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Abstract

Visuomotor policies trained via behavior cloning are vulnerable to covariate shift,
where small deviations from expert trajectories can compound into failure. Com-
mon strategies to mitigate this issue involve expanding the training distribution
through human-in-the-loop corrections or synthetic data augmentation. However,
these approaches are often labor-intensive, rely on strong task assumptions, or
compromise the quality of imitation. We introduce Latent Policy Barrier, a frame-
work for robust visuomotor policy learning. Inspired by Control Barrier Functions,
LPB treats the latent embeddings of expert demonstrations as an implicit barrier
separating safe, in-distribution states from unsafe, out-of-distribution (OOD) ones.
Our approach decouples the role of precise expert imitation and OOD recovery into
two separate modules: a base diffusion policy solely on expert data, and a dynamics
model trained on both expert and suboptimal policy rollout data. At inference time,
the dynamics model predicts future latent states and optimizes them to stay within
the expert distribution. Both simulated and real-world experiments show that LPB
improves both policy robustness and data efficiency, enabling reliable manipulation
from limited expert data and without additional human correction or annotation.

1 Introduction

In control theory, Control Barrier Functions
(CBFs) offer a principled mechanism to en-
force safety in autonomous systems by explic-
itly defining a safety set and ensuring states
remain within it during execution [2]. Moti-
vated by the conceptual clarity of CBFs, we
seek a similar mechanism for visuomotor poli-
cies learned purely from data, where explicit
analytical definitions of safety constraints and
system dynamics are typically unavailable. In
learning-based visuomotor control, the analo-
gous challenge arises from covariate shift [55]:
minor deviations from demonstrated expert be-
haviors can quickly compound, pushing agents
into out-of-distribution (OOD) states and caus-
ing task failures. Traditional behavior cloning
(BC) methods are particularly vulnerable to co-
variate shift, severely limiting their effectiveness
and reliability in real-world applications.
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Figure 1: To mitigate covariate shift, prior DAgger-
like methods (Left) expand the training distribution via
human-in-the-loop corrections (—), often introducing
suboptimal trajectories. In contrast, our Latent Policy
Barrier treats the expert distribution () as an implicit
barrier, using a learned dynamics model to detect de-
viations (@) and steer the policy back toward expert
behavior (@). The dynamics model is trained on both
expert demos () and policy rollouts (), requiring no
additional human input.

Current approaches to address covariate shift primarily involve expanding the training distribution.
One common approach is human-in-the-loop interventions, such as DAgger [11, 55, 36, 29, 40, 39],
which repeatedly collect corrective demonstrations whenever agents deviate from expert behaviors
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(Figure 1 left). Another strategy involves synthetic data augmentation methods that leverage task-
specific invariances [17, 42]. However, these approaches are either labor-intensive or rely heavily
on strong prior assumptions about the environment. Moreover, both approaches risk introducing
inconsistent or suboptimal demonstrations into the training dataset, potentially degrading overall
policy performance [41]. This limitation exposes a fundamental trade-off in robust visuomotor policy
learning: precise imitation benefits from consistent, high-quality expert datasets, whereas robustness
inherently demands exposure to diverse and often suboptimal data. Constructing a single dataset that
balances these competing needs is inherently challenging.

To resolve this tension, our key insight is to explicitly decouple these conflicting objectives (Figure
1 right). Inspired by CBFs, we propose Latent Policy Barrier (LPB), which implicitly treats the
latent expert demonstration distribution itself as a barrier that separates safe, in-distribution states
from unsafe, out-of-distribution regions [7]. Unlike analytically defined CBFs, LPB does not require
explicit safety sets or system dynamics. Instead, it maps high-dimensional expert states into a learned
latent space and uses their embeddings to define a barrier for detecting and correcting deviations.

To decouple precise expert imitation and OOD recovery, LPB leverages two complementary compo-
nents: (a) a base diffusion policy trained exclusively on consistent, high-quality expert demonstrations,
ensuring precise imitation; and (b) an action-conditioned visual latent dynamics model trained on a
broader, mixed-quality dataset combining expert demonstrations and automatically generated rollout
data [4, 45, 9, 62]. We collect the rollout data by executing intermediate checkpoints saved during
base policy training. Importantly, the rollout data naturally covers diverse deviations around the
policy’s own distribution without requiring explicit success labels, task rewards, or additional human
teleoperation. At inference time, LPB ensures that the agent stays within the expert distribution by
performing policy steering in the latent space. LPB uses the dynamics model to predict future latent
states conditioned on candidate actions output from the base policy. Then LPB minimizes the distance
between the predicted future latent states and their nearest neighbors from the expert demonstrations
in the same latent space. This latent-space steering approach simultaneously achieves high task
performance and robustness, resolving deviations without compromising imitation precision.

In summary, we introduce Latent Policy Barrier in the context of behavior cloning. LPB offers the
following advantages: 1) improves sample efficiency by decoupling expert imitation from out-of-
distribution correction - enabling the policy to focus on learning from a small amount of high-quality
human demonstrations; 2) enhances robustness through the use of a dynamics model trained on
inexpensive, lower-quality policy rollout data; and 3) plug-and-play compatibility with off-the-shelf
pre-trained policies, improving their robustness without requiring policy retraining or fine-tuning.

Experimental results across simulated and real-world manipulation tasks demonstrate that LPB is
able to enhances both the robustness and sample efficiency of visuomotor policy learning. Code and
data for reproducing the result will be made publicly available.

