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Advancing Multimodal Large Language Models with
Quantization-Aware Scale Learning for Efficient Adaptation

Anonymous Author(s)

ABSTRACT
This paper presents the first study to explore the potential of pa-
rameter quantization for multimodal large language models to alle-
viate the significant resource constraint encountered during vision-
language instruction tuning. We introduce a Quantization-aware
Scale LeArning method based on multimodal Warmup, termed QS-
LAW. This method is grounded in two key innovations: (1) The
learning of group-wise scale factors for quantized LLM weights
to mitigate the quantization error arising from activation outliers
and achieve more effective vision-language instruction tuning; (2)
The implementation of a multimodal warmup that progressively
integrates linguistic and multimodal training samples, thereby pre-
venting overfitting of the quantized model to multimodal data while
ensuring stable adaptation of multimodal large language models to
downstream vision-language tasks. Extensive experiments demon-
strate that models quantized by QSLAW perform on par with, or
even surpass, their full-precision counterparts, while facilitating
up to 1.4 times reduction in VL tuning time and GPU consumption.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Multimodal Large Language Models, Efficient Adaptation, Effective
Quantization

1 INTRODUCTION
The remarkable performance of large language models (LLMs) has
been well-established in recent literature [4, 9, 36, 37, 40], sparking
a growing interest in the development of multimodal large language
models (MLLMs) [2, 3, 5, 24, 28, 32, 43]. This burgeoning field has
led to substantial progress in a wide array of vision-language (VL)
tasks. To accomplish this, contemporary MLLMs primarily utilize
multimodal instruction following examples for VL instruction tun-
ing and adopt modular architectures [2, 21, 24, 28] to transform
visual features into the word embedding space of the LLM. This
innovative approach enables LLMs to execute multimodal tasks in
an autoregressive fashion. One notable example of this technique is
LLaVA [24], which employs a linear projection layer to bridge the
gap between the visual encoder and the LLM. By doing so, LLaVA
fully harnesses the power of pre-trained LLMs, thereby significantly
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Table 1: Cost and accuracy over various VL instruction tuning
paradigms on ScienceQA. The symbol “†” denotes advanced
memory-saving strategies, while “OOM” indicates GPUmem-
ory exhaustion. Results are evaluated using 4 A800 GPUs.

Methods #T-Params Memory (GB) Time (hours) Average (%)

LLaVA [28] 13B OOM N/A N/A
LLaVA† [28] 13B 71.54 8.75 90.92
QLoRA 500.70M 66.92 6.12 86.96
QSLAW 84.25M 66.52 5.76 91.04

enhancing its visual comprehension capabilities. This seambless
integration of visual and linguistic information highlights the po-
tential for MLLMs to revolutionize the field of artificial intelligence
and drives further advancements in multimodal tasks.

Despite the advancements, the current VL instruction tuning for
MLLMs exhibits considerable redundancy in terms of computation
and memory burden. This limitation primarily stems from the in-
herently large size of LLMs compared to other components within
MLLM architectures. For instance, LLaVA-13B fully fine-tunes the
entire LLM during VL instruction tuning, often requiring hundreds
of GPU hours [28]. Although recent efforts have introduced more
efficient adapters and the freezing of LLMs to reduce training over-
heads [15, 32], VL tuning within current MLLM frameworks still
demands substantial memory usage and computational resources,
necessitating at least 8 NVIDIA Tesla A100 GPUs [32]. This poses
great challenges to the rapid adaptation of LLMs for cross-modal
tasks, particularly in situations characterized by limited training
resources and needs for on-the-fly, task-specific tuning.

To address this constraint, this paper explores the potential of
parameter quantization for MLLMs, aiming to alleviate the exten-
sive training demands encountered during VL instruction tuning
while preserving the original performance. Quantization, a net-
work compression technique, transforms the full-precision weights
into low-bit representations, consequently reducing both compu-
tational load and storage requirement. It has been adopted for
parameter-efficient fine-tuning (PEFT) of LLMs [12, 17, 44], notably
in QLoRA [12], which quantizes each linear layer’s weights into a
4-bit NormalFormat (NF) datatype and uses the low-rank adapter
(LoRA) [20] for fine-tuning. Owing to the lightweight quantized
LLM and a minimal set of trainable parameters within the LoRA
module, QLoRA can facilitate LLaMA-65B fine-tuning on a single
48GB GPU without sacrificing chat performance [12].

A potential strategy to consider is implementing the previously
discussed PEFTmethod to facilitate VL instruction tuning forMLLMs.
We conduct an experiment in Table 1 to analyze its efficacy. As can
be seen, utilizing QLoRA to quantize LLMweights to 4-bit can signif-
icantly reduce both GPU memory consumption and time overhead.
Regrettably, QLoRA inflicts a considerable performance impairment
on multimodal tasks, with almost a 4% accuracy decrease on Sci-
enceQA [31], despite its capacity to attain parity with full-precision
performance in language tasks [19, 41]. This incongruity prompts
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us to investigate the effects of quantization on MLLMs during VL
instruction tuning in greater depth. Consequently, we examine the
activation distribution within intermediate layers of LLMs, focusing
on language and multimodal image data, as depicted in Figure 1.
A noticeable percentage of activations emerge as outliers, display-
ing significant deviations in magnitude, which poses a substantial
challenge for MLLMs quantization. Minor quantization errors may
accumulate and interact with these activation outliers, ultimately
resulting in irreversibly distorted outputs [11, 27]. Furthermore, the
density and frequency of activation outlier markedly increase in
multimodal inputs compared to unimodal language inputs. This
observation elucidates the performance deterioration of QLoRA in
VL instruction tuning for MLLMs, as its adopted NF4 datatype only
pursues equating the quantity of values across all quantization bins
from the weight tensor and causes severe information loss, making
it hard for LoRA to accommodate activation outliers.

