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Abstract

Large language models (LLMs) demonstrate
exceptional performance on tasks requiring
complex linguistic abilities, such as reference
disambiguation and metaphor recognition/gen-
eration. Although LLMs possess impressive
capabilities, their internal mechanisms for pro-
cessing and representing linguistic knowledge
remain largely opaque. Prior research on lin-
guistic mechanisms is limited by coarse granu-
larity, limited analysis scale, and narrow focus.
In this study, we propose LINGUALENS, a sys-
tematic and comprehensive framework for ana-
lyzing the linguistic mechanisms of large lan-
guage models, based on Sparse Auto-Encoders
(SAEs). We extract a broad set of Chinese and
English linguistic features across four dimen-
sions—morphology, syntax, semantics, and
pragmatics. By employing counterfactual meth-
ods, we construct a large-scale counterfactual
dataset of linguistic features for mechanism
analysis. Our findings reveal intrinsic represen-
tations of linguistic knowledge in LLMs, un-
cover patterns of cross-layer and cross-lingual
distribution, and demonstrate the potential to
control model outputs. This work provides a
systematic suite of resources and methods for
studying linguistic mechanisms, offers strong
evidence that LLMs possess genuine linguistic
knowledge, and lays the foundation for more in-
terpretable and controllable language modeling
in future research.

1 Introduction

Large language models (LLMs) demonstrate strong
performance on tasks requiring different levels of
linguistic competence, such as dependency pars-
ing (Lin et al., 2022; Roy et al., 2023), reference
disambiguation (Iyer et al., 2023), and metaphor
interpretation (Wachowiak and Gromann, 2023;
Yerukola et al., 2024; Tian et al., 2024).

Although their linguistic abilities are often at-
tributed to emergent capabilities from large-scale
pretraining and model scale (Manning et al., 2020;
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Figure 1: The main linguistic features activated at dif-
ferent layers are observed when example sentences are
input to the model. Through a Sparse Auto-Encoder,
each layer’s activation values are mapped into a sparse
space and the basis vectors corresponding to predefined
linguistic features are extracted. According to the re-
sults, the model’s 32 layers are divided into four stages,
in order: Morphology and Core Syntax, Complex Syn-
tactic Constructions, Pragmatic Functions, and Deep
Semantics and Rhetoric.

Allen-Zhu and Li, 2023; Mahowald et al., 2024),
the underlying mechanisms by which LLMs pro-
cess these linguistic structures remain underex-
plored and lack systematic explanation (Saba,
2023). Therefore, our goal is to interpret the lin-
guistic mechanisms of LLMs by addressing the
following questions: (/) Can we identify the min-
imal components within an LLM responsible for
specific linguistic processing abilities? (2) Can
we comprehensively model the internal linguistic
functionalities of the model?

Prior attempts to explain LLM linguistic mech-
anisms typically rely on expert-designed prompts
that ask the model to elucidate its generation
process (Yin and Neubig, 2022). However,



such behavior-based approaches do not provide
structure-level mechanistic insights. More recent
work seeks to link specific linguistic capabilities to
internal structures—such as hidden states (Katz and
Belinkov, 2023), attention heads (Wu et al., 2020),
and activated neurons (Sajjad et al., 2022; Huang
et al., 2023)—but they face two main challenges:

Coarse interpretive granularity. Mechanistic
interpretation aims to uncover atomic linguistic
structures within LLMs. Yet even neurons—the
finest native components—exhibit poly-semantic
activations, responding to multiple conditions (Yan
et al, 2024). This necessitates extracting
finer-grained structures to truly interpret linguis-
tic mechanisms.

Limited analysis scale. Existing studies focus
on one or a few linguistic features, often within
a single subfield (e.g., syntax or semantics), ne-
glecting large-scale, systematic analysis across di-
verse linguistic phenomena. A scalable, automated
framework is needed to interpret language mecha-
nisms comprehensively.

To address these challenges, we propose LIN-
GUALENS, a framework that utilizes a sparse
auto-encoder (SAE) to interpret LLM linguistic
mechanisms. The SAE learns a projection ma-
trix that decomposes LLM hidden states into an
extremely high-dimensional feature space under
a sparsity constraint, where each dimension cap-
tures a single semantic concept (Figure 1). LIN-
GUALENS comprises three modules: 1. Construc-
tion of a large-scale, multilingual, counterfactual
linguistic dataset to support systematic discovery
of linguistic structures; 2. Sparse feature analy-
sis to interpret the SAE-extracted features, provid-
ing fine-grained and comprehensive mechanistic in-
sights; 3. Feature intervention, manipulating LLM
behavior via targeted interventions on interpretable
features to verify causal relationships and enable
controlled steering of language behavior.

Specifically, we first build a large-scale hierarchi-
cal counterfactual linguistic dataset with annotated
corpora, categorizing features into morphology,
syntax, semantics, and pragmatics. These widely
studied linguistic abilities ensure the feasibility of
interpretability. We automate feature extraction via
SAE activation analysis and an LLM-based agent,
and introduce a causal analysis method that inter-
venes on SAE base vectors with an LLM judge
to evaluate effects. Building on this, we analyze
cross-layer function distribution and cross-lingual
representation patterns differences of linguistic fea-

tures.

We conduct extensive experiments on
Llama-3.1-8B (Grattafiori et al., 2024). Our
results demonstrate that LINGUALENS can effec-
tively identify linguistic competence features at
scale, laying the groundwork for further systematic
analysis.

2 Related Works

Linguistic mechanism interpretation has been a
ever-chasing goal since the emergence of LLMs.
Researchers build linguistic datasets to evaluate
the linguistic capability and to interpret linguis-
tic mechanisms. We review linguistic datasets for
LLMs and corresponding mechanistic interpreta-
tion works. We will also introduce the basic con-
cepts for sparse auto-encoder.