2 Related Work

Mitigating Covariate Shift in Imitation Learning: Behavior Cloning (BC), despite its simplicity,
remains a strong baseline for working solely with expert demonstrations [51]. An extensive body of
works mitigates covariate shift of BC by expanding the expert distribution. Prior works use interactive
expert interventions [55, 36, 29, 40, 14, 39, 25] that are iteratively integrated into the policy learning
loop to improve performance. Alternative ways to expand the training distribution include synthetic
data generation with task invariances [17, 42, 65], noise injection [36, 27], or dynamics model-guided
state-action pair generation [49, 28]. Instead of focusing on the data, Inverse Reinforcement Learning
combats covariate shift by alternately collecting on-policy rollouts and updating reward function
that penalizes deviations from expert trajectories, pulling the learner’s state distribution toward the
expert’s [68, 24, 18]. Other lines of work include training a recovery policy that automatically pushes
the agent back to the in-distribution region [53] and incorporating training objectives that penalize
distribution divergence [43]. Our method differs from these strategies by performing inference-time
steering in latent space, bypassing the need for additional expert queries or heavy data augmentation.

Policy Learning from Suboptimal Data: Offline RL algorithms prevents the learned policy from
drifting into OOD states by imposing an explicit regularization. This can take the form of policy
regularization that uses a penalty to keep the learned policy close to the behavior policy or a BC
prior [60, 34, 20, 19, 50], conservative value estimation that pessimistically down-weights out-
of-distribution actions [35, 33], or model-based uncertainty quantification that learns a dynamics
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Figure 2: Latent Policy Barrier: 1) During training, we train a base diffusion policy on expert
demonstration data and a visual latent dynamics model on both the expert and rollout data. 2) During
inference, LPB keeps the agent within expert states by steering the base policy in the latent space.
We define the /5 distance of a latent state to its nearest expert latent state as the latent OOD score 4.
If §(z:) exceeds a predefined threshold, back to in-distribution steering is invoked. Details on the
inference-time steering process can be found in Algorithm 1.

model and uses an uncertainty penalty to discourage trajectories from unfamiliar regions [64, 30, 8].
These strategies can exploit large, mixed-quality datasets, but they assume an external reward.
Methods that learn from suboptimal demonstrations fit a reward function via enforcing trajectory
rankings or regressing returns against noise-perturbed rollouts [5, 10]. Recent work shows that an
agent can exploit its own rollouts - using them to forecast and refine future latent trajectories [62], to
autonomously accumulate new task executions [4], or to label and filter heterogeneous demonstrations
[9] - to supplement the limited expert data. In contrast, we repurpose policy rollout data to learn a
dynamics model that, at inference time, nudges the agent back toward the expert distribution.

Inference-Time Policy Steering: A growing line of work improves a pre-trained policy at inference
time by steering, without requiring additional data or fine-tuning. Guided denoising biases diffusion-
based policies toward specified goals or reward signals by injecting gradient guidance into the
denoising process [26, 1, 54, 46]. Value-based filtering samples actions from a generalist policy
and executes the one ranked highest by a value function [47]. Human-in-the-loop steering treats
user provided sub-goals, corrections, or preferences as constraints injected into the policy’s sampler
[58, 61]. Model-predictive refinement combines a base policy with a dynamics model to improve task
performance or respect safety constraints [67, 56, 52, 48]. Similarly, LPB also uses a latent visual
dynamics model [22, 21, 23, 59, 66] to steer the policy. Unlike prior works, LPB performs gradient-
based action corrections using gradients from the latent dynamics model. The corrections pull
predicted future states toward the expert manifold, unifying classifier guidance with model-predictive
foresight while needing no explicit goals, rewards, or human input.

3 Method: Latent Policy Barrier

We consider the problem of visuomotor policy learning with behavior cloning. Given a demonstration
dataset of observation-action pairs Dexperr = { (0, a¢) }+, the goal of the base policy is to learn a
m : O — A that maps observations to actions by imitating expert behavior. Following the notation
introduced by [12], at each time step ¢, the policy 7y (A¢|O;) receives the most recent T, observations
Ot = {0t-1,+1,--.,0¢} and predicts the next T}, actions A; = {as,...,asy7,-1}. Among these
predicted actions, the first Ty, steps, {a, . . ., a;+1, 1}, are executed without replanning. The process
then repeats after receiving new observations.

The goal of Latent Policy Barrier is to learn such a robust policy my from a limited set of high-quality
expert demonstrations, capable of consistently performing long-horizon robot manipulation tasks with
minimal compounding errors and drifting into out-of-distribution states (Figure 2). In the following
subsections, we detail our approach: base policy and dynamics model training §3.1, and test-time
optimization to avoid deviations §3.2.

3.1 Policy and Dynamics Model Training

We train the policy mg(A:|O;) using a diffusion model [12] on a limited set of high-quality expert
demonstrations. Given the high-dimensional visual observations, the policy uses a visual encoder



hg(O;) that maps raw image observations into latent representations. The visual encoder and the
noise-prediction network are trained end-to-end with behavior cloning loss.

To enhance dynamics model’s generalization beyond the distribution of expert demonstrations, we
collect an additional dataset of exploratory rollouts. These trajectories are automatically generated
by rolling out intermediate checkpoints of the diffusion policy saved during training. Concretely,
after an initial warm-up phase of ¢( training epochs, during which the base policy is still highly
random, we save policy checkpoints at fixed intervals. Every At epochs we save a checkpoint
ckpt,, 1o, and roll it out for N full episodes in the evaluation environment, recording all transitions
regardless of task success or failure. This schedule continues until the final training epoch ¢g,,. The
resulting rollout dataset covers both early exploratory and near-convereged behavior, yielding a much
wider state—action distribution than the original expert demonstrations. The diverse transitions in
the rollout dataset enables the dynamics model to generalize more effectively, especially to novel
states encountered at test time. Importantly, the rollout data is collected without human correction or
reward annotations. Since it is generated as a natural byproduct of base policy training, no additional
teleoperation or manual labeling is required. This makes it a inexpensive source of training data for
learning a generalizable dynamics model that can steer the policy back toward expert-demonstrated
states. We ablation the choice of data source for dynamics model training in Appendix A.