To address this limitation, we employ quantization-aware scale
learning instead of using LoRA to fine-tune the quantized ML-
LLM. Specifically, we divide the weights into multiple quantization
groups, each assigned a learnable scale factor. This scale learning
approach effectively reduces quantization errors within each group,
particularly in cases where activations exhibit outlier characteristics
at certain positions. Furthermore, we adopt uniform quantization
instead of forcing an equal number of weights in each quantiza-
tion bin like NF4 and initialize the quantized weights with Omni-
Quant [38], an LLM uniform quantization method that employs
weight clipping to mitigate the quantization difficulty occurring in
language tasks, rather than relying solely on the probability den-
sity of the weights as in NF4. Compared to LoRA, our proposed
scale learning method offers several distinct advantages. First and
foremost, LoRA fine-tuning targets the output of the entire layer,
which fails to adaptively minimize the quantization errors at outlier
positions. Additionally, scale learning exhibits significantly higher
efficiency than LoRA. For example, with a group size of 128, the
introduced parameters for scale learning amount to only 16.83% of
those required for fine-tuning with LoRA, thereby enabling more
efficient VL instruction tuning for MLLMs.

Next, we explore the data construction for scale learning. Relying
solely on multimodal data for training scaling tends to cause the
LLM to overfit to downstream tasks, subsequently diminishing its
inherent linguistic proficiency. On the other hand, using a hetero-
geneous mix of language and multimodal data compromises the
efficiency of VL tuning, as MLLMs fail to receive adequate multi-
modal instructional guidance during the initial stages of training.
To address this issue, we introduce a novel modality-aware warmup
method, which utilizes only multimodal data during the early phase
of VL tuning and subsequently incorporates language data for scale
learning. This ensures that MLLMs receive precise multimodal in-
structional supervision and avoids potential overfitting of the LLM
backbone on multimodal data in the later stages of training, thereby
preserving its original linguistic knowledge.

Our Quantization-aware Scale LeArning based on multimodal
Warmup, termed QSLAW, is demonstrated to be effective for effi-
cientMLLM instruction tuning across various VL tasks. For instance,
QSLAW achieves 91.04% accuracy on ScienceQA with LLaVA-13B,
representing a 4.08% gain compared to the 86.96% achieved by

Figure 1: Absolute magnitude of the input activation in one
LLaVA-13B block. Left (image and text tokens) exhibits a
larger scale in activation compared to the right (only text
tokens).

QLoRA,which even outperforms the full-precision fine-tuned LLaVA-
13B (91.04 for QSLAW v.s. 90.92 for full-precision). Our contribu-
tions include:

• We undertake the pioneering exploration of MLLMs quanti-
zation and utilize scale learning to alleviate the quantization
challenges arising from the frequent occurrence of activa-
tion outliers inherent to MLLM quantization.

• We introduce a modality-aware warmup called multimodal
warmup to prevent the quantized model from overfitting
to multimodal data while ensuring stable adaptation of
MLLMs to downstreams.

• Extensive experiments validate that QSLAW significantly
reduces training time and memory footprint for VL instruc-
tion tuning while maintaining state-of-the-art performance.

2 RELATEDWORK
2.1 Model Quantization
Quantization methods can be broadly classified into quantization-
aware training (QAT) and post-training quantization (PTQ). QAT
relies on the complete training data to fine-tune the quantizedmodel
in line with the pre-training phases [8, 14, 29, 30, 39]. PACT [8] em-
ploys trainable activation clipping parameters to determine the ap-
propriate quantization step size, while LSQ [14] directly optimizes
the step size through carefully designed gradient scaling. N2UQ [29]
incorporates a set of learnable thresholds to achieve nonuniform-
to-uniform quantization and utilizes a generalized straight-through
estimator for optimization. Although QAT exhibits promising per-
formance retention, it suffers the need for training weights and
quantization parameters on the full dataset. In contrast, PTQ can
efficiently perform quantization with significantly less data and
resources. Adaround [35] introduces a learnable variable for each
weight and optimizes them layer by layer using a soft relaxation.
BRECQ [25] extends the PTQ framework to block-wise optimization
using second-order information. Qdrop [42] further incorporates
activation quantization and suggests randomly dropping quantized
activation to enhance the flatness of quantized models.

