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ABSTRACT

The emergence of in-context learning (ICL) is potentially attributed to two ma-
jor abilities: task recognition (TR) for recognizing the task from demonstrations
and utilizing pre-trained priors, and task learning (TL) for learning from demon-
strations. However, relationships between the two abilities and how such re-
lationships affect the emergence of ICL is unclear. In this paper, we take the
first step by examining the pre-training dynamics of the emergence of ICL. With
carefully designed metrics, we find that these two abilities are, in fact, compet-
itive during pre-training. Moreover, we observe a negative correlation between
the competition and the performance of ICL. Further analysis of common pre-
training factors (i.e., model size, dataset size, and data curriculum) demonstrates
possible ways to regulate the competition. Based on these insights, we propose
a simple yet effective method to better integrate these two abilities for ICL at
inference time. Through adaptive ensemble learning, the performance of ICL
can be significantly boosted, enabling two small models to outperform a larger
one with more than twice the parameters. The code is available at https:
//anonymous.4open.science/r/Competitive-ICL-B336.

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020) represents a significant advancement in the capa-
bilities of large language models (LLMs). It allows models to rapidly adapt to new tasks without
updating the parameters by adding only a few examples as demonstrations to the input. This capa-
bility has profound applications on a wide range of tasks (Dong et al., 2022; Lin et al., 2023).

To explore the underlying mechanism, existing work (Pan et al., 2023; Wei et al., 2023) mainly
focuses on how LLMs perform ICL during inference. For the underlying mechanisms of ICL, two
major abilities are considered to play important roles: task recognition (TR), which recognizes the
target task from demonstrations and utilizes the prior knowledge learned from pre-training to solve,
and task learning (TL), which directly learns from demonstrations to deal with the task. Furthermore,
recent research (Pan et al., 2023) has found that TR is relatively easier to obtain and can be observed
in smaller models with only 350M parameters, while TL would often emerge in larger models with
billions of parameters. Based on this observation, Wei et al. (2023) further explore the relationships
between these two abilities and reach the same conclusion that TR takes the dominant in smaller
LLMs while TL is more emphasized in larger LLMs. However, how these two abilities quantitatively
affect the emergence of ICL is under-explored.

In this work, we take the first step towards unraveling the mystery, i.e., relationships between TR
and TL and how such relationships affect the emergence of ICL, by examining the performance
changes of ICL during pre-training. To achieve this goal, we first disentangle the two abilities by
manipulating the input-label pairs following previous settings (Pan et al., 2023), upon which we
can easily measure the performance of TR and TL individually. As illustrated in Figure 1, we can
observe that the emergence of ICL encounters many fluctuations, along with competition between its
two abilities (i.e., their performance actually changes in the opposite direction). To quantify such a
competitive relationship between TR and TL, we propose competition intensity, a new measurement
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Figure 1: The performance of ICL and its two abilities (i.e., task recognition (TR) and task learning
(TL)). The emergence of ICL encounters many fluctuations, where the performance of task recog-
nition and task learning changes in the opposite direction.

based on the performance change of TR and TL between two adjacent checkpoints to reflect the
extent to which one ability surpasses another.

With the proposed metric, we find that the competitive relationship is prevalent across many LLMs
with various training settings. More importantly, it demonstrates a negative correlation with ICL.
First, during pre-training, the competition exhibits a “stable–rise” pattern, and simultaneously, the
performance of ICL improves or fluctuates in correspondence. Second, with respect to the entire
pre-training process, the average competition intensity is negatively correlated with the final ICL
performance: the less the competition, the better the ICL performance. These findings suggest that
regulating the competition between TR and TL would be crucial for the emergence of ICL. We
further investigate the influence of common pre-training factors (i.e., model size, dataset size, and
data curriculum) on the competition. We conclude that: (1) scaling model size can lead to the early
appearance of competition but effectively reduce the average intensity of competition; (2) scaling
dataset size can postpone the competition; and (3) specific data curricula can adjust the intensity of
competition for the enhancement of LLMs.

Our analysis reveals that with effective regulation of the competition between TR and TL, LLMs
could achieve better ICL performance. To this end, we propose a simple yet effective method to fuse
the two abilities for better ICL performance at inference time. Specifically, we first select two check-
points from the pre-training process with the best abilities of TR and TL, respectively. Then, they
are fused with adaptive ensemble learning, where the contribution of each one is adaptively deter-
mined by its performance. To validate the effectiveness of our approach, we conduct experiments on
extensive datasets and LLMs with various training settings. Experimental results demonstrate that
this simple method can effectively enhance ICL performance, outperforming several competitive
baselines, even with less than half the parameters of a larger LLM.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to study the relationship between the two abilities of
ICL (i.e., TR and TL) and its effect on the emergence of ICL. With newly proposed measurements,
we conduct an empirical analysis of the pre-training dynamics of ICL, and discover a competitive
relationship between TR and TL and its negative correlation with the emergence of ICL.

• We conduct a fine-grained analysis of common pre-training factors (i.e., model size, dataset size,
and data curriculum) to understand their influence on the competition between TR and TL, e.g.,
scaling model size can effectively decrease the average competition intensity.
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• We propose a simple but effective approach to better integrate TR and TL at inference time.
By fusing two smaller models through adaptive ensemble learning, the performance of ICL can
outperform a larger model with much more parameters than the smaller models.

