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ABSTRACT

A distinguishing characteristic of federated learning is that the (local) client data
could have statistical heterogeneity. This heterogeneity has motivated the design of
personalized learning, where individual (personalized) models are trained, through
collaboration. There have been various personalization methods proposed in lit-
erature, with seemingly very different forms and methods ranging from use of
a single global model for local regularization and model interpolation, to use of
multiple global models for personalized clustering, etc. In this work, we begin
with a statistical framework that unifies several different algorithms as well as
suggest new algorithms. We apply our framework to personalized estimation, and
connect it to the classical empirical Bayes’ methodology. We develop novel private
personalized estimation under this framework. We then use our statistical frame-
work to propose new personalized learning algorithms, including AdaPeD based
on information-geometry regularization, which numerically outperforms several
known algorithms. We develop privacy for personalized learning methods with
guarantees for user-level privacy and composition. We numerically evaluate the
performance as well as the privacy for both the estimation and learning problems,
demonstrating the advantages of our proposed methods.

1 INTRODUCTION

The federated learning (FL) paradigm has had huge recent success both in industry and academia
(McMahan et al., 2017; Kairouz et al., 2021), as it enables to leverage data available in dispersed
devices for learning while maintaining data privacy. Yet, it was recently realized that for some
applications, due to the statistical heterogeneity of local data, a single global learning model may
perform poorly for individual clients. This motivated the need for personalized learning achieved
through collaboration, and there have been a plethora of personalized models proposed in the literature
as well (Fallah et al., 2020; Dinh et al., 2020; Deng et al., 2020; Mansour et al., 2020; Acar et al.,
2021; Li et al., 2021; Ozkara et al., 2021; Zhang et al., 2021; Hu et al., 2020). However, the proposed
approaches appear to use very different forms and methods, and there is a lack of understanding of
an underlying fundamental statistical framework. Such a statistical framework could help develop
theoretical bounds for performance, suggest new algorithms as well as perhaps give grounding to
known methods. Our work addresses this gap.

In particular, we consider the fundamental question of how one can use collaboration to help
personalized learning and estimation for users who have limited data that they want to keep private.
Our proposed framework is founded on the requirement not only of personalization but also privacy,
as maintaining local data privacy is what makes the federated learning framework attractive - and
thus any algorithm that aims to be impactful needs to also give formal privacy guarantees. The
goal of this paper is to develop a statistical framework that leads to new algorithms with provable
privacy guarantees, and performance bounds. Our main contributions are (i) Development of a
statistical framework for federated personalized estimation and learning (ii) Theoretical bounds and
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novel algorithms for private personalized estimation (iii) Design and privacy analysis of new private
personalized learning algorithms; as elaborated below. Omitted proofs/details are in appendices.

• Statistical framework: We connect this problem to the classical empirical Bayes’ method, pi-
oneered by Stein (1956); James & Stein (1961); Robbins (1956), which proposed a hierarchical
statistical model Gelman et al. (2013). This is modeled by an unknown population distribution P
from which local parameters {θi} are generated, which in turn generate the local data through the
distribution Q(θi). Despite the large literature on this topic, especially in the context of statistical
estimation, creating a framework for FL poses new challenges. In contrast to classical empirical
Bayes’ estimation, we introduce a distributed setting and develop a framework that allows information
(communication and privacy) constraints1. This framework enables us to develop statistical perfor-
mance bounds as well as suggests (private) personalized federated estimation algorithms. Moreover,
we develop our framework beyond estimation, for (supervised) distributed learning, where clients
want to build local predictive models with limited local (labeled) samples; we develop this framework
in Section 3, which leads to new (private) personalized learning algorithms.

• Private personalized estimation: Our goal is to estimate individual (local) parameters, when
each user has very limited (heterogeneous) data. Such a scenario motivates federated estimation of
individual parameters, privately. More precisely, the users observe data generated by an unknown
distribution parametrized by their individual (unknown) local parameters θi, and want to estimate
their local parameters θi leveraging very limited local data; see Section 2 for more details. For
the hierarchical statistical model, classical results have shown that one can enhance the estimate
of individual parameters based on the observations of a population of samples, despite having
independently generated parameters from an unknown population distributions. However, this has
not been studied for the distributed case, with privacy and communication constraints, which we do
(see Theorem 2 for the Gaussian case and Theorem 4 for the Bernoulli case, and also for mixture
population models in Appendix D). We estimate the (parametrized) population distribution under
these privacy and communication constraints and use this as an empirical prior for local estimation.
The effective amplification of local samples through collaboration, in Section 2, gives us theoretical
insight about when collaboration is most useful, under privacy and/or communication constraints.
Our results suggest how to optimally balance estimates from local and population models. We
also numerically evaluate these methods, including application to polling data (see Section 4 and
Appendices) to show advantages of such collaborative estimation compared to local methods.

• Private personalized learning: The goal here is to obtain individual learning models capable of
predicting labels with limited local data in a supervised learning setting. This is the use case for
federated learning with privacy guarantees. It is intimately related to the estimation problem with
distinctions including (i) to design good label predictors rather than just estimate local parameters (ii)
the focus on iterative methods for optimization, requiring strong compositional privacy guarantees.
Therefore, the statistical formulation for learning has a similar flavor to that in estimation, where
there is a population model for local (parametrized) statistics for labeled data; see Section 3 for more
details. We develop several algorithms, including AdaPeD (in Section 3.2), AdaMix (in Section 3.1),
and DP-AdaPeD (in Section 3.3), inspired by the statistical framework. AdaPeD uses information
divergence constraints along with adaptive weighting of local models and population models. By
operating in probability (rather than Euclidean) space, using information-geometry (divergence),
enables AdaPeD to operate with different local model sizes and architectures, giving it greater
flexibility than existing methods. We integrate it with user-level privacy to develop DP-AdaPeD,
with strong compositional privacy guarantees (Theorem 5). AdaMix is inspired by mixture population
distributions, which adaptively weighs multiple global models and combines it with local data for
personalization. We numerically evaluate these algorithms for synthetic and real data in Section 4.

Related Work. Our work can be seen in the intersection of personalized learning, estimation, and
privacy. Below we give a brief description of related work; a more detailed comparison which
connects our framework to other personalized algorithms is given in Appendix J.

Personalized FL: Recent work adopted different approaches for learning personalized models, which
can be explained by our statistical framework for suitable choices of population distributions as
explained in Appendix J: These include, meta-learning based methods (Fallah et al., 2020; Acar
et al., 2021; Khodak et al., 2019); regularization (Deng et al., 2020; Mansour et al., 2020; Hanzely

1The homogeneous case for distributed estimation is well-studied; see (Zhang, 2016) and references.
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& Richtárik, 2020); clustered FL (Zhang et al., 2021; Mansour et al., 2020; Ghosh et al., 2020;
Smith et al., 2017) (Marfoq et al., 2021); using knowledge distillation (Lin et al., 2020; Ozkara
et al., 2021); multi-task Learning (Dinh et al., 2020; Hanzely & Richtárik, 2020; Smith et al., 2017;
Vanhaesebrouck et al., 2017; Zantedeschi et al., 2020); and using common representations (Du et al.,
2021; Raghu et al., 2020; Tian et al., 2020; Collins et al., 2021) and references therein. Our work
enables not just a unified view of these methods, but suggests new algorithms developed in this paper,
along with privacy guarantees.

After the conclusion of our work (Ozkara et al., 2022, July), we found two concurrent and independent
works (Kotelevskii et al., 2022, June; Chen et al., 2022) that use a hierarchical Bayes approach to
construct personalized learning algorithms, and are closest to our statistical framework. (Kotelevskii
et al., 2022, June) is based on using a MCMC method2 to estimate a population distribution; such
methods could be computationally intensive (see the discussion in (Blei et al., 2003); (Chen et al.,
2022) considers the unimodal Gaussian prior, and effectively does what the classical empirical
Bayes suggests (see also Theorem 1). None of these works consider privacy, which we do both
for estimation and learning algorithms (see Theorems 2, 4, Appendix D, and for DP-AdaPeD in
Theorem 5). Note that MCMC methods could have detrimental privacy implications. Also, they do
not include information-geometric techniques (like our AdaPeD) or methods inspired by mixture
distributions (e.g., AdaMix).

Privacy for Personalized Learning. There has been a lot of work in privacy for FL when the goal is
to learn a single global model (see (Girgis et al., 2021b) and references therein); though there are
fewer papers that address user-level privacy (Liu et al., 2020; Levy et al., 2021; Ghazi et al., 2021).
There has been more recent work on applying these ideas to learn personalized models (Girgis et al.,
2022; Jain et al., 2021b; Geyer et al., 2017; Hu et al., 2020; Li et al., 2020). These are for specific
algorithms/models, e.g., Jain et al. (2021b) focuses on the common representation model for linear
regression described earlier or on item-level privacy (Hu et al., 2020; Li et al., 2020). We believe
that DP-AdaPeD proposed in this paper is among the first user-level private personalized learning
algorithms with compositional guarantees, applicable to general deep learning architectures.

2 PERSONALIZED ESTIMATION

We consider a client-server architecture, where there are m clients. Let P(Γ) denote a global
population distribution that is parameterized by an unknown Γ and let θ1, . . . ,θm are sampled i.i.d.
from P(Γ) and are unknown to the clients. Client i is given a dataset Xi := (Xi1, . . . , Xin), where
Xij , j ∈ [n] are sampled i.i.d. from some distribution Q(θi), parameterized by θi ∈ Rd. Note that
heterogeneity in clients’ datasets is induced through the variance in P(Γ), and if the variance of P(Γ)
is zero, then all clients observe i.i.d. datasets sampled from the same underlying distribution.

The goal at client i for all i ∈ [m] is to estimate θi through the help of the server. We focus on
one-round communication schemes, where client j applies a (potentially randomized) mechanism q
on its dataset Xj and sends qj := q(Xj) to the server, who aggregates the received messages, which
is denoted by Agg(q1, . . . , qm), and broadcasts that to all clients. Based on (Xi,Agg(q1, . . . , qm)),
client i outputs an estimate θ̂i of θi. We measure the performance of θ̂i through the Bayesian risk for
mean squared error (MSE), as defined below (where P is the true prior distribution with associated
density π, θi ∼ P is the true local parameter, and θ̂i = θ̂(Xi,Agg(q1, . . . , qm)) is the estimator):

Eθi∼PEθ̂i,q,X1,...,Xm
‖θ̂i − θi‖2 =

∫
Eθ̂i,q,X1,...,Xm

‖θ̂i − θi‖2π(θi)dθi. (1)

The above statistical framework can model many different scenarios, and we will study in detail three
settings: Gaussian and Bernoulli models (Sections 2.1, 2.2 below), and Mixture model (Appendix D).

2.1 GAUSSIAN MODEL

In the Gaussian setting, P(Γ) = N (µ, σ2
θId) and Q(θi) = N (θi, σ

2
xId) for all i ∈ [m], which

implies that θ1, . . . ,θm ∼ N (µ, σ2
θId) i.i.d. and Xi1, . . . , Xin ∼ N (θi, σ

2
xId) i.i.d. for i ∈ [m].

Here, σθ ≥ 0, σx > 0 are known, and µ,θ1, . . . ,θm are unknown. For the case of a single local

2In our understanding their numerics seem to be restricted to a unimodal Gaussian population model.
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sample this is identical to the classical James-Stein estimator (James & Stein, 1961); Theorem 1 does
a simple extension for multiple local samples and is actually a stepping stone for the information
constrained estimation result of Theorem 2. Omitted proofs/details are provided in Appendix B.

Our proposed estimator. Since there is no distribution on µ, and given µ, we know the distribution
of θi’s, and subsequently, of Xij’s. So, we consider the maximum likelihood estimator:

θ̂1, . . . , θ̂m, µ̂ := arg max
θ1,...,θm,µ

p{θi,Xi}|µ (θ1, . . . ,θm, X1, . . . , Xm|µ) (2)

Theorem 1. Solving (2) yields the following closed form expressions for µ̂ and θ̂1, . . . , θ̂m:

µ̂ =
1

m

m∑
i=1

Xi and θ̂i = aXi + (1− a)µ̂, for i ∈ [m], where a =
σ2
θ

σ2
θ + σ2

x/n
. (3)

The above estimator achieves the MSE: Eθi,X1,...,Xm‖θ̂i − θi‖2 ≤
dσ2
x

n

(
1−a
m + a

)
.

It follows that the mechanism q and the aggregation function Agg for the estimators in (3) (as described
in (1)) are just the average functions, where client i sends qi = q(Xi) := Xi = 1

n

∑n
j=1Xij to the

server, and the server sends µ̂ := Agg(q1, . . . , qm) = 1
m

∑m
i=1 qi back to the clients.

Remark 1 (Personalized estimate vs. local estimate). When σθ → 0, then a→ 0, which implies that
θ̂i → µ̂ and MSE→ dσ2

x/mn. Otherwise, when σ2
θ is large in comparison to σ2

x/n or n→∞, then
a→ 1, which implies that θ̂i → Xi and MSE→ dσ2

x/n. These conform to the facts that (i) when
there is no heterogeneity, then the global average is the best estimator, and (ii) when heterogeneity is
not small, and we have a lot of local samples, then the local average is the best estimator. Observe that
the multiplicative gap between the MSE of the proposed personalized estimator and the MSE of the
local estimator (based on local data only, which gives an MSE of dσ2

x/n) is given by ( 1−a
m + a) ≤ 1

that proves the superiority of the personalized model over the local model, which is equal to 1/m
when σθ = 0 and equal to 0.01 when m = 104, n = 100 and σ2

x = 10, σ2
θ = 10−3, for example.

Remark 2 (Optimality of our personalized estimator). In Appendix B, we show the minimax lower
bound: inf θ̂ supθ∈Θ EX∼N (θ,σ2

x)‖θ̂(X)− θ‖2 ≥ dσ2
x

n

(
1−a
m + a

)
, which exactly matches the upper

bound on the MSE in Theorem 1, thus establishes the optimality our personalized estimator in (3).

Privacy and communication constraints. Observe that the scheme presented above does not protect
privacy of clients’ data and messages from the clients to the server can be made communication-
efficient. These could be achieved by employing specific mechanisms q at clients: For privacy, we
can take a differentially-private q, and for communication-efficiency, we can take q to be a quantizer.
Inspired by the scheme presented above, here we consider q to be a function q : Rd → Y , that takes
the average of n data points as its input, and the aggregator function Agg to be the average function.
Define µ̂q := 1

m

∑m
i=1 q(Xi) and consider the following personalized estimator for the i-th client:

θ̂i = aXi + (1− a)µ̂q, for some a ∈ [0, 1]. (4)

Theorem 2. Suppose for all x ∈ Rd, q satisfies E[q(x)] = x and E‖q(x)− x‖2 ≤ dσ2
q for some

finite σq . Then the personalized estimator in (4) has MSE:

Eθi,q,X1,...,Xm‖θ̂i − θi‖2 ≤
dσ2

x

n

(1− a
m

+ a
)

where a =
σ2
θ + σ2

q/m−1

σ2
θ + σ2

q/m−1 + σ2
x/n

. (5)

Furthermore, assuming µ ∈ [−r, r]d for some constant r (but µ is unknown), we have:

1. Communication efficiency: For any k ∈ N, there is a q whose output can be represented
using k-bits (i.e., q is a quantizer) that achieves the MSE in (5) with probability at least
1− 2/mn and with σq = b

(2k−1)
, where b = r + σθ

√
log(m2n) + σx√

n

√
log(m2n).