Although these methods are highly efficient for CNNs, they can-
not be extended to LLMs due to the difficulty of optimizing the
vast parameter space with limited samples. GPTQ [16] is the first
attempt to implement PTQ on models with billions of parameters,
utilizing second-order information to compensate for quantization
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error. LLM.int8() [11] highlights significant errors in quantization
caused by activation outliers within LLMs, leading to the proposal
of a mixed-precision quantization approach. AWQ [27] proposes in-
put channel scaling based on activation to protect essential weights.
OmniQuant [38] designs learnable weight clipping and learnable
equivalent transformation, making them differentiable to quantize
LLMs with gradient optimization. AffineQuant [33] further pro-
poses directly optimizing equivalent affine transformations. These
methods aim to reduce the memory footprint of LLMs during infer-
ence. QLoRA [17] is the first to explore reducing memory footprint
during training through quantization and LoRA [20]. LoftQ [26] and
LQ-LoRA [17] alternate between quantization and singular value de-
composition to find a suitable initialization for LoRA. QA-LoRA [44]
proposes balancing degrees of freedom between quantization and
adaptation with group-wise down projection of LoRA. These meth-
ods aim to enhance LoRA based on the NF data type, contributing
orthogonally to our approach. Our method falls within the realm
of quantization for LLMs. Unlike the aforementioned methods, we
specifically address the quantization challenges in MLLMs, where
additional visual inputs can influence the activation distribution and
pose a new challenge. Also, we are the first to explore quantization
challenges for MLLMs.

2.2 Multimodal Large Language Models
Traditional VL instruction tuning commonly employs various task-
related losses, including image-text contrastive loss, image-text
matching loss, and languagemodeling loss, to supervise the training
of both visual and language branches. To compute these losses, it
is typically necessary to perform multiple forward passes on the
image-text pairs, consuming thousands of GPU hours. However,
with the emergence of large language models (LLMs), the paradigm
of VL tuning has shifted towards treating LLMs as a universal
interface and adopting a modular structure to align representations
from vision with LLMs. In these approaches, LLMs and the modular
structure are trained on multimodal examples using a simple cross-
entropy loss. Recent advances in this area include Flamingo [2],
which introduces the Perceiver Resampler as the modular structure,
and BLIP2 [24], which proposes a lightweight Q-Former to align
different modalities. LLaVA [28] employs a simpleMLP as amodular
structure and introduces VL instruction tuning, enabling LLMs to
execute multimodal tasks in an autoregressive manner. Despite
these advancements, the current VL instruction tuning for massive
MLLMs remains expensive. For example, LLaVA-13B fully fine-
tunes the entire LLM during VL instruction tuning, often requiring
hundreds of GPU hours. LaVIN [32], which utilizes an adapter to
achieve parameter-efficient VL instruction tuning, still necessitates
at least eight NVIDIA Tesla A100 GPUs. Our method is designed to
alleviate the extensive training demands in VL instruction tuning
while preserving the original performance. And we are the first to
achieve this for VL instruction tuning by employing quantization
with a minimal set of trainable parameters.

3 METHODOLOGY
3.1 Preliminary
The objective of vision-language (VL) instruction tuning for MLLMs
is to adapt an LLM backbone from processing unimodal text data

to encompassing multimodal data. Specifically, given a multimodal
instruction following example that consists of an image I ∈ Rℎ×𝑤×3

and a text sequence T ∈ R𝑙 , the image I is initially fed into an image
encoder, typically a pre-trained vision transformer [13], to extract
the informative visual representation as:

FI = 𝑓𝜃𝐼 (I), (1)

where 𝜃𝐼 represents the encoder’s parameters. Then, the visual
representation is projected to the word embedding space of LLMs
through a modular structure parameterized by 𝜃𝑎 :

FI′ = 𝑓𝜃𝑎 (FI) . (2)

Subsequently, the LLM with pre-trained weights W receives
the embedded image feature and the text sequence T to generate
a probability distribution P ∈ R𝐿×𝑁 for each word in the target
response R ∈ R𝐿 :

P = 𝑔W (FI′,ET), (3)
where ET = 𝑓𝜃𝑇 (T) is the word embedding of the input text se-
quence and 𝑁 denotes the vocabulary size of the pretrained LLM.

Finally, the modular structure and LLM are jointly fine-tuned by
minimizing the cross-entropy loss, which can be formulated as:

L = −
𝐿∑︁
𝑖=1

logP𝑖, 𝑗 , (4)

where 𝑗 represents the position of R𝑖 in the vocabulary.
Albeit the efficacy, it requires considerable computational re-

sources and memory usage, mainly streaming from the significantly
large parameters in LLMs. Although recent advancements [12, 23,
32, 48] have shown the potential of freezing the LLM backbone
to eliminate partial backward costs of the LLM backbone, exist-
ing VL tuning frameworks still require a minimum of 8 NVIDIA
Tesla A100 GPUs. This necessity poses significant challenges to the
efficient adaptation of LLMs to cross-modal tasks, particularly in
situations characterized by limited training resources and the need
for on-the-fly, task-specific fine-tuning.

3.2 The Potential of LLMs Quantization
Quantizing the parameters of an LLM backbone into lower-bit rep-
resentations offers a promising solution to the above problem and
has shown remarkable efficacy in traditional unimodal PEFT scenar-
ios for LLMs [12, 17, 22, 26]. Therefore, we initiate an exploratory
investigation into the potential of quantization for MLLMs, starting
with a trial using the QLoRA [12] in PEFT contexts.