2 BACKGROUND AND MEASUREMENT

In this section, we introduce the background of task recognition (TR) and task learning (TL) and
further propose our measurements to quantify the competitive relationship between them.

2.1 TASK RECOGNITION AND TASK LEARNING

Typically, an LLM performs ICL by using input-label pairs from the target task as demonstrations,
i.e., Dk = {(x1, y1), . . . , (xk, yk)}, to predict the label for the test input. In existing literature (Pan
et al., 2023; Lin & Lee, 2024; Jang et al., 2024), it has been widely recognized that ICL can be
attributed to two major underlying abilities, namely task recognition (TR) and task learning (TL).
Specifically, TR refers to the ability of an LLM to recognize the target task from demonstrations and
only utilize its own knowledge obtained from pre-training to solve the task, while TL refers to the
ability of an LLM to solve the target task solely based on demonstrations.

To disentangle the two main abilities from ICL, existing studies (Pan et al., 2023; Lin & Lee, 2024)
are mainly developed based on an important assumption: the mapping information between the
input and the label in demonstrations is more important for TL than TR. Under this assumption,
three settings can be used to evaluate these two abilities and ICL:

• Gold: It refers to the standard ICL setting, where we use the correct input-label pairs. This setting
is used to evaluate the ICL performance of LLMs.

• Random: To evaluate TR ability, we randomly sample labels from the label space of the target task
for each input in demonstrations.

• Abstract: To evaluate TL ability, we map the original correct labels in demonstrations to semanti-
cally unrelated tokens (e.g., numbers, letters, or symbols).

The above settings are widely used in existing work (Pan et al., 2023; Lin & Lee, 2024; Jang et al.,
2024). To align with them, we follow the same settings to quantify the performance of TL and TR.

2.2 COMPETITION MEASUREMENT

In our prior analysis shown in Figure 1, we discover that there exists a certain degree of competition
between TR and TL during pre-training. To quantify this, we propose competition intensity, a new
measurement based on the performance changes of TR and TL. As a prerequisite, we assume that
the intermediate checkpoints of an LLM are available, denoted as Mθ = {Mθ1 ,Mθ2 , . . . ,MθN },
where the index increases with the number of training steps and N is the total number of checkpoints.
Based on this, to track the pre-training dynamics of TR and TL, we can calculate their performance
changes as follows:

∆TRi = Accrand
i+1 − Accrand

i ∆TLi = Accabs
i+1 − Accabs

i , (1)

where Accrand
i and Accabs

i denote the accuracy of the intermediate checkpoint Mθi under the random
and abstract settings introduced in Section 2.1. To determine whether there exists competition
between TR and TL, one feasible way is to check whether their performance changes in the opposite
direction since competition typically results in a trade-off between these two abilities. To indicate
such an existence of competition, we compute a competition indicator CH

i as follows:

CH
i = I(∆TRi ·∆TLi < 0) · I(|∆TRi| > ϵ) · I(|∆TLi| > ϵ), (2)

where I(·) is the indicator function and we add two additional indicator functions to reduce the in-
fluence of inaccurate performance estimation. ϵ is set to 0.01 in the experiment. Furthermore, based
on the competition indicator, we propose competition intensity to quantify the degree of competition
at different pre-training stages. We denote competition intensity as CS

i , which is represented as the
ratio between the performance changes of TR and TL:

CS
i = CH

i ·
[
I(∆TRi < 0) ·

∣∣∣∣∆TRi

∆TLi

∣∣∣∣+ I(∆TLi < 0) ·
∣∣∣∣∆TLi

∆TRi

∣∣∣∣ ] . (3)
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Here, if the competition exists (i.e., CH
i = 1), an increase in the performance of one ability will lead

to a decline in the performance of another (i.e., ∆TRi ·∆TLi < 0 in Eq. 2). Thus, a larger value of
CS

i suggests higher competition intensity, as it implies a greater decrease in the performance of one
ability (i.e., numerator in Eq. 3) for a given increase in the performance of another (i.e., denominator
in Eq. 3). Moreover, to track the dynamics of competition intensity, we calculate the accumulative
intensity Ri as follows:

Ri =

∑i
j=1 C

S
j∑N

j=1 C
S
j

. (4)

This measure tracks the cumulative proportion of the intensity up to the i-th intermediate checkpoint,
providing insight into how competition evolves over time.

3 EMPIRICAL ANALYSIS

In this section, we present the empirical analysis of the competition between TR and TL.

3.1 EXPERIMENTAL SETUP

Tasks and Datasets. Following Pan et al. (2023), we select 16 datasets across four types of tasks
for the experiment: sentiment analysis, topic/state classification, toxicity detection, and natural lan-
guage inference/paraphrase detection. Details about the datasets are depicted in Appendix A. Due
to computational constraints, we sample 1000 examples from each dataset for evaluation.

Models. Since our work focuses on the pre-training dynamics of ICL, we select LLMs with more
than 350M parameters and access their intermediate checkpoints: the Pythia suite (6 model sizes
ranging from 410M to 12B) (Biderman et al., 2023), MiniCPM-2B (Hu et al., 2024), Amber-7B (Liu
et al., 2023), CrystalCoder-7B (Liu et al., 2023), OLMo-7B (Groeneveld et al., 2024), Baichuan2-
7B (Yang et al., 2023), and K2-65B (Liu et al., 2024). Due to computational constraints, we sample
16 checkpoints for each model, which are evenly distributed in the pre-training process. Experiments
with other numbers of checkpoints yield similar results, which are shown in Appendix B.1. To make
the output as deterministic as possible, we set temperature=0 when sampling.