The visual latent dynamics model, denoted as dy, is trained to predict future latent observations given
current observations O; and a sequence of future candidate actions A;. It consists of two components:
a frozen visual encoder hg, shared with the base policy, and a learnable dynamics predictor fs. The
full model is thus written as:

dg (O, At) = fo(he(Or), Ar) )]

We reuse the visual encoder hy from the behavior cloning policy, which is trained end-to-end
to optimize for task execution. This design choice is motivated by the following consideration:
during test-time optimization, the dynamics model is used to predict future latent states in the same
embedding space that the policy relies on to make action decisions. Freezing the encoder ensures
consistency between the latent representations used by the policy and those optimized through the
dynamics model (3.2). It also stabilizes training by preventing collapse of the representation space.
The dynamics predictor fy is implemented as a decoder-only transformer ([57, 44, 6, 66]. Given
encoded latent representations of current observations and a future action sequence, the dynamics
model predicts the encoded future latent observation at a specified prediction horizon.

The model is trained using a latent-space mean squared error (MSE) loss between the predicted future
latent and the ground-truth latent of the future observation:

Ldynamics(Ota At: Ot+Tp) = ||h9<0t+Tp) - f¢(h9(0t)a At)H% @)

3.2 Test-Time Optimization

At inference time, our goal is to mitigate compounding errors by steering the policy back toward
in-distribution expert states whenever deviations from those states are about to occur. We detect OOD
states using the latent OOD score, which measures how far the current observation lies from the
expert data distribution in the latent space. Specifically, given an observation o, we first encode it
into a latent representation z = hy(0) using the frozen visual encoder hy from the base policy. To
quantify distributional shift, we identify the nearest neighbor of z in the expert latent space, denoted
as 2N € Dexper. The latent OOD score §(z) is defined as:

5(z) = l|lz — 2|3 3)

A higher § value indicates that z is farther from the expert data manifold and is thus more likely to
be out-of-distribution for the base policy. At inference timestep ¢, we employ the learned dynamics
model dy to refine the stochastic denoising process (Algorithm 1). At timestep ¢, the agent observes
O, which is input to the base policy’s denoising process. We first compute the latent OOD score for
the current observation. If it’s lower than a pre-defined threshold 7, then the action generated by the
base policy is executed. Otherwise, we refine the denoising process using gradient guidance. Taking
inspirations from classifier guidance in diffusion models ([15]) and its applicatons in robotics-related
domains ([1, 26, 63]), we take the gradient of latent OOD score of predicted future latent state through
the dynamics model and use this gradient to refine the action denoising process. Denote the noisy
action sample at timestep ¢ and at denoising iteration k as A, we extend classifier guidance to refine



A% by minimizing the latent OOD score of predicted future state z¢, = dg (ho(O;), AF). We
define the modified noise prediction as

e(AF) = eo(AF) — nvVT=ar Va4 8(dy (=1, AF)) )

where 7 is the guidance scale. The classic classifier guidance approach requires training a classifier on
noisy data samples, which is less practical in robotics settings where executing random actions can be
unsafe or infeasible. Our rollout data offers a practical alternative: actions in policy rollouts naturally
exhibit greater variability than expert demonstrations. As a result, the dynamics model trained on this
data is well-equipped to predict the outcomes of noisy action samples. To avoid unreliable guidance
from highly stochastic early denoising steps - where actions diverge significantly from the expert
manifold - we restrict gradient-based guidance to only the final Ky;d. denoising steps, where samples
are more structured. For instance, Diffusion Policy often uses up to 100 denoising steps with DDPM,
we only choose to refine only a subset of the denoising steps, e.g., the last 10 steps. By reweighting
the action sampling distribution in favor of actions that lower the latent OOD score of predicted
future states, the gradient guidance effectively steers the agent toward expert-like states. To better
understand the effectiveness of the gradient guidance strategy, we also compare against alternative
optimization methods, including direct gradient descent on the action sequence and model predictive
control (MPC). Ablation results are provided in Appendix A.

Algorithm 1 Latent Policy Barrier (Inference time)

Require: Base policy 7y, dynamics model dg, visual encoder hg, expert dataset Dexper, latent OOD
score threshold 7
1: Preprocess: Encode all expert observations into latent states: Zexperr = {16(0) | 0 € Dexpert}
2: for each timestep ¢ do
3: Observe Oy = {0t—1,41,...,0t}

4: Encode latent state z; = hg (o)
5: Compute latent OOD score §(z;) by performing nearest neighbor search in Zeyper: (Eq. 3)
6: if §(z;) > 7 then > Out-of-distribution detected
7: for denoising step k = K, ..., K — Kgig. do
8: Sample noisy action A¥ from g
9: Predict future latent state: 2, p, = dy (2, AF)
10: Compute gradient: V 4x0(24p)
11: Apply gradient guidance to get ¢(AF) (Eq. 4)
12: end for
13: Output final action sample A; after K denoising steps
14: else
15: Output Ay ~ g (-|Oy)
16: end if
17: Execute first T, steps of A,
18: end for

4 Experiments

Our evaluation focuses on two questions: 1) Does LPB improve sample efficiency and robustness
of visuomotor policy learning compared to baseline methods? 2) When the agent drifts, can LPB
detect the deviation at the right moment and steer the agent back to expert-like states? We benchmark
across a suite of challenging robotic manipulation tasks in both simulated environments and on a real
robot (Figure 3). In simulation, we benchmark on three suites: Push-T [12, 16], Robomimic [41],
and the multi-task, language-conditioned Liberol0 [38]. For Robomimic, we select its three most
challenging tasks, Square, Tool Hang, and Transport. For the real robot experiment, we test on
the Cup Arrangement task from [13] and the Belt Assembly task from the NIST board assembly
challenge [32].