Linguistic Datasets for LLMs. Previous stud-
ies have introduced numerous linguistic datasets
for large-model research, which can be di-
vided into two main categories.  The first
comprises minimal-pair challenge sets—such as
BLiMP (Warstadt et al., 2020), CLiMP (Xiang
et al., 2021), and SyntaxGym (Gauthier et al.,
2020)—that use acceptability judgments to eval-
uate morphosyntactic competence. The sec-
ond consists of counterfactual or contrastive cor-
pora—including CAD (Sen et al., 2022), Contrast
Sets (Gardner et al., 2020), and Polyjuice (Wu et al.,
2021)—that assess model by generating factual/-
counterfactual pairs. These resources focus primar-
ily on syntactic analysis and performance evalua-
tion, and are not suited for systematic investigation
of models’ internal linguistic representations.

Linguistic Mechanism Interpretation. Previ-
ous work has employed a variety of methods to
study linguistic mechanisms in large language mod-
els, including attention head analysis (What Does
BERT Look at? An Analysis of BERT’s Atten-
tion, 2019), probing classifiers (Belinkov, 2022; He
et al., 2024), causal intervention techniques (Fin-
layson et al., 2021; Hao and Linzen, 2023), and
neuron-level analyses (Sajjad et al., 2022). How-
ever, these approaches have not been applied in
a unified, large-scale framework to systematically
chart models’ full range of linguistic capabilities.

Sparse Auto-encoder. Recent work has em-
ployed sparse auto-encoders (SAEs) to interpret
the hidden-layer activations of large language mod-
els by decomposing them into a large set of concept
features (Gao et al., 2024). These concept features



exhibit mono-semanticity and hold considerable
interpretability potential (Huben et al., 2024). In
particular, an SAE maps the hidden states f € R?
in LLMs into the feature space with sparse activa-
tions:

f = SparseConstraint (W .h + b.),

where the SAE is parameterized by W, &
Rxd)xd b e R*D) 1 is the expansion ratio,
defined as the factor by which the hidden state
dimension is expanded. Commonly used sparse
constraint include TopK (Gao et al., 2024) and
JumpReLU (Rajamanoharan et al., 2024) functions.
As each dimension of the sparse activation in f cor-
responds to a base vector in W, this paper uses
base vector to denote features extracted by SAE.

3 Methodology

LINGUALENS consists of three key components.
(1) A multi-level counterfactual dataset of linguis-
tic features supporting systematic linguistic mech-
anism analysis; (2) An SAE-based linguistic fea-
ture extraction method leveraging LLM agents and
correlation analysis. and (3) A Linguistic feature
intervention method for causality validation and
LLM steering.

3.1 Linguistic Dataset

Counterfactual Methods. Let the presence of
the target linguistic phenomenon be denoted by
T € {0,1}. For every sentence s with T' =
1, define the activation of SAE base vector k as
a,(cl) = ax(sT). A counterfactual sentence s~ is
produced through a minimal edit that deletes or
substitutes the trigger while preserving semantic
content, yielding the activation a ko) = ag(s7). The
individual latent effect is therefore

TK(s) = a,(:) — ag)).
Aggregating 71, across all paired sentences pro-

duces
N

PALEL = 3" 7(s0)
=1
which can rank base vectors by their sensitivity to
the specified phenomenon.
Each s~ must satisfy three constraints:

(a) Minimal edit: modify only the smallest unit
that realises the phenomenon (e.g. replace is
eaten with eats to remove passivisation).

(b) Semantic preservation: retain proposi-
tional content, argument structure, and dis-
course context so that the sentence remains
truth-conditionally equivalent.

Dataset Construction. We construct a counter-
factual dataset named Lingualens-Data, which
covers multiple linguistic domains to encompass a
wide range of linguistic knowledge and functions.
We select a total of 145 linguistic features from
textbooks in morphology, syntax, semantics, and
pragmatics, including both English and Chinese
features. For each feature, we create 50 sentences
that explicitly contain the target phenomenon and
apply a counterfactual minimal-editing approach
to generate corresponding counterfactual sentences.
Each linguistic feature is annotated with its associ-
ated linguistic domain, acknowledging that some
features may lie at the interface of multiple do-
mains. This dataset provides a foundation for fu-
ture systematic studies on how specific linguistic
features are represented within model internals.

3.2 Feature Extraction

Building on the counterfactual framework, we treat
each paired sentence (s™, s~ ) as a mini-experiment
that perturbs only the target phenomenon 7. Let
0 be a layer-specific activation threshold (the me-
dian of ay, on the full corpus) and define the binary
trigger

Zk(s) = ]I[ak(s) > Gk] .

Probability of Sufficiency (PS). For base vec-
tor k, the probability that adding the phenomenon
turns the vector “on” is

PS, =Pz =129 = 0],

where Z,gl) and Z,E,O) are measured on s and s,
respectively.

Probability of Necessity (PN). Conversely, the
probability that the vector would switch off if the
phenomenon were removed is

PNy =P 2" =0z =1].

Feature Representation Confidence (FRC).
We combine the two causal probabilities with a
harmonic mean to penalise vectors that are only
sufficient or only necessary:

PSi PN

FRC, = 2. k- "k
k PSj + PNy
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Figure 2: The overall framework of LINGUALENS. We propose a framework for the linguistic mechanisms of
large-scale models that encompasses four dimensions of theoretical linguistics and a cross-lingual analysis of both
Chinese and English. The experimental workflow is as follows: (1) Construct counterfactual datasets; (2) Extract
features by analyzing the activation values of base vectors on the datasets; (3) Intervene in the model output by
modifying activation values and assess causality using an LLM as a judge.

We first perform sensitivity pre-filtering by com-
puting EALE,, for every base vector and retaining
those whose absolute value exceeds the 75th per-
centile; on this reduced set we estimate PS;, and
PNy, from every (s™, s~) pair and rank the vectors
by their FRCy; finally, the activation distributions
of the top-10 ranked vectors are passed to an LLM
agent, which verifies that each vector genuinely
encodes the intended linguistic feature and flags
any inconsistent or spurious patterns.