Other Details. We randomly sample 16 examples as demonstrations by default across the paper fol-
lowing Min et al. (2022). The discussion about the number of examples can be seen in Appendix B.2.
We use minimal templates to construct demonstrations following Pan et al. (2023). Specifically, we
use a single newline character (i.e., \n) to connect each input-label pair and three ones to separate
examples. We utilize symbols as labels in the abstract setting. Other kinds of abstract labels yield
similar results as discussed in Appendix B.3. The results are averaged across five random seeds.

3.2 TASK RECOGNITION AND TASK LEARNING ARE COMPETITIVE DURING PRE-TRAINING

Figure 1 shows that the emergence of ICL is along with competition between its two abilities (i.e.,
TR and TL). In this section, we delve into this competition and unveil its relationship with ICL.

The Existence of Competition. To confirm the existence of competition between TR and TL, we
investigate the pre-training process of LLMs with various training settings. Specifically, we calculate
the average occurrence of competitions according to the indicator CH

i (Eq. 2). As illustrated in
Figure 2a, all the LLMs exhibit certain levels of competition during pre-training. For some LLMs,
there exists competition for more than half of the time (i.e., over 0.5). It means that the competition
between TR and TL is a widespread phenomenon during pre-training.

The Dynamic of Competition. We further explore the dynamics of competition during pre-training.
Specifically, we choose MiniCPM-2B and Amber-7B, which are trained with over a trillion tokens
with different amounts of parameters. We show the accumulative competition intensity (Eq. 4) with
respect to ICL performance in Figure 3. We can observe that the accumulative competition intensity
displays a “stable–rise” pattern. When the accumulative curve flattens (i.e., the intensity CS

i is
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Figure 2: (Left) Average occurrence of competition among seven LLMs. (Right) Average competi-
tion intensity C̄S w.r.t. ICL performance of the final checkpoint.
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Figure 3: ICL performance w.r.t. accumulative competition intensity Ri during pre-training.

low), ICL performance rises in fluctuation. Conversely, when the accumulative curve rises (i.e., the
intensity CS

i is high), ICL performance shows no obvious improvement and may even decline. Such
an interesting phenomenon inspires us to further examine the relationship between the competition
and ICL.

The Relationship Between Competition and ICL. In this part, we delve into the relationship be-
tween the competition and ICL performance based on their pre-training dynamics. As shown in
Figure 3, when there exists competition (i.e., the red curve rises), the performance of ICL tends to
decrease or does not improve. However, in the absence of competition (i.e., the red curve flattens),
the performance of ICL rises in fluctuation. To demonstrate the global impact of competition, we
depict the average competition intensity C̄S with respect to the ICL performance of the final check-
point. As shown in Figure 2b, with the increase of C̄S , the ICL performance tends to drop. To
further verify their correlation, we calculate the Pearson correlation coefficient. The result is -0.714,
validating their negative correlation. This finding suggests that regulating the competition between
TR and TL could be crucial for enhancing the ICL ability.
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Figure 4: The evolution (Ri) and average intensity (C̄S) of competition with different model sizes.

3.3 HOW DO FACTORS OF PRE-TRAINING INFLUENCE THE COMPETITION?

As discussed in Section 3.2, the competition between TR and TL during pre-training demonstrates a
negative correlation with the final ICL performance. This motivates us to investigate the influence of
pre-training factors on the degree of competition. Specifically, we investigate three common factors,
i.e., model size, dataset size, and data curriculum.

3.3.1 MODEL SIZE

We investigate the effect of model size on the level of competition between TR and TL. Specifically,
we use the Pythia suite (Biderman et al., 2023) for experimentation since this family of models share
the same training setting but only differ in the number of parameters.

We first pay attention to their differences in the evolution of competition. We can observe from
Figure 4a that as the model size increases, the evolving curve of competition keeps moving to the
left. This means that scaling up model size could make the appearance of competition earlier. The
main reason is that the learning ability of larger LLMs is stronger (Kaplan et al., 2020), and they can
possess TR and TL more quickly, thus causing the competition between them to occur earlier.

Then, we focus on the changes in the average competition intensity. As shown in Figure 4b, the av-
erage competitive intensity sharply decreases with the increase of model size, with the exception of
Pythia-1B. This means that scaling up the model size is helpful in reducing the overall competition.
This can be attributed to the fact that an LLM with more parameters has a larger capacity, where
TR and TL can be allocated with more exclusive resources (e.g., neurons). As a result, although the
competition becomes earlier in larger LLMs, the average intensity of competition becomes lower.

3.3.2 DATASET SIZE

In this part, we explore the impact of dataset size on the competition between TR and TL. We
conduct experiments using models with roughly the same amount of parameters but trained with
different dataset sizes. Specifically, we make the comparison with two sets of LLMs: (Pythia-2.8B
and MiniCPM-2B) and (Pythia-6.9B, Amber-7B, and OLMo-7B).

