used is available at our GitHub repository (https://anonymous.4open.science/r/sfw25). The
experimental environment consisted of NVIDIA DGX A100×8GPU and Dual AMD Rome7742 2.25-GHz, 128
Cores×2CPU. The software environment was Python 3.8.2, Pytorch 1.6.0, and CUDA 11.6. All experiments
were performed using a single GPU.

E.1 Supplemental Results for Section 3.3

Figure 3 plots the test accuracy and loss function values for a batch size of 25 and a constant learning rate
γt = γ0 = 0.1. Figure 4 similarly plots the test accuracy and loss function values for a batch size of 25 and
a decaying learning rate that halves every 40 epochs; i.e., this setting is based on Theorems 3.3(ii). Both
figures show that SFW achieves higher test accuracy and lower loss function values than those of SFWM, in
contrast to Figures 1 and 2.

27

https://anonymous.4open.science/r/sfw25

Under review as submission to TMLR

1

0.3

lo
ss

 fu
nc

tio
n

va
lu

e
fo

r t
ra

in
in

g

Training ResNet18 on CIFAR100 dataset with constant learning rate (b=32)

0 40 80 120 160 200
epoch

45

50

55

60

65

70

ac
cu

ra
cy

 sc
or

e
fo

r t
es

t

SFW
SFWM

Figure 3: Accuracy score for the testing and loss func-
tion value for training versus the number of epochs in
training ResNet18 on the CIFAR100 dataset with the
L2 constraint and a constant learning rate. The solid
line represents the mean value, and the shaded area
represents the maximum and minimum over three
runs.

1

0.1

0.01
0.006

lo
ss

 fu
nc

tio
n

va
lu

e
fo

r t
ra

in
in

g

Training ResNet18 on CIFAR100 dataset with decaying learning rate (III) (b=32)

0 40 80 120 160 200
epoch

45

50

55

60

65

70

75

ac
cu

ra
cy

 sc
or

e
fo

r t
es

t

SFW
SFWM

Figure 4: Accuracy score for the testing and loss func-
tion value for training versus the number of epochs
in training ResNet18 on the CIFAR100 dataset with
the L2 constraint and a decaying learning rate. The
solid line represents the mean value, and the shaded
area represents the maximum and minimum over
three runs. The learning rate was decreased every 40
epochs as [0.1, 0.05, 0.025, 0.0125, 0.00625] and batch
size was fixed at 25.

We also performed similar experiments for decaying learning rates (I) γt := 1
t+1 based on Theorems 3.3(i)

and (II) γt := 1√
t+1 based on Theorems 3.3(ii). Theoretically, this is an excellent learning rate setting that

can remove the extra term in the upper bound of the Frank Wolfe gap, but experimentally, it is found to be
unusable because the learning rate becomes too small from the early stages of learning (see Figures 5 and
6).

0 40 80 120 160 200
number of epochs

6

8

10

12

14

ac
cu

ra
cy

 so
cr

e
fo

r t
es

t

Training ResNet18 on CIFAR100 dataset with decaying learning rate (I) (b=1024)

SFW
SFWM

Figure 5: Accuracy score for the testing versus the
number of epochs in training ResNet18 on the CI-
FAR100 dataset with the L2 constraint and a de-
caying learning rate (I) γt := 1

t+1 . The batch size
was fixed at 210. The solid line represents the mean
value, and the shaded area represents the maximum
and minimum over three runs.

0 40 80 120 160 200
number of epochs

10

15

20

25

30

35

40

45

50

55

ac
cu

ra
cy

 so
cr

e
fo

r t
es

t

Training ResNet18 on CIFAR100 dataset with decaying learning rate (II) (b=1024)

SFW (constant bs)
SFWM (constant bs)
SFW (increasing bs)
SFWM (increasing bs)

Figure 6: Accuracy score for the testing versus the
number of epochs in training ResNet18 on the CI-
FAR100 dataset with the L2 constraint and a decay-
ing learning rate (II) γt := 1√

t+1 . The batch size
was fixed at 210.The solid line represents the mean
value, and the shaded area represents the maximum
and minimum over three runs.