4.1 Simulation Benchmarks

To evaluate the sample efficiency of our method, we focus on a limited demonstration regime, where
suboptimal rollout data can play a significant role in improving performance. For each Robomimic
task (Square, Tool-Hang, Transport) and for Push-T, we keep 20% of the original expert demonstra-
tions. For each task, a base diffusion policy is trained on these demonstrations. For Liberol0, we use
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Figure 3: Benchmark Tasks. We evaluate our method on a diverse set of manipulation tasks in both
simulation and real-world.

Task Expert BC Mixed BC Filtered BC CCIL CQL Ours

Square 0.56 ~0016  0.50 0025  0.65+0009  0.63 +0.025 0.0+00  0.65+0019
Transport  0.68 +0.016  0.60+0016  0.79 +0.034  0.69 +0.074 0.0+00 0.85 -+ 0.009
Tool Hang  0.27 +0.009  0.24 +0016  0.29 +0.009  0.14 +0.025 0.0+00  0.39 +0.009
Push-T 0.51 +0021 047 +0026  0.59+0008 0.48+003 0.29+0021 0.65+0012
Libero-10  0.65 +0.009  0.50+0017  0.71 0006  0.61 +0.026 0.0 +00 0.75 +0.038

Table 1: Success rates across simulated tasks with 20% demonstrations. Mean and std. deviation
over 3 checkpoints and on 50 different held-out environment initial conditions.

all 50 provided demonstrations for each of the ten tasks to train a language-conditioned, multi-task
base diffusion policy. During policy training, we save intermediate checkpoints at fixed intervals and
use them to collect additional rollouts. See Appendix B for further implementation details.

We compare LPB against the following baselines:

* Expert BC [12]: Diffusion policy trained on only expert data.

* Mixed BC: Diffusion policy trained on both rollout data and expert data.

¢ Filtered BC [9, 45, 4]: We augment the expert data with successful rollout trajectories and
re-train the diffusion policy on the aggregated dataset. We use the success criteria defined by the
original benchmarks.

* CQL [35]: Conservative Q-Learning (CQL) is an offline RL algorithm that learns a value
function that explicitly penalizes overestimation of unseen actions. CQL requires task rewards.
For Push-T, we use the dense reward from [12]; for Robomimic and Libero10 tasks, we use the
sparse reward, which gives 1 on success and O otherwise.

* CCIL [28]: CCIL enhances the robustness of behavior cloning by generating corrective data to
augment the original expert data. Since the original method was proposed for tasks with low
dimensional state space, we adapt it to tasks with image observations by encoding images with
the frozen visual encoder in the base policy trained with behavior cloning loss.

As shown in Table 1, under the limited-demonstration setting, LPB matches or exceeds every baseline
on all simulated tasks, showing strong sample efficiency. The largest gains appear on the long-
horizon, precision-sensitive tasks, Tool-Hang and Transport, highlighting LPB’s ability to correct
minor action deviations that otherwise compound over time. On the most challenging Tool-Hang
task, Filtered BC offers only marginal improvement, indicating that even "successful” rollouts still
contain suboptimal or inconsistent actions that hurt BC. CQL obtains zero reward on Robomimic
and Libero10 tasks, possibly due to the absence of a dense reward function, consistent with results
reported in the Robomimic paper [41].

Inference-time Robustness. To investigate how well LPB mitigates covariate shift, we inject
noise perturbations to the output action at inference time. At every time step, with probability p €
{0.0,0.1,0.2,0.3,0.4}, a Gaussian noise is added to the output action. We evaluate LPB alongside
Filtered BC, Expert BC, and CCIL on the Transport task. Figure 4a shows that LPB maintains the
highest success rate across all noise levels. While the baselines exhibit worsening performance as p
increases, LPB degrades the least, indicating robustness to inference-time perturbations.

Sample Efficiency on Expert Demonstrations. We next vary the fraction of expert demonstrations
used to train the base policy on Tool-Hang, from 20% up to the full dataset, to see whether LPB
continues to add value as more expert data becomes available. Figure 4b shows that LPB’s advantage
is largest in the low-data regime (up to 60% demos), the margin narrows as the dataset approaches
100%, reflecting performance saturation.
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Tool-Hang, showing that LPB consistently improves performance as more rollout data is used to train
the dynamics model despite the suboptimality in the data.

NN in Expert Data

Current Obs

Latent OOD Score

Timesteps o 9 9

(b) LPB (Ours)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

T

. : . 1

Timesteps o 9 9 1

(a) Filtered BC (Baseline) :

Figure 5: Simulation Rollouts. Left: Filtered BC baseline. Right: LPB. For both methods, we

show RGB frames sampled from a representative rollout (middle row), the corresponding nearest

expert demonstration state to the sampled frames (top row), and the latent OOD score § over time

(bottom row). The dashed line in the latent OOD score curve marks the threshold 7 above which

LPB’s test-time optimization is invoked for. Filtered BC misses the two-arm hand-over, the latent

OOD score spikes, and the episode fails. LPB ensures § near 7 throughout the entire rollout, stays on
the expert manifold, and completes the task.

Impact of Rollout Data Quantity. To evaluate how the performance of LPB depends on the amount
of rollout data used for dynamics model training, we conduct experiments on the 7ool Hang task
(Figure 4c). We vary the number of rollout trajectories used to train the dynamics model: 0, 50, 150,
300, and 500. When using 0 rollouts, the dynamics model is trained solely on expert demonstrations.
We compare LPB against Filtered BC, which filters successful trajectories from the same rollout
data and combines them with demonstrations to retrain a BC policy. Due to inconsistencies and
suboptimal behaviors present even in the successful rollouts, Filtered BC yields little improvement
upon the base policy. In contrast, LPB consistently improves as more rollout data is added, suggesting
that the dynamics model benefits from the broader state-action coverage despite the suboptimality.
Performance gains of LPB saturate around 300 rollouts.