2. Privacy: For any ε0 ∈ (0, 1), δ > 0, there is a q that is user-level (ε0, δ)-locally differentially
private, that achieves the MSE in (5) with probability at least 1 − 2/mn and with σq =
b
ε0

√
8 log(2/δ), where b = r + σθ

√
log(m2n) + σx√

n

√
log(m2n).
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2.2 BERNOULLI MODEL

For the Bernoulli model, P is supported on [0, 1], and p1, . . . , pm are sampled i.i.d. from P, and client
i is given n i.i.d. samples Xi1, . . . , Xin ∼ Bern(pi). This setting has been studied in (Tian et al.
(2017); Vinayak et al. (2019)) for estimating P, whereas, our goal is to estimate individual parameter
pi at client i using the information from other clients. In order to derive a closed form MSE result,
we assume that P is the Beta distribution.3 Here, Γ = (α, β), p1, . . . , pm are unknown, and client i’s
goal is to estimate pi such that the Bayesian risk Epi∼πEp̂i,X1,...,Xm(p̂i − pi)2 is minimized, where
π denotes the density of the Beta distribution. Omitted proofs/details are provided in Appendix C.

Analogous to the Gaussian case, we can show that if α, β are known, then the posterior mean estimator
has a closed form expression: p̂i = aXi+ (1−a) α

α+β , where a = n/α+β+n and α/(α+β) is the mean
of the beta distribution. When α, β are unknown, inspired by the above discussion, a natural approach
would be to estimate the global mean µ = α/(α+β) and the weight a = n/(α+β+n), and use that in the
above estimator. Note that, for a we need to estimate α+ β, which is equal to µ(1−µ)/σ2 − 1, where
σ2 = αβ/(α+β)2(α+β+1) is the variance of the beta distribution. Therefore, it is enough to estimate µ
and σ2 for the personalized estimators {p̂i}. In order to make calculations simpler, instead of making
one estimate of µ, σ2 for all clients, we let each client make its own estimate of µ, σ2 (without using
their own data) as: µ̂i = 1

m−1

∑
l 6=iX l and σ̂2

i = 1
m−2

∑
l 6=i(X l − µ̂l)2,4 and then define the local

weight as âi = n
µ̂i(1−µ̂i)/σ̂2i−1+n . Now, client i uses the following personalized estimator:

p̂i = âiXi + (1− âi)µ̂i. (6)

Theorem 3. With probability at least 1− 1
mn , the MSE of the personalized estimator in (6) is given by:

Epi∼πEX1,...,Xm(p̂i−pi)2 ≤ E[â2
i ]
(

αβ
n(α+β)(α+β+1)

)
+E[(1− âi)2]

(
αβ

(α+β)2(α+β+1) + 3 log(4m2n)
m−1

)
.

Remark 3. When n → ∞, then âi → 1, which implies that MSE tends to the MSE of the local
estimator Xi, which means if local samples are abundant, collaboration does not help much. When
σ2 = αβ/(α+β)2(α+β+1)→ 0, i.e. there is very small heterogeneity in the system, then âi → 0, which
implies that MSE tends to the error due to moment estimation (the last term in the MSE in Theorem 3).

Privacy constraints. For any privacy parameter ε0 > 0 and input x ∈ [0, 1], define qpriv : [0, 1]→ R:

qpriv(x) =

{
−1

eε0−1 w.p. eε0

eε0+1 − x
eε0−1
eε0+1 ,

eε0

eε0−1 w.p. 1
eε0+1 + x e

ε0−1
eε0+1 .

(7)

The mechanism qpriv is unbiased and satisfies user-level ε0-LDP. Thus, the ith client sends
qpriv(Xi) to the server, which computes µ̂priv

i = 1
m−1

∑
l 6=i q

priv(X l) and the variance σ̂2(priv)
i =

1
m−2

∑
l 6=i(q

priv(X l)) − µ̂priv
l )2 and sends (µ̂priv

i , σ̂
2(priv)
i ) to client i. Upon receiving this, client i

defines âprivi = n
µ̂
priv
i

(1−µ̂priv
i

)/σ̂2(priv)
i

+n
and uses p̂privi = âprivi Xi + (1− âprivi )µ̂priv to estimate pi.

Theorem 4. With probability at least 1 − 1
mn , the MSE of the personalized estimator p̂privi de-

fined above is given by: Epi∼πEqpriv,X1,...,Xm(p̂privi − pi)2 ≤ E[(âprivi )2]
(

αβ
n(α+β)(α+β+1)

)
+ E[(1−

âprivi )2]
(

αβ
(α+β)2(α+β+1) + (eε0+1)2 log(4m2n)

3(eε0−1)2(m−1)

)
.

See Remark 4 (in Appendix B) and Remarks 6 and 7 (in Appendix C) for a discussion on privacy,
communication efficiency, and client sampling.

3 PERSONALIZED LEARNING

Consider a client-server architecture with m clients. There is an unknown global population distribu-
tion P(Γ)5 over Rd from which m i.i.d. local parameters θ1, . . . ,θm ∈ Rd are sampled. Each client

3Beta distribution has a density Beta(α, β) = 1
B(α,β)

xα−1(1−x)β−1 is defined for α, β > 0 and x ∈ [0, 1],

where B(α, β) is a normalizing constant. Its mean is α
α+β

and the variance is αβ
(α+β)2(α+β+1)

.
4Upon receiving {Xi} from all clients, the server can compute {µ̂i, σ̂2

i } and sends (µ̂i, σ̂
2
i ) to the i-th client.

5For simplicity we will consider this unknown population distribution P to be parametrized by unknown
(arbitrary) parameters Γ.
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i ∈ [m] is provided with a dataset consisting of n data points {(Xi1, Yi1), . . . , (Xin, Yin)}, where
Yij’s are generated from (Xij ,θi) using some distribution pθi(Yij |Xij). Let Yi := (Yi1, . . . , Yin)
and Xi := (Xi1, . . . , Xin) for i ∈ [m]. The underlying statistical model for our setting is given by

p{θi,Yi}|{Xi}(θ1, . . . ,θm, Y1, . . . , Ym|X1, . . . , Xm) =

m∏
i=1

p(θi)

m∏
i=1

n∏
j=1

pθi(Yij |Xij). (8)

Note that if we minimize the negative log likelihood of (8), we would get the optimal parameters:

θ̂1, . . . , θ̂m := arg min
θ1,...,θm

m∑
i=1

n∑
j=1

− log(pθi(Yij |Xij)) +

m∑
i=1

− log(p(θi)). (9)

Here, fi(θi) :=
∑n
j=1− log(pθi(Yij |Xij)) denotes the loss function at the i-th client, which only

depends on the local data, and R({θi}) :=
∑m
i=1− log(p(θi)) is the regularizer that depends on the

(unknown) global population distribution P (parametrized by unknown Γ). Note that when clients
have little data and we have large number of clients, i.e., n� m – the setting of federated learning,
clients may not be able to learn good personalized models from their local data alone (if they do,
it would lead to large loss). In order to learn better personalized models, clients may utilize other
clients’ data through collaboration, and the above regularizer (and estimates of the unknown prior
distribution P, through estimating its parameters Γ) dictates how the collaboration might be utilized.
The above-described statistical framework (9) can model many different scenarios, as detailed below:

1. When P(Γ) ≡ GM({pl}kl=1, {µl}kl=1, {σ2
θ,l}kl=1) is a Gaussian mixture, for Γ ={(

{pl}kl=1, {µl}kl=1, {σθ,l}kl=1}
)

: pl ≥ 0,
∑k
l=1 pl = 1, σθ,l ≥ 0,µl ∈ Rd

}
, then R({θi}) =

−
∑m
i=1 log

(∑k
l=1 pl exp(−‖µl−θi‖

2
2

2σ2
θ,l

)/((2πσθ,l)
d/2)

)
. Here, the client models θ1, . . . ,θm are

drawn i.i.d. from P(Γ), where θi ∼ N (µl, σ
2
θ,lId) with prob. pl, for l = 1, . . . , k. For k = 1,

R({θi}) = md
2 log(2πσ2

θ) +
∑m
i=1

‖µ−θi‖22
2σ2
θ

. Here, unknown µ can be connected to the global
model and θi’s as local models, and the alternating iterative optimization optimizes over both.
This justifies the use of `2 regularizer in earlier personalized learning works (Dinh et al., 2020;
Ozkara et al., 2021; Hanzely & Richtárik, 2020; Hanzely et al., 2020; Li et al., 2021).

2. When P(Γ) ≡ Laplace(µ, b), for Γ = {µ, b > 0}, then R({θi}) = m log(2b) +
∑m
i=1

‖θi−µ‖1
b .

3. When pθi(Yij |Xij) is according to N (θi, σ
2
x), then fi(θi) is the quadratic loss as in linear

regression. When pθi(Yij |Xij) = σ(〈θi, Xij〉)Yij (1 − σ(〈θi, Xij〉))(1−Yij), where σ(z) =
1/1+e−z for any z ∈ R, then fi(θi) is the cross-entropy (or logistic) loss as in logistic regression.

3.1 ADAMIX : ADAPTIVE PERSONALIZATION WITH GAUSSIAN MIXTURE PRIOR

Now we write the full objective function for the Gaussian mixture prior model for a generic local
loss function fi(θi) at client i (the case of linear/logistic regression with (single) Gaussian prior and
solving using alternating gradient descent is discussed in Appendices E, F.):

arg min
{θi},{µl},{pl},{σθ,l}

m∑
i=1

F gm
i (θi) :=

m∑
i=1

(
fi(θi)− log(

k∑
l=1

pl exp(−‖µl − θi‖
2
2

2σ2
θ,l

)/((2πσθ,l)
d/2))

)
(10)

A common example of fi(θi) is a generic neural network loss function with multi-class softmax
output layer and cross entropy loss, i.e., fi(θi) :=

∑n
j=1− log(pθi(Yij |Xij)), where pθi(Yij |Xij) =

σ(〈θi, Xij〉)Yij (1− σ(〈θi, Xij〉))(1−Yij), where σ(z) = 1/1+e−z for any z ∈ R. To solve (10), we
can either use an alternating gradient descent approach, or we can use a clustering based approach
where the server runs a (soft) clustering algorithm on received personalized models. We adopt the
second approach here (described in Algorithm 1) as it provides an interesting point of view and can
be combined with DP clustering algorithms. Here clients receive the global parameters from the
server and do a local iteration on the personalized model (multiple local iterations can be introduced
as in FedAvg (McMahan et al., 2017)), later the clients send the personalized models. Receiving the
personalized models, server initiates GMM algorithm that outputs global parameters 6

6A discrete mixture model can be proposed as a special case of GM with 0 variance. With this we can recover
a similar algorithm as in Marfoq et al. (2021). Further details are presented in Appendix G.
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3.2 ADAPED: ADAPTIVE PERSONALIZATION VIA DISTILLATION

Algorithm 1 Personalized Learning with Gaussian
Mixture Prior (AdaMix)
Input: Number of iterations T , local datasets
(Xi, Yi) for i ∈ [m], learning rate η.

1: Initialize θ
(0)
1 , . . . ,θ(0)

m and
P(0),µ

(0)
1 , . . . ,µ

(0)
k , σ

(0)
θ,1, . . . , σ

(0)
θ,k.

2: for t = 1 to T do
3: On Clients:
4: for i = 1 to m: do
5: Receive P(t−1),µ

(t−1)
1 , . . . ,µ

(t−1)
k , and

σ
(t−1)
θ,1 , . . . , σ

(t−1)
θ,k from the server

6: Update the personalized parameters:

θ
(t)
i ← θ

(t−1)
i − η∇

θ
(t−1)
i

F gm
i (θ

(t−1)
i )

7: Send θ(t)
i to the server

8: end for
9: At the Server:

10: Receive θ(t)
1 , . . . ,θ(t)

m from the clients
11: Update the global parameters:

P(t),µ
(t)
1 , . . . ,µ

(t)
k , σ

(t)
θ,1, . . . , σ

(t)
θ,k

← GMM
(
θ

(t)
1 , . . . ,θ(t)

m , k
)

12: Broadcast P(t), {µ(t)
i }ki=1, {σ

(t)
θ,i}ki=1 to all

clients
13: end for
Output: Personalized models θT1 , . . . ,θ

T
m.

It has been empirically observed that the knowl-
edge distillation (KD) regularizer (between local
and global models) results in better performance
than the `2 regularizer (Ozkara et al., 2021). In
fact, using our framework, we can define, for the
first time, a certain prior distribution that gives
the KD regularizer (see Appendix H). We use
the following loss function at the i-th client:

fi(θi) +
1

2
log(2ψ) +

fKDi (θi,µ)

2ψ
, (11)

where µ denotes the global model, θi denotes
the personalized model at client i, and ψ can be
viewed as controlling heterogeneity. The goal
for each client is to minimize its local loss func-
tion, so individual components cannot be too
large. For the second term, this implies that
ψ cannot be unbounded. For the third term, if
fKDi (θi,µ) is large, then ψ will also increase
(implying that the local parameters are too de-
viated from the global parameter), hence, it is
better to emphasize local training loss to make
the first term small. If fKDi (θi,µ) is small, then
ψ will also decrease (implying that the local pa-
rameters are close to the global parameter), so it
is better to collaborate and learn better personal-
ized models. Such adaptive weighting quantifies
the uncertainty in population distribution during
training, balances the learning accordingly, and
improves the empirical performance over non-
adaptive methods, e.g., (Ozkara et al., 2021).

To optimize (11) we propose an alternating min-
imization approach, which we call AdaPeD; see Algorithm 2. Besides the personalized model θti,
each client i keeps local copies of the global model µti and of the dissimilarity term ψti , and at
synchronization times, server aggregates them to obtain global versions of these µt, ψt. In this way,
the local training of θti also incorporates knowledge from other clients’ data through µti. In the end,
clients have learned their personalized models {θTi }mi=1.

3.3 DP-ADAPED: DIFFERENTIALLY PRIVATE ADAPTIVE PERSONALIZATION VIA DISTILL.

Note that client i communicates µti, ψ
t
i (which are updated by accessing the dataset for computing

the gradients hti, k
t
i ) to the server. So, to privatize µti, ψ

t
i , client i adds appropriate noise to hki , k

t
i . In

order to obtain DP-AdaPeD, we replace lines 13 and 15, respectively, by the update rules:

µt+1
i = µti − η2

( hti
max{‖hti‖/C1, 1}

+ ν1

)
and ψt+1

i = ψti − η3

( kti
max{|kti |/C2, 1}

+ ν2

)
,

where ν1 ∼ N (0, σ2
q1Id) and ν2 ∼ N (0, σ2

q2), for some σq1 , σq2 > 0 that depend on the desired
privacy level and C1, C2, which are some predefined constants.

The theorem below (proved in Appendix I) states the Rényi Differential Privacy (RDP) guarantees.
Theorem 5. After T iterations, DP-AdaPeD satisfies (α, ε(α))-RDP for α > 1, where ε(α) =(
K
m

)2
6Tτ α

(
C2

1

Kσ2
q1

+
C2

2

Kσ2
q2

)
, where K

m denotes the sampling ratio of clients at each global iteration.

We bound the RDP, as it gives better privacy composition than using the strong composition (Mironov
et al., 2019). We can also convert our results to user-level (ε, δ)-DP by using the standard conversion
from RDP to (ε, δ)-DP (Canonne et al., 2020). See Appendix A for background on privacy.
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Figure 1: In Fig. 1a, we plot MSE
vs. ε0 for personalized estimation.
In Fig. 1b, we plot Test Accuracy
vs. ε on FEMNIST with client sam-
pling 0.33, for DP-AdaPeD with
unsampled client iterations. Since
local training is private, both plots
remain constant against ε.