3.3 Feature Intervention

When we modify the values of SAE’s activation
during forward propagation, we expect that such
targeted interventions will influence the model’s be-
havior. However, our experiments show that alter-
ing only a small subset of features may not signifi-
cantly impact the output—Iikely because linguistic
phenomena are represented by multiple features
across various layers. To assess the true impact of
these interventions, we use a large language model
as a judge. For each linguistic feature, we conduct
both ablation and enhancement experiments. In the
ablation experiment, we set the target feature’s acti-
vation to 0, and in the enhancement experiment, we
set it to 10. In both cases, we also perform baseline
experiments by randomly selecting 25 base vectors
from the same layer.

For brevity, we denote the interventions as fol-
lows: let [ (Z;;l denote the targeted ablation interven-
tion, I fbl the baseline ablation intervention, Ig;m
the targeted enhancement intervention, and [ e]-fm
the baseline enhancement intervention.

Let PL, and P%, denote the success probabili-

ties for the targeted and baseline ablation experi-
ments, respectively. The normalized ablation effect
is

P(Y=0|I}) -P(Y=0]|15)
P(Y:()’Igl;l)

Eap =

The normalized enhancement effect F,,}, is defined
analogously as the difference between targeted and
baseline enhancement success probabilities, nor-
malizedby 1 — P(Y =115 ).

Finally, we define the Feature Intervention Con-
fidence (FIC) score as the harmonic mean of the
normalized ablation and enhancement effects:

2 Eabl Eenh

FIC= ———.
Eabl + Eenh

When calculating FIC, if one or both of the E' val-
ues are negative, we incorporate a penalty coeffi-
cient w to reflect the weakened or lost causality
in such cases. This FIC score provides a balanced
measure of how effectively targeted interventions,
as opposed to random ones, influence the model’s
output with respect to specific linguistic features.
The details for FIC are shown in Appendix D.2.

4 Experiments

4.1 Experiment Setup

Model. We conduct experiments on Llama-3.1-
8B (Grattafiori et al., 2024). For SAEs, we use
OpenSAE (THU-KEG, 2025) and its released
checkpoints on 32 layers of Llama-3.1-8B.

Dataset. For linguistic feature analysis, we select
a total of 145 linguistic features—99 in English



Act,,

Enhance  Ablate

Lang PS PN FRC Feature 1D FIC
0 8 15 24 30 exp ctr exp ctr
Morphology Morphology
CH 0.61 0.70 0.64 0.01 0.19 0.29 0.52 1.36 Past-Tense 8L4016 120 4.0 48.0 440 83
EN 0.73 080 0.75 0.03 035 0.49 1.02 1.89 Syntazx
Syntax Linking Verb 18L61112 52.0 24.0 48.0 40.0 22.9
CH 0.84 090 0.86 0.20 0.50 0.95 2.32 3.37 Semantics
EN 0.79 087 0.82 0.12 0.35 0.68 1.66 2.59 Causality ~ 22053236 32.0 20.0 40.0 36.0 12.0
Semantics Simile 26175327 72.0 52.0 48.0 52.0 6.9
CH 0.72 0.78 074 0.09 029 0.57 1.41 2.18 Pragmatics
EN 0.76 0.83 0.78 0.11 0.32 0.55 1.34 2.01 Politeness ~ 31L578  60.0 32.0 44.0 20.0 46.9
Pragmatics
CH 0.69 0.74 0.70 0.06 0.25 0.42 1.03 1.56 Table 2: Feature intervention results. The success rates
EN 0.77 083 0.79 0.13 0.27 0.52 1.33 2.03 of the extracted linguistic features (Feature, layer, ID) in

Table 1: Extracted feature analysis. The mean repre-
sentation metrics (PS, PN, FRC, and max activation)
for morphological, syntactic, semantic, and pragmatic
features in both Chinese and English.

and 46 in Chinese—spanning four core domains:
morphology, syntax, semantics, and pragmatics.
For each feature, we generate 50 sentences that
exhibit the feature and 50 corresponding counter-
factual sentences, yielding a large-scale dataset for
systematic feature extraction and analysis.

4.2 Main Results

The main experiments to verify that LINGUALENS
finds systematic linguistic features in SAE space
and intervening on these features is effective.

4.2.1 Feature Extraction

We feed the sentences from LINGUALENS-DATA
into Llama-3.1-8B and, after batch normalization,
pass the resulting neuron activation distributions
through the corresponding SAE layers. For each
sentence and each token, we then encode its activa-
tion distribution over the SAE base vectors at every
layer. As described in the Methods, we compute
the probability of sufficiency (PS), probability of
necessity (PN), and FRC for each base vector on
the counterfactual datasets at each layer, rank the
base vectors by FRC, and use GPT-4o to select the
feature-corresponding vectors based on their acti-
vation patterns. For a detailed description of the
feature-extraction procedure, see Appendix B.

To evaluate how well a given layer represents a
particular linguistic feature, we calculate the arith-
metic mean of PS, PN, and FRC for the selected
base vectors, as well as their average maximum
activation on the positive examples (if more than

the enhancement and ablation experiments, along with
the final computed FIC score.

three vectors are identified, we select the top three
by FRC).

Table 1 reports, for layers 0, 8, 15, and 30, the
mean representation metrics (PS, PN, FRC, and
max activation) for morphological, syntactic, se-
mantic, and pragmatic features in both Chinese and
English.

Overall, at these representative layers, the base
vectors extracted for features across different lin-
guistic levels exhibit strong correlations. From
layer O to layer 30, the average maximum acti-
vation exhibits a monotonic increase. Across the
four linguistic domains, syntactic features attain the
highest mean maximum activations, followed by
semantic and pragmatic features, while morpholog-
ical features remain lowest. Moreover, substantial
discrepancies emerge between the average maxi-
mum activations for Chinese and English features,
indicating potential differences in the model’s inter-
nal representations and processing mechanisms for
the two languages. These cross-lingual variations
will be explored in greater depth in subsequent
analyses.