Latent OOD Score Visualization and Analysis. To validate our design choice of the latent space
and the latent OOD score formulation, we plot the latent OOD score over time for LPB and the
Filtered BC baseline on a representative Transport rollout (Figure 5). As defined in 3.2, the latent
OOD score is the ¢, distance between the encoded observation and its nearest expert neighbor, where
the encoder comes from the base policy. In the rollout generated from the Filtered BC baseline, the
two arms miss the hammer hand-over, leading to unrecoverable failure (frames with red bounding
box). At these failure timesteps, the latent OOD score spikes above the threshold 7, indicating the



Base Policy
LPB (Ours)

0.80 0.85 0.85

1.0

0.8

0.6

P il Laad D
N 0.4 0.30
-y I

0.0
tribni . P - In-distribution Out-of-distribution
In-distribution Initial Poses Out-of-distribution Initial Poses Initial Poses Initial Poses

Success Rate

Figure 6: Cup Arrangement Setup and Results. Evaluation of the base policy (Expert BC) and
LPB on the real-world Cup Arrangement task.
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Figure 7: Belt Assembly Setup and Results. Evaluation of the base policy (Expert BC) and LPB
on the real-world Belt Assembly task.

state has drifted far from the expert manifold. In the rollout generated by LPB the latent OOD score
rises as the hand-over phase begins but stays near 7; gradients from the dynamics model guides the
policy back toward expert-like states (frames with green bounding box). Throughout the episode the
score remains mostly below 7, showing that LPB keeps the agent inside the demonstrated distribution.
These observations support that (1) the visual encoder trained end-to-end with behavior cloning loss
induces a latent space in which the nearest-expert distance reflects how far the current state has drifted
from demonstrated behavior, and (2) this ¢ distance serves as a reliable signal for OOD detection and
correction, enabling effective latent-space steering by LPB. See Appendix A for results on alternative
latent space choices.

4.2 Real-World Evaluation

4.2.1 Cup Arrangement with an Off-the-Shelf Pretrained Policy

We first assess LPB’s ability to improve the robustness of an off-the-shelf pretrained policy on a real
robot. As the availability of such pretrained policies continues to grow [31, 3, 37], the plug-and-play
nature of LPB and its ability to enhance their robustness makes it especially valuable.

Task Setup. Specifically, we use the pre-trained diffusion policy for the Cup Arrangement task as
our base policy [13]. In this task, a robot arm with a wrist-mounted RGB camera and a compliant
finray gripper needs to first rotate the cup so its handle faces right, then pick up the cup, and finally
place the cup upright on the saucer.

Base Policy and Dynamics Model. The base diffusion policy checkpoint, trained on in-the-wild
expert trajectories, serves as the base policy for LPB. To collect training data for the dynamics model,
we roll out the pre-trained policy from deliberately out-of-distribution initial poses, gathering 80
trajectories. Because intermediate policy checkpoints are unavailable, we augment the dataset with
additional 40 human play trajectories recorded via the handheld UMI device [13].

Results. We perform two groups of experiments: in-distribution initial poses, where the wrist camera
initially observes both the cup and the saucer (Figure 6 left), and out-of-distribution initial poses,
where the camera initially sees neither object (Figure 6 middle). As shown in Figure 6 right, LPB
matches the base policy on in-distribution initial poses and substantially outperforms it on OOD
initial poses, confirming that latent-space steering is able recover from distribution shifts without
compromising nominal performance.

To illustrate how the dynamics model corrects distribution shift, Figure 8 plots four frames sampled
from rollouts under the base policy (top row) and LPB (middle row), with LPB paired with its nearest
expert demonstration image (bottom row) and the corresponding latent OOD scores. Both rollouts
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Figure 8: Cup Arrangement Rollouts. Left: RGB frames from base policy rollouts (top), LPB
(middle), and the nearest expert demonstration to LPB (bottom). Red borders indicate out-of-
distribution observations; green denotes in-distribution. Right: corresponding latent OOD scores.
With LPB, the robot moves downward to reveal the tabletop and complete the task, while the base
policy drifts further and reaches joint-limit.

start from the same wrist-camera pose showing neither cup nor saucer. Guided by the dynamics model,
LPB tilts the camera downward to reveal the objects, driving its OOD score below the threshold
and successfully completing the task. By contrast, the base policy continues moving in the wrong
direction with its observations remain OOD throughout. It fails to locate the objects and terminates
at a joint-limit failure. Although the demonstration data contains only in-the-wild images and the
latent space is noisier than simulated tasks, the latent-space nearest neighbor selected by LPB still
redirects the robot to in-distribution views, showing that LPB is robust to visual clutter and attends to
task-relevant features.

4.2.2 Belt Assembly

We further evaluate on the Belt Assembly task from the NIST task board.

Task Setup. As illustrated in Figure 7, the task begins with the belt already grasped by the robot’s
gripper. First, the robot positions the belt to hook it over the small pulley. Next, it moves downward
while stretching the belt to loop its opposite side around the large pulley. The robot then performs a
180° rotation around the large pulley to thread the belt. Finally, it lifts the gripper to release the belt.

Base Policy and Dynamics Model. We collect 200 expert demonstrations, each performed with
slight variations in the board position while keeping the initial robot pose fixed. To train the dynamics
model, we additionally collect 400 rollout trajectories executed under randomly initialized board
positions and initial robot poses.

Results. This task poses a significant challenge for naive behavior cloning due to its contact-rich
nature and the high precision required for successful execution. At test time, we perform 40 rollouts
for both the base policy and LPB, varying the initial robot pose and board position. All evaluations
use the same set of test cases and initial robot configurations for fair comparison. The base BC policy
achieves a success rate of 0.55. As shown in Figure 7 (right), LPB improves this performance to
0.75. Figure 9 shows representative rollout frames for both the base policy and LPB, along with
their corresponding latent OOD score plots. At the start of the rollout, the observation lies out-of-
distribution, reflected by a high latent OOD score. LPB first recovers the robot to an in-distribution
pose, enabling the base policy to subsequently complete the task. In contrast, the base policy alone
fails to recover, resulting in task failure.