4 EXPERIMENTS

Algorithm 2 Adaptive Personalization via Distilla-
tion (AdaPeD)
Parameters: local variances {ψ0

i }, personalized
models {θ0

i }, local copies of the global model
{µ0

i }, learning rates η1, η2, η3, synchronization
gap τ

1: for t = 0 to T − 1 do
2: if τ divides t then
3: On Server do:
4: Choose a subset Kt ⊆ [n] of K clients
5: Broadcast µt and ψt
6: On Clients i ∈ Kt (in parallel) do:
7: Receive µt, ψt; set µti = µt, ψti = ψt

8: end if
9: On Clients i ∈ Kt (in parallel) do:

10: Compute gti := ∇θtifi(θ
t
i) +

∇θt
i
fKD
i (θti,µ

t
i)

2ψti

11: Update: θt+1
i = θti − η1g

t
i

12: Compute hti := ∇µt
i
fKD
i (θt+1

i ,µti)/2ψti
13: Update: µt+1

i = µti − η2h
t
i

14: Compute kti := 1
2ψti
− fKD

i (θt+1
i ,µt+1

i )/2(ψti)
2

15: Update: ψt+1
i = ψti − η3k

t
i

16: if τ divides t+ 1 then
17: Clients send µti and ψti to Server
18: Server receives {µti}i∈Kt and {ψti}i∈Kt
19: Server computes µt+1 = 1

K

∑
i∈Kt µ

t
i

and ψt+1 = 1
K

∑
i∈Kt ψ

t
i

20: end if
21: end for
Output: Personalized models (θTi )mi=1

Personalized Estimation. We run one experi-
ment for Bernoulli setting with real political data
and the other for Gaussian setting with synthetic
data. The latter one is differentially private.

• Political tendencies on county level. One
natural application of Bernoulli setting is mod-
eling bipartisan elections (Tian et al., 2017). We
did a case study by using US presidential elec-
tions on county level between 2000-2020, with
m = 3112 counties in our dataset. For each
county the goal is to determine the political ten-
dency parameter pi. Given 6 election data we
did 6-fold cross validation, with 5 elections for
training and 1 election for test data. Local es-
timator takes an average of 5 training samples
and personalized estimator is the posterior mean.
To simulate a Bernoulli setting we set the data
equal to 1 if Republican party won the election
and 0 otherwise. We observe the personalized
estimator provides MSE (averaged over 6 runs)
gain of 10.7± 1.9% against local estimator.

• DP personalized estimation. To measure
the performance tradeoff of the DP mechanism
described in Section 2.1, we create a synthetic
experiment for Gaussian setting. We let m =
10000, n = 15 and σθ = 0.1, σx = 0.5, and
create a dataset at each client as described in
Gaussian setting. Applying the DP mechanism
we obtain the following result in Figure 1a. Here,
as expected, when privacy is low (ε0 is high) the
private personalized estimator recovers the reg-
ular personalized estimator. For higher privacy
the private estimator’s performance starts to become worse than the non-private estimator.

Personalized Learning. First we describe the experiment setting and then the results.

• Experiment setting. We consider image classification on MNIST, FEMNIST (Caldas et al., 2018),
CIFAR-10, CIFAR-100 (experimental details for CIFAR-100 is given in Appendix K); and train a
CNN, similar to the one considered in (McMahan et al., 2017), that has 2 convolutional and 3 fully
connected layers. We set m = 66 for FEMNIST and m = 50 for MNIST, CIFAR-10, CIFAR-100.
For FEMNIST, we use a subset of 198 writers so that each client has access to data from 3 authors,
which results in a natural type of data heterogeneity due to writing styles of authors. On MNIST,
CIFAR-10 we introduce pathological heterogeneity by letting each client sample data from 3 and
4 randomly selected classes only, respectively. We set τ = 10 and vary the batch size so that each
epoch consists of 60 iterations. On MNIST we train for 50 epochs, on CIFAR-10 for 250 epochs, on
FEMNIST for 40 and 80 epochs, for 0.33 and 0.15 client sampling ratio, respectively. We discuss
further details in Appendix K.
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Table 1: Test accuracy (in %) for CNN model. The CIFAR-10, MNIST, and FEMNIST columns have client
sampling ratios K

n
of 0.2, 0.1, and 0.15, respectively.

Method CIFAR-10 CIFAR-100 FEMNIST

FedAvg 60.86± 0.94 30.48± 0.33 92.18± 0.13
FedAvg+fine tuning (Jiang et al., 2019) 63.12± 0.31 39.98± 0.26 94.12± 0.26
AdaPeD (Ours) 72.49± 0.42 53.11± 0.34 96.55± 0.32
pFedMe (Dinh et al., 2020) 69.53± 0.16 43.65± 0.18 94.95± 0.55
Per-FedAvg (Fallah et al., 2020) 59.95± 0.79 34.78± 0.41 93.51± 0.31
QuPeD (FP) (Ozkara et al., 2021) 71.61± 0.70 51.94± 0.21 95.99± 0.08
Federated ML (Shen et al., 2020) 71.09± 0.67 50.42± 0.26 95.12± 0.18

Method ε = 3.35 ε = 13.16 ε = 27.30

DP-FedAvg 11.73± 0.85 29.91± 1.28 55.79± 0.29
DP-AdaPeD (Ours) 93.32± 1.18 98.51± 0.90 99.01± 0.65

Table 2: (DP-AdaPeD) Test
Accuracy (in %) vs. ε on MNIST
without client sampling.

Method n = 10 n = 20 n = 30

Local Training 39.93± 0.13 30.02± 0.08 19.97± 0.07
AdaMix 10.42± 0.15 3.12± 0.04 2.55± 0.04

Table 3: Mean squared error of our
AdaMix algorithm and the local train-
ing for linear regression.

• Results. In Table 1 we compare AdaPeD against FedAvg (McMahan et al., 2017), FedAvg+ (Jiang
et al., 2019) and various personalized FL algorithms: pFedMe (Dinh et al., 2020), Per-FedAvg (Fallah
et al., 2020), QuPeD (Ozkara et al., 2021) without model compression, and Federated ML (Shen
et al., 2020). We report further results in Appendix K. We observe AdaPeD consistently outperforms
other methods. It can be seen that methods that use knowledge distillation perform better; on top
of this, AdaPeD enables us adjust the dependence on collaboration according to the compatibility
of global and local decisions/scores. For instance, we set σ2

θ to a certain value initially, and observe
it progressively decrease, which implies clients start to rely on the collaboration more and more.
Interestingly, this is not always the case: for DP-AdaPeD, we first observe a decrease in σ2

θ and later
it increases. This suggests: while there is not much accumulated noise, clients prefer to collaborate,
and as the noise accumulation on the global model increases due to DP noise, clients prefer not to
collaborate. This is exactly the type of autonomous behavior we aimed with adaptive regularization.

• DP-AdaPeD. In Figure 1b and Table 2, we observe performance of DP-AdaPeD under different
ε values. DP-AdaPeD outperforms DP-FedAvg because personalized models do not need to be
privatized by DP mechanism, whereas the global model needs to be. Our experiments provide
user-level privacy (more stringent, but appropriate in FL), as opposed to the item-level privacy.

• DP-AdaPeD with unsampled client iterations. When we let unsampled clients to do local
iterations (free in terms of privacy cost and a realistic scenario in cross-silo settings) described in
Appendix H, we can increase DP-AdaPeD’s performance under more aggressive privacy constants ε.
For instance, for FEMNIST with 1/3 client sampling we obtain the result reported in Figure 1b.

• AdaMix. We consider linear regression on synthetic data, with m = 1000 clients and each
client has n ∈ {10, 20, 30} local samples. Each local model θi ∈ Rd is drawn from a mixture of
two Gaussian distributions N (µ,Σ) and N (−µ,Σ), where Σ = 0.001 × Id and d = 50. Each
client sample (Xij , Yij) is distributed as Xij ∼ N (0, Id) and Yij = 〈Xij ,θi〉+ wij , where wij ∼
N (0, 0.1). Table 3 demonstrates the superior performance of AdaMix against the local estimator.

5 CONCLUSION

We proposed a statistical framework leading to new personalized federated estimation and learning al-
gorithms (e.g., AdaMix, AdaPeD); we also incorporated privacy (and communication) constraints into
our algorithms and analyzed them. Open questions include information theoretic lower bounds and
its comparison to proposed methods; examination of how far the proposed alternating minimization
methods (such as in AdaMix, AdaPeD) are from global optima.

The work in this paper was partially supported by NSF grants 2139304, 2007714 and gift funding by Meta
and Amazon.
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han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differential
privacy. In Neural Information Processing Systems (NeurIPS), 2020.

Huili Chen, Jie Ding, Eric Tramel, Shuang Wu, Anit Kumar Sahu, Salman Avestimehr, and Tao
Zhang. Self-aware personalized federated learning. CoRR, abs/2204.08069, 2022. doi: 10.48550/
arXiv.2204.08069. URL https://doi.org/10.48550/arXiv.2204.08069.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
tations for personalized federated learning. In Marina Meila and Tong Zhang (eds.), International
Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine Learning
Research, pp. 2089–2099. PMLR, 2021.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. Personalized federated learning with moreau
envelopes. In Advances in Neural Information Processing Systems, 2020.

Simon Shaolei Du, Wei Hu, Sham M. Kakade, Jason D. Lee, and Qi Lei. Few-shot learning via
learning the representation, provably. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=pW2Q2xLwIMD.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

10

https://doi.org/10.48550/arXiv.2204.08069
https://openreview.net/forum?id=pW2Q2xLwIMD


Published as a conference paper at ICLR 2023

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography Conference (TCC), pp. 265–284, 2006.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. In Advances in Neural Information Processing Systems, 2020.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin.
Bayesian Data Analysis. Chapman and Hall/CRC, 2013.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557, 2017.

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Differentially private clustering: Tight approxima-
tion ratios. Advances in Neural Information Processing Systems, 33:4040–4054, 2020.

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. User-level differentially private learning via
correlated sampling. In Neural Information Processing Systems (NeurIPS), pp. 20172–20184,
2021.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. In Advances in Neural Information Processing Systems, 2020.

Richard Gill and Boris Levit. Applications of the van trees inequality: A bayesian cramér-rao bound.
Bernoulli, 1:59–79, 03 1995. doi: 10.2307/3318681.

Antonious M Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
Shuffled model of federated learning: Privacy, accuracy and communication trade-offs. IEEE
Journal on Selected Areas in Information Theory, 2(1):464–478, 2021a.

Antonious M. Girgis, Deepesh Data, Suhas N. Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
Shuffled model of differential privacy in federated learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 130 of Proceedings of Machine Learning
Research, pp. 2521–2529. PMLR, 2021b.

Antonious M. Girgis, Deepesh Data, and Suhas Diggavi. Distributed user-level private mean
estimation. In 2022 IEEE International Symposium on Information Theory (ISIT), pp. 2196–2201,
2022. doi: 10.1109/ISIT50566.2022.9834713.
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A PRELIMINARIES

We give standard privacy definitions that we use in Section A.1, some existing results on RDP to DP
conversion and RDP composition in Section A.2, and user-level differential privacy in Section A.3.

A.1 PRIVACY DEFINITIONS

In this subsection, we define different privacy notions that we will use in this paper: local differential
privacy (LDP), central different privacy (DP), and Renyi differential privacy (RDP), and their user-
level counterparts.
Definition 1 (Local Differential Privacy - LDP (Kasiviswanathan et al., 2011)). For ε0 ≥ 0, a
randomized mechanismR : X → Y is said to be ε0-local differentially private (in short, ε0-LDP), if
for every pair of inputs d, d′ ∈ X , we have

Pr[R(d) ∈ S] ≤ eε0 Pr[R(d′) ∈ S], ∀S ⊂ Y. (12)

Let D = {x1, . . . , xn} denote a dataset comprising n points from X . We say that two datasets
D = {x1, . . . , xn} and D′ = {x′1, . . . , x′n} are neighboring (and denoted by D ∼ D′) if they differ
in one data point, i.e., there exists an i ∈ [n] such that xi 6= x′i and for every j ∈ [n], j 6= i, we have
xj = x′j .
Definition 2 (Central Differential Privacy - DP (Dwork et al., 2006; Dwork & Roth, 2014)). For
ε, δ ≥ 0, a randomized mechanismM : Xn → Y is said to be (ε, δ)-differentially private (in short,
(ε, δ)-DP), if for all neighboring datasets D ∼ D′ ∈ Xn and every subset S ⊆ Y , we have

Pr [M(D) ∈ S] ≤ eε0 Pr [M(D′) ∈ S] + δ. (13)
If δ = 0, then the privacy is referred to as pure DP.
Definition 3 ((λ, ε(λ))-RDP (Renyi Differential Privacy) (Mironov, 2017)). A randomized mech-
anismM : Xn → Y is said to have ε(λ)-Renyi differential privacy of order λ ∈ (1,∞) (in short,
(λ, ε(λ))-RDP), if for any neighboring datasets D ∼ D′ ∈ Xn, the Renyi divergence betweenM(D)
andM(D′) is upper-bounded by ε(λ), i.e.,

Dλ(M(D)||M(D′)) =
1

λ− 1
log

(
Eθ∼M(D′)

[(
M(D)(θ)

M(D′)(θ)

)λ])
≤ ε(λ),

whereM(D)(θ) denotes the probability thatM on input D generates the output θ. For convenience,
instead of ε(λ) being an upper bound, we define it as ε(λ) = supD∼D′ Dλ(M(D)||M(D′)).

A.2 RDP TO DP CONVERSION AND RDP COMPOSITION

As mentioned after Theorem 5, we can convert the RDP guarantees of DP-AdaPeD to its DP
guarantees using existing conversion results from literature. To the best of our knowledge, the
following gives the best conversion.
Lemma 1 (From RDP to DP (Canonne et al., 2020; Balle et al., 2020)). Suppose for any λ > 1, a
mechanismM is (λ, ε (λ))-RDP. Then, the mechanismM is (ε, δ)-DP, where ε, δ are define below:

For a given δ ∈ (0, 1) :

ε = min
λ
ε (λ) +

log (1/δ) + (λ− 1) log (1− 1/λ)− log (λ)

λ− 1

For a given ε > 0 :

δ = min
λ

exp ((λ− 1) (ε (λ)− ε))
λ− 1

(
1− 1

λ

)λ
.

The main strength of RDP in comparison to other privacy notions comes from composition. The
following result states that if we adaptively compose two RDP mechanisms with the same order, their
privacy parameters add up in the resulting mechanism.
Lemma 2 (Adaptive composition of RDP (Mironov, 2017, Proposition 1)). For any λ > 1, let
M1 : X → Y1 be a (λ, ε1(λ))-RDP mechanism and M2 : Y1 × X → Y be a (λ, ε2(λ))-RDP
mechanism. Then, the mechanism defined by (M1,M2) satisfies (λ, ε1(λ) + ε2(λ))-RDP.
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A.3 USER-LEVEL DIFFERENTIAL PRIVACY LEVY ET AL. (2021)

Consider a set of m users, each having a local dataset of n samples. Let Di = {xi1, . . . , xin}
denote the local dataset at the i-th user for i ∈ [m], where xij ∈ X and X ⊂ Rd. We define
D = (D1, . . . ,Dm) ∈ (Xn)m as the entire dataset.

We have already defined DP, LDP, and RDP in Section A.1 w.r.t. the item-level privacy. Here,
we extend those definition w.r.t. the user-level privacy. In order to do that, we need a generic
neighborhood relation between datasets: We say that two datasets D, D′ are neighboring with respect
to distance metric dis if we have dis(D,D′) ≤ 1.

Item-level DP/RDP vs. User-level DP/RDP. By choosing dis(D,D′) =
∑m
i=1

∑n
j=1 1{xij 6= x′ij},

we recover the standard definition of the DP/RDP from Definitions 2, 3, which we call item-level
DP/RDP. In the item-level DP/RDP, two datasets D, D′ are neighboring if they differ in a single item.
On the other hand, by choosing dis(D,D′) =

∑m
i=1 1{Di 6= D′i}, we call it user-level DP/RDP,

where two datasets D,D′ ∈ (Xn)m are neighboring when they differ in a local dataset of any single
user. Observe that when each user has a single item (n = 1), then both item-level and user-level
privacy are equivalent.

User-level Local Differential Privacy (LDP). When we have a single user (i.e.,m = 1 andD = Xn),
by choosing dis (D,D′) = 1{D 6= D′} for D,D′ ∈ Xn, we call it user-level LDP. In this case each
user privatize her own local dataset using a private mechanism.