Specifically, QLoRA compresses the normalized weight Ŵ into
quantized weightW with 4-bit NormalFloat (NF) format 𝑞𝑖 as:

W = argmin
𝑞𝑖

|Ŵ − 𝑞𝑖 |, (5)

where Ŵ = W
𝑚𝑎𝑥 (𝑎𝑏𝑠 (W) ) and 𝑞𝑖 in 4-bit NF format is:

𝑞𝑖 =
1
2
(𝑄 ( 𝑖

17
) +𝑄 ( 𝑖 + 1

17
) ), (6)

where 𝑄 (·) is the quantile function of the standard Gaussian distri-
bution N(0, 1). After the NF4 initialization, the quantized LLM is
frozen, and the low-rank adapter (LoRA) [20] is then utilized for
transfer learning on downstream tasks. It has been widely demon-
strated in the literature [6, 18, 46, 47] that QLoRA can maintain the
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performance of LLMs on downstream language tasks with 4-bit
quantization, significantly reducing the training burden and mem-
ory costs. Regrettably, when we employ QLoRA to enhance the
efficiency of MLLM training, a nearly 4% decrease in accuracy is
observed on ScienceQA, as illustrated in Table 1. Upon analysis, the
NF format described in Eq. (6) only ensures an equal quantity of
weight values across each quantization bin but overlooks activation
outliers, which are common in LLMs. Furthermore, our observation
in Figure 1 indicates that the density and frequency of activation
outliers significantly increase with multimodal inputs compared
to unimodal language inputs. Consequently, minor quantization
errors may accumulate and interact with these activation outliers,
ultimately leading to irreversible output distortion. In summary,
although quantization holds considerable potential for alleviating
the massive burden of MLLM tuning, the need to address the dense
activation outlier phenomenon in multimodal scenarios remains
pressing.

3.3 QSLAW
We formally present our Quantizration-aware Scale LeArning based
on multimodal Warmup (QSLAW) method, specifically designed
for efficient Visual Language (VL) instruction tuning in MLLMs.
QSLAW addresses the challenges associated with MLLMs quan-
tization from two aspects: (1) it uniquely learns scale factors for
different weight groups, reducing the quantization error resulting
from activation outliers and demonstrates to be more effective for
VL instruction tuning on quantized LLMs; (2) it employs a modality-
aware warmup strategy called multimodal warmup, which blends
linguistic and multimodal training samples, thus preventing the
quantizedmodel from overfitting tomultimodal data while ensuring
a stable adaptation to the target VL tasks.

Quantization-Aware Scale Learning. During the VL instruc-
tion tuning process, we assign learnable group-wise scale factors s
to the LLM weights W as follows:

Ŵ =
W
s

(7)

And then uniform quantization is utilized to convert Ŵ into
pseudo-quantized weight W̃:

W̃ = Δ × (clamp(⌊ Ŵ
Δ
⌉ + 𝑧𝑝, 0, 2𝑘 − 1)) − 𝑧𝑝, (8)

where ⌊·⌉ denotes the round-to-nearest integer operation and 𝑘

represents the quantization bit. Δ and 𝑧𝑝 are the quantization step-
size and zero-point, respectively.

In this approach,W is divided into multiple groups, with each
group of weights being scaled by a single factor. By learning the
scale factor under the guidance of Eq. (4), the quantization error
within each weight group can be effectively minimized towards
downstream tasks, particularly for groups containing activations
outlier. To clarify, an appropriate scaling factor allows for the rescal-
ing of weights into a quantile range that reduces the output pertur-
bation when interacting with activation outlier exhibiting signifi-
cant deviation magnitudes and is more suitable for quantized LLMs
to transfer into VL tasks with VL instruction tuning. In contrast,
LoRA is unable to effectively mitigate such quantization errors
caused by activation outliers, as it conducts fine-tuning in a coarse-
grained, global manner. Importantly, as demonstrated in Table 1,
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Figure 2: Loss and accuracy curves of training scalingwith dif-
ferent strategies on ScienceQA. Solely utilizing multimodal
data for training scaling tends to lead the LLM overfitted to
downstream tasks. This is evidenced by a rapid decrease in
loss but the accuracy remain mediocre.

the parameter count of the scale learning is substantially lower
than that of the LoRA module, making our scale learning suitable
for an efficient VL instruction tuning.

Modality-aware Warmup. As discussed in Sec. 3.1, MLLMs
fine-tune their parameters using instruction samples that encom-
pass both images and textual content. Unfortunately, we find that
training the scale factor for quantization using the same dataset
can result in an overfitting issue for the LLM backbone. As illus-
trated in Figure 2, scale learning on purely multimodal data leads
to a rapid decrease in loss while the final model accuracy, para-
doxically, fails to outperform the full-precision counterpart. This
overfitting phenomenon is understandable, given that the LLM’s
pre-training was solely based on linguistic data. Consequently,
conducting quantization-aware scale training exclusively on mul-
timodal data can impair the inherent linguistic capabilities of the
LLM, which are of paramount importance to serve as a language
backbone for multimodal adaptation.