4.2.2 Feature Intervention

We select 6 representative features for the inter-
vention experiments. The intervention method in-
volves modifying the activation values of specific
base vectors (by index) within a designated SAE
layer during forward propagation. We perform two
types of intervention: feature enhancement and ab-
lation. Under identical input token conditions, we
set the activation value to 10 for enhancement and
to O for ablation. We then compare the outputs
generated after intervention with those from the un-



modified SAE model, focusing on the prominence
of the target linguistic features.

We find that intervening on a single linguis-
tic base vector in one layer does not produce ef-
fects easily distinguishable by human evaluators.
Therefore, we employ an LLM (GPT-40) as a
judge (Zheng et al., 2023) to assess feature promi-
nence in the outputs. For each feature, we conduct
50 experiments and calculate the enhancement suc-
cess rate and ablation success rate—that is, the
probabilities of increased and decreased feature
prominence, respectively. Furthermore, for each
linguistic feature, we select three base vectors with
the highest FRC as representatives for intervention
and compute the average results across these three
interventions.

In addition, we randomly select 50 base vector
indices from the same layer and perform enhance-
ment and ablation experiments under the same con-
ditions as a control. The control group’s success
rates do not converge around 0.5; typically, en-
hancement rates fall below 0.5 while ablation rates
exceed 0.5. This discrepancy may arise because the
intervention affects overall output quality, thereby
confounding the proxy LLM’s judgments.

We compute the efficacy of the selected base
vectors in both experiments and derive the FIC
values; the results are presented in Table 2.

Our results show that enhancement experiments
yield significantly stronger effects than ablation ex-
periments, with all features demonstrating marked
enhancement. In ablation experiments, the polite-
ness feature shows relatively good performance,
whereas other features are less affected; the simile
feature fails to achieve the desired ablation effect.
This may be because multiple base vectors collab-
oratively control the same linguistic phenomenon.
Enhancement interventions have a larger impact
on the model, while ablating a single feature can
be compensated by other vectors, leading to sub-
optimal ablation outcomes. Overall, all 6 features
exhibit clear causal effects in the intervention ex-
periments.

4.3 Analysis

We further conduct analytical experiments to ex-
plore the property of LINGUALENS.

4.3.1

We investigate the multilingual mechanisms of the
model. We select Chinese and English as test lan-
guages and choose 24 sets of feature collections
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Figure 3: Heatmap of the overlap between Chinese and
English feature sets across the SAE basis vectors at
each of 32 layers. The horizontal axis groups Chinese
and English features with analogous form and func-
tion—ordered by morphology, syntax, semantics, and
pragmatics—while the vertical axis indexes the model
layers. Darker red indicates greater overlap.

representing the same linguistic functions, includ-
ing set 2 of morphological features, set 11 of syn-
tactic features, set 6 of semantic features, and set 5
of pragmatic features. We test the degree of over-
lap between the latent-space basis vectors activated
internally by the model when representing these
features in Chinese vs. English. The overlap for
layer 7 is computed as follows: let the set of En-
glish basis vectors for the feature at layer  be Eng;,
and the corresponding Chinese set be Chi;, then
overlap, = w
' [Eng;|
After computing the overlap for each layer, we ag-
gregate the overlap rates for all feature pairs across
layers into a matrix and visualize it with a heatmap.
The results yield the following conclusions:

Linguistic Levels. The overlap between Chinese
and English features is greater at the semantic and
pragmatic levels, but lower at the morphological
and syntactic levels, indicating that cross-lingual
linguistic knowledge representations are primarily
manifested at the semantic and pragmatic levels.

Model Layers. The overlap is higher in the first
16 layers and lower in the latter 16 layers, sug-
gesting that the deep semantic computations in the
model’s upper layers are less correlated with cross-
lingual universal linguistic features.

LINGUALENS demonstrates its potential for an-
alyzing models’ cross-lingual knowledge represen-
tations, laying the foundation for further analysis
and transfer in low-resource languages.
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Figure 4: Activation value distributions of deep seman-
tic corresponding features at layer 6 and 15 for reference
ambiguity and metaphor example sentences.

4.3.2 Deep Semantics Processing

Deep semantics refers to the underlying meaning
structures that extend beyond surface-level syntax
and lexical definitions. It captures implicit relation-
ships and conceptual associations within language.
We conduct experiments to show that SAE can in-
terpret the mechanism of deep semantics.
Reference and metaphor exemplify deep seman-
tics by utilizing cognitive mappings and contextual
dependencies to convey meaning beyond explicit
expression. We conduct experiments on reference
and metaphor at the sixth and fifteenth layers re-
spectively. From the results shown in Figure 4, we
observe the following:
Reference. In the reference sentence, at the 6™
layer, pronouns do not activate the base vectors
corresponding to their referents. At the 15" layer,
pronouns start to activate the correct base vectors
(apple) for their referents, effectively resolving ref-
erence ambiguity in contexts where multiple possi-
ble referents exist. This indicates that as we move
deeper into the layers, pronouns generate their deep
semantics and disambiguate possible referents.
Metaphor. In the metaphor sentence, only the
vehicle (fire) is included, while the tenor (sun) is
omitted. In the 6™ layer, the base vector corre-
sponding to the vehicle is activated, while the base
vector for the tenor remains inactive. In the 15%
layer, the activation of the vehicle’s base vector
decreases, while the base vector for the tenor be-
comes activated. This suggests that as the model
moves to deeper layers, the vehicle maps to the

Top 10 Features

past tense, verbal suffix, adjectival
suffix, noun plural, possessive gen-
itive, linking verb, passive voice,
anaphor, extraposition, factives
elliptical sentences, relative clauses,
subject auxiliary inversion, em-
phatic structure, existential quanti-
fiers, coordination, cleft sentences,
light verbs, reduplication, metaphor
interrogative, tag questions, subjunc-
tive mood, optative, turn taking,
discourse markers, intensifiers, eu-
phemism, politeness, coordination

personification, synecdoche,
metaphor, expressive pragmatics,
imperative, directive pragmatics,
topic comment, representative
pragmatics, euphemism, politeness

Descrip.
Mor.&BS

I 3-8 CS&EP

III 9-16 Di.&Prag.