We can define user-level LDP/DP/RDP analogously to their item-level counterparts using the neigh-
borhood relation dis defined above.

B PERSONALIZED ESTIMATION – GAUSSIAN MODEL

B.1 PROOF OF THEOREM 1

We will derive the optimal estimator and prove the MSE for one dimensional case, i.e., for d = 1; the
final result can be obtained by applying these to each of the d coordinates separately.

The posterior estimators of the local means θ1, . . . , θm and the global mean µ are obtained by solving
the following optimization problem:

θ̂1, . . . , θ̂m, µ̂ = arg max
θ1,...,θm,µ

pX|θ (X1, . . . , Xm|θ1, . . . , θm) pθ|µ(θ1, . . . , θm|µ)

= arg min
θ1,...,θm,µ

− log
(
pX|θ (X1, . . . , Xm|θ1, . . . , θm)

)
− log

(
pθ|µ(θ1, . . . , θm|µ)

)

= arg min
θ1,...,θm,µ

C +

m∑
i=1

n∑
j=1

(
Xj
i − θi

)2

σ2
x

+

m∑
i=1

(θi − µ)
2

σ2
θ

,

where the second equality is obtained from the fact that the log function is a monotonic function, and
C is a constant independent of the variables θ = (θ1, . . . , θm). Observe that the objective function

F (θ, µ) =
∑m
i=1

∑n
j=1

(Xji−θi)
2

σ2
x

+
∑m
i=1

(θi−µ)2

σ2
θ

is jointly convex in (θ, µ). Thus, the optimal is
obtained by setting the derivative to zero as it is an unbounded optimization problem.

∂F

∂θi

∣∣∣∣
µ=µ̂,θi=θ̂i

=

∑n
j=1 2(θ̂i −Xj

i )

σ2
x

+
2(θ̂i − µ̂)

σ2
θ

= 0, ∀i ∈ [m]

∂F

∂µ

∣∣∣∣
µ=µ̂,θi=θ̂i

=

∑m
i=1 2(µ̂− θ̂i)

σ2
θ

= 0.

By solving these m+ 1 equations in m+ 1 unknowns, we get:

θ̂i = α

 1

n

n∑
j=1

Xj
i

+ (1− α)

 1

mn

m∑
i=1

n∑
j=1

Xj
i

 , (14)
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where α =
σ2
θ

σ2
θ+

σ2x
n

. By letting Xi = 1
n

∑n
j=1X

j
i for all i ∈ [m], we can write θ̂i = αXi + (1 −

α) 1
m

∑m
i=1Xi.

Observe that E
[
θ̂i|θ
]

= αθi + 1−α
m

∑m
l=1 θl, where θ = (θ1, . . . , θm). Thus, the estimator (14) is

an unbiased estimate of {θi}. Substituting the θ̂i in the MSE, we get that

EX1,...,Xm

[(
θ̂i − θi

)2
]

= Eθ
[
EX1,...,Xm

[(
θ̂i − θi

)2

|θ
]]

= Eθ
[
EX1,...,Xm

[(
θ̂i − E

[
θ̂i|θ
]

+ E
[
θ̂i|θ
]
− θi

)2

|θ
]]

= Eθ
[
EX1,...,Xm

[(
θ̂i − E

[
θ̂i|θ
])2

|θ
]]

+ Eθ
[
EX1,...,Xm

[(
E
[
θ̂i|θ
]
− θi

)2

|θ
]]

(15)
Claim 1.

Eθ
[
EX1,...,Xm

[(
θ̂i − E

[
θ̂i|θ
])2

|θ
]]

= α2σ
2
x

n
+ (1− α)2 σ

2
x

mn
+ 2α(1− α)

σ2
x

mn

Eθ
[
EX1,...,Xm

[(
E
[
θ̂i|θ
]
− θi

)2

|θ
]]

= (1− α)2Eθ

( 1

m

m∑
k=1

θk − θi

)2
 ≤ (1− α)2σ

2
θ(m− 1)

m

Proof. For the first equation:

Eθ
[
EX1,...,Xm

[(
θ̂i − E

[
θ̂i|θ
])2

|θ
]]

= Eθ

EX1,...,Xm

(α(Xi − θi) + (1− α)
1

m

m∑
k=1

(Xk − θk)

)2

| θ


= α2E

[
E
[
(Xi − θi)2 | θ

]]
+ (1− α)2E

E
( 1

m

m∑
k=1

(Xk − θk)

)2

| θ


+ 2α(1− α)E

[
E

[
1

m

m∑
k=1

(Xi − θi)(Xk − θk) | θ

]]

= α2σ
2
x

n
+ (1− α)2 σ

2
x

mn
+ 2α(1− α)

σ2
x

mn

For the second equation, first note that E
[
θ̂i|θ
]
− θi = αθi + 1−α

m

∑m
k=1 θk − θi = (1 −

α)
(

1
m

∑m
k=1 θk − θi

)
:

Eθ
[
EX1,...,Xm

[(
E
[
θ̂i|θ
]
− θi

)2

|θ
]]

= (1− α)2E

( 1

m

m∑
k=1

θk − θi

)2


=
(1− α)2

m2
E


∑
k 6=i

(θk − θi)

2


=
(1− α)2

m2

∑
k 6=i

E(θk − θi)2 +
∑

k 6=i,l 6=i,k 6=l

E(θk − θi)(θl − θi)


≤ (1− α)2

m2

∑
k 6=i

[E(θk − µ)2 + E(θi − µ)2] +
∑

k 6=i,l 6=i,k 6=l

E(θk − θi)(θl − θi)


=

(1− α)2

m2

2(m− 1)σ2
θ +

∑
k 6=i,l 6=i,k 6=l

E(θk − θi)(θl − θi)
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=
(1− α)2

m2

2(m− 1)σ2
θ +

∑
k 6=i,l 6=i,k 6=l

E(µ− θi)2

 (Since E[θk] = µ for all k ∈ [m])

=
(1− α)2

m2

[
2(m− 1)σ2

θ + (m− 1)(m− 2)σ2
θ

]
= (1− α)2σ

2
θ(m− 1)

m
This concludes the proof of Claim 1.

Substituting the result of Claim 1 into (15), we get

EX1,...,Xm

[(
θ̂i − θi

)2
]
≤ α2σ

2
x

n
+ (1− α)2 σ

2
x

mn
+ 2α(1− α)

σ2
x

mn
+ (1− α)2σ

2
θ(m− 1)

m
(16)

(a)
=
σ2
x

n

(
α2 +

(1− α)2 + 2α(1− α)

m
+ α(1− α)

m− 1

m

)
=
σ2
x

n

(
α+

1− α
m

)
,

where in (a) we used α =
σ2
θ

σ2
θ+

σ2x
n

for the last term to write (1− α)2 σ
2
θ(m−1)
m =

σ2
x

n α(1− α)m−1
m .

Observe that the estimator in (14) is a weighted summation between two estimators: the local
estimator Xi = 1

n

∑n
j=1X

j
i , and the global estimator µ̂ = 1

m

∑m
i=1Xi. Thus, the MSE in (a)

consists of four terms: 1) The variance of the local estimator (σ
2
x

n ). 2) The variance of the global

estimator ( σ
2
x

nm ). 3) The correlation between the local estimator and the global estimator ( σ
2
x

nm ). 4) The

bias term Eθ
[
EX1,...,Xm

[(
E
[
θ̂i|θ
]
− θi

)2

|θ
]]

. This completes the proof of Theorem 1.

B.2 PROOF OF THEOREM 2, EQUATION (5)

Similar to the proof of Theorem 1, here also we will derive the optimal estimator and prove the MSE
for the one dimensional case, and the final result can be obtained by applying these to each of the d
coordinates separately.

Let θ = (θ1, . . . , θm) denote the personalized models vector. For given a constraint function q, we
set the personalized model as follows:

θ̂i = α

 1

n

n∑
j=1

Xj
i

+ (1− α)

(
1

m

m∑
i=1

q(Xi)

)
∀i ∈ [m], (17)

where Xi = 1
n

∑n
j=1X

j
i . From the second condition on the function q, we get that

E
[
θ̂i|θ
]

= αθi +
1− α
m

m∑
l=1

θl, (18)

Thus, by following similar steps as the proof of Theorem 1, we get that:

E
[(
θ̂i − θi

)2
]

= E
[
E
[(
θ̂i − θi

)2

|θ
]]

= E
[
E
[(
θ̂i − E

[
θ̂i|θ
]

+ E
[
θ̂i|θ
]
− θi

)2

|θ
]]

= E
[
E
[(
θ̂i − E

[
θ̂i|θ
])2

|θ
]]

+ E
[
E
[(

E
[
θ̂i|θ
]
− θi

)2

|θ
]]

(a)
= α2σ

2
x

n
+ (1− α)2E

( 1

m

m∑
l=1

q(X l)− θl

)2

|θ
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+ 2α(1− α)E

[(
Xi − θi

)( 1

m

m∑
l=1

q(X l)− θl

)
|θ

]
+ (1− α)2E

( 1

m

m∑
k=1

θk − θi

)2


(b)
= α2σ

2
x

n
+

(1− α)2
(
σ2
x

n + σ2
q

)
m

+
2α(1− α)σ2

x

mn
+ (1− α)2E

( 1

m

m∑
k=1

θk − θi

)2


≤ α2σ
2
x

n
+

(1− α)2
(
σ2
x

n + σ2
q

)
m

+ 2α(1− α)
σ2
x

mn
+ (1− α)2σ

2
θ(m− 1)

m
(c)
=
σ2
x

n

(
α2 +

(1− α)2 + 2α(1− α)

m
+ α(1− α)

m− 1

m

)
=
σ2
x

n

(
α+

1− α
m

)
, (19)

where step (a) follows by substituting the expectation of the personalized model from (18). Step
(b) follows from the first and third conditions of the function q. Step (c) follows by choosing

α =
σ2
θ+

σ2q
m−1

σ2
θ+

σ2q
m−1 +

σ2x
n

. This derives the result stated in (5) in Theorem 2.

B.2.1 PROOF OF THEOREM 2, PART 1

The proof consists of two steps. First, we use the concentration property of the Gaussian distribution
to show that the local sample means {Xi} are bounded within a small range with high probability.
Second, we apply an unbiased stochastic quantizer on the projected sample mean.

The local samples X1
i , . . . , X

n
i are drawn i.i.d. from a Gaussian distribution with mean θi and

variance σ2
x, and hence, we have that Xi ∼ N (θi,

σ2
x

n ). Thus, from the concentration property

of the Gaussian distribution, we get that Pr[|Xi − θi| > c1] ≤ exp
(
−nc

2
1

σ2
x

)
for all i ∈ [m].

Similarly, the models θ1, . . . , θm are drawn i.i.d. from a Gaussian distribution with mean µ ∈
[−r, r] and variance σ2

θ , hence,, we get Pr[|θi − µ| > c2] ≤ exp
(
− c22
σ2
θ

)
for all i ∈ [m]. Let

E =
{
Xi ∈ [−a, a] : ∀i ∈ [m]

}
, where a = r + c1 + c2. Thus, from the union bound, we get that

Pr[E ] > 1−m(e
−nc

2
1

σ2x + e
− c22
σ2
θ ). By setting c1 =

√
σ2
x

n log(m2n) and c2 =
√
σ2
θ log(m2n), we get

that a = r + σx√
n

√
log(m2n) + σθ

√
log(m2n), and Pr[E ] = 1− 2

mn .

Let qk : [−a, a]→ Yk be a quantization function with k-bits, where Yk is a discrete set of cardinality
|Yk| = 2k. For given x ∈ [−a, a], the output of the function qk is given by:

qk(x) =
2a

2k − 1
(bx̃c+ Bern (x̃− bx̃c))− a, (20)

where Bern(p) is a Bernoulli random variable with bias p, and x̃ = 2k−1
2a (x+ a) ∈ [0, 2k − 1].

Observe that the output of the function qk requires only k-bits for transmission. Furthermore, the
function qk satisfies the following conditions:

E [qk(x)] = x, (21)

σ2
qk

= E
[
(qk(x)− x)2

]
≤ a2

(2k − 1)2
. (22)

Let each client applies the function qk on the projected local mean X̃i = Proj[−a,a]

[
Xi

]
and sends

the output to the server for all i ∈ [m]. Conditioned on the event E , i.e., Xi ∈ [−a, a] ∀i ∈ [m],
and using (19), we get that

MSE = Eθ,X
[(
θ̂i − θi

)2
]
≤ σ2

x

n

(
1− α
m

+ α

)
, (23)
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where α =
σ2
θ+ a2

(2k−1)2(m−1)

σ2
θ+ a2

(2k−1)2(m−1)
+
σ2x
n

and a = r+ σx√
n

√
log(m2n) + σθ

√
log(m2n). Note that the event

E happens with probability at least 1− 2
mn .

B.2.2 PROOF OF THEOREM 2, PART 2

We define the (random) mechanism qp : [−a, a]→ R that takes an input x ∈ [−a, a] and generates a
user-level (ε0, δ)-LDP output y ∈ R, where y = qp(x) is given by:

qp(x) = x+ ν, (24)

where ν ∼ N (0, σ2
ε0) is a Gaussian noise. By setting σ2

ε0 = 8a2 log(2/δ)
ε20

, we get that the output of the
function qp(x) is (ε0, δ)-LDP from Dwork & Roth (2014). Furthermore, the function qp satisfies the
following conditions:

E [qp(x)] = x, (25)

σ2
qp = E

[
(qp(x)− x)2

]
≤ 8a2 log(2/δ)

ε20
. (26)

Similar to the proof of Theorem 2, Part 1, let each client applies the function qp on the projected local
mean X̃i = Proj[−a,a]

[
Xi

]
and sends the output to the server for all i ∈ [m]. Conditioned on the

event E , i.e., Xi ∈ [−a, a] ∀i ∈ [m], and using (19), we get that

MSE = Eθ,X
[(
θ̂i − θi

)2
]
≤ σ2

x

n

(
1− α
m

+ α

)
, (27)

where α =
σ2
θ+

8a2 log(2/δ)

ε20(m−1)

σ2
θ+

8a2 log(2/δ)

ε20(m−1)
+
σ2x
n

and a = r+ σx√
n

√
log(m2n) + σθ

√
log(m2n). Note that the event E

happens with probability at least 1− 2
mn .

Remark 4 (Privacy with communication efficiency). Note that our private estimation algorithm
for the Gaussian case adds Gaussian noise (which is a real number) but that can also be made
communication-efficient by alternatively adding a discrete Gaussian noise (Canonne et al., 2020).

B.3 LOWER BOUND

Here we discuss the lower bound using Fisher information technique similar to Barnes et al. (2020).
In particular we use a Bayesian version of Cramer-Rao lower bound and van Trees inequality Gill
& Levit (1995). Let us denote f(X|θ) as the data generating conditional density function and π(θ)
as the prior distribution that generates θ. Let us denote Eθ as the expectation with respect to the
randomness of θ and E as the expectation with respect to randomness of X and θ. First we define
two types of Fisher information:

IX(θ) = Eθ∇θ log(f(X|θ))∇θ log(f(X|θ))T

I(π) = E∇θ log(π(θ))∇θ log(π(θ))T

namely Fisher information of estimating θ from samples X and Fisher information of prior π. Here
the logarithm is elementwise. For van Trees inequality we need the following regularity conditions:

• f(X|·) and π(·) are absolutely continuous and π(·) vanishes at the end points of Θ.

• Eθ∇θ log(f(X|θ)) = 0

• We also assume both density functions are continuously differentiable.