Base Policy
Latent OOD Score
~

LPB (Ours)

Latent OOD Score
~

NN in Expert Data

Figure 9: Belt Assembly Rollouts. Left: RGB frames from base policy rollouts (top), LPB (middle),
and the nearest expert demonstration to LPB (bottom). Red borders indicate out-of-distribution
observations; green denotes in-distribution. Right: corresponding latent OOD scores. LPB is able to
help the robot recover to in-distribution expert states and complete the two threading motions.

5 Conclusion and Discussion

In this paper, we propose a novel method, Latent Policy Barrier, that transforms behavior cloning
from a passive imitator into an active, self-correcting controller with a dynamics model. By treating
the expert manifold as a latent barrier and steering a base policy with a learned dynamics model,
LPB achieves reliable imitation and eliminates costly human corrections. Extensive simulated and
real-robot experiments show that LPB surpasses or matches baselines when trained on just a small
slice of the demonstration set, while maintaining robust performance under severe perturbations,
highlighting a practical path toward reliable visuomotor learning.

Limitations and Future Work. Currently, LPB only corrects short-term, local deviations around
the expert demonstration. Future work can expand the dynamics model training distribution and
employ long-horizon reasoning to recover from more aggressive deviations. In addition, the visual
latent dynamics model in LPB is trained per task, limiting reuse and requiring new data for each
domain. Future work can explore training multitask dynamics models that capture shared dynamics
structure, offering zero-shot generalization and amortized training cost across diverse robotics
domains. Moreover, the latent OOD score in LPB assumes access to expert training data to define the
in-distribution manifold; in scenarios where only a pretrained base policy is available without paired
training data, this metric cannot be directly computed. Future work could investigate distribution-free
uncertainty quantification to enable robust policy learning in the absence of expert training data.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The evaluation section 4 on both simulated environments and on a real robot
demonstrates that our proposed method achieves higher samples efficiency and robustness.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are explicitly discussed in the conclusion section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not contribute theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiment setups are described in the experiment section 4 in the main paper
and in full detail in Appendix B. Code is provided in the supplemental and a cleaned version
will be released in the near future.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For simulation experiments, the demonstration data is taken from public
datasets ([41, 12]). The rollout data can be generated by executing checkpoints saved during
expert policy training. For real robot experiment, the demonstration data is taken from [13].
The additional rollout data and play data will be released in the near future. A working copy
of the code is provided in the supplemental material, and a cleaned version will be released
in the near future.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment settings are discussed in the experiments section 4 in the main
paper and full details are in Appendix B.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For simulation experiments, we report success rate with std. deviation over 3
policy checkpoints. For real robot experiments, we do not have intervals due to the intensive
resource requirements. We note that it is common for experiments with real robots.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The full details of compute requirement is provided in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts of the paper in Appendix C.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper uses public datasets and models. The learned policies and dynamics
models do not have risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited all original owners of assets mentioned in the paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19



13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A pre-release anonymous version of the code with documentation is provided
in the supplemental material.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper doesn’t not use LLMs apart from assisting with visualization code
and grammar checks.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Experiments and Results

A.1 Ablation: Gradient Guidance Hyperparameter Choice

To understand how the gradient guidance hyperparameters in LPB affect the final task success rate, we
run a set of experiments on the Transport task. We focus on the two hyperparameters: the guidance
scale 1) and the number of denoising steps that receive gradient guidance, Kgyige. As shown in Figure
10 left, when 7 is very small, the improvement over the base policy is minimal because the guidance
signal is too weak. As 7 increases, the improvement becomes more pronounced; however, once n
reaches 0.3, performance drops slightly, indicating an overshooting effect caused by overly strong
guidance. Figure 10 right shows that LPB is generally robust to the choice of Kgjq.: even when
gradients are applied only during the last 35 denoising steps, LPB still outperforms the base policy,
demonstrating that the dynamics model can provide meaningful guidance even when the noisy action
samples are far from valid expert actions. Across all tasks, we find that injecting gradient guidance
during the final 10 denoising steps is sufficient for a substantial performance boost.

Ours --— Base Policy
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0.01 0.05 01 02 03 04 10 15 20 25 30 35
(a) Guidance Scale (b) Number of Denoising Steps

Receiving Gradient Guidance
Figure 10: (a) Performance under varying guidance scale. (b) Performance under varying numbers of
denoising steps that receive gradient guidance.

A.2 Ablation: OOD Threshold

We analyze the effect of varying the OOD threshold for the Transport and Tool-Hang tasks. From
Figure 11, we observe that setting too high results in fewer corrections being triggered, leading to
performance drops. Conversely, setting too low can cause the dynamics model to get stuck in local
optima and stall task progress. This effect is particularly pronounced in the Tool-Hang task, where
the robot may get stuck at inserting the hook into the base.
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Figure 11: Performance under varying OOD thresholds.
A.3 Ablation: Data Source for Dynamics Model Training

We evaluate different data sources for training the dynamics model on the Tool-Hang and Transport
task. LPB leverages policy rollout data as an inexpensive and scalable way to improve the dynamics
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model’s generalization, but alternative sources are also available. We compare against two such
baselines: (1) Expert Demonstration with Noise Injection. Gaussian noise is injected into expert
demonstrations with a probability of 0.3 to generate diverse, perturbed trajectories. (2) Epsilon-
Greedy Exploration. A base policy is first trained on limited expert data, then rolled out from
randomized initial configurations with Gaussian noise added to the output action at a probability of
0.3 for exploration. As shown in Table 2, LPB, which relies on policy rollouts, achieves the highest
success rate. We also note that rollout collection does not require manual tuning of noise magnitudes
or injection probabilities, which simplifies the data collection procedure in practice. Moreover, it
naturally captures a broad spectrum of data, spanning early exploratory trajectories to those generated
by a converged policy.