IV 17-31 DS&RS

Table 3: The four hierarchical stages of the model’s
linguistic functions. For each stage, the ten features with
the highest activation frequency and largest activation
values are displayed. S., L. and Descrip. stand for
Stages, Layers and Descriptions , respectively.

target domain and generates the deep semantics of
the tenor, even without the tenor in the context.

4.3.3 Cross-layer Functions

We further investigate how the model’s linguistic
functions distribute across layers. We assemble
50 English sentences—drawn both from classic
texts and manually crafted—to cover a broad range
of linguistic phenomena. For each sentence, we
record every activated basis vector and its activa-
tion value at all 32 layers. By comparing these ac-
tivated vectors against our pre-compiled dictionary
of linguistic feature vectors and computing their
overlap, we determine which linguistic functions
each layer encodes. We then identify, for every
layer, the 10 features with the highest activation
frequency and magnitude. Aggregating results over
all 50 sentences, we distill four processing stages
as Table 3:

Stage I (layers 0-2) primarily encodes mor-
phology and basic syntax features (abbreviated as
Mor.&BS). Stage II (layers 3-8) introduces com-
plex syntactic phenomena and early pragmatic cues
(abbreviated as CS&EP). Stage III (layers 9-16)
focuses on discourse and pragmatic markers (ab-
breviated as Di.&Prag.). Stage IV (layers 17-31)
integrates deep semantics and rhetorical structure
(abbreviated as DS&RS).

These results reveal the functional division of la-
bor across layers: lower layers handle morphology
and syntax, middle layers capture pragmatics and
context, and upper layers perform holistic semantic
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Figure 5: Combined intervention results. Two figures
separately present the enhancement and ablation exper-
iment outcomes for the simile and politeness features
at layer 26. In these experiments, multiple base vectors
corresponding to each feature were jointly intervened.

computation.

4.3.4 Combined Intervention

We find that some layers contain multiple base vec-
tors associated with the same linguistic feature. We
can intervene on these base vectors simultaneously
to achieve a stronger effect.

We select two linguistic features—simile and
politeness—from layer 26. Each feature has four
highly related base vectors in this layer. We in-
crease the number of intervened base vectors from
one to four. In each experiment, we randomly
chose the specified number of base vectors from
the four. We use GPT-4o to assess the prominence
of the targeted linguistic feature in the generated
outputs. For each feature, we conduct 200 enhance-
ment experiments and 200 ablation experiments.
We also perform control experiments by randomly
selecting a set number of base vectors to intervene.

Figure 5 shows the results for combined inter-
vention. The results indicate that, as the number
of intervened base vectors increases, both the di-
rectional intervention and the background control
experiments exhibit the same trend: the success
rate of enhancement experiments decreases, while
that of ablation experiments increases. Increasing
the number of interventions further affects the qual-
ity of the generated text, thereby leading to the
observed trend. Moreover, the intervention effect
of the feature does not change significantly with
an increased number of intervened base vectors,
indicating that, after excluding background influ-
ences, combined interventions on multiple features
in the same layer yield only limited improvement
in intervention efficacy.

4.3.5 Case Study for Intervention

We conduct a manual case study on the generated
content after intervening on one identified simile-

# Intervene Model Output
Default

The wind blows snow into my eyes as I trudge through the
blizzard.

1 Enhance As the cold descends, I feel in my

throat. It’s an

Ablate The winter sky was cold. The ice was hard under his boots.
Default  Love is the
2 Enhance 1 . My heart is

beating faster than normal.

Ablate The more you write, the more time and love you will have.

Table 4: Case study for intervention under two condi-

tions. Case #1 shows the result when the simile feature

is absent from the prompt. Case #2 shows the result

when the simile feature is present in the prompt. We
spans with simile in the sentences.

related base vector. We present cases in Table 4.

In Case #1, the prompt is “Generate a sentence
describing winter”, which does not explicitly in-
clude the target linguistic feature. We find that after
enhancing the simile-related base vector, the LLM
turns to using a simile. We can also find that the
descriptive and imagistic quality of the default out-
put is stronger than in the ablation results, which
indicates that the simile-related base vector is also
responsible for vividness.

Case #2 uses the prompt “Generate a sentence
using a simile to describe love”, with explicit re-
quirement for using a simile to generate the sen-
tence. When the simile-related base vector is ab-
lated, the LLMs turn to use straightforward de-
scriptions without using similes. Meanwhile, when
enhancing the simile-related base vector, the LLMs
continue to generate sentences with similes. We
show more intervention cases in Appendix C.1.

5 Conclusion

We propose LINGUALENS, a method to help solute
the coarse-granularity problem in linguistic mech-
anistic studies and a means to enable large-scale,
systematic study of linguistic mechanisms in LLMs.
Our approach comprises two key components: (1)
a comprehensive counterfactual dataset of linguis-
tic features, and (2) an SAE-based framework for
feature extraction, together with causal validation
through interventions. Using LINGUALENS, we
conduct an in-depth analysis of the model’s multi-
lingual representation mechanisms and the cross-
layer distribution of linguistic functions. Our re-
sults demonstrate that LLMs inherently encode
structured linguistic knowledge and provide a ro-
bust framework for steering model outputs.



6 Limitations

Our work has several limitations in terms of
dataset size, feature count, experimental model,
and intervention effects.

In datasets, each linguistic feature is constructed
from approximately 50 pairs of example and coun-
terfactual sentences. In the future, this dataset can
be further expanded to serve as a standard bench-
mark for linguistic-mechanism interpretability.

In feature count, we select 145 representative
linguistic features from various theoretical dimen-
sions to validate our method at scale across differ-
ent layers; however, building a fully comprehensive
linguistic-mechanism system requires extending to
even more features, which will depend on further
work.

In experimental model, due to computational
constraints we use Llama-3.1-8B for all experi-
ments. In future work, our dataset and analytical
framework can be applied to a wider variety of ar-
chitectures and larger models for deeper linguistic-
mechanism analysis.