These assumptions are satisfied for the Gaussian setting for any finite mean µ, they are satisfied for
Bernoulli setting as long as parameters α and β are larger than 1. Assuming local samples X are
generated i.i.d with f(x|θ), the van Trees inequality for one dimension is as follows:
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E(θ̂(X)− θ)2 ≥ 1

nEIx(θ) + I(π)

where IX(θ) = Eθ log(f(X|θ))′2 and I(π) = E log(π(θ))′2. Assuming θ ∈ Rd and each dimension
is independent from each other, by Gill & Levit (1995) we have:

E‖θ̂(X)− θ‖2 ≥ d2

nETr(Ix(θ)) + Tr(I(π))
(28)

Note, the lower bound on the average risk directly translates as a lower bound on supθ∈Θ EX‖θ̂(X)−
θ‖2. Before our proof we have a useful fact:

Fact 1. Given some random variable X ∼ N(Y, σ2
y) where Y ∼ N(Z, σ2

z) we have X ∼ N(z, σ2
z +

σ2
y).

Proof. We will give the proof in one dimension, however, it can easily be extended to multidimen-
sional case where each dimension is independent. For all t ∈ R we have,

EX [exp(itX)] = EY EX [exp(itX)|Y ] = EY [exp(itY − σ2
xt

2

2
)]

= exp(−σ
2
xt

2

2
)EY [exp(itY )]

= exp(−σ
2
xt

2

2
) exp(itz −

σ2
yt

2

2
)

= exp(itz −
(σ2
x + σ2

y)t2

2
)

where the last line is the characteristic function of a Gaussian with mean z and variance σ2
x + σ2

y .

Gaussian case with perfect knowledge of prior. In this setting we know that θi ∼ N(µ1, σ2
θ Id),

hence, I(π) = 1
σ2
θ

Id, similarly IX(θ) = 1
σ2
x

Id. Then,

sup
θi

E‖θ̂i(X)− θi‖2 ≥
d2

nE d
σ2
x

+ d
σ2
θ

=
dσ2

θσ
2
x

nσ2
θ + σ2

x

(29)

Gaussian case with estimated population mean. In this setting instead of a true prior we have a
prior whose mean is the average of all data spread across clients, i.e., we assume θi ∼ N(µ̂, σ2

θ Id)
where µ̂ = 1

mn

∑m,n
i,j Xj

i . We additionally know that there is a Markov relation such that Xj
i |θj ∼

N(θj , σ
2
xId) and θj ∼ N(µ, σ2

θ Id). While the true prior is parameterized with mean µ, θi in this
form is not parameterized by µ but by µ̂ which itself has randomness due Xj

i . However, using Fact 1

twice we can write θi ∼ N(µ, (σ2
θ +

σ2
θ

m +
σ2
x

mn )Id). Then using the van Trees inequality similar to
the lower bound in perfect case we can obtain:

sup
θi∈Θ

EX‖θ̂i(X)− θi‖2 ≥ d
σ2
θσ

2
x +

σ4
x

mn

nσ2
θ + σ2

x

(30)
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C PERSONALIZED ESTIMATION – BERNOULLI MODEL

C.1 WHEN α, β ARE KNOWN

Analogous to the Gaussian case, we can show that if α, β are known, then the posterior mean estimator
has a closed form expression: p̂i = aXi + (1− a) α

α+β (where a = n/α+β+n) and achieves the MSE:

Epi∼πEp̂i,X1,...,Xm(p̂i − pi)2 ≤ αβ
n(α+β)(α+β+1)

n
α+β+n . We show this below.

For a client i, let π(pi) be distributed as Beta(α, β). In this setting, we model that each client generates
local samples according to Bern(pi). Consequently, each client has a Binomial distribution regarding
the sum of local data samples. Estimating Bernoulli parameter pi is related to Binomial distribution
Bin(n, pi) (the sum of data samples) Zi since it is the sufficient statistic of Bernoulli distribution.
The distribution for Binomial variable Zi given pi is P (Zi = zi|pi) =

(
n
zi

)
pzii (1− pi)n−zi . It is a

known fact that for any prior, the Bayesian MSE risk minimizer is the posterior mean E [pi|Zi = zi].

When pi ∼ Beta(α, β), we have posterior

f(pi|Zi = zi) =
P (zi|pi)
P (zi)

π(pi)

=

(
n
zi

)
pzii (1− pi)n−zi

P (zi)

pα−1
i (1− pi)β−1

B(α, β)

=

(
n
zi

)
P (zi)

B(α+ zi, β + n− zi)
B(α, β)

pα+zi−1
i (1− pi)β+n−zi−1

B(α+ zi, β + n− zi)
,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) , and

P (zi) =

∫
P (zi|pi)π(pi)dpi

=

∫ (
n

zi

)
pzii (1− pi)n−zi

pα−1
i (1− pi)β−1

B(α, β)
dpi

=

(
n

zi

)
B(zi + α, n− zi + β)

B(α, β)

∫
pα+zi−1
i (1− pi)β+n−zi−1

B(α+ zi, β + n− zi)
dpi︸ ︷︷ ︸

integral of a Beta distribution

=

(
n

zi

)
B(zi + α, n− zi + β)

B(α, β)

Thus, we get that the posterior distribution f(pi|Zi = zi) =
p
α+zi−1

i (1−pi)β+n−zi−1

B(α+zi,β+n−zi) is a beta
distribution Beta(zi + α, n− zi + β). As a result, the posterior mean is given by:

p̂i =
α+ Zi

α+ β + n
= a

(
Zi
n

)
+ (1− a)

(
α

α+ β

)
, (31)

where a = n
α+β+n . Observe that Epi∼Beta(α,β)[pi] = α

α+β , i.e., the estimator is a weighted summa-
tion between the local estimator zin and the global estimator µ = α

α+β .
We have Rpi(p̂i) = EπE(p̂i − pi)2. The MSE of the posterior mean is given by:

MSE = E[(p̂i − pi)2]

= E
[(
a
(zi
n
− pi

)
+ (1− a)(µ− pi)

)2
]

= a2E
[(zi

n
− pi

)2
]

+ (1− a)2E
[
(µ− pi)2

]
= a2Epi∼π(pi)

[
pi(1− pi)

n

]
+ (1− a)2 αβ

(α+ β)2(α+ β + 1)
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= a2 αβ

n(α+ β)(α+ β + 1)
+ (1− a)2 αβ

(α+ β)2(α+ β + 1)

=
αβ

n(α+ β)(α+ β + 1)

(
n

α+ β + n

)
.

The last equality is obtained by setting a = n
α+β+n .

Remark 5. Note that Xi := Zi
n is the estimator based only on the local data and α/(α+β) is the

true global mean, and p̂i = aXi + (1 − a) α
α+β , where a = n/α+β+n (see (31)) is the estimator

based on all the data. Observe that when n → ∞, then a → 1, which implies that p̂i → Xi.
Otherwise, when α + β is large (i.e., the variance of the beta distribution is small), then a → 0,
which implies that p̂i → α/(α+β). Both these conclusions conform to the conventional wisdom as
mentioned in the Gaussian case. It can be shown that the local estimateXi achieves the Bayesian risk
of Epi∼Beta(α,β)EXi [(Xi − pi)2] = Epi∼Beta(α,β)(pi(1−pi))/n = αβ/n(α+β)(α+β+1), which implies
that the personalized estimation with perfect prior always outperforms the local estimate with a
multiplicative gain a = n/(n+α+β) ≤ 1.

C.2 WHEN α, β ARE UNKNOWN: PROOF OF THEOREM 3

The personalized model of the ith client with unknown parameters α, β is given by:

p̂i = aiXi + (1− ai) (µ̂i) , (32)

where ai = n
µ̂i(1−µ̂i)

σ̂2
i

+n
, the empirical mean µ̂i = 1

m−1

∑
l 6=iX l, and the empirical variance

σ̂2
i = 1

m−2

∑
l 6=i(X l − µ̂i)2. From (Tian et al., 2017, Lemma 1), with probability 1− 1

m2n , we get
that

|µ− µ̂i| ≤
√

3 log(4m2n)

m− 1

|σ2 − σ̂2
i | ≤

√
3 log(4m2n)

m− 1
,

where µ = α
α+β , σ2 = αβ

(α+β)2(α+β+1) are the true mean and variance of the beta distribution,

respectively. Let c =
√

3 log(4m2n)
m−1 . Conditioned on the event E = {|µ − µ̂i| ≤ c, |σ2 − σ̂2

i | ≤ c :

∀i ∈ [m]} that happens with probability at least 1− 1
mn , we get that:

E
[
(p̂i − pi)2 |Z−i

]
= a2E

[(
Zi
n
− pi

)2
]

+ (1− a)2E
[
(µ̂i − pi)2 |Z−i

]
= a2

(
αβ

n(α+ β)(α+ β + 1)

)
+ (1− a)2

(
E
[
(µ− pi)2

]
+ (µ− µ̂i)2

)
= a2

(
αβ

n(α+ β)(α+ β + 1)

)
+ (1− a)2

(
αβ

(α+ β)2(α+ β + 1)
+ (µ− µ̂i)2

)
≤ a2

(
αβ

n(α+ β)(α+ β + 1)

)
+ (1− a)2

(
αβ

(α+ β)2(α+ β + 1)
+ c2

)
,

where the expectation is with respect to zi ∼ Binom(pi, n) and pi ∼ Beta(α, β) and Z−i =
{z1, . . . , zi−1, zi+1, . . . , zm} denotes the entire dataset except the ith client data (zi). By taking the
expectation with respect to the datasets Z−i, we get that the MSE is bounded by:

MSE ≤ E
[
a2
]( αβ

n(α+ β)(α+ β + 1)

)
+E

[
(1− a)2

]( αβ

(α+ β)2(α+ β + 1)
+

3 log(4m2n)

m− 1

)
,

with probability at least 1− 1
mn . This completes the proof of Theorem 3.
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C.3 WITH PRIVACY CONSTRAINTS: PROOF OF THEOREM 4

First, we prove some properties of the private mechanism qp. Observe that for any two inputs
x, x′ ∈ [0, 1], we have that:

Pr[qp(x) = y]

Pr[qp(x′) = y]
=

eε0

eε0+1 − x
eε0−1
eε0+1

eε0
eε0+1 − x′

eε0−1
eε0+1

≤ eε0 , (33)

for y = −1
eε0−1 . Similarly, we can prove (33) for the output y = eε0

eε0−1 . Thus, the mechanism qp is
user-level ε0-LDP. Furthermore, for given x ∈ [0, 1], we have that

E [qp(x)] = x. (34)

Thus, the output of the mechanism qp is an unbiased estimate of the input x. From the Hoeffding’s
inequality for bounded random variables, we get that:

Pr[|µ̂(p)
i − µ| > t] ≤ 2 exp

(
−3(eε0 − 1)2(m− 1)t2

(eε0 + 1)2

)
Pr[|σ̂2(p)

i − σ2| > t] ≤ 2 exp

(
−3(eε0 − 1)2(m− 1)t2

(eε0 + 1)2

) (35)

Thus, we have that the event E = {|µ̂(p)
i − µ| ≤ cp, |σ̂2(p)

i − σ2| ≤ cp : ∀i ∈ [m]} happens with

probability at least 1 − 1
mn , where cp =

√
(eε0+1)2 log(4m2n)

3(eε0−1)2(m−1) . By following the same steps as the
non-private estimator, we get the fact that the MSE of the private model is bounded by:

MSE ≤ E
[
a2
]( αβ

n(α+ β)(α+ β + 1)

)
+ E

[
(1− a)2

]( αβ

(α+ β)2(α+ β + 1)
+

(eε0 + 1)2 log(4m2n)

3(eε0 − 1)2(m− 1)

)
, (36)

where a(p) = n

µ̂
(p)
i

(1−µ̂(p)
i

)

σ̂
2(p)
i

+n

and the expectation is with respect to the clients data

{z1, . . . , zi−1, zi+1, . . . , zm}and the randomness of the private mechanism qp. This completes
the proof of Theorem 4.
Remark 6 (Privacy with communication efficiency). Note that our private estimation algorithm for
the Bernoulli case is already communication-efficient as each client sends only one bit to the server.
Remark 7 (Client sampling). For simplicity, in the theoretical analysis in Gaussian and Bernoulli
models, we assume that all clients participate in the estimation process. However, a simple modifi-
cation to our analysis also handles the case where only K out of m clients participate: in all our
theorem statements we would have to modify to have K instead m. Note that we do client sampling
for our experiments in Table 1.

D PERSONALIZED ESTIMATION – MIXTURE MODEL

Consider a set of m clients, where the i-th client has a local dataset Xi = (Xi1, . . . , Xin) of n
samples for i ∈ [m], where Xij ∈ Rd. The local samples Xi of the i-th client are drawn i.i.d. from a
Gaussian distribution N (θi, σ

2
xId) with unknown mean θi and known variance σ2

xId.

In this section, we assume that the personalized models θ1, . . . ,θm are drawn i.i.d. from a discrete
distribution P = [p1, . . . , pk] for given k candidates µ1, . . . ,µk ∈ Rd. In other works, Pr[θi =
µl] = pl for l ∈ [k] and i ∈ [m]. The goal of each client is to estimate her personalized model {θi}
that minimizes the mean square error defined as follows:

MSE = E{θi,Xi}‖θi − θ̂i‖
2, (37)

where the expectation is taken with respect to the personalized models θi and the local samples
{Xij ∼ N (θi, σ

2
xId)}. Furthermore, θ̂i denotes the estimate of the personalized model θi for

i ∈ [m].

23



Published as a conference paper at ICLR 2023

First, we start with a simple case when the clients have perfect knowledge of the prior distribution,
i.e., the i-th client knows the k Gaussian distributions N

(
µ1, σ

2
θ

)
, . . . ,N

(
µk, σ

2
θ

)
and the prior

distribution α = [α1, . . . , αk]. This will serve as a stepping stone to handle the more general case
when the prior distribution is unknown.

D.1 WHEN THE PRIOR DISTRIBUTION IS KNOWN

In this case, the i-th client does not need the data of the other clients as she has a perfect knowledge
about the prior distribution.
Theorem 6. For given a perfect knowledge α = [α1, . . . , αk] and N

(
µ1, σ

2
θ

)
, . . . ,N

(
µk, σ

2
θ

)
,

the optimal personalized estimator that minimizes the MSE is given by:

θ̂i =

k∑
l=1

a
(i)
l µl, (38)

where α(i)
l =

pl exp

(
−
∑n
j=1 ‖Xij−µl‖

2

2σ2x

)
∑k
s=1 ps exp

(
−
∑n
j=1
‖Xij−µs‖2

2σ2x

) denotes the weight associated to the prior model µl

for l ∈ [k].

Proof. Let θi ∼ P, where P = [p1, . . . , pk] and pl = Pr[θi = µl] for l ∈ [k]. The goal is to design
an estimator θ̂i that minimizes the MSE given by:

MSE = Eθi∼PE{Xij∼N (θi,σ2
x)}

[
‖θ̂i − θi‖2

]
. (39)

Let Xi = (Xi1, . . . , Xin). By following the standard proof of the minimum MSE, we get that:

EθiEXi
[
‖θ̂i − θi‖2

]
= EXiEθi|Xi

[
‖θ̂i − E[θi|Xi] + E[θi|Xi]− θi‖2

∣∣∣Xi

]
= EXiEθi|Xi

[
‖E[θi|Xi]− θi‖2

∣∣Xi

]
+ EXiEθi|Xi

[
‖E[θi|Xi]− θ̂i‖2

∣∣∣Xi

]
≥ EXiEθi|Xi

[
‖E[θi|Xi]− θi‖2

∣∣Xi

]
,

(40)
where the last inequality is achieved with equality when θ̂i = E[θi|Xi]. The distribution on θi given
the local dataset Xi is given by:

Pr[θi = µl|Xi] =
f(Xi|θi = µl) Pr[θi = µl]

f(Xi)

=
f(Xi|θi = µl) Pr[θi = µl]∑k
s=1 f(Xi|θi = µs) Pr[θi = µs]

=

pl exp

(
−
∑n
j=1 ‖Xij−µl‖

2

2σ2
x

)
∑k
s=1 ps exp

(
−
∑n
j=1 ‖Xij−µs‖2

2σ2
x

) = α
(i)
l

(41)

As a result, the optimal estimator is given by:

θ̂i = E[θi|Xi] =

k∑
l=1

α
(i)
l µl. (42)

This completes the proof of Theorem 6.