E.2 Supplemental Results for Section 4.5

We attacked the robust models listed in RobustBench (Croce et al., 2021) with PGD, FW, APGD, and AFW
to verify their performance.

28

Under review as submission to TMLR

Table 5: Adversarial accuracy achieved by PGD and FW. CIFAR100 dataset/L∞ with ϵ = 8/255
paper Architecture clean accuracy PGD FW

(Wang et al., 2023) WideResNet-70-16 75.22 48.41 48.44
(Wang et al., 2023) WideResNet-28-10 72.58 44.21 44.26

(Debenedetti et al., 2023) XCiT-L12 70.76 39.28 39.39
(Rebuffi et al., 2021) WideResNet-70-16 63.56 38.58 38.69

(Debenedetti et al., 2023) XCiT-M12 69.21 39.22 39.25
(Pang et al., 2022) WideResNet-70-16 65.56 36.87 36.94

(Debenedetti et al., 2023) XCiT-S12 67.34 37.47 37.42
(Rebuffi et al., 2021) WideResNet-28-16 62.41 36.09 36.13

(Jia et al., 2022) WideResNet-34-20 67.31 37.20 37.66
(Addepalli et al., 2022a) WideResNet-34-10 68.75 37.03 37.21

(Cui et al., 2021) WideResNet-34-10 62.97 37.48 37.8
(Sehwag et al., 2022) WideResNet-34-10 65.93 36.04 36.15
(Pang et al., 2022) WideResNet-28-10 63.66 35.39 35.43
(Jia et al., 2022) WideResNet-34-10 64.89 36.19 36.57

(Addepalli et al., 2022b) WideResNet-34-10 65.73 36.90 36.64
(Cui et al., 2021) WideResNet-34-20 62.55 34.62 34.63
(Cui et al., 2021) WideResNet-34-10 60.64 34.55 34.71

(Rade & Moosavi-Dezfooli, 2021) PreActResNet-18 61.50 32.69 32.75
(Wu et al., 2020) WideResNet-34-10 60.38 33.65 33.73

(Rebuffi et al., 2021) PreActResNet-18 56.87 31.95 32.0
(Hendrycks et al., 2019) WideResNet-28-10 59.23 33.75 33.79
(Addepalli et al., 2022a) ResNet-18 65.45 33.79 33.97

(Cui et al., 2021) WideResNet-34-10 70.25 30.41 30.51
(Addepalli et al., 2022b) PreActResNet-18 62.02 33.14 33.29

(Chen et al., 2022) WideResNet-34-10 62.15 31.53 31.87
(Rice et al., 2020) PreActResNet-18 53.83 20.95 21.01

Table 6: Adversarial accuracy achieved by PGD and FW. ImageNet dataset/L∞ with ϵ = 4/255
paper Architecture clean accuracy PGD FW

(Liu et al., 2023) ConvNeXt-L 78.02 60.66 60.68
(Singh et al., 2023) ConvNeXt-L + ConvStem 77.00 59.26 59.26
(Singh et al., 2023) ConvNeXt-B + ConvStem 75.88 58.56 58.60
(Liu et al., 2023) ConvNeXt-B 76.7 58.30 58.32

(Singh et al., 2023) ViT-B + ConvStem 76.30 57.12 57.18
(Singh et al., 2023) ConvNeXt-S + ConvStem 74.08 55.22 55.24
(Singh et al., 2023) ConvNeXtt-T + ConvStem 72.70 53.32 53.36
(Singh et al., 2023) ViT-S + ConvStem 72.58 51.34 51.36

(Debenedetti et al., 2023) XCiT-L12 73.76 49.88 49.9
(Debenedetti et al., 2023) XCiT-M12 74.04 48.14 48.1
(Debenedetti et al., 2023) XCiT-S12 72.34 45.28 45.3

(Salman et al., 2020) WideResNet-50-2 68.64 41.42 41.60
(Salman et al., 2020) ResNet-50 64.06 39.18 39.28