Figure 5 illustrates the evolution of competition during pre-training for these two sets of LLMs. It
can be observed that, for both sets, the evolving curve keeps moving to the right with the increasing
dataset size. This means that scaling up the dataset size could postpone the competition. The
possible reason behind this is that, when pre-trained on a small dataset, LLMs can quickly develop
the TR ability since the pre-training knowledge for them to memorize is limited. Meanwhile, the
TL ability is also easy to acquire, as it primarily involves direct utilization of the information in
context (Singh et al., 2024). As a result, the competition between TR and TL occurs in the early stage
of pre-training. With the increase in dataset size, the development of the TR ability becomes slower

6
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Figure 5: Competition evolving process (Ri) of LLMs trained with different dataset sizes.
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Figure 6: Comparisons in ICL performance and competition intensity (CS
i ). Dashed lines are used

to distinguish between different training phases in data curriculum.

since there is more pre-training knowledge to memorize. Therefore, more competition happens at
the later stage of pre-training, making the evolving curve shift to the right.

3.3.3 DATA CURRICULUM

In this part, we explore the influence of data curriculum on the competition between TR and TL.
Here, we consider two representative strategies for scheduling data curriculum: (1) quality curricu-
lum, which makes arrangements for data with different levels of quality, and (2) domain curriculum,
which makes arrangements for data from different domains.

We first pay attention to the influence of quality curriculum on the competition. Specifically, we
use MiniCPM-2B for the experiment, which utilizes coarse-quality unlabeled data in the first phase
and mixes high-quality labeled data in the second phase. We compare its pre-training dynamics
with Pythia-2.8B, which has a similar model size and dataset size but lacks any data curriculum.
As illustrated in Figure 6a, the ICL performance of MiniCPM-2B boosts in the second phase with
a decline of competition intensity at the end. In contrast, the ICL performance of Pythia-2.8B traps
in fluctuations in the final stage of pre-training with an increase in competition intensity. From
the perspective of competition, the success of quality curriculum can be attributed to the reduced
intensity of competition, resulting from less noise in high-quality labeled data.

We then focus on the influence of domain curriculum. Specifically, we use CrystalCoder-7B for the
experiment, which utilizes general domain data (i.e., SlimPajama (Soboleva et al., 2023)) in the first

7
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phase, then mixes with code domain data (i.e., StarCoder (Li et al., 2023a)) in the second phase, and
mainly uses specific programming language data (i.e., Python and web-related data sampled from
StarCoder) in the final phase. Similar to quality curriculum, we compare its pre-training dynamics
with Amber-7B, which has a similar model size and dataset size but lacks any data curriculum.
As shown in Figure 6b, compared with Amber-7B, CrystalCoder-7B exhibits less competition in
the second and third phases, along with a larger overall performance improvement. This is due to
domain duplication since part of the training data in each phase shares the same domain with the
previous phase. Domain duplication can make the training process smoother, which helps reduce
competition intensity and leads to better ICL performance.

4 FROM COMPETITION TO COLLABORATION AT INFERENCE TIME

As discussed in Section 3.2, the competition between TR and TL would lead to a decrease in the
performance of ICL. To alleviate this, our idea is to facilitate their collaboration at inference time. In
this section, we first introduce the proposed method and then demonstrate the experimental results.

4.1 ADAPTIVE ENSEMBLE LEARNING

Our analysis in Section 3.2 and 3.3 has shown that regulating the competition between TR and TL
can help the model achieve better ICL performance. One potential solution to balancing the TR and
TL abilities during pre-training is to design special loss functions and train models from scratch.
However, this method is costly and cannot be applied to trained LLMs. To save the cost and be
applicable to trained LLMs, we propose an adaptive ensemble learning approach to fuse TR and TL
abilities at inference time.

Specifically, we first select two checkpoints with the best ability of TR and TL respectively, and then
integrate their probability distributions by ensemble learning:

argmax
y∈Y

[
wrPrrand

r (y|x) + wlPrabs
l (y|x)

]
, (5)

where Prrand
r (y|x) and Prabs

l (y|x) denote the probability for the TR and TL models to predict the
label y under the random and abstract settings respectively, and wr and wl denote their weights
respectively. Here, considering that the contribution of TR and TL abilities to ICL usually are not
equal (Lin & Lee, 2024), we propose adaptive weights based on their performance as follows:

wr =
Accrand

r − b

(Accrand
r − b) + (Accabs

l − b)
wl =

Accabs
l − b

(Accrand
r − b) + (Accabs

l − b)
, (6)

where Accrand
r is the performance of the TR model under the random setting, Accabs

l is the perfor-
mance of the TL model under the abstract setting, and b is the performance of random guessing.

4.2 EXPERIMENTAL SETTING

To comprehensively validate the effectiveness of our method, we consider three different combi-
nations of TR and TL models for fusion: (1) only the backbone model (e.g., Pythia-1B), (2) two
models with a similar training setting (e.g., Pythia-1B and Pythia-2.8B), and (3) two models with
different training settings (e.g., Pythia-1B and MiniCPM-2B). We select checkpoints with the best
performance for the required ability. Other settings are the same as Section 3.1.

In Table 1, we compare our method with four types of baselines: (1) the backbone TR or TL model
for fusion (“Small models”), (2) LLMs with more parameters than the sum of TR and TL models
(“Large models”), and (3) model parameter fusion with fixed and adaptive weights calculated using
the same method as ours (“Parameter fusion”). All the baselines are tested in the gold setting.