An intuitive solution to this overfitting problem involves the inte-
gration of linguistic data to jointly guide the scale learning process.
Consequently, we supplement the existing multimodal data with
the WikiText dataset [34], thereby creating a hybrid dataset specifi-
cally designed for scale learning. Figure 2 illustrates the trajectories
of loss and accuracy. While effective mitigation of overfitting is
observed, the adaptive performance of the multimodal approach
still falls short when compared to its full-precision counterpar. We
attribute this outcome to an early-stage underfitting of the LLMs
with respect to the multimodal data. Specifically, the MLLMs param-
eters, such as the scale factor and modular structure, are randomly
initialized at the start of training, and the interference of linguis-
tic supervision at this stage hinders the model’s ability to fit the
multimodal data, resulting in suboptimal performance.

To address the complex interplay between overfitting and un-
derfitting, we equip QSLAW with a multimodal warmup data sam-
pling strategy. More specifically, during the initial 𝜂 iterations of
VL instruction fine-tuning, we exclusively utilize multimodal data

4
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Table 2: Quantitative accuracy on ScienceQA test dataset. Question classes: NAT = natural science, SOC = social science, LAN =
language science, TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12. The symbol
“†” denotes a larger rank used for LoRA and the best results in each class are underlined.

Method Subject Context Modality Grade AverageNAT SOC LAN TXT IMG NO G1-6 G7-12

Zero-shot & few-shot representative methods with performance reported in the literature
Human [31] 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40
GPT-3.5 [31] 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97

GPT-3.5 w/ CoT [48] 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17

Two-stage representative methods with performance reported in the literature
LLaVA-13B [28] 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92

LLaVA-13B-QLoRA 74.20 79.19 69.55 74.10 70.40 72.47 75.51 71.39 74.04
LLaVA-13B-QLoRA† 85.48 93.59 84.64 84.56 83.94 86.90 87.96 85.17 86.96

LLaVA-13B-QSLAW (Ours) 83.26 91.79 80.00 82.80 81.30 83.07 86.01 80.95 84.20
LLaVA-13B-QSLAW†(Ours) 91.30 96.06 86.45 90.22 89.34 89.34 91.63 89.98 91.04

One-stage representative methods with performance reported in the literature
LLaMA-Adapter [48] 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19

LaVIN-7B [32] 89.25 94.94 85.24 88.51 87.46 88.08 90.16 88.07 89.41
LaVIN-7B-QLoRA 87.61 94.04 85.18 86.51 85.62 88.43 89.02 83.08 88.27

LaVIN-7B-QSLAW (Ours) 90.23 93.59 85.82 89.54 87.75 88.71 90.75 88.07 89.79

pairs for scale learning. Subsequently, we incorporate linguistic
text sequences extracted from the WikiText dataset to facilitate
hybrid-data training. This warmup approach ensures accurate mul-
timodal instructional supervision for the MLLMs during the initial
training iterations, while simultaneously circumventing potential
overfitting of the LLM backbone on multimodal data to preserve
its inherent linguistic capabilities. Consequently, as demonstrated
in Figure 2, the proposed multimodal warmup method effectively
rivals the accuracy of quantization-aware scale learning compared
with its full-precision counterpart.

In addition to the two components mentioned above, our pro-
posed QSLAW method initializes Δ and 𝑧𝑝 in Eq. (5) using Om-
niQuant [38], a post-training quantization method for LLMs that
employs weight clipping to mitigate the quantization challenge
in language tasks, rather than solely relying on the probability
density of the weights as in NF4. And it is worth mentioning that
our method is not constrained by the quantization method or ini-
tialization and can achieve consistent performance improvements
compared with Lora as discussed in Sec. 4.3.2. Moreover, it is of
crucial importance to realize that QSLAW is orthogonal to most of
off-the-shelf MLLMs paradigms and can be seamlessly integrated
to enhance their efficiency during the VL instruction tuning, which
will be quantitatively demonstrated in the following experimental
section.

4 EXPERIMENTATION
4.1 Experimental Settings
4.1.1 Networks and Datasets. To validate the effectiveness of our
approach, we select two types of MLLMs: LLaVA [28], which em-
ploys a two-stage full fine-tuning strategy, and LaVIN [32], which
utilizes one-stage parameter-efficient fine-tuning strategy. We eval-
uate performance in linewithmostmultimodal LLMs [10, 28, 32, 45],

focusing on visual reasoning and instruction-following capabili-
ties. For a straightforward comparison, we follow the precedent
set by LLaVA and LaVIN to choose the ScienceQA dataset [31] for
visual reasoning. The dataset, split into train, val, and test, spans
diverse domains, including natural science, language science, and
social science, and consists of both text-image and text-only inputs.
We report the average accuracy on its test split. For instruction-
following, we construct a multimodal ChatBot using LLaVA trained
with LLaVA-80k [28]. LLaVA-80k is a high-quality vision-language
instruction-following dataset generated by ChatGPT/GPT-4 [1].
The responses from the ChatBot will be evaluated by GPT-4, with
higher-quality responses receiving a score ranging from 1 to 10.