Table 2: Success Rate with different data sources for dynamics model training

Policy Rollout Noisy Demos Epsilon-Greedy

Transport 0.85 +0.009 0.73 +0.025 0.71 +0.024
Tool-Hang 0.39 -+ 0.009 0.30 +0.031 0.30 +0.028

A.4 Ablation: Action Optimization

We ablate the action optimization strategies used in LPB on the Tool-Hang and Transport tasks. LPB
adopts a classifier guidance-style approach for test-time action refinement. We compare this with two
alternatives: (1) LPB-MPC, which uses Model Predictive Control with stochastic action sampling,
and (2) LPB-GD, which directly optimizes actions via gradient descent. As shown in Table 3, LPB
achieves the highest success rate. LPB-MPC also improves over the base policy, but not as much
as LPB - likely because it relies on sampling, which can fail to capture rare but optimal actions if
they are underrepresented in the action distribution. By contrast, LPB nudges each sampled action
toward expert-like directions using a differentiable guidance signal, enabling exploration that remains
on-manifold while still biasing toward high-value corrections. LPB-GD performs the worst, as its
unconstrained optimization can produce actions that are out-of-distribution for both the base policy
and the dynamics model.

Table 3: Success Rate for different action optimization strategies
LPB (Ours) LPB-MPC LPB-GD

Tool-Hang ~ 0.39 0009  0.32+0028  0.26 +0.028
Transport 0.85+0009  0.80+0043 0.73 +0.025

A.5 Ablation: Choice of Latent Representation

To study how the choice of latent space affects deviation detection and recovery toward expert
states, we evaluate different latent representations on the Square and Transport tasks. We compare
LPB, which uses the base policy’s encoder, against two alternatives: (1) DINOv2 Encoder and
(2) Encoder Trained with Reconstruction. For (1), we use a pretrained DINOv2 model as the
observation encoder for the dynamics model; it outputs 256 patch embeddings of dimension 384. This
representation preserves fine-grained visual details, but may include task-irrelevant information, as it
is not directly trained with task supervision. For (2), we pretrain a ResNet-18 as an autoencoder using
a reconstruction loss and then freeze it to serve as the encoder for dynamics model training. As shown
in Table 4, both the base policy’s encoder and DINOv2 improve over the base policy alone, with the
base policy’s encoder outperforming DINOv2. This may be because DINOv2 encoder, trained in
a task-agnostic manner, may focus on irrelevant features, while the base policy’s encoder, trained
via behavior cloning loss, is more aligned with task-relevant information. The reconstruction-based
encoder performs the worst, suggesting that the reconstruction objective alone does not produce a
latent space suitable for effective action optimization.
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Table 4: Success Rate with different latent space
Base Policy’s Encoder DINOv2  Encoder Trained with Reconstruction

Square 0.65 +0.019 0.61 +0.025 0.47 +0.034
Transport 0.85 -+ 0.009 0.79 +0.025 0.68 +0.043

B Implementation Details

B.1 Implementation Details of Latent Policy Barrier

Base Policy. We adopt Diffusion Policy as the base policy in LPB due to its strong capability in
modeling complex robot action distributions. It uses a ResNet-18 as the image encoder and a U-Net as
the noise prediction network, with FiLM layers to condition the denoising process on both observation
features and the current diffusion timestep. For all tasks, the base policy is trained using 20% of the
available expert demonstrations. Task-specific and shared hyperparameters are provided in Table 5
and Table 6, respectively.

Dynamics Model. Once base-policy training passes an initial warm-up of ¢g epochs, during which the
policy remains highly exploratory, we begin saving checkpoints at fixed intervals. Concretely, every
At epochs we store ckpt, ., A, and roll it out for N complete episodes from randomly initialized
configurations. All transitions, whether successful or not, are retained to train the dynamics model.
This procedure continues until the final epoch tg,,;. The values of tgy, At, tgna, IV, and the resulting
total number of rollout trajectories for each simulated task are summarized in Table 7.

The dynamics predictor fg is implemented as a Vision Transformer (ViT). It receives the concatenation
of the latent observation token, the proprioception state token, and an action token, and predicts the
next latent observation and proprioception state tokens. Training hyperparameters for f, are provided
in Table 8.

Table 5: Simulation task-dependent hyperparameters Table 6: Shared hyperparameters for base dif-

for base diffusion policy training. fusion policy training.
Training Name Value

EnvName 1T, 1T, #Demo Epochs T, 5
Push-T 8 16 41 500 Image Size 140
Square 8 16 40 600 Crop Size 128
Tool-Hang 15 32 40 300 Batch Size 64
Transport 15 32 40 300 Learning Rate 1 x 10~*
Libero10 15 32 50 200 Diffusion Step 100

Table 7: Rollout trajectories collection schedule for Table 8: Hyperparameters for dynamics

simulation tasks model training.

EnvName ¢t At tga N Total Name Value

Push-T 150 40 470 30 270 History Length 1

Square 70 50 470 30 270 Depth 6

Tool-Hang 70 50 270 30 150 Heads 16

Transport 70 50 270 30 150 MLP Dim 2048

Libero10 40 40 160 50 200 Dropout 0.1
Batch Size 64

Learning Rate 5 x 1074
Training Epoch 100

Test-time Optimization. At test time, we denoise actions with a DDPM scheduler. For each timestep
t we first compute the latent OOD score; if the score is below the threshold 7, we run standard
denoising and execute the resulting action AY. If the score exceeds 7, we apply latent steering during
the final 10 denoising steps. Specifically, the current observation and the intermediate noisy action
samples at denoising timestep k, A¥, are fed to the dynamics model, which predicts the future latent
state z;yp. We then measure the Euclidean distance between z,, and its nearest expert state in latent
space; this distance is back-propagated through the dynamics model, and the resulting gradient with
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respect to the noisy action samples provides the guidance signal. The OOD threshold 7 is chosen
empirically by rolling out the final policy checkpoint, while the guidance scale 7 is selected via a grid
search. Both 7 and 7 for each task are listed in Table 9.