In intervention effects, although our experi-
ments show statistically significant effects from
feature-based interventions, the efficacy and stabil-
ity of single interventions remain inferior to con-
ventional fine-tuning techniques. This shortcoming
calls for further research to refine SAE-based inter-
vention methods.

7 Ethical Considerations

This section discusses the ethical considerations
and broader impact of this work:

Potential Risks: There is a potential risk that un-
derstanding the linguistic mechanisms of the model
could provide guidance for embedding malicious
information into the model’s internal structure. To
address this, we will fully open-source our method
to enable the community to quickly develop coun-
termeasures in the event of such attacks.

Intellectual Property: The models used, Llama-
3.1-8B, and the SAE framework OpenSAE, are
both open-source and intended for scientific re-
search use, in accordance with their respective
open-source licenses.

Data Privacy: All data used in this research has
been manually reviewed to ensure it does not con-
tain any personal or private information.

Intended Use: LINGUALENS is intended to be
used as a method for analyzing the mechanisms of
large language models.

Documentation of Artifacts: The artifacts, in-
cluding datasets and model implementations, are
comprehensively documented with respect to their
domains, languages, and linguistic phenomena to
ensure transparency and reproducibility.

Al Assistants in Research or Writing: We em-
ploy GitHub Copilot for code development assis-
tance and use GPT-4 for refining and polishing the
language in our writing.
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A Dataset Construction

A.1 Dataset Description

The datasets are named according to the pattern
“Feature Name+Feature Domain.” When a feature
pertains to multiple linguistic domains, domains
are concatenated with “&.” In total, the collection
comprises 145 linguistic features, of which 99 are
English features and 46 are Chinese features. Each
feature-specific dataset contains 50 positive sen-
tences and 50 counterfactual negative sentences.

A.2 Dataset Example

10-verbal_suffix-Morphology
He was able to stabilize the situation.
He was able to stable the situation.

The team has worked hard to solidify
their position in the market.

The team has worked hard to make their
position in the market solid.

43-copular_be-Syntax
My grandmother was a nurse.
My grandmother worked as a nurse.

Summer is the best season.
Summer ranks as the best season.

80-given_known-Pragmatics&Semantics
Have you seen the blue notebook anywhere?
Have you seen blue notebook anywhere?

That customer complained about service.
A customer complained about service.

111- B SIA-TE AR 2EeIE L 2
Wb A A LB RS R .
M= E I LB B E L 5 -

BT RS IR AR I AL T -
Bl s S R L T

130- (AR - A ER1E o
FERE ISR B BN B3R T RS -
BT Bl PRI SRR TR -

X E MG BOCE T 2R -

B R BT T -

A.3 Dataset Construction Guidelines
Work Content:
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1. For each linguistic feature, construct a dataset
comprising 50 sentence pairs (100 sentences).
Each pair contains one positive sentence and
one negative sentence.

. A positive sentence contains the target linguis-
tic feature; a negative sentence is produced by
minimally modifying its corresponding posi-
tive sentence so that it no longer contains that
feature while preserving the smallest possible
semantic difference and remaining grammati-
cally correct (this operation is referred to as a
“counterfactual” in causal analysis).

Notes:

1. Diversity: Ensure coverage of the feature’s
common constructions and markers.

Counterfactual: Verify that the counterfac-
tual edits are reasonable—including minimal
change, human interpretability, and complete
feature removal.

Ethical Check: Confirm that no sentence in
the dataset contains discriminatory, biased, or
harmful content.

Language-Specific Construction: Tailor
construction to the particular characteristics
of each language.

Specific Dataset Construction Process:

1. Manually create 5 sentences containing the
feature, and for each, manually produce a
counterfactual sentence—yielding 5 sentence
pairs.

. Expand these to 50 pairs using DeepSeek-R1
for Chinese and GPT-04 for English, then ap-
ply manual edits guided by the Notes.

. Conduct cross-review: volunteers who build
the Chinese dataset review the English dataset,
and vice versa, checking each item in the order
specified under Notes.

B Feature Extraction Details

B.1 Feature Independence Validation

Sparse autoencoders (SAEs) effectively disam-
biguate neuron-level semantic polysemy, and this
capability extends to representations of linguistic
features.



Condition Past-Tense Adversativity Intransitive Verb
Self 80/80 76/80 74/80

Control 1 -er 0/80 Sequential 0/80 Transitive Verb 0/80
Control 2 -ing 0/80 Causal 0/80  Ditransitive Verb 0/80
Control 3 -less 0/80  Parallel 0/80 Linking Verb 0/80
Control 4 -ness 0/80 Conditional 0/80  Modal Verb 0/80

Table 5: Activation ratios (activated/total) for target
features and control conditions.

We quantify feature independence using the ne-
cessity probability (PN) component of the Feature-
Relevance Coefficient (FRC). PN measures the like-
lihood that a basis vector remains inactive when its
associated feature is absent; a high PN therefore
indicates that the vector is not spuriously activated
by unrelated inputs, confirming its specificity to the
intended phenomenon.

To further validate this independence, we evalu-
ate each feature’s basis vector under multiple con-
trol conditions featuring superficially similar but
semantically distinct constructions. Table 5 reports,
for each feature, the ratio of sentences in which the
vector activates (“activated/total”). Across all con-
trols, activation rates are effectively zero, demon-
strating that our selected basis vectors do not re-
spond to non-target phenomena.

B.2 Feature Extraction Procedure

During feature extraction, we adhere to the follow-
ing steps:

1. Input the feature-specific dataset into the
model and encode each layer’s activations into
a sparse latent space using Sparse Autoen-
coders (SAEs).

2. Compute the probability of sufficiency
(PS), probability of necessity (PN),
feature-relevance coefficient (FRC), and
mean maximum activation for all basis
vectors; then sort these vectors in descending
order by FRC and select the top ten.