4.1.2 Implementation Details. Following papers [28, 32], we adopt
the ViT-L/14 in CLIP as the image encoder. For LaVIN and LLaVA,
we use twoMLP layers with a hidden dimension of 128 and a simple
linear layer as modular structure, respectively. For LLMs, we employ
LLaMA-7B [40] and Vicuna-13B [7]. All parameter settings strictly
adhere to the LLaVA and LaVIN papers, except for the 2 training
epochs with a batch size of 64, and a 1:1 hybrid training dataset
comprising WikiText and downstream data for scale learning.1

4.2 Main Results
4.2.1 ScienceQA. We categorize MLLMs into one-stage parameter-
efficient and two-stage full fine-tuning and select a renownedmodel
for each category to validate our method’s performance. Quantita-
tive results on ScienceQA are presented in Table 2. Our approach
significantly enhances quantization transfer performance on mul-
timodal tasks, showing consistent improvement across all ques-
tion classes compared to QLoRA. For LLaVA, our QSLAW achieves
84.20% accuracy, a 10.16% gain over QLoRA’s 74.04%.With improved
settings, our method even outperforms full-precision LLaVA-13B,
1Code in the supplementary material will be open-source upon paper acceptance.
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Visual Comprehension

Image Caption Multimodal Reasoning

Q:  What is the man doing in the image?
 QLoRA: The man in the image is talking on 

his cell phone while sitting at a table.
 LLaVA: The man in the image is talking on 

his cell phone while sitting at a table.
 QSLAW: The man in the image is sitting at a 

table, holding up a cell phone to his ear, and 
talking on the phone.

Q: Can you elaborate on the elements of the picture provided?

 QLoRA: The image shows a beautiful landscape with a lake, mountains, and a valley. The lake 
is surrounded by mountains, and there is a road running along the side of the lake. The sky is 
blue and clear, adding to the serene and picturesque atmosphere of the scene. The presence of a 
car on the road suggests that the area is accessible and possibly a popular destination for tourists 
or locals to enjoy the scenic views and outdoor activities. The combination of the lake, 
mountains, and valley creates a breathtaking natural landscape that captures the essence of the 
region's beauty.

 LLaVA: The image features a large body of water, possibly a lake or a river, with a mountain 
range in the background. The water appears to be calm and serene, creating a peaceful 
atmosphere. The landscape is picturesque, with the mountain range providing a stunning 
backdrop to the water. The scene is likely to be a popular spot for tourists and locals alike, who 
may come to enjoy the natural beauty, take photographs, or engage in recreational activities 
such as boating, fishing, or hiking. The presence of the mountain range also suggests that the 
area might be suitable for various outdoor activities, such as rock climbing, mountain biking, or 
camping.

 QSLAW: The image shows a beautiful landscape with a large body of water, possibly a lake, 
situated in a valley. The water is surrounded by mountains, creating a picturesque and serene 
environment. There are also trees in the scene, adding to the natural beauty of the landscape. 
The sky in the image is blue, which further enhances the overall aesthetic of the picture. The 
presence of a train in the background adds an element of human activity and transportation to 
the scene, contrasting with the natural beauty of the landscape.

Q: What could be a potential concern for the baby elephant in this setting?
 QLoRA: A potential concern for the baby elephant in this setting could be its safety and well-

being. In the image, the baby elephant is standing in a sandy area with a blue tire and a blue 
ball nearby. The presence of these objects might pose a risk to the baby elephant, as it could 
accidentally step on or play with them, potentially causing injuries or harm. Additionally, the 
baby elephant might be curious and explore the objects, which could lead to further accidents 
or mishaps. It is essential for the caretakers to ensure the safety and well-being of the baby 
elephant by providing a secure and appropriate environment for its growth and development.

  LLaVA: A potential concern for the baby elephant in this setting is the presence of the tire in 
the enclosure. The tire might pose a risk to the elephant's safety, as it could be a choking 
hazard or cause injury if the elephant were to play with it or accidentally step on it. 
Additionally, the tire might not be an appropriate toy for an elephant, as it could be too small 
or not sturdy enough to withstand the elephant's size and strength. It is essential for the 
caretakers to ensure that the enclosure is safe and provides appropriate toys and stimulation for 
the baby elephant's well-being.

 QSLAW: A potential concern for the baby elephant in this setting is the lack of natural habitat 
and social interaction with other elephants. In the image, the baby elephant is standing alone in 
a dirt area with a few toys and a tire nearby. This environment might not provide the baby 
elephant with the necessary stimulation, socialization, and learning opportunities that it would 
typically receive in the wild. Additionally, the presence of a tire and other toys suggests that 
the baby elephant might be in a zoo or a similar enclosure, which could limit its natural 
behaviors and movement. It is essential for the baby elephant to have access to a more natural 
habitat and social interactions with other elephants to ensure its proper growth and 
development.

Image Caption

Q:  What kind of objects are included in the art 
installation?
 QLoRA: The art installation includes a large 

tiger sculpture and a car.
 LLaVA: The art installation includes a large 

orange tiger sculpture and a wooden structure.
 QSLAW: The art installation includes a 

large tiger statue, a wooden bench, and a car.