4.3 RESULTS

As shown in Table 1, our proposed method can significantly boost performance compared to the
single model. In addition, such an improvement is consistent across various model combinations,
demonstrating that our method is widely applicable. To our surprise, by using our method, two small
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Table 1: Averaged accuracy and TFLOPs across 16 datasets. “Fixed” and “adaptive” denote fixed
and adaptive fusion weights. We highlight the best performance among various model selections
for TR and TL. Numbers marked with * indicate that the improvement is statistically significant
compared with baselines (t-test with p-value < 0.05). More results are shown in Table 3.

Model # Parameters TFLOPs Accuracy

Large models

Amber-7BICL 7B 9.98±0.35 50.08±0.18

OLMo-7BICL 7B 8.79±0.32 52.10±0.19

Baichuan2-7BICL 7B 8.18±0.41 52.77±0.16

CrystalCoder-7BICL 7B 10.17±0.45 55.66±0.31

Pythia-12BICL 12B 15.51±0.57 52.77±0.21

Small models

Pythia-1BICL 1B 1.24±0.15 44.55±0.33

Pythia-2.8BICL 2.8B 3.60±0.20 45.38±0.32

MiniCPM-2BICL 2.7B 3.84±0.21 50.08±0.16

Parameter fusion of small models

Pythia-1BTR+ Pythia-1BTL (fixed) 1B 1.24±0.15
46.63±0.26

Pythia-1BTR+ Pythia-1BTL (adaptive) 45.61±0.29

Pythia-2.8BTR+ Pythia-2.8BTL (fixed) 2.8B 3.60±0.20
47.57±0.23

Pythia-2.8BTR+ Pythia-2.8BTL (adaptive) 47.18±0.13

MiniCPM-2BTR+ MiniCPM-2BTL (fixed) 2.7B 3.84±0.21
52.18±0.26

MiniCPM-2BTR+ MiniCPM-2BTL (adaptive) 52.06±0.27

Logit fusion of small models (Ours)

Pythia-1BTR+ Pythia-1BTL (fixed) 2B 2.48±0.21
56.16±0.40

Pythia-1BTR+ Pythia-1BTL (adaptive) 56.25∗
±0.38

Pythia-1BTR+ Pythia-2.8BTL (fixed)

3.8B 4.84±0.25

56.62±0.41

Pythia-1BTR+ Pythia-2.8BTL (adaptive) 56.83∗
±0.41

Pythia-1BTL+ Pythia-2.8BTR (fixed) 55.23±0.47

Pythia-1BTL+ Pythia-2.8BTR (adaptive) 55.39±0.40

Pythia-1BTR+ MiniCPM-2BTL (fixed)

3.7B 5.08±0.26

55.21±0.43

Pythia-1BTR+ MiniCPM-2BTL (adaptive) 55.31±0.34

Pythia-1BTL+ MiniCPM-2BTR (fixed) 54.31±0.63

Pythia-1BTL+ MiniCPM-2BTR (adaptive) 55.85∗
±0.75

models together can even outperform larger models with lower inference overhead, despite their total
parameters being less than half of the larger ones. It suggests that our method can effectively and
efficiently fuse the abilities of TR and TL to achieve better ICL performance.

Furthermore, to verify the effectiveness of each component in our method, we conduct the ablation
study. We substitute the best checkpoints with random/empty ones (Table 2) and set the weights of
TR and TL to the same (“fixed” in Table 1), respectively. We can observe that removing any design
would lead to a decrease in performance. It demonstrates the effectiveness of all the components
of our approach. In addition, the selection of checkpoints with the best TR/TL ability seems to be
more important, which yields a larger performance drop after being removed. Checkpoints with the
best TR/TL ability are more diverse in their predictions, which is important for successful fusion.

5 RELATED WORK

Our work is closely related to the studies on the mechanisms of ICL and model fusion.

9
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Table 2: Ablation study for model fusion. We highlight the best performance among various model
selections for TR and TL. “Random” means that the checkpoint is randomly selected, while “Best”
means that the checkpoint has the best performance for TR/TL. Numbers marked with * indicate
that the improvement is statistically significant compared with others (t-test with p-value < 0.05).
More results are shown in Table 4.

Models for fusion Model selection for TR Model selection for TL Accuracy

TR: Pythia-1B
TL: Pythia-1B

Best - 47.47±0.19

- Best 44.63±0.32

Random Random 52.66±0.44

Best Random 53.52±0.32

Random Best 54.19±0.45

Best Best 56.25∗
±0.38

TR: Pythia-1B
TL: Pythia-2.8B

Best - 47.47±0.19

- Best 42.05±0.93

Random Random 48.10±0.94

Best Random 50.76±0.73

Random Best 55.42±0.49

Best Best 56.83∗
±0.41

TR: Pythia-1B
TL: MiniCPM-2B

Best - 47.47±0.19

- Best 47.49±0.24

Random Random 53.99±0.55

Best Random 54.79±0.36

Random Best 54.51±0.32

Best Best 55.31∗
±0.34

The Mechanism of ICL. Existing work primarily explores the mechanisms of ICL from the pre-
training and inference stages of LLMs. Some work discusses how ICL emerges from pre-training
by conducting analysis on pre-training factors like data (Chan et al., 2022; Reddy, 2023) and opti-
mization (Singh et al., 2024; Anand et al., 2024). Other work (Pan et al., 2023; Min et al., 2022; Dai
et al., 2023) studies the operating mechanism of ICL at inference time. Researchers empirically find
two main abilities in ICL: task recognition (TR) for recognizing the task and utilizing pre-trained
priors of LLMs (Min et al., 2022) and task learning (TL) for learning from demonstrations (Dai
et al., 2023). In this paper, we explore how TR and TL affect the emergence of ICL by examining
the pre-training dynamics of LLMs.