Table 9: Hyperparameters for test-time optimization
n T
Push-T 005 32
Square 005 5
Tool-Hang 0.05 14

Transport 02 28
Liberol10 02 1.1

Compute Resources. All simulated experiments are run on a single NVIDIA L40S GPU (46 GB
VRAM). Base policies require roughly 24-48 h to converge, while the dynamics models converge
within 24 h. For each simulated task, we evaluate the final three checkpoints, each spaced 10 training
epochs apart; the results reported in Table 1 are averages over those three checkpoints. In the real-
robot setting, the base policy is pretrained and thus incurs no additional training cost. The dynamics
model is trained in parallel on six NVIDIA L40S GPUs and converges in approximately 36 h.

B.2 Implementation Details of Baselines

Filtered BC. This baseline uses the same rollout data collected for LPB. We discard trajectories that
do not meet the task-specific success criteria and merge the remaining successful rollouts with the
original expert demonstrations. The diffusion policy is then retrained from scratch on this augmented
dataset.

CQL. We adopt the CQL implementation provided in the Robomimic codebase without modification.

CCIL. CCIL was originally designed for tasks with low-dimensional state inputs. To extend it to
high-dimensional image observations, we cache latent representations produced by the base policy’s
encoder. Specifically, we first train a base diffusion policy 7y on the limited expert demonstrations,
identical to the setup used for LPB. We then encode every image observation in the expert dataset
with 7g’s encoder and store the resulting latent transition pairs. CCIL’s dynamics model is trained on
these low-dimensional latents, after which CCIL’s corrective-label generation procedure is applied
to augment the expert data. Finally, we fine-tune 7y on the augmented latent dataset. We use the
authors’ original implementation for all CCIL components.

B.3 Real Robot Experiment Setup

B.3.1 Cup Arrangement

Setup. We use a 6-DoF ARXS robot arm with 3D-printed soft compliant fingers and a wrist-mounted
GoPro camera, mirroring the sensor configuration of the original training data. Low-level controller
is provided by the Universal Manipulation Interface (UMI) stack ported to the ARXS platform
https://github.com/real-stanford/umi-arx. The cup arrangement task consists of three sequential
stages: (i) rotate the cup so its handle points right, (ii) grasp and lift the cup, and (iii) place it upright
on a saucer.

Pre-trained Base Policy. We start from the publicly released diffusion policy
checkpoint in the Universal Manipulation Interface repository https://github.com/real-
stanford/universal_manipulation_interface. The base policy was trained on 1447 in-the-wild
demonstrations of the cup arrangement task collected in diverse environments. The test environment
is not included in the training data. At each timestep, the policy receives a single RGB observation
plus the past two proprioceptive states and predicts a 16-step action sequence; the first 12 actions are
executed each control cycle.

Dynamics Model Training. To collect training data for the dynamics model, we roll out the pre-
trained policy from deliberately out-of-distribution initial poses, gathering 80 trajectories. Because
intermediate policy checkpoints are unavailable, we augment the dataset with additional 40 human
play trajectories recorded via the handheld UMI device. These play trajectories are intended to
broaden state—action coverage rather than solve the task, for example, by sweeping the gripper
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through random motions to capture wide-angle views. These 120 unlabeled trajectories, together
with the original demonstrations, are used to train the dynamics model.

Evaluation Protocol. We evaluate two initial-pose regimes: (i) in-distribution initial poses and
(ii) out-of-distribution initial poses. For each group we conduct 20 trials with both the base policy
and LPB, using identical initial robot and object poses for fair comparison. During deployment we
denoise actions with a DDIM scheduler (16 diffusion steps) and apply gradient guidance during the
final five steps.

B.3.2 Belt Assembly

Setup. We use a 6-DoF URS5 robot arm with 3D-printed soft compliant fingers and a
wrist-mounted OAK-D camera. Low-level controller is provided by https://github.com/yifan-
hou/hardware_interfaces.

Base Policy Training. We collect 200 expert demonstrations, each performed with slight variations in
the board position while keeping the initial robot pose fixed. We train the base policy for 800 epochs.
At each timestep, the policy receives a single RGB observation plus the past two proprioceptive states
and predicts a 32-step action sequence; the first 16 actions are executed each control cycle.

Dynamics Model Training. To train the dynamics model, we collect 400 rollout trajectories executed
under randomly initialized board positions and initial robot poses. We use hyperparameters to = 200
At = 200, tg = 800, and N = 100. We train the dynamics model with the combined 600
trajectories.

Evaluation Protocol. We perform 40 rollouts for both the base policy and LPB, varying the initial
robot pose and board position. All evaluations use the same initial robot and object poses for fair
comparison. During deployment we denoise actions with a DDIM scheduler (16 diffusion steps) and
apply gradient guidance during the final five steps.

C Broader Impact

Our work contributes to improving the robustness of visuomotor policies in robotic manipulation
settings by introducing a test-time optimization framework that leverages learned dynamics and
latent-space guidance. This has the potential to reduce failure rates in deployment, especially in
out-of-distribution scenarios, which is critical for the safe and reliable operation of robots in human-
centered environments. However, as with any data-driven system, care must be taken to ensure
that failure modes are thoroughly evaluated before real-world deployment. Future extensions could
investigate formal guarantees for test-time optimization mechanisms.
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