Figure 3: Comparation among various VL instruction tuning paradigms with the examples under different multimodal
instruction-following tasks including visual comprehension, image caption and multimodal reasoning. More detailed parts of
the response are marked in red and the misunderstandings in responses are marked in bluesky.

which fine-tunes the entire LLM on ScienceQA. For LaVIN, our QS-
LAW achieves 89.79% accuracy, a 1.46% gain compared to QLoRA’s
88.33%, and outperforms full-precision LaVIN-7B.

4.2.2 ChatBot. We also present qualitative results to demonstrate
the multimodal instruction-following capabilities of models ob-
tained using QSLAW. In Figure 3, we compare various VL instruc-
tion tuning paradigms with examples from different multimodal
instruction-following tasks, including image captioning,multimodal
reasoning and visual comprehension. In more challenging image

captioning tasks requiring both local and global image understand-
ing, QSLAW excels. For a relatively small, distant train in an im-
age, QSLAW correctly identifies it, whereas QLoRA misidentifies
it as a car, and LLaVA overlooks it. This misunderstanding leads
LLaVA and QLoRA to generate incorrect speculations about the
scene, where it is unlikely for tourists to relax or take photos near
a railway. Additionally, QSLAW exhibits exceptional multimodal
reasoning capabilities. It can infer the absence of social interaction
from the environment and the position between the tir and the
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Q: What is the main focus of the image?

 QSLAW: The main focus of the image is a close-up view of a 
giraffe's face, with its eyes and mouth visible. [GPT Score: 9]

 QLoRA: The main focus of the image is a giraffe standing in a 
field of trees. [GPT Score: 6]

GPT-4 Evaluation: QSLAW's response was slightly more detailed, 
specifying that the close-up view of the giraffe's face includes its 
eyes and mouth. This additional detail gives QSLAW a higher 
score, as it provides a more comprehensive description of the 
image's main focus. QLoRA's response is not as precise, as it 
focuses on the giraffe standing in a field of trees, which is not the 
main focus of the image. QSLAW’s answer is more helpful and 
detailed, while QLoRA's answer is less accurate and less relevant to 
the question asked.

Q: What may be a potential obstacle for the house construction in its current state?

 QSLAW: In the image, the house construction is in its early stages, with the foundation and walls being built. A 
potential obstacle for the construction in its current state is the lack of proper support and reinforcement for the walls. 
The walls are made of wood, which may not provide sufficient strength and stability for the structure. [GPT Score: 7]

 QLoRA: A potential obstacle for the house construction in its current state is the presence of a large piece of 
furniture, such as a couch, in the middle of the room. This furniture might be blocking the path for workers and 
equipment, making it difficult for them to move around and complete the construction process efficiently. 
Additionally, the furniture might also be in the way of the electrical outlets, which could cause safety hazards or 
delays in the installation of electrical systems.  [GPT Score: 3]

GPT-4 Evaluation: QSLAW focused on the lack of proper support and reinforcement for the walls, which is a valid 
concern but not directly related to the current state of the house construction. QLoRA’s response was not relevant to the 
given context, as it focused on the presence of furniture, which was not mentioned in the context. Therefore, QSLAW 
receives a score of 7 for providing a helpful and accurate response, while QLoRA receives a score of 3 for providing an 
irrelevant response.

Figure 4: GPT-4 scores for QSLAW and QLoRA. Higher score represents high quality and the reasons why QSLAW obtains a
higher score are highlighted in red.

Table 3: Effect of each component on ScienceQA test dataset. All results are conducted with LaVIN-7B.

Settings NAT SOC LAN TXT IMG NO G1-6 G7-12 Average (%)

OmniQuant 88.06 94.15 84.36 87.49 86.61 86.90 89.57 86.22 88.38(+0.00)
+ quantization-aware scaling 84.64 89.65 80.64 83.82 81.46 83.97 86.78 80.82 84.65(−3.73)
+ hybrid data 87.26 94.83 86.64 86.56 85.77 89.41 89.98 86.35 88.68(+0.30)
+ multimodal warmup 90.23 93.59 85.82 89.54 87.75 88.71 90.75 88.07 89.79(+1.41)

baby elephant, which is contextually consistent. In contrast, LLaVA
and QLoRA merely deduce from the objects in the scene. For simple
visual comprehension questions, QSLAW generates detailed and
precise responses. For instance, QSLAW provides a more compre-
hensive description of a man’s posture while making a phone call
compared to QLoRA and LLaVA. In another image, QSLAW accu-
rately recognizes a wooden structure as a bench and offers a more
thorough description of the scene, while QLoRA and LLaVA have
omissions. These examples illustrate that our proposed QSLAW
in this paper effectively learns visual knowledge and instruction-
following abilities during VL instruction tuning.