The optimal personalized estimation in (38) is a weighted summation over all possible candidates
vectors µ1, . . . ,µk, where the weight α(i)

l increases if the prior pl increases and/or the local samples
{Xij} are close to the model µl for l ∈ [k]. Observe that the optimal estimator θ̂i in Theorem 6 that

minimizes the MSE is completely different from the local estimator
(

1
n

∑n
j=1Xij

)
. Furthermore,

it is easy to see that the local estimator has the MSE
(
dσ2
x

n

)
which increases linearly with the data

dimension d. On the other hand, the MSE of the optimal estimator in Theorem 6 is a function of the
prior distribution P = [p1, . . . , pk], the prior vectors µ1, . . . ,µk, and the local variance σ2

x.
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D.2 WHEN THE PRIOR DISTRIBUTION IS UNKNOWN

Now, we consider a more practical case when the prior distribution P = [p1, . . . , pk] and the
candidates µ1, . . . ,µk are unknown to the clients. In this case, the clients collaborate with each other
by their local data to estimate the priors P and µ1, . . . ,µk, and then, each client uses the estimated
priors to design her personalized model as in (38).

We present Algorithm 3 based on alternating minimization. The algorithm starts by initializing the
local models {θ(0)

i := 1
n

∑n
j=1Xij}. Then, the algorithm works in rounds alternating between esti-

mating the priors P(t+1) = [p
(t+1)
1 , . . . , p

(t+1)
k ],µ(t+1)

1 , . . . ,µ
(t+1)
k for given local models {θ(t)

i } and
estimating the personalized models {θ(t+1)

i } for given global priors P(t+1) and µ(t+1)
1 , . . . ,µ

(t+1)
k .

Observe that for given the prior information P(t), {µtl}, each client updates her personalized model in
Step 6 which is the optimal estimator for given priors according to Theorem 6. On the other hand, for
given personalized models {θ(t)

i }, we estimate the priors P(t), {µtl} using clustering algorithm with k
sets in Step 11. The algorithm Cluster takes m vectors a1, . . . ,am and an integer k as its input, and
its goal is to generate a set of k cluster centers µ1, . . . ,µk that minimizes

∑m
i=1 minl∈k ‖ai − µl‖2.

Furthermore, these clustering algorithms can also return the prior distribution P, by setting pl := |Sl|
m ,

where Sl ⊂ {a1, . . . ,am} denotes the set of vectors that are belongs to the l-th cluster. There are
lots of algorithms that do clustering, but perhaps, Lloyd’s algorithm Lloyd (1982) and Ahmadian Ah-
madian et al. (2019) are the most common algorithms for k-means clustering. Our Algorithm 3 can
work with any clustering algorithm.

Algorithm 3 Alternating Minimization for Personalized Estimation
Input: Number of iterations T , local datasets (Xi1, . . . , Xin) for i ∈ [m].

1: Initialize θ0
i = 1

n

∑n
j=1Xij for i ∈ [m].

2: for t = 1 to T do
3: On Clients:
4: for i = 1 to m: do
5: Receive P(t),µ

(t)
1 , . . . ,µ

(t)
k from the server

6: Update the personalized model:

θti ←
k∑
l=1

α
(i)
l µ

(t)
l and α

(i)
l =

p
(t)
l exp

(
−
∑n
j=1 ‖Xij−µ

(t)
l ‖

2

2σ2
x

)
∑k
s=1 p

(t)
s exp

(
−
∑n
j=1 ‖Xij−µ

(t)
s ‖2

2σ2
x

)
7: Send θti to the server
8: end for
9: At the Server:

10: Receive θ(t)
1 , . . . ,θ(t)

m from the clients

11: Update the global parameters: P(t),µ
(t)
1 , . . . ,µ

(t)
k ← Cluster

(
θ

(t)
1 , . . . ,θ(t)

m , k
)

12: Broadcast P(t),µ
(t)
1 , . . . ,µ

(t)
k to all clients

13: end for
Output: Personalized models θT1 , . . . ,θ

T
m.

D.3 PRIVACY/COMMUNICATION CONSTRAINTS

In the personalized estimation Algorithm 3, each client shares her personalized estimator θ(t)
i to

the server at each iteration which is not communication-efficient and violates the privacy. In this
section we present ideas on how to design communication-efficient and/or private Algorithms for
personalized estimation.

Lemma 3. Let µ1, . . .µk ∈ Rd be unknown means such that ‖µi‖2 ≤ r for each i ∈ [k]. Let
θ1, . . . ,θm ∼ P, where P = [p1, . . . , pk] and pl = Pr[θi = µl]. For i ∈ [m], let Xi1, . . . , Xin ∼
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N (θi, σ
2
x), i.i.d. Then, with probability at least 1− 1

mn , the following bound holds for all i ∈ [m]:∥∥∥∥∥∥ 1

n

n∑
j=1

Xij

∥∥∥∥∥∥
2

≤ 4

√
d
σ2
x

n
+ 2

√
log(m2n)

σ2
x

n
+ r. (43)

Proof. Observe that the vector (Xi − θi) = 1
n

∑n
i=1Xij − θi is a sub-Gaussian random vector with

proxy σ2
x

n . As a result, we have that:

‖Xi − θi‖2 ≤ 4

√
d
σ2
x

n
+ 2

√
log(1/η)

σ2
x

n
, (44)

with probability at least 1 − η from Wainwright (2019). Since µ1, . . . , µk ∈ Rd are such that
‖µi‖2 ≤ r for each i ∈ [k], we have:

‖Xi‖2 ≤ 4

√
d
σ2
x

n
+ 2

√
log(1/η)

σ2
x

n
+ r, (45)

with probability 1 − η from the triangular inequality. Thus, by choosing η = 1
m2n and using the

union bound, this completes the proof of Lemma 3.

Lemma 3 shows that the average of the local samples {Xi} has a bounded `2 norm with high
probability. Thus, we can design a communication-efficient estimation Algorithm as follows: Each

client clips her personal model θ(t)
i within radius 4

√
d
σ2
x

n + 2
√

log(m2n)
σ2
x

n + r. Then, each client
applies a vector-quantization scheme (e.g., Bernstein et al. (2018); Alistarh et al. (2017); Girgis et al.
(2021a)) to the clipped vector before sending it to the server.

To design a private estimation algorithm with discrete priors, each client clips her personalized

estimator θ(t)
i within radius 4

√
d
σ2
x

n + 2
√

log(m2n)
σ2
x

n + r. Then, we can use a differentially private
algorithm for clustering (see e.g., Stemmer (2020) for clustering under LDP constraints and Ghazi
et al. (2020) for clustering under central DP constraints.). Since, we run T iterations in Algorithm 3,
we can obtain the final privacy analysis (ε, δ) using the strong composition theorem Dwork & Roth
(2014).

E PERSONALIZED LEARNING – LINEAR REGRESSION

In this section, we present the personalized linear regression problem. Consider A set of m clients,
where the i-th client has a local dataset consisting of n samples (Xi1, Yi1), . . . , (Xin, Yin), where
Xij ∈ Rd denotes the feature vector and Yij ∈ R denotes the corresponding response. Let Yi =
(Yi1, . . . , Yi1) ∈ Rn and Xi = (Xi1, . . . , Xin) ∈ Rn×d denote the response vector and the feature
matrix at the i-th client, respectively. Following the standard regression, we assume that the response
vector Yi is obtained from a linear model as follows:

Yi = Xiθi +wi, (46)
where θi denotes personalized model of the i-th client and wi ∼ N

(
0, σ2

xIn
)

is a noise vector.
The clients’ parameters θ1, . . . ,θm are drawn i.i.d. from a Gaussian distribution θ1, . . . ,θm ∼
N (µ, σ2

θId), i.i.d.

Our goal is to solve the optimization problem stated in (9) (for the linear regression setup) and learn
the optimal personalized parameters {θ̂i}. The following theorem characterizes the exact form of the
optimal {θ̂i} and computes their minimum mean squared error w.r.t. the true parameters {θi}.
Theorem 7. The optimal personalized parameters at client i with known µ, σ2

θ , σ
2
x is given by:

θ̂i =

(
I
σ2
θ

+
XT
i Xi

σ2
x

)−1(
XT
i Yi
σ2
x

+
µ

σ2
θ

)
. (47)

The mean squared error (MSE) of the above θ̂i is given by:

Ewi,θi
∥∥∥θ̂i − θi∥∥∥2

= Tr

((
I
σ2
θ

+
XT
i Xi

σ2
x

)−1
)
, (48)
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Proof. The personalized model with perfect prior is obtained by solving the optimization problem
stated in (9), which is given below for convenience. Note that for linear regression with Gaussian
prior, we have P(Γ) ≡ N (µ, σ2

θId) and pθi(Yij |Xij) according to N (θi, σ
2
x).

θ̂i = arg min
θi

n∑
j=1

− log(pθi(Yij |Xij))− log(p(θi)).

= arg min
θi

n∑
j=1

(Yij −Xijθi)
2

2σ2
x

+
‖θi − µ‖2

2σ2
θ

.

= arg min
θi

‖Yi −Xiθi‖2

2σ2
x

+
‖θi − µ‖2

2σ2
θ

.

By taking the derivative with respect to θi, we get

∂

∂θi
=
XT
i (Xiθi − Yi)

σ2
x

+
θi − µ
σ2
θ

. (49)

Equating the above partial derivative to zero, we get that the optimal personalized parameters θ̂i is
given by:

θ̂i =

(
I
σ2
θ

+
XT
i Xi

σ2
x

)−1(
XT
i Yi
σ2
x

+
µ

σ2
θ

)
. (50)

Taking the expectation w.r.t. wi, we get:

Ewi [θ̂i] =

(
I
σ2
θ

+
XT
i Xi

σ2
x

)−1(
XT
i Xiθi
σ2
x

+
µ

σ2
θ

)
, (51)

Thus, we can bound the MSE as following:

Ewi,θi
∥∥∥θ̂i − θi∥∥∥2

= Ewi,θi
∥∥∥θ̂i − Ewi [θ̂i] + Ewi [θ̂i]− θi

∥∥∥2

= Ewi,θi
∥∥∥θ̂i − Ewi [θ̂i]

∥∥∥2

+ Ewi,θi
∥∥∥Ewi [θ̂i]− θi∥∥∥2

+ 2Ewi,θi
〈
θ̂i − Ewi [θ̂i],Ewi [θ̂i]− θi

〉
= Ewi,θi

∥∥∥θ̂i − Ewi [θ̂i]
∥∥∥2

+ Ewi,θi
∥∥∥Ewi [θ̂i]− θi∥∥∥2

In the last equality, we used Ewi,θi
〈
θ̂i − Ewi [θ̂i],Ewi [θ̂i]− θi

〉
=

Eθi
〈
Ewi [θ̂i]− Ewi [θ̂i],Ewi [θ̂i]− θi

〉
= 0, where the first equality holds because Ewi [θ̂i]− θi is

independent of wi.

LettingM = I
σ2
θ

+
XTi Xi
σ2
x

, and Tr denoting the trace operation, we get

Ewi,θi
∥∥∥θ̂i − θi∥∥∥2

= Tr

(
M−1Ewi

[(
XT
i wi

σ2
x

)(
XT
i wi

σ2
x

)T]
M−1

)

+ Tr

(
M−1Eθi

[(
θi − µ
σ2
θ

)(
θi − µ
σ2
θ

)T]
M−1

)

= Tr

(
M−1X

T
i Xi

σ2
x

M−1

)
+ Tr

(
M−1 I

σ2
θ

M−1

)
= Tr

(
M−1

)
.

This completes the proof of Theorem 7.

Observe that the local model of the i-th client, i.e., estimating θi only from the local data (Yi, Xi), is
given by:

θ̂
(l)

i =
(
XT
i Xi

)−1
XT
i Yi, (52)
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Algorithm 4 Linear Regression GD
Input: Number of iterations T , local datasets (Yi, Xi) for i ∈ [m], learning rate η.

1: Initialize θ0
i for i ∈ [m], µ0, σ2,0

x , σ2,0
θ .

2: for t = 1 to T do
3: On Clients:
4: for i = 1 to m: do
5: Receive and set µti = µt, σ2,t

θ,i = σ2,t
θ , σ2,t

x,i = σ2,t
x

6: Update the personalized model: θti ← θt−1
i + η

(∑n
j=1

Xij(Yij−Xijθt−1
i )

σ2,t−1
x,i

+
µt−1
i −θt−1

i

σ2,t−1
θ,i

)
7: Update local version of mean: µti ← µt−1

i − η
(
µt−1
i −θt−1

i

σ2,t−1
θ,i

)
8: Update local variance: σ2,t

x,i ← σ2,t−1
x,i − η

(
n

2σ2,t−1
x,i

−
∑n
j=1

(Yij−Xijθt−1
i )2

2(σ2,t−1
x,i )2

)
9: Update global variance: σ2,t

θ,i ← σ2,t−1
θ,i

− η
(

d

2σ2,t−1
θ,i

− ‖µ
t−1
i −θt−1

i ‖2

2(σ2,t−1
θ,i )2

)
10: end for
11: At the Server:
12: Aggregate mean: µt = 1

m

∑m
i=1 µ

t
i

13: Aggregate global variance: σ2,t
θ = 1

m

∑m
i=1 σ

2,t
θ,i

14: Aggregate local variance: σ2,t
x = 1

m

∑m
i=1 σ

2,t
x,i

15: Broadcast µt, σ2,t
θ , σ2,t

x
16: end for
Output: Personalized models θT1 , . . . ,θ

T
m.

where we assume the matrix XT
i Xi has a full rank (otherwise, we take the pseudo inverse). This

local estimate achieves the MSE given by:

E
∥∥∥∥θ̂(l)

i − θi
∥∥∥∥2

= Tr
((
XT
i Xi

)−1
)
σ2
x, (53)

we can prove it by following similar steps as the proof of Theorem 7. When σ2
θ →∞, we can easily

see that the local estimate (52) matches the personalized estimate in (47).

To make the regression problem more practical, we assume that the mean µ, the local variance
σ2
x, and the global variance σ2

θ are unknown. Hence, we estimate the personalized parameters by
minimizing the negative log likelihood:

θ̂1, . . . , θ̂m = arg min
{θi},µ,σ2

x,σ
2
θ

m∑
i=1

n∑
j=1

− log (pθi (Yij |Xij)) +

m∑
i=1

− log (p (θi))

= arg min
nm

2
log(2πσ2

x) +

m∑
i=1

n∑
j=1

(Yij −Xijθi)
2

2σ2
x

+
md

2
log(2πσ2

θ) +

m∑
i=1

‖θi − µ‖2

2σ2
θ

.

(54)

Instead of solving the above optimization problem explicitly, we can optimize it through gradient
descent (GD) and the resulting algorithm is presented in Algorithm 4. In addition to keeping the
personalized models {θti}, each client also maintains local copies of {µti, σtθ,i, σtx,i} and updates all
these parameters by taking appropriate gradients of the objective in (54) and synchronize them with
the server to update the global copy of these parameters {µt, σtθ, σtx}.

F PERSONALIZED LEARNING – LOGISTIC REGRESSION

As described in Section 3, by taking P(Γ) ≡ N (µ, σ2
θId) and pθi(Yij |Xij) = σ(〈θi, Xij〉)Yij (1−

σ(〈θi, Xij〉))(1−Yij), where σ(z) = 1/1+e−z for any z ∈ R, then the overall optimization problem
becomes:
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arg min
{θi},µ,σθ

m∑
i=1

n∑
j=1

[
Yij log

(
1

1 + e−〈θi,Xij〉

)
+ (1− Yij) log

(
1

1 + e〈θi,Xij〉

)]

+
md

2
log(2πσ2

θ) +

m∑
i=1

‖µ− θi‖22
2σ2

θ

. (55)

When µ and σ2
θ are unknown, we would like to learn them by gradient descent, as in the linear

regression case. The corresponding algorithm is described in Algorithm 5.