Model Fusion. Model fusion aims to enhance performance by combining the strengths of multiple
models (Li et al., 2023b). One line of work aims to reduce the difference among different models
from perspectives like mode connectivity (Nagarajan & Kolter, 2019) and alignment (Tatro et al.,
2020). Another line of work studies how to leverage the diversity among models through techniques
like weight average (Wang et al., 2019) and ensemble learning (Sagi & Rokach, 2018). In this paper,
we propose adaptive ensemble learning to fuse TR and TL and achieve better ICL performance.

6 CONCLUSION

In this paper, we presented the first study of the competitive relationship between TR and TL, and
quantified its effect on the emergence of ICL. With specially designed metrics, we found that this
competition widely exists in existing LLMs, and the competition intensity is negatively correlated
with the ICL performance. Then, we conducted a detailed analysis of several pre-training factors
(i.e., model size, dataset size, and data curriculum) to demonstrate possible ways to regulate the
competition. Furthermore, we proposed a simple yet effective method to better integrate TR and TL
at inference time. Through adaptive ensemble learning, the performance of ICL can be significantly
boosted, enabling two small models to outperform a larger one with more than twice the parameters.

Overall, our work provides novel approaches and insights to study and understand the underlying
mechanism of ICL, which is worth deep exploration for improving the capacity of LLMs.
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(a) Different numbers of intermedi-
ate checkpoints.

# Checkpoint 8 16 32

Pythia-6.9B 12.50 37.50 53.12

OLMo-7B 50.00 37.50 43.75

MiniCPM-2B 62.50 56.25 37.50

(b) Different numbers of examples
in the demonstration.

# Examples 4 8 16

Pythia-6.9B 18.75 25.00 37.50

OLMo-7B 5.00 37.50 37.50

MiniCPM-2B 43.75 31.25 56.25

(c) Different types of abstract la-
bels.

Abstract
label Symbols Numbers Letters

Pythia-6.9B 37.50 18.75 37.50

OLMo-7B 37.50 50.00 43.75

MiniCPM-2B 56.25 43.75 50.00

A TASKS AND DATASETS

We conduct experiments on four types of tasks: Sentiment Analysis, Topic/Stance Classifica-
tion, Toxicity Detection, and Natural Language Inference/Paraphrase Detection. For Sentiment
Analysis, we use datasets including SST-2 (Socher et al., 2013), financial phrasebank (Malo
et al., 2014), emotion (Saravia et al., 2018), and poem sentiment (Sheng & Uthus, 2020). For
Topic/Stance Classification, we utilize TREC (Voorhees & Tice, 2000), tweet eval atheist, and
tweet eval feminist (Mohammad et al., 2018; Basile et al., 2019). For Toxicity Detection, we in-
clude tweet eval hate, ethos race, ethos gender, ethos national origin, and ethos religion (Mollas
et al., 2020). For Natural Language Inference/Paraphrase Detection, we employ SICK (Marelli
et al., 2014), SNLI (Bowman et al., 2015), WNLI (Levesque et al., 2012), and MRPC (Dolan &
Brockett, 2005).

We follow Min et al. (2022) to select samples from the training set as demonstrations. Additionally,
we randomly sample 300 examples as the development set for validation in Section 4 and another
1000 examples as the test set for evaluation in all experiments from the development set.

B MORE EXPERIMENTS

B.1 THE NUMBER OF INTERMEDIATE CHECKPOINTS

In the paper, we use 16 checkpoints in addition to the final one. In this part, we conduct experiments
using different numbers of checkpoints (i.e., 8 and 32). We report the average competition ratio
across 16 datasets and 5 random seeds. Table 7a shows that the number of checkpoints does not
affect the experimental results. They consistently demonstrate that there is a competitive relationship
between TR and TL during the pre-training process.

B.2 THE NUMBERS OF EXAMPLES IN DEMONSTRATION

In the paper, we use 16 randomly sampled examples as demonstrations. To explore the impact of
the number of examples, we report the average competition ratio with other numbers (i.e., 4 and 8)
of demonstrations. As presented in Table 7b, it can be observed that the number of examples does
not affect the competitive relationship during the pre-training process.

B.3 THE TYPE OF ABSTRACT LABELS

In the paper, we utilize symbols in the abstract setting. In this part, we follow Pan et al. (2023) to use
other types of semantically unrelated labels (i.e., numbers and letters). Table 7c shows the average
competition ratio by using different labels. It indicates that, regardless of the choice of semantically
unrelated labels, the conclusions are consistent with the abstract symbols.

C RELATED WORK

Our work is closely related to the studies on the mechanisms of ICL and model fusion.