We also use very strong GPT-4 [1] to evaluate the response
quality from QSLAW and our QLoRA. The results are reported in
Figure 4. QSLAW performs better than QLoRA, primarily due to its
detailed descriptions and superior visual comprehension.2

4.3 Ablation Studies
4.3.1 Component Importance. We examine the effectiveness of
each component to provide deeper insights into VL instruction tun-
ing with quantization. Table 3 shows that when LLM is quantized

2More evaluation results have been illustrated in supplementary material.

by OmniQuant and undergoes VL instruction tuning on ScienceQA
like LaVIN, it serves as our baseline and achieves higher accuracy
compared to LaVIN-QLoRA due to the consideration of activation
outliers. When we introduce quantization-aware scale learning and
train it on the same dataset used for VL instruction tuning, the
performance drops significantly due to overfitting issues in the
LLM backbone. Incorporating linguistic data to guide scale learn-
ing alleviates overfitting and improves average accuracy by 0.66%
compared to the baseline. Nevertheless, it still lacks effective super-
vision and exhibits a performance gap compared to full-precision
LaVIN (88.54% for hybrid data v.s. 89.41% for the full-precision). Our
multimodal warmup allows for precise supervision with hybrid data
and demonstrates potential beyond models with full-precision VL
instruction tuning.

4.3.2 Quantization Initialization. We further evaluate QSLAW’s
performancewith different quantization initialization on ScienceQA.
In Table 4, we examine the performance of LaVIN-7B under both
NF4 and OmniQuant. Our method consistently enhances perfor-
mance under these two different quantization initializations. Specif-
ically, QSLAW demonstrates an improvement of 0.71% and 1.41%
compared to LoRA for NF4 and OmniQuant, respectively. This
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Table 4: Different Quantization initialization method for
LoRA and QSLAW. OmniQuant-1 and OmniQuant-2 means
the calibration for quantization parameters are conducted
on language dataset and hybrid dataset, respectively.

Initialization Average (%)

LoRA is used.
NF4 (QLoRA) 88.27
OmniQuant-1 88.38
OmniQuant-2 88.54

QSLAW is used.
NF4 88.98

OmniQuant-1 89.79
OmniQuant-2 89.85
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Figure 5: The training process with different strategies. With
our multimodal warmup strategy, the training process ex-
hibits faster and more stable fitting.

result also validates that, for VL tuning where the density and
frequency of activation outlier are markedly increased, the NF4
datatype, which aims to equalize the quantity of values across all
quantization bins, is sub-optimal and may negatively impact VL
tuning. Moreover, QSLAW outperforms LoRA under both quantiza-
tion methods, illustrating that our proposed scale learning method
is more suitable for VL instruction tuning with quantized LLMs.
This can be attributed to QSLAW’s ability to effectively adapt to
the unique characteristics of each quantization method, ensuring
optimal performance in various quantization scenarios.

In conclusion, QSLAW’s versatility and adaptability make it
a robust and effective solution for VL instruction tuning across
different quantization methods, leading to improved performance
and more accurate results in multimodal tasks.

4.3.3 Alignment Effect. To further elucidate the benefits of the
proposed QSLAWmethod in this paper, we conduct in-depth exper-
iments on a two-stage LLaVA model. This model features a separate
stage dedicated to pre-training a modular structure, which allows
us to exclude the influence of other trainable parameters. This
setup enables us to observe how quantization-aware scale learning

0 5 10 15 20 25 30
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0.24
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C
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Si
m
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rit

y

QSLAW
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Figure 6: Block-wise cosine similarity between visual tokens
and text tokens under different strategies. QSLAW can help
model to align visual and textual tokens.

enhances the alignment between visual and language modalities,
ultimately leading to improved performance results.

As depicted in Figure 5, QSLAW can stabilize and accelerate
the training process for the modular structure. We also calculate
the pair-wise consine similarity between text tokens and image
tokens across different layers. Figure 6 demonstrates that the mod-
ular structure of QSLAW enhances alignment capability, poten-
tially surpassing the projector under full-precision training. How-
ever, such a advantage would be compromised without our mul-
timodal warmup strategy. This findings highlight the importance
of QSLAW’s quantization-aware scale learning and multimodal
warmup in achieving effective alginment between visual and lan-
guage modalities. Such an improved alignment contributes to the
model’s overall performance and adaptability, making it a valuable
approach for multimodal learning tasks.

5 CONCLUSION
In this paper, we are the first to investigate the potential of param-
eter quantization for MLLMs to reduce training overhead during
VL instruction tuning. We propose a Quantization-aware Scale
Learning method based on multimodal Warmup (QSLAW). QSLAW
employs quantization and a minimal set of trainable scaling factors
to achieve efficient VL instruction tuning. A novel modality-aware
warmup is introduced to ensure that scale learning receives ade-
quate multimodal instructional supervision while preserving its
original linguistic knowledge. We validate QSLAW’s effectiveness
under various settings, demonstrating its excellent multimodal rea-
soning capabilities. QSLAW surpasses full-precision fine-tuning on
ScienceQA and, for ChatBot tasks, effectively learns visual knowl-
edge and instruction-following capabilities. Our work offers new
insights into MLLM quantization and efficient VL instruction tun-
ing, paving the way for further research into exploring the benefits
of quantization and constructing more affordable VL instruction
tuning methods. We hope this study will inspire additional advance-
ments in the field of multimodal learning and instruction tuning.
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