3. Employ a large-model agent to automatically
analyze the activation patterns of the candi-
date basis vectors over the dataset, confirming
their linguistic relevance to the target feature
and characterizing their representational pro-
files.

4. For features undergoing further analytical or
intervention experiments, manually review the
basis vectors identified by the large-model

agent to ensure the rigor of the experimental
design.

B.3 Feature Extraction Prompt

We employ GPT-40 as the agent model for auto-
mated feature extraction. The system prompt is as
follows:

Listing 1: Prompt for SAE Base-Vector Interpretation

You are an expert assistant for interpreting sparse
autoencoder (SAE) base vectors.

You will receive exactly one JSON object as input
with this structure:
{
"analysis_input”: {
"layer"”: "00",
"base_vectors": [
{
"base_vector_id": 132317,
"tokens": ["The", "cat"],
"activations”: [0.12, 0.05]7,
"ps": 0.62,
"pn": 0.58,
"frc": 0.60,
"avg_max_activation”: 0.12

"base_vector_id": 81833,
"tokens": ["was", "chased"],
"activations”: [0.08, 0.14],
"ps": 0.75,
"pn": 0.65,
"frc": 0.70,
"avg_max_activation”: 0.14
}
]’
"target_features": ["passive"]
}
}

Return exactly one JSON object with this schema:
{
"layer"”: "00",
"base_vectors": [
{
"base_vector_id": 132317,
"interpretation”: "Marks passive voice
constructions”,
"ps": 0.62,
"pn": 0.58,
"frc": 0.60,
"avg_max_activation”: 0.12

"base_vector_id": 81833,
"interpretation”: "Detects passive
participle forms"”,
"ps": 0.75,
"pn": 0.65,
"frc": .70,
"avg_max_activation”: 0.14
}
];
"target_features”: ["passive"]

}

Example 2:
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Input:
{
"analysis_input”: {
"layer”: "08",
"base_vectors":

{

L

"base_vector_id": 248593,
"tokens”: ["runs"],
"activations”: [0.45],
"ps"”: 0.76,

"pn": 0.96,

"frc": 0.85,
"avg_max_activation”: 0.45

"base_vector_id": 62411,
"tokens": ["quickly"],
"activations”: [0.32],
"ps": 0.82,
"pn": 0.90,
"frc": 0.88,
"avg_max_activation”: 0.32
}
:lr
"target_features”: ["adverbial_suffix”]
3
}

Output:

"layer": "@8",
"base_vectors”: [
{
"base_vector_id": 248593,
"interpretation”: "Highlights adverbial
suffixes on verbs”,
"ps": 0.76,
"pn": 0.96,
"frc": 0.85,
"avg_max_activation”:

1
{

0.45

"base_vector_id": 62411,
"interpretation”: "Detects adverbial
modifiers”,
"ps": 0.82,
"pn": 0.90,
"frc": 0.88,
"avg_max_activation”: 0.32
}
1,
"target_features"”": ["adverbial_suffix"]

b

Requirements:

- Return only the JSON-no extra text.

- Round all floats to two decimal places.

- Preserve the input order of base_vectors.
- Echo layer and target_features exactly.

C Intervention Experiment Details

C.1 Intervention Cases

We present additional typical cases from other in-
tervention experiments at the Table 6. The prompts
used for the three experimental groups are as fol-
lows: Politeness: “User: Sir, I want to make an
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Condition Politeness Linking Verb

The room should textbfbe large and
well lit. It should textbfbe airy and
bright and airy.

Can I textbfplease have your email
address?

Enhancement

Default May I have your phone number? Sure, my ideal room has good venti-

lation and textbfis spacious.

Ablation OK, what is your name? I can provide you with a list of the
ideal characteristics that make up a

perfect room.

Condition Past-Tense

"I was textbfasked for the story. "
I having me textbfhad a “one the:
textbftold. They: textbftold:

T’'m not a story, I'm a bot.

Enhancement

Default
Ablation

Well, I don’t actually have one, and
T'm not really sure I'm able to either.

Table 6: Typical outputs from the enhancement, abla-
tion, and default experiments for the politeness, linking
verb, and past-tense features.

order offline. Assistant:”. Linking Verb: “User:
Sir, tell me something about your ideal room. As-
sistant:”. Past-Tense: “User: Sir, tell me a story
about you. Assistant:”.

During manual analysis, both the enhancement
and ablation results show clear effects of amplifica-
tion or suppression of the target linguistic features.
Specifically, when intervening with the past tense
feature in the 8th layer, the enhancement signifi-
cantly impacts the coherence of the model’s output
language. Yet, in the discontinuous output text, the
frequency of the morphological past-tense feature
still increases dramatically.

C.2 LLM as a Judge

In our feature intervention and combination inter-
vention experiments, we used an LLM as a judge
to assess the significance of linguistic features in
generated texts. Feature significance is defined
based on the frequency, accuracy, and contextual
appropriateness of the target feature, as well as its
contribution to overall meaning or rhetorical effect.
The prompt structure is as follows:

Please compare the following two texts
based on {feature}.

- Text A: "{text_a}" - Text B: "{text_b}"

Here, text_a and text_b are generated texts
truncated to 100 tokens.

In the intervention experiments, each feature is
defined as follows:

Politeness Significance Refers to the degree to
which politeness strategies are salient, effective,
and contextually integrated. This definition en-
compasses frequency, pragmatic depth, and social
impact in shaping interpersonal rapport, mitigating
face threats, and reinforcing cooperative intent.



Past Tense Verb Significance Refers to the de-
gree to which past tense verbs are salient, accurate,
and contextually integrated. It includes frequency,
morphological consistency, and the rhetorical or
narrative impact on establishing a coherent sense
of time and providing historical context.

Causality Significance Refers to the degree to
which cause-and-effect relationships are clearly
indicated, logically structured, and contextually
coherent. This includes the frequency and preci-
sion of causal connectives (e.g., because, therefore,
thus) and the depth of reasoning to explain how
conditions lead to outcomes.