Algorithm 5 Logistic Regression SGD
Input: Number of iterations T , local datasets (Yi, Xi) for i ∈ [m], learning rate η.

1: Initialize θ0
i for i ∈ [m], µ0, σ2,0

θ .
2: for t = 1 to T do
3: On Clients:
4: for i = 1 to m: do
5: Receive (µt, σ2,t

θ ) from the server and set µti := µt, σ2,t
θ,i := σ2,t

θ

6: Update the personalized model:

θti ← θt−1
i − η

 n∑
j=1

∇θt−1
i
l
(p)
CE(θt−1

i , (Xj
i , Y

j
i )) +

µt−1
i − θt−1

i

σ2,t−1
θ,i

 ,

where l(p)CE denotes the cross-entropy loss.

7: Update local version of mean: µti ← µt−1
i − η

(
µt−1
i −θt−1

i

σ2,t−1
θ,i

)
8: Update global variance: σ2,t

θ,i
← σ2,t−1

θ,i
− η

(
d

2σ2,t−1
θ,i

− ‖µ
t−1
i −θt−1

i ‖2

2(σ2,t−1
θ,i )2

)
9: Send (µti, σ

2,t
θ,i) to the server

10: end for
11: At the Server:
12: Receive {(µti, σ

2,t
θ,i)} from the clients

13: Aggregate mean: µt = 1
m

∑m
i=1 µ

t
i

14: Aggregate global variance: σ2,t
θ = 1

m

∑m
i=1 σ

2,t
θ,i

15: Broadcast (µt, σ2,t
θ ) to all clients

16: end for
Output: Personalized models θT1 , . . . ,θ

T
m.

G PERSONALIZED LEARNING – MIXTURE MODEL

In this section, we present the linear regression problem as a generalization to the estimation problem
with discrete priors. This model falls into the framework studied in Marfoq et al. (2021) and is
illustrated to show how our framework also captures it.

Consider a set of m clients, where the i-th client has a local dataset (Xi1, Yi1), . . . , (Xin, Yin) of m
samples, where Xij ∈ Rd denotes the feature vector and Yij ∈ R denotes the corresponding response.
Let Yi = (Yi1, . . . , Yi1) ∈ Rn and Xi = (Xi1, . . . , Xin) ∈ Rn×d denote the response vector and the
feature matrix at the i-th client, respectively. Following the standard regression, we assume that the
response vector Yi is obtained from a linear model as follows:

Yi = Xiθi +wi, (56)

where θi denotes personalized model of the i-th client and wi ∼ N
(
0, σ2

xIn
)

is a noise vector. The
clients models are drawn i.i.d. from a discrete distribution θ1, . . . ,θm ∼ P, where P = [p1, . . . , pk]
such that pl = Pr[θi = µl] for i ∈ [m] and l ∈ [k].
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Our goal is to solve the optimization problem stated in (9) (for the linear regression with the above
discrete prior) and learn the optimal personalized parameters {θ̂i}.
We assume that the discrete distribution P and the prior candidates {µl}kl=1 are unknown to the
clients. Inspired from Algorithm 3 for estimation with discrete priors, we obtain Algorithm 6 for
learning with discrete prior. Note that this is not a new algorithm, and is essentially the algorithm
proposed in Marfoq et al. (2021) applied to linear regression. We wanted to show how our framework
captures mixture model in Marfoq et al. (2021) through this example.

Description of Algorithm 6. Client i initializes its personalized parameters θ(0)
i = (XT

i Xi)
−1XT

i Yi,
which is the optimal as a function of the local dataset at the i-th client without any prior knowledge.
In any iteration t, for a given prior information P(t), {µ(t)

l }, the i-th client updates the personalized

model as θti =
∑k
l=1 α

(i)
l µ

(t)
l , where the weights α(i)

l ∝ p
(t)
l exp

(
−‖Xiµ

(t)
l −Yi‖

2

2σ2
x

)
and sends its

current estimate of the personalized parameter θti to the server. Upon receiving θt1, . . . ,θ
t
m, server

will run Cluster algorithm to update the global parameters P,µ(t)
1 , . . . ,µ

(t)
k , and broadcasts them to

the clients.

Algorithm 6 Alternating Minimization for Personalized Learning
Input: Number of iterations T , local datasets (Xi, Yi) for i ∈ [m].

1: Initialize θ0
i = (XT

i Xi)
−1XT

i Yi for i ∈ [m] (if XT
i Xi is not full-rank, take the pseudo-inverse).

2: for t = 1 to T do
3: On Clients:
4: for i = 1 to m: do
5: Receive P(t),µ

(t)
1 , . . . ,µ

(t)
k from the server

6: Update the personalized parameters and the coefficients:

θti ←
k∑
l=1

α
(i)
l µ

(t)
l and α

(i)
l =

p
(t)
l exp

(
−‖Xiµ

(t)
l −Yi‖

2

2σ2
x

)
∑k
s=1 p

(t)
s exp

(
−‖Xiµ

(t)
s −Yi‖2
2σ2
x

)
7: Send θ(t)

i to the server
8: end for
9: At the Server:

10: Receive θ(t)
1 , . . . ,θ(t)

m from the clients

11: Update the global parameters: P(t),µ
(t)
1 , . . . ,µ

(t)
k ← Cluster

(
θ

(t)
1 , . . . ,θ(t)

m , k
)

12: Broadcast P(t),µ
(t)
1 , . . . ,µ

(t)
k to all clients

13: end for
Output: Personalized models θT1 , . . . ,θ

T
m.

H PERSONALIZED LEARNING – ADAPED

H.1 KNOWLEDGE DISTILLATION POPULATION DISTRIBUTION

In this section we discuss what type of a population distribution can give rise to algorithms/problems
that include a knowledge distillation (KD) (or KL divergence) penalty term between local and global
models. From Section 3, Equation (9), consider pθi(y|x) as a randomized mapping from input space
X to output class Y , parameterized by θi. For simplicity, consider the case where |X | is finite, e.g.
for MNIST it could be all possible 28 × 28 black and white images. Every pθi(y|x) corresponds
to a probability matrix (parameterized by θi) of size |Y| × |X |, where the (y, x)’th represents the
probability of the class y (row) given the data sample x (column). Therefore, each column is a
probability vector. Since we want to sample the probability matrix, it suffices to restrict our attention
to any set of |Y| − 1 rows, as the remaining row can be determined by these |Y| − 1 rows.
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Similarly, for a global parameter µ, let pµ(y|x) define a randomized mapping from X to Y , parame-
terized by the global parameter µ. Note that for a fixed global parameter µ, the randomized map
pµ(y|x) is fixed, whereas, our goal is to sample pθi(y|x) for i = 1, . . . ,m, one for each client. For
simplicity of notation, define pθi := pθi(y|x) and pµ := pµ(y|x) to be the corresponding probability
matrices, and let the distribution for sampling pθi(y|x) be denoted by ppµ(pθi). Note that different
mappings pθi(y|x) correspond to different θi’s, so we define p(θi) (in Equation (9)) as ppµ(pθi),
which is the density of sampling the probability matrix pθi(y|x).

For the KD population distribution, we define this density ppµ(pθi) as:

ppµ(pθi) = c(ψ)e−ψDKL(pµ(y|x)‖pθi (y|x)) (57)

where ψ is an ‘inverse variance’ type of parameter, c(ψ) is a normalizing function that depends
on (ψ, pµ), and DKL(pµ(y|x)‖pθi(y|x)) =

∑
x∈X p(x)

∑
y∈Y pµ(y|x) log

(
pµ(y|x)
pθi (y|x)

)
is the condi-

tional KL divergence, where p(x) denotes the probability of sampling a data sample x ∈ X . Now all
we need is to find c(ψ) given a fixedµ (and therefore fixed pµ(y|x)). Here we considerDKL(pµ‖pθi),
but our analysis can be extended to DKL(pθi‖pµ) or ‖pθi − pµ‖2 as well.

For simplicity and to make the calculations easier, we consider a binary classification task with
Y = {0, 1} and define pµ(x) := pµ(y = 1|X = x) and qi(x) := pθi(y = 1|X = x). We have:

DKL(pµ(y|x)‖pθi(y|x)) =
∑
x

p(x)
(
pµ(x)(log pµ(x)− log qi(x))

+ (1− pµ(x))(log(1− pµ(x))− log(1− qi(x)))
)
.

Hence, after some algebra we have,

ppµ(pθi) = c(ψ)eψ
∑
x p(x)H(pµ(x))eψ

∑
x p(x)(pµ(x) log(qi(x))+(1−pµ(x)) log(1−qi(x))))

Then,

c(ψ)
∏
x

[ ∫ 1

0

eψp(x)H(pµ(x))eψp(x)(pµ(x) log(qi(x))+(1−pµ(x)) log(1−qi(x))))dqi(x)
]

= 1.

Note that∫ 1

0

eψp(x)(pµ(x) log(qi(x))+(1−pµ(x)) log(1−qi(x))))dqi(x) = B

(
1 +

pµ(x)

ψp(x)
, 1 +

1− pµ(x)

ψp(x)

)
Accordingly, after some algebra, we can obtain c(ψ) = e−ψ

∑
x p(x)H(pµ(x))∏

x B
(

1+
pµ(x)

ψp(x)
,1+

1−pµ(x)

ψp(x)

) , whereH is binary

Shannon entropy. Substituting this in (57), we get

ppµ(pθi) =
e−ψ

∑
x p(x)H(pµ(x))∏

xB(1 +
pµ(x)
ψp(x) , 1 +

1−pµ(x)
ψp(x) )

e−ψDKL(pµ(y|x)‖pθi (y|x))

which is the population distribution that can result in a KD type regularizer. Note that when we take
the negative logarithm of the population distribution we obtain KL divergence loss and an additional
term that depends on ψ and pµ. This is the form seen in Section 3.2 Equation (11) for AdaPeD

algorithm. For numerical purpose, we take the additional term − log

(
e−ψ

∑
x p(x)H(pµ(x))∏

x B(1+
pµ(x)

ψp(x)
,1+

1−pµ(x)

ψp(x)
)

)
to

be simple 1
2 log(2ψ). As mentioned in Section 3.2, this serves the purpose of regularizing ψ. This is

in contrast to the objective considered in Ozkara et al. (2021), which only has the KL divergence loss
as the regularizer, without the additional term.

H.2 ADAPED WITH UNSAMPLED CLIENT ITERATIONS

When there is a flexibility in computational resources for doing local iterations, unsampled clients
can do local training on their personalized models to speed-up convergence at no cost to privacy. This
can be used in cross-silo settings, such as cross-institutional training for hospitals, where privacy is
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crucial and there are available computing resources most of the time. We propose the algorithm for
AdaPeD with with unsampled client iterations in Algorithm 7:

Algorithm 7 Adaptive Personalization via Distillation (AdaPeD) with unsampled client iterations

Parameters: local variances {ψ0
i }, personalized models {θ0

i }, local copies of the global
model {µ0

i }, synchronization gap τ , learning rates η1, η2, η3, number of sampled clients
K.

1: for t = 0 to T − 1 do
2: if τ divides t then
3: On Server do:
4: Choose a subset Kt ⊆ [n] of K clients
5: Broadcast µt and ψt
6: On Clients i ∈ Kt (in parallel) do:
7: Receive µt and ψt; set µti = µt, ψti = ψt

8: end if
9: On Clients i /∈ Kt (in parallel) do:

10: Compute gti := ∇θtifi(θ
t
i) +

∇θt
i
fKD
i (θti,µ

t′i
i )

2ψ
t′
i
i

where t′i is the last time index where client i

received global parameters from the server
11: Update: θt+1

i = θti − η1g
t
i

12: On Clients i ∈ Kt (in parallel) do:

13: Compute gti := ∇θtifi(θ
t
i) +

∇θt
i
fKD
i (θti,µ

t
i)

2ψti

14: Update: θt+1
i = θti − η1g

t
i

15: Compute hti :=
∇µt

i
fKD
i (θt+1

i ,µti)

2ψti

16: Update: µt+1
i = µti − η2h

t
i

17: Compute kti := 1
2ψti
− fKD

i (θt+1
i ,µt+1

i )

2(ψti)
2

18: Update: ψt+1
i = ψti − η3k

t
i

19: if τ divides t+ 1 then
20: Clients send µti and ψti to Server
21: Server receives {µti}i∈Kt and {ψti}i∈Kt
22: Server computes µt+1 = 1

K

∑
i∈Kt µ

t
i and ψt+1 = 1

K

∑
i∈Kt ψ

t
i

23: end if
24: end for
Output: Personalized models (θTi )mi=1

Of course, when a client is not sampled for a long period of rounds this approach can become similar
to a local training; hence, it might be reasonable to put an upper limit on the successive number of
local iterations for each client.

I PERSONALIZED LEARNING – DP-ADAPED

Proof of Theorem 5
Theorem (Restating Theorem 5). After T iterations, DP-AdaPeD satisfies (α, ε(α))-RDP for α > 1,

where ε(α) =
(
K
m

)2
6
(
T
τ

)
α
(

C2
1

Kσ2
q1

+
C2

2

Kσ2
q2

)
, where K

m denotes the sampling ratio of the clients at
each global iteration.

Proof. In this section, we provide the privacy analysis of DP-AdaPeD. We first analyze the RDP
of a single global round t ∈ [T ] and then, we obtain the results from the composition of the RDP
over total T global rounds. Recall that privacy leakage can happen through communicating {µi} and
{ψti} and we privatize both of these. In the following, we do the privacy analysis of privatizing {µi}
and a similar analysis could be done for {ψti} as well.
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At each synchronization round t ∈ [T ], the server updates the global model µt+1 as follows:

µt+1 =
1

K

∑
i∈Kt

µti, (58)

where µti is the update of the global model at the i-th client that is obtained by running τ local
iterations at the i-th client. At each of the local iterations, the client clips the gradient hti with
threshold C1 and adds a zero-mean Gaussian noise vector with variance σ2

q1Id. When neglecting the
noise added at the local iterations, the norm-2 sensitivity of updating the global model µt+1

i at the
synchronization round t is bounded by:

∆µ = max
Kt,K′t

‖µt+1 − µ′t+1‖22 ≤
τC2

1

K2
, (59)

where Kt,K′t ⊂ [m] are neighboring sets that differ in only one client. Additionally, µt+1 =
1
K

∑
i∈Kt µ

t
i and µ′t+1 = 1

K

∑
i∈K′t µ

t
i. Since we add i.i.d. Gaussian noises with variance σ2

q1 at
each local iteration at each client, and then, we take the average of theses vectors over K clients,

it is equivalent to adding a single Gaussian vector to the aggregated vectors with variance
τσ2
q1

K .
Thus, from the RDP of the sub-sampled Gaussian mechanism in (Mironov et al., 2019, Table 1),
Bun et al. (2018), we get that the global model µt+1 of a single global iteration of DP-AdaPeD is
(α, ε

(1)
t (α))-RDP, where εt(α) is bounded by:

ε
(1)
t (α) =

(
K

m

)2
6αC2

1

Kσ2
q1

. (60)

Similarly, we can show that the global parameter ψt+1 at any synchronization round of DP-AdaPeD
is (α, ε

(2)
t (α))-RDP, where εt(α) is bounded by:

ε
(2)
t (α) =

(
K

m

)2
6αC2

2

Kσ2
q2

. (61)

Using adaptive RDP composition (Mironov, 2017, Proposition 1), we get that each synchronization
round of DP-AdaPeD is (α, ε

(1)
t (α) + ε

(2)
t (α))-RDP. Thus, by running DP-AdaPeD over T/τ

synchronization rounds and from the composition of the RDP, we get that DP-AdaPeD is (α, ε(α))-
RDP, where ε(α) =

(
T
τ

)
(ε

(1)
t (α) + ε

(2)
t (α)). This completes the proof of Theorem 5.