The Mechanism of ICL. In-context learning (ICL) has garnered significant interest as a core ca-
pability of large language models (LLMs), enabling them to perform tasks without fine-tuning by
simply leveraging input demonstrations. Existing studies investigate ICL mechanisms through both
pre-training and inference dynamics. Some work discusses how ICL emerges from pre-training by
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conducting analysis on pre-training factors like data (Chan et al., 2022; Reddy, 2023) and optimiza-
tion (Singh et al., 2024; Anand et al., 2024). Other work (Pan et al., 2023; Min et al., 2022; Dai et al.,
2023) studies the operating mechanism of ICL at inference time. Researchers empirically find two
main abilities in ICL: task recognition (TR) for recognizing the task and utilizing pre-trained priors
of LLMs (Min et al., 2022) and task learning (TL) for learning from demonstrations (Dai et al.,
2023). The interaction of TR and TL is crucial for effective ICL, and understanding this interaction
has been a focus of empirical and theoretical research Pan et al. (2023); Wei et al. (2023). While
these studies provide valuable insights, they often examine TR and TL in isolation. The interplay
between these abilities, particularly how they emerge during pre-training, remains underexplored. In
this work, we bridge this gap by investigating how TR and TL affect the emergence of ICL through
examining the pre-training dynamics of LLMs.

Model Fusion. Model fusion aims to enhance performance by combining the strengths of mul-
tiple models (Li et al., 2023b). One line of research focuses on minimizing discrepancies among
models through strategies like mode connectivity (Nagarajan & Kolter, 2019) and alignment tech-
niques (Tatro et al., 2020). Mode connectivity methods (Nagarajan & Kolter, 2019) align model rep-
resentations by finding low-loss pathways in parameter space, facilitating smoother transitions and
improved generalization. Alignment techniques (Tatro et al., 2020) focus on harmonizing model pre-
dictions or representations, often through methods like knowledge distillation or contrastive learn-
ing. These approaches aim to create more consistent models that are easier to integrate. Another line
of research capitalizes on diversity to enhance ensemble performance. Techniques such as weight
averaging (Wang et al., 2019) and ensemble learning (Sagi & Rokach, 2018) combine models with
varying inductive biases or training histories. By aggregating predictions or interpolating model
parameters, these methods harness complementary strengths to achieve robust and adaptive perfor-
mance. The potential of model fusion to improve ICL performance is a promising but underexplored
area. While TR and TL abilities have been analyzed independently in individual models, their inte-
gration through fusion strategies remains unaddressed. In this paper, we introduce a novel adaptive
ensemble learning approach that combines TR and TL, demonstrating its efficacy in enhancing ICL
across diverse tasks.

D DISCUSSION

D.1 WHY THE COMPETITION BETWEEN TL AND TR OCCURS?

According to our observations and existing literature, we think that the competition between TL and
TR may originate from the limited resources in models (e.g., neurons or layers).

As shown in existing work (Kaplan et al., 2020; Tirumala et al., 2022), larger language models can
memorize more training data and obtain smaller test loss with the same training steps. This indicates
that the amount of resources (e.g., neurons or layers) is important for the capacity of LLMs. We also
investigate the influence of model size on the competition in Section 3.3.1, the results demonstrate
that the average competitive intensity sharply decreases with the increase of model size. Thus, we
infer that the competition could result from the limited resources in models, such as neurons or
layers, being dynamically allocated between TL and TR during pre-training.

D.2 LIMITATIONS

When investigating the influence of a specific pre-training factor in Section 3, we do our best to keep
other factors as consistent as possible. However, it is very challenging to run carefully controlled
experiments due to the lack of pre-trained models in many settings. For example, when investigating
the impact of dataset size, we can only find that models that have roughly the same amount of
parameters, but cannot control other factors like data mixture and optimization. As future work, we
will try to collect enough computational resources and conduct fully controlled pre-training from
scratch to ensure that only one factor differs to investigate its influence.
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Table 3: Averaged accuracy and TFLOPs across 16 datasets. “Fixed” and “adaptive” denote fixed
and adaptive fusion weights. We highlight the best performance among various model selections
for TR and TL. Numbers marked with * indicate that the improvement is statistically significant
compared with baselines (t-test with p-value < 0.05).

Model # Parameters TFLOPs Accuracy

Large models

Amber-7BICL 7B 9.98±0.35 50.08±0.18

OLMo-7BICL 7B 8.79±0.32 52.10±0.19

Baichuan2-7BICL 7B 8.18±0.41 52.77±0.16

CrystalCoder-7BICL 7B 10.17±0.45 55.66±0.31

Pythia-12BICL 12B 15.51±0.57 52.77±0.21

Small models

Pythia-1BICL 1B 1.24±0.15 44.55±0.33

Pythia-2.8BICL 2.8B 3.60±0.20 45.38±0.32

MiniCPM-2BICL 2.7B 3.84±0.21 50.08±0.16

Parameter fusion of small models

Pythia-1BTR+ Pythia-1BTL (fixed) 1B 1.24±0.15
46.63±0.26

Pythia-1BTR+ Pythia-1BTL (adaptive) 45.61±0.29

Pythia-2.8BTR+ Pythia-2.8BTL (fixed) 2.8B 3.60±0.20
47.57±0.23

Pythia-2.8BTR+ Pythia-2.8BTL (adaptive) 47.18±0.13

MiniCPM-2BTR+ MiniCPM-2BTL (fixed) 2.7B 3.84±0.21
52.18±0.26

MiniCPM-2BTR+ MiniCPM-2BTL (adaptive) 52.06±0.27

Logit fusion of small models (Ours)