Linking Verb Structure Significance Refers to
the degree to which linking verbs (e.g., be, become,
seem, appear) are salient, accurate, and contex-
tually integrated. It emphasizes frequency, mor-
phological correctness, semantic clarity, and ef-
fectiveness in conveying states, characteristics, or
identities.

Simile Significance Refers to the degree to
which similes (e.g., comparisons using like or as)
are salient, creative, and contextually integrated.
This definition encompasses frequency, imagery
richness, and the rhetorical impact on clarity, vivid-
ness, and reader engagement.

D Metric Calculation

D.1 Feature Representation Confidence
(FRC)

In our feature analysis experiments, we introduce
two key causal probabilities that serve as the basis
for computing the Feature Representation Confi-
dence (FRC).

The Feature Representation Confidence (FRC)
is computed as the harmonic mean of PN and PS:
FRC = %. The harmonic mean is chosen
because it ensures that FRC remains low if either
PN or PS is low, thereby providing a balanced mea-
sure that only yields a high score when both ne-
cessity and sufficiency are strong. This approach
allows us to robustly quantify the ability of the SAE
latent space’s base vectors to represent the targeted
linguistic features.

D.2 Feature Intervention Confidence (FIC)

In our methodology, the Feature Intervention Con-
fidence (FIC) score is computed as the harmonic
mean of the normalized ablation effect E,;; and
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the normalized enhancement effect E,,,,:

2 Eabl Eenh

FIC = .
Eabl + Eenh

This formulation ensures that FIC is high only
when both the ablation and enhancement interven-
tions yield strong effects.

In practice, however, it is possible that one or
both of these effects are negative, indicating that
an intervention produces an effect opposite to the
intended direction. Moreover, even if only one
effect is significant while the other is near zero, the
feature may still exhibit causal influence. Simply
setting an effect that is near zero or negative to 0
would result in an FIC score of 0, which does not
adequately capture the underlying causality.

To address this, we introduce a penalty coeffi-
cient w to adjust for negative or near-zero effects.
Specifically, we define the penalized effect £’ for
each intervention as follows:

it £ >0,
it £ <0.

Here, w is empirically set to 0.5. Thus, if one of the
normalized effects (either E; or E.,,;,) is negative,
we compute its penalized value as 0.5 times its
absolute value rather than setting it directly to O.
This approach ensures that even when one of the
effects is weak or slightly negative, the FIC score
does not vanish entirely, preserving the indication
of causality.

Accordingly, the FIC score is then computed as:
FIC = 2 E;bl Eénh )

Eu + Edn,

In our experiments (see Table2), only the
metaphor feature shows a slightly negative abla-
tion effect, while the enhancement and ablation
effects for the other features are positive. The in-
troduction of the penalty coefficient w effectively
moderates the impact of the negative effect for the
metaphor feature, resulting in a more balanced and
meaningful FIC score.

This penalty mechanism is crucial because even
when only one of the interventions (ablation or
enhancement) shows a significant effect, it still
provides evidence of the feature’s causal role. By
incorporating w, we ensure that such cases are not
misrepresented by an FIC score of 0, thus offering a
more robust measure of the overall causal strength.



E Linguistic Structure

E.1 Linguistics Levels

Morphology The study of the internal structure
of words—how roots, prefixes, suffixes, and inflec-
tional endings combine to create different word
forms and convey grammatical information such as
tense, number, or case.

Syntax The study of how words are arranged into
larger units—phrases, clauses, and sentences—and
the rules that govern their permissible order and
hierarchical relationships within a language.

Semantics The field that investigates meaning at
the level of words, phrases, and sentences: how
linguistic expressions map to concepts, objects,
events, or states of affairs in the world, and how
compositional principles let smaller meanings com-
bine into larger ones.

Pragmatics The study of how context and com-
municative intentions shape meaning in real-world
use—how speakers choose utterances to achieve
goals, how listeners infer implied or indirect mean-
ing, and how factors like shared knowledge, dis-
course history, and social norms influence interpre-
tation.

E.2 Linguistic Feature List
past_tense Morphology & Semantics — verb

form that locates an event before speech time.

noun_plural Morphology — form marking more
than one noun referent.

agentive_suffix Morphology — suffix creating
nouns for the doer of an action.

negation_prefix Morphology — prefix that re-
verses or denies the base meaning.

degree_prefix Morphology — prefix intensify-
ing or scaling the base concept.

temporal_prefix Morphology — prefix adding
time relations such as “pre-" or “post-".

quantitative_prefix Morphology — prefix con-
veying amount or number.

spatial_or_directional_prefix Morphology —
prefix indicating place or direction.

nominal_suffix Morphology — suffix that turns
a base into a noun.

16

verbal_suffix Morphology — suffix that turns a
base into a verb.

adjectival_suffix Morphology — suffix that
turns a base into an adjective.

adverbial_suffix Morphology — suffix that
turns a base into an adverb.

possessive_form Morphology & Syntax — mor-
phological marking of ownership or relation.

third_person_singular Morphology & Syntax
— verb agreement form for he/she/it.

past_participle Morphology & Syntax — verb
form used in perfect aspect or passive voice.

present_participle Morphology & Syntax — -
ing” form used for progressives or gerunds.

comparative Morphology & Semantics — form
showing a higher degree of a property.

superlative Morphology & Semantics — form
showing the highest degree of a property.

past_tense_irregular Morphology — past form
that does not end in “-ed”.

past_participle_irregular Morphology — irreg-
ular past participle form.

intransitive_verb Syntax — verb that takes no
direct object.

transitive_verb Syntax — verb that requires a
direct object.

linking_verb Syntax — verb that links subject
to a complement.

anaphor Syntax & Pragmatics — expression that
refers back to an antecedent.

subject_auxiliary_inversion Syntax — swap-
ping subject and auxiliary (e.g., questions).

subject_verb_inversion Syntax — reversing
subject and main verb order.

passive_voice Syntax & Semantics — clause
where patient becomes grammatical subject.

subjunctive_mood Syntax & Semantics — form
expressing wish