(Ilyas et al., 2019) ResNet-50 62.52 33.24 33.40
(Wong et al., 2020) ResNet-50 55.64 30.50 30.12

(Salman et al., 2020) ResNet-18 52.92 29.98 30.14

29

Under review as submission to TMLR

Table 7: Adversarial accuracy achieved by PGD and FW. CIFAR10 dataset/L∞ with ϵ = 8/255
paper Architecture clean accuracy PGD FW

(Wang et al., 2023) WideResNet-70-16 93.25 73.62 73.62
(Wang et al., 2023) WideResNet-28-10 92.44 70.39 70.38

(Rebuffi et al., 2021) WideResNet-70-16 92.23 69.86 69.99
(Gowal et al., 2021) WideResNet-70-16 88.74 68.97 69.05
(Rebuffi et al., 2021) WideResNet-106-16 88.50 68.07 68.26
(Rebuffi et al., 2021) WideResNet-70-16 88.54 67.65 67.84
(Kang et al., 2021) WideResNet-70-16 93.73 90.86 90.72
(Xu et al., 2023) WideResNet-28-10 93.69 67.21 67.13

(Gowal et al., 2021) WideResNet-28-10 87.50 65.94 66.09
(Pang et al., 2022) WideResNet-70-16 89.01 66.81 66.83

(Rade & Moosavi-Dezfooli, 2021) WideResNet-34-10 91.47 65.89 65.89
(Sehwag et al., 2022) ResNest152 87.30 65.25 65.28
(Huang et al., 2021a) WideResNet-34-R 91.23 65.06 65.23
(Huang et al., 2021a) WideResNet-34-R 90.56 64.12 64.42

(Dai et al., 2022) WideResNet-28-10-PSSiLU 87.02 64.14 64.18
(Pang et al., 2022) WideResNet-28-10 88.61 64.87 64.86

(Rade & Moosavi-Dezfooli, 2021) WideResNet-28-10 88.16 64.87 63.89
(Rebuffi et al., 2021) WideResNet-28-10 87.33 64.22 64.39
(Sridhar et al., 2022) WideResNet-34-15 86.53 63.20 63.43

(Wu et al., 2020) WideResNet-28-10 88.25 63.58 63.7
(Sridhar et al., 2022) WideResNet-28-10 89.46 62.56 62.65
(Zhang et al., 2021) WideResNet-28-10 89.36 67.64 67.81

(Carmon et al., 2019) WideResNet-28-10 89.69 62.31 62.39
(Gowal et al., 2021) PreActResNet-18 87.35 61.13 61.14

(Addepalli et al., 2022b) WideResNet-34-10 85.32 64.86 65.06
(Addepalli et al., 2022a) WideResNet-34-10 88.71 61.10 61.16

(Rade & Moosavi-Dezfooli, 2021) PreActResNet-18 89.02 61.58 61.52
(Jia et al., 2022) WideResNet-70-16 85.66 60.96 61.18

(Debenedetti et al., 2023) XCiT-L12 91.73 59.18 59.31
(Debenedetti et al., 2023) XCiT-M12 91.30 59.09 59.26

(Sehwag et al., 2020) WideResNet-28-10 88.98 59.94 60.08
(Rebuffi et al., 2021) PreActResNet-18 83.53 59.66 59.82
(Wang et al., 2020) WideResNet-28-10 87.50 62.65 62.69

(Jia et al., 2022) WideResNet-34-10 84.98 59.79 60.04
(Wu et al., 2020) WideResNet-34-10 85.36 59.17 59.24

(Debenedetti et al., 2023) XCiT-S12 90.06 58.98 58.99
(Sehwag et al., 2022) ResNet-18 84.59 58.81 58.79

(Hendrycks et al., 2019) WideResNet-28-10 87.11 57.58 57.68
(Pang et al., 2020) WideResNet-34-20 85.14 62.19 62.37
(Cui et al., 2021) WideResNet-34-20 88.70 55.44 55.53

(Zhang et al., 2020) WideResNet-34-10 84.52 57.09 57.13
(Rice et al., 2020) WideResNet-34-20 85.34 57.32 57.33