J EXPANDED RELATED WORK AND CONNECTIONS TO EXISTING METHODS

In Section 1, we mentioned that the our framework has connections to several personalized FL
methods. In this appendix we provide a few more details related to these connections.

Regularization: As noted earlier using (9) with the Gaussian population prior connects to the use of
`2 regularizer in earlier personalized learning works Dinh et al. (2020); Ozkara et al. (2021); Hanzely
& Richtárik (2020); Hanzely et al. (2020); Li et al. (2021), which also iterates between local and
global model estimates. This form can be explicitly seen in Appendix E, where in Algorithm 4, we
see that the Gaussian prior along with iterative optimization yields the regularized form seen in these
methods. In these cases8, P(Γ) ≡ N (µ, σ2

θId) for unknown parameters Γ = {µ}. Note that since
the parameters of the population distribution are unknown, these need to be estimated during the
iterative learning process. In the algorithm, 4 it is seen the µ plays the role of the global model (and
is truly so for the linear regression problem studied in Appendix E).

Clustered FL: If one uses a discrete mixture model for the population distribution then the iterative
algorithm suggested by our framework connects to (Zhang et al., 2021; Mansour et al., 2020; Ghosh
et al., 2020; Smith et al., 2017; Marfoq et al., 2021). In particular, consider a population model with
parameters in the m-dimensional probability simplex {α : α = [α1, . . . , αk], αi ≥ 0,∀i,

∑
i αi =

1} which describing a distribution. If there are m (unknown) discrete distributions {D1, . . . ,Dm},
one can consider these as the unknown description of the population model in addition toα. Therefore,

8One can generalize these by including σ2
θ in the unknown parameters.
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each local data are generated either as a mixture as in (Marfoq et al., 2021) or by choosing one of the
unknown discrete distributions with probability α dictating the probability of choosing Di, when
hard clustering is used (e.g., (Mansour et al., 2020)). Each node j chooses a mixture probability
α(j) uniformly from the m-dimensional probability simplex. In the former case, it uses this mixture
probability to generate a local mixture distribution. In the latter it chooses Di with probability α(j)

i .

As mentioned earlier, not all parametrized distributions can be written as a mixture of finite number
distributions, which is the assumption for discrete mixtures. Consider a unimodal Gaussian population
distribution (as also studied in Appendix E). Since P(Γ) ≡ N (µ, σ2

θId), for node i, we sample
θi ∼ P(Γ). We see that the actual data distribution for this node is pθi(y|x) = N (θi

>x, σ2).
Clearly the set of such distributions {pθi(y|x)} cannot be written as any finite mixture as θi ∈ Rd
and pθi(y|x) is a unimodal Gaussian distribution, with same parameter θi for all data generated in
node i. Essentially the generative framework of finite mixtures (as in (Marfoq et al., 2021)) could be
restrictive as it does not capture such parametric models.

Knowledge distillation: The population distribution related to a regularizer based on Kullback-
Leibler divergence (knowledge distillation) has been shown in Appendix H. Therefore this can be cast
in terms of information geometry where the probability falls of exponentially with in this geometry.
Hence these connect to methods such as Lin et al. (2020); Li & Wang (2019); Shen et al. (2020);
Ozkara et al. (2021), but the exact regularizer used does not take into account the full parametrization,
and one can therefore improve upon these methods.

FL with Multi-task Learning (MTL): In this framework, a fixed relationship between tasks is
usually assumed (Smith et al., 2017). Therefore one can model this as a Gaussian model with known
parameters relating the individual models. The individual models are chosen from a joint Gaussian
with particular (known) covariance dictating the different models, and therefore giving the quadratic
regularization used in FL-MTL (Smith et al., 2017). In this the parameters of the Gaussian model are
known and fixed.

Common representations: The works in Du et al. (2021); Jain et al. (2021b) use a linear model where
y ∼ N (x>θi, σ

2) can be considered a local generative model for node i. The common representation
approach assumes that θi =

∑k
j=1Bw

(i)
j , for some k � d, where θi ∈ Rd. Therefore, one can

parametrize a population by this (unknown) common basisB, and under a mild assumption that the
weights are bounded, we can choose a uniform measure in this bounded cube to choosew(i) for each
node i. The alternating optimization iteratively discovers the global common representation and the
local weights as done in Du et al. (2021); Jain et al. (2021b) (and references therein). This common
linear representation approach was generalized in Du et al. (2021); Collins et al. (2021) to neural
networks, where a set of parameters to obtain a common representation (“head”) at each client was
obtained and each local client appendd it with a “tail” combining the representation to obtain the
final model. This also fits into our statistical framework, where the common representation (head)
parameters are chosen from a population model (like the common subspace in the linear case) and
the tail parameters are independently chosen (again as in the linear case).

Empirical and Hierarchical Bayes: As mentioned in Section 1, our work is inspired by empirical
Bayes framework, introduced in (Stein, 1956; Robbins, 1956; James & Stein, 1961), which is
the origin of hierarchical Bayes methods; see also (Gelman et al., 2013, pp. 132). (Stein, 1956;
James & Stein, 1961) studied jointly estimating Gaussian individual parameters, generated by an
unknown (parametrized) Gaussian population distribution. They showed a surprising result that
one can enhance the estimate of individual parameters based on the observations of a population of
Gaussian random variables with independently generated parameters from an unknown (parametrized)
Gaussian population distribution. Effectively, this methodology advocated estimating the unknown
population distribution using the individual independent samples, and then using it effectively
as an empirical prior for individual estimates.9 This was studied for Bernoulli variables with
heterogeneously generated individual parameters by Lord (1967) and the optimal error bounds for
maximum likelihood estimates for population distributions were recently developed in (Vinayak et al.,
2019). Hierarchical Bayes, builds on empirical Bayes framework and is sometimes associated with a
fully Bayes method. Our choice to use empirical Bayes framework as the foundation is also because

9This was shown to uniformly improve the mean-squared error averaged over the population, compared to an
estimate using just the single local sample.
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it is more computationally feasible than a fully Bayes method. The subtle difference between the
two is that empirical Bayes uses a point estimate of a (parametrized) prior, whereas, the terminology
hierarchical Bayes often refers to a fully Bayes method where the (non-parametric) prior is estimated
by computationally intensive methods like MCMC (see the discussion in (Blei et al., 2003)). As
mentioned in Section 1, a contribution of our work is to connect a well studied statistical framework
of empirical (hierarchical) Bayes to model heterogeneity in personalized federated learning. This
statistical model yields a framework for personalized FL and leads to new algorithms and bounds
especially in the local data starved regime.

K ADDITIONAL DETAILS AND RESULTS FOR EXPERIMENTS

K.1 IMPLEMENTATION DETAILS

In this section we give further details on implementation and setting of the experiments that were
used in Section 4.

CIFAR-100 Experiment Setting. We do additional experiments on CIFAR-100. CIFAR-100 is a
dataset consisting of 100 classes and 20 superclasses. Each superclass corresponds to a category
of 5 classes (e.g. superclass flowers correspond to orchids, poppies, roses, sunflowers, tulips). To
introduce heterogeneity we let each client sample data samples from 2 super classes (the classification
task is still to classify among 100 classes). For classification on CIFAR-100 dataset we consider a
5-layer CNN with 2 convolutional layers of 64 filters and 5x5 filter size, following that we have 2
fully connected layers with activation sizes of 384,192 and finally an output layer of dimension 100.
We set number of local epochs to be 2, batch size to be 25 per client; number of clients is 50, client
participation K

n = 0.2, and number of epochs 200 (100 communication rounds). In this new dataset
the classification task is more complex given the increased number of labels.

Hyperparameters. We implemented Per-FedAvg and pFedMe based on the code from GitHub,10.
Other implementations were not available online, so we implemented ourselves. For each of the
methods we tuned learning rate in the set {0.3, 0.2, 0.15, 0.125, 0.1, 0.075, 0.05} and have a decaying
learning schedule such that learning rate is multiplied by 0.99 at each epoch. We use weight decay of
1e− 4. For MNIST and FEMNIST experiments for both personalized and global models we used
a 5-layer CNN, the first two layers consist of convolutional layers of filter size 5 × 5 with 6 and
16 filters respectively. Then we have 3 fully connected layers of dimension 256 × 120, 120 × 84,
84× 10 and lastly a softmax operation. For CIFAR-10 experiments we use a similar CNN, the only
difference is the first fully connected layer is of dimension 400× 120.

• AdaPeD11: We fine-tuned ψ in between 0.5 − 5 with 0.5 increments and set it to 3.5. We set
η3 = 5e− 2. We manually prevent ψ becoming smaller than 0.5 so that local loss does not become
dominated by the KD loss. We use η2 = 0.1 and η1 = 0.1. 12 When taking the derivative with
respect to ψ we observed sometimes multiplying the right term (consist of KD loss function) by
some constant (5 in our experiments) gives better performance.

• Per-FedAvg Fallah et al. (2020) and pFedMe Dinh et al. (2020): For Per-FedAvg, we used 0.075 as
the learning rate and α = 0.001. For pFedMe we used the same learning rate schedule for main
learning rate, K = 3 for the number of local iterations; and we used λ = 0.5, η = 0.2.

• QuPeD Ozkara et al. (2021): We choose λp = 0.25, η1 = 0.1 and η3 = 0.1 as stated.

• Federated Mutual Learning Shen et al. (2020): Since authors do not discuss the hyperparameters in
the paper, we used α = β = 0.25, global model has the same learning schedule as the personalized
models.

K.2 ADDITIONAL EXPERIMENTS

Convergence plots for AdaPeD. We put the experimental convergence plots (test accuracy vs no.
of iteration) for AdaPeD in Figure 2.

10https://github.com/CharlieDinh/pFedMe
11For federated experiments we have used PyTorch’s Data Distributed Parallel package.
12We use https://github.com/tao-shen/FEMNIST_pytorch to import FEMNIST dataset.
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(a) AdaPeD Test Accuracy (in %) vs iteration on
MNIST with 0.1 sampling ratio.
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(b) AdaPeD Test Accuracy (in %) vs iteration on
FEMNIST with 0.33 sampling ratio.

Figure 2: Convergence plots (test accuracy vs no. of iteration) for AdaPeD.

Personalized estimation: synthetic experiments in Bernoulli setting. For this setting, for P
we consider three distributions that (Tian et al., 2017) considered: normal, uniform and ‘3-spike’
which have equal weight at 1/4, 1/2, 3/4. Additionally, we consider a Beta prior. We compute
squared error of personalized estimators and local estimators (Zin ) w.r.t. the true pi and report the
average over all clients. We use m = 10000 clients and 14 local samples similar to (Tian et al.,
2017). Personalized estimator provides a decrease in MSE by 37.1 ± 3.9%, 12.0 ± 1.6%, 24.3 ±
2.8%, 34.0± 3.7%, respectively, for each aforementioned population distribution compared to their
corresponding local estimators. Furthermore, as theoretically noted, less spread out prior distributions
(low data heterogeneity) results in higher MSE gap between personalized and local estimators.

Linear regression. For this, we create a setting similar to (Jain et al., 2021a). We set m = 10, 000,
n = 10; and sample client true models according to a Gaussian centered at some randomly chosen µ
with variance σ2

θ . We randomly generate design matrices Xi and create Yi at each client by adding a
zero mean Gaussian noise with true variance σ2

x to Xiθi. We set true values σ2
θ = 0.01, σ2

x = 0.05
and we sample each component of µ from a Gaussian with 0 mean and 0.1 standard deviation and
each component of X from a Gaussian with 0 mean and variance 0.05, both i.i.d. We measure
the average MSE over all clients with and compare personalized and local methods. When d =
50, personalized regression has an MSE gain of 8.0 ± 0.8%, 14.8 ± 1.2%, and when d = 100,
9.2±1.1%, 12.3±2.0% compared to local and FedAvg regression, respectively. Moreover, compared
to personalized regression where µ, σθ, σx are known, alternating algorithm only results in 1% and
4.7% increase in MSE respectively for d = 50 and d = 100.

Estimation Experiments. We provide more results for the estimation setting discussed in Figure 1a.
In Figure 3a we have a setting with 1000 clients and 5 local samples and in Figure 3b 500 clients and 5
local samples per client. We observe with as the number of clients increase DP-Personalized Estimator
can converge to Personalized Estimator with less privacy budget. We also observe compared to
Figure 1a, less number of local samples increases the performance discrepancy between personalized
and local estimator.
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(a) Private Estimation with m=1000,
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Figure 3: In Figure 1a, we plot
MSE vs. ε0 for personalized esti-
mation with different number of
clients, this is the same setting as
Figure 1a except the number of
clients and local samples.
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Additional Learning Experiments with Different Number of Clients. We do additional experi-
ments with different number of clients. On FEMNIST we use the same model and same data sample
per client as in Section4, number of clients is 30, total number of epochs is 30 and we fix the local
iteration to be 40 per epoch, we do full client sampling to simulate a cross-silo environment. As seen
in Table 4, AdaPeD continues to outperform the competing methods following the trend in Section 4.

Table 4: Test accuracy (in %) for FEMNIST with m = 30 clients.

Method FEMNIST

FedAvg 95.91± 0.78
FedAvg+fine tuning Jiang et al. (2019) 96.22± 0.57
AdaPeD (Ours) 98.10± 0.09
pFedMe (Dinh et al., 2020) 96.03± 0.50
Per-FedAvg (Fallah et al., 2020) 96.71± 0.14
QuPeD (FP) (Ozkara et al., 2021) 97.72± 0.16
Federated ML (Shen et al., 2020) 96.80± 0.13

On CIFAR-10 we use the same model as in Section4, and divide the dataset to 30 clients where
each client has access to data samples from 4 classes. Total number of epochs is 250 and we fix the
local iteration to be 40 per epoch; we set Kn = 0.2 and number of local epochs to be 2. AdaPeD
outperforms the competing methods in parallel to the experiments in Section4, as can be seen in
Table 5.

Table 5: Test accuracy (in %) for CIFAR-10 with m = 30 clients.

Method CIFAR-10

FedAvg 53.92± 0.94
FedAvg+fine tuning Jiang et al. (2019) 67.44± 1.11
AdaPeD (Ours) 73.86± 0.39
pFedMe (Dinh et al., 2020) 71.97± 0.09
Per-FedAvg (Fallah et al., 2020) 64.09± 0.46
QuPeD (FP) (Ozkara et al., 2021) 73.21± 0.44
Federated ML (Shen et al., 2020) 72.53± 0.36

Additional Experiment Implementation Details.

We use the same strategy as in Appendix K.1 to tune the main learning rates. We use 1e-4 weight
decay.

• AdaPeD: We fine-tuned ψ in between 0.5−5 with 0.5 increments and set it to 4 for CIFAR-10/100
and to 3 for FEMNIST. We manually prevent ψ becoming smaller than 1 so that local loss does
not become dominated by the KD loss. We use η2 = 0.075 and η1 = 0.075 for CIFAR-10 and
CIFAR-100 and η2 = 0.1 and η1 = 0.1 for FEMNIST.

• Per-FedAvg (Fallah et al., 2020) and pFedMe (Dinh et al., 2020): For Per-FedAvg, we used 0.1
as the learning rate and α = 0.0001. For pFedMe we used the same learning rate schedule for
main learning rate, L = 3 for the number of local approximation iterations; and we used λ = 0.1,
η = 0.1.

• QuPeD Ozkara et al. (2021): We set λp = 0.25, η1 = 0.1 for local learning rate and η2 = 0.1 for
global learning rate.

• Federated Mutual Learning Shen et al. (2020): Since authors do not discuss the hyperparameters in
the paper, we used α = β = 0.25.
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