Pythia-1BTR+ Pythia-1BTL (fixed) 2B 2.48±0.21
56.16±0.40

Pythia-1BTR+ Pythia-1BTL (adaptive) 56.25∗
±0.38

Pythia-1BTR+ Pythia-2.8BTL (fixed)

3.8B 4.84±0.25

56.62±0.41

Pythia-1BTR+ Pythia-2.8BTL (adaptive) 56.83∗
±0.41

Pythia-1BTL+ Pythia-2.8BTR (fixed) 55.23±0.47

Pythia-1BTL+ Pythia-2.8BTR (adaptive) 55.39±0.40

Pythia-1BTR+ MiniCPM-2BTL (fixed)

3.7B 5.08±0.26

55.21±0.43

Pythia-1BTR+ MiniCPM-2BTL (adaptive) 55.31±0.34

Pythia-1BTL+ MiniCPM-2BTR (fixed) 54.31±0.63

Pythia-1BTL+ MiniCPM-2BTR (adaptive) 55.85∗
±0.75

Pythia-1BTR+ Pythia-2.8BTR+ MiniCPM-2BTL (fixed)

6.5B 8.68±0.33

53.58±0.53

Pythia-1BTR+ Pythia-2.8BTR+ MiniCPM-2BTL (adaptive) 55.00±0.75

Pythia-1BTR+ Pythia-2.8BTL+ MiniCPM-2BTR (fixed) 53.67±0.44

Pythia-1BTR+ Pythia-2.8BTL+ MiniCPM-2BTR (adaptive) 56.32±0.42

Pythia-1BTL+ Pythia-2.8BTR+ MiniCPM-2BTR (fixed) 53.03±0.48

Pythia-1BTL+ Pythia-2.8BTR+ MiniCPM-2BTR (adaptive) 55.26±0.37

Pythia-1BTL+ Pythia-2.8BTL+ MiniCPM-2BTR (fixed) 57.24±0.42

Pythia-1BTL+ Pythia-2.8BTL+ MiniCPM-2BTR (adaptive) 57.35±0.28

Pythia-1BTL+ Pythia-2.8BTR+ MiniCPM-2BTL (fixed) 55.94±0.58

Pythia-1BTL+ Pythia-2.8BTR+ MiniCPM-2BTL (adaptive) 56.45±0.55

Pythia-1BTR+ Pythia-2.8BTL+ MiniCPM-2BTL (fixed) 58.05±0.32

Pythia-1BTR+ Pythia-2.8BTL+ MiniCPM-2BTL (adaptive) 58.27∗
±0.40
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Table 4: Ablation study for model fusion. We highlight the best performance among various model
selections for TR and TL. “Random” means that the checkpoint is randomly selected, while “Best”
means that the checkpoint has the best performance for TR/TL. Numbers marked with * indicate
that the improvement is statistically significant compared with others (t-test with p-value < 0.05).

Models for fusion Model selection for TR Model selection for TL Accuracy

TR: Pythia-1B
TL: Pythia-1B

TR-Best - 47.47±0.19

- TL-Best 44.63±0.32

Random Random 52.66±0.44

TR-Best Random 53.52±0.32

Random TL-Best 54.19±0.45

TR-Best ICL-Best 55.53±0.22

ICL-Best TL-Best 54.76±0.29

ICL-Best ICL-Best 54.56±0.40

TR-Best TL-Best 56.25∗
±0.38

TR: Pythia-1B
TL: Pythia-2.8B

TR-Best - 47.47±0.19

- TL-Best 42.05±0.09

Random Random 48.10±0.14

TR-Best Random 50.76±0.23

Random TL-Best 55.42±0.49

TR-Best ICL-Best 54.90±0.44

ICL-Best TL-Best 55.93±0.32

ICL-Best ICL-Best 54.11±0.29

TR-Best TL-Best 56.83∗
±0.41

TR: Pythia-2.8B
TL: Pythia-1B

TR-Best - 44.28±0.30

- TL-Best 44.63±0.32

Random Random 52.48±0.66

TR-Best Random 53.89±0.38

Random TL-Best 54.39±0.43

TR-Best ICL-Best 54.56±0.43

ICL-Best TL-Best 54.90±0.49

ICL-Best ICL-Best 53.56±0.34

TR-Best TL-Best 55.39∗
±0.40

TR: Pythia-1B
TL: MiniCPM-2B

TR-Best - 47.47±0.19

- TL-Best 47.49±0.24

Random Random 53.99±0.55

TR-Best Random 54.79±0.36

Random TL-Best 54.51±0.32

TR-Best ICL-Best 54.81±0.41

ICL-Best TL-Best 55.02±0.17

ICL-Best ICL-Best 54.55±0.25

TR-Best TL-Best 55.31±0.34

TR: MiniCPM-2B
TL: Pythia-1B

TR-Best - 45.10±0.18

- TL-Best 44.63±0.32

Random Random 52.07±0.47

TR-Best Random 53.61±0.12

Random TL-Best 53.73±0.34

TR-Best ICL-Best 55.76±0.33

ICL-Best TL-Best 54.88±0.70

ICL-Best ICL-Best 54.39±0.48

TR-Best TL-Best 55.85±0.75
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