(Huang et al., 2020b) WideResNet-34-10 83.48 56.15 56.20
(Zhang et al., 2019b) WideResNet-34-10 84.92 55.09 55.13

(Cui et al., 2021) WideResNet-34-10 88.22 54.24 54.35
(Addepalli et al., 2022a) ResNet-18 85.71 56.56 56.58

(Chen et al., 2020b) ResNet-50 86.04 54.34 54.37
(Chen et al., 2022) WideResNet-34-10 85.32 54.60 55.12

(Addepalli et al., 2022b) ResNet-18 80.24 56.19 56.29
(Zhang et al., 2019a) WideResNet-34-10 87.20 46.37 46.38

(Andriushchenko & Flammarion, 2020) PreActResNet-18 79.84 47.42 47.49
(Wong et al., 2020) PreActResNet-18 83.34 46.55 46.74
(Ding et al., 2018) WideResNet-28-4 84.36 51.18 51.43

30

Under review as submission to TMLR

Table 8: Adversarial accuracy achieved by APGD and AFW. CIFAR10 dataset/L∞ with ϵ = 8/255
paper Architecture clean accuracy APGD AFW

(Wang et al., 2023) WideResNet-70-16 93.25 73.51 73.5
(Wang et al., 2023) WideResNet-28-10 92.44 70.23 70.32

(Rebuffi et al., 2021) WideResNet-70-16 92.23 69.4 69.54
(Gowal et al., 2021) WideResNet-70-16 88.74 68.52 68.56
(Rebuffi et al., 2021) WideResNet-106-16 88.50 67.64 67.82
(Rebuffi et al., 2021) WideResNet-70-16 88.54 67.27 67.37
(Kang et al., 2021) WideResNet-70-16 93.73 84.98 86.98
(Xu et al., 2023) WideResNet-28-10 93.69 67.05 67.16

(Gowal et al., 2021) WideResNet-28-10 87.50 65.56 65.77
(Pang et al., 2022) WideResNet-70-16 89.01 66.69 66.74

(Rade & Moosavi-Dezfooli, 2021) WideResNet-34-10 91.47 65.66 65.73
(Sehwag et al., 2022) ResNest152 87.30 65.08 65.06
(Huang et al., 2021a) WideResNet-34-R 91.23 64.52 64.77
(Huang et al., 2021a) WideResNet-34-R 90.56 63.55 63.8

(Dai et al., 2022) WideResNet-28-10-PSSiLU 87.02 63.99 64.02
(Pang et al., 2022) WideResNet-28-10 88.61 64.73 64.73

(Rade & Moosavi-Dezfooli, 2021) WideResNet-28-10 88.16 63.78 63.81
(Rebuffi et al., 2021) WideResNet-28-10 87.33 63.99 64.08
(Sridhar et al., 2022) WideResNet-34-15 86.53 62.96 63.03

(Wu et al., 2020) WideResNet-28-10 88.25 63.35 63.49
(Sridhar et al., 2022) WideResNet-28-10 89.46 62.06 62.27
(Zhang et al., 2021) WideResNet-28-10 89.36 66.38 66.58

(Carmon et al., 2019) WideResNet-28-10 89.69 61.71 62.06
(Gowal et al., 2021) PreActResNet-18 87.35 60.84 60.94

(Addepalli et al., 2022b) WideResNet-34-10 85.32 64.41 64.52
(Addepalli et al., 2022a) WideResNet-34-10 88.71 60.79 60.96

(Rade & Moosavi-Dezfooli, 2021) PreActResNet-18 89.02 61.39 61.46
(Jia et al., 2022) WideResNet-70-16 85.66 60.63 60.61

(Debenedetti et al., 2023) XCiT-L12 91.73 58.98 59.18
(Debenedetti et al., 2023) XCiT-M12 91.30 59.01 59.03

(Sehwag et al., 2020) WideResNet-28-10 88.98 59.62 59.79
(Rebuffi et al., 2021) PreActResNet-18 83.53 59.58 59.64
(Wang et al., 2020) WideResNet-28-10 87.50 61.72 61.95

(Jia et al., 2022) WideResNet-34-10 84.98 59.51 59.58
(Wu et al., 2020) WideResNet-34-10 85.36 58.79 58.91

(Debenedetti et al., 2023) XCiT-S12 90.06 58.78 58.84
(Sehwag et al., 2022) ResNet-18 84.59 58.4 58.54

(Hendrycks et al., 2019) WideResNet-28-10 87.11 57.2 57.38
(Pang et al., 2020) WideResNet-34-20 85.14 61.59 61.78
(Cui et al., 2021) WideResNet-34-20 88.70 55.03 55.29

(Zhang et al., 2020) WideResNet-34-10 84.52 56.73 56.95
(Rice et al., 2020) WideResNet-34-20 85.34 56.89 57.04

(Huang et al., 2020b) WideResNet-34-10 83.48 55.77 55.99
(Zhang et al., 2019b) WideResNet-34-10 84.92 54.79 55.00

(Cui et al., 2021) WideResNet-34-10 88.22 53.84 54.11
(Addepalli et al., 2022a) ResNet-18 85.71 56.25 56.36

(Chen et al., 2020b) ResNet-50 86.04 54.22 54.29
(Chen et al., 2022) WideResNet-34-10 85.32 53.72 54.11

(Addepalli et al., 2022b) ResNet-18 80.24 55.84 55.97
(Zhang et al., 2019a) WideResNet-34-10 87.20 46.1 46.23

(Andriushchenko & Flammarion, 2020) PreActResNet-18 79.84 46.95 47.1
(Wong et al., 2020) PreActResNet-18 83.34 45.89 46.16
(Ding et al., 2018) WideResNet-28-4 84.36 50.14 50.33

31

Under review as submission to TMLR

Table 9: Adversarial accuracy achieved by APGD and AFW. ImageNet dataset/L∞ with ϵ = 4/255
paper Architecture clean accuracy APGD AFW

(Liu et al., 2023) ConvNeXt-L 78.02 60.28 60.34
(Singh et al., 2023) ConvNeXt-L + ConvStem 77.00 58.98 59.02
(Singh et al., 2023) ConvNeXt-B + ConvStem 75.88 58.36 58.4
(Liu et al., 2023) ConvNeXt-B 76.7 58.02 58.06

(Singh et al., 2023) ViT-B + ConvStem 76.30 56.92 57.0
(Singh et al., 2023) ConvNeXt-S + ConvStem 74.08 55.00 55.06
(Singh et al., 2023) ConvNeXtt-T + ConvStem 72.70 52.94 53.08
(Singh et al., 2023) ViT-S + ConvStem 72.58 50.98 51.04

(Debenedetti et al., 2023) XCiT-L12 73.76 49.6 49.66
(Debenedetti et al., 2023) XCiT-M12 74.04 47.6 47.7
(Debenedetti et al., 2023) XCiT-S12 72.34 44.76 44.94

(Salman et al., 2020) WideResNet-50-2 68.64 40.86 40.9
(Salman et al., 2020) ResNet-50 64.06 38.50 38.76

(Ilyas et al., 2019) ResNet-50 62.52 32.18 32.42
(Wong et al., 2020) ResNet-50 55.64 29.38 28.54

(Salman et al., 2020) ResNet-18 52.92 29.26 29.48

32

	Introduction
	Background
	Motivation
	Contribution

	Preliminaries
	Stochastic Frank Wolfe algorithm

	Theoretical Main Results
	Convergence analyses of SFW algorithms using a constant learning rate
	Convergence analyses of SFW algorithms using a decaying learning rate
	Numerical Results

	Application to Adversarial Attacks
	White-box attack
	Problem setting
	Auto-Frank Wolfe Attack
	Adversarial robustness
	Numerical Results

	Conclusions
	Proposition and Lemmas
	Proofs of Theorems 3.1 and 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Full Experimental Results
	Supplemental Results for Section 3.3
	Supplemental Results for Section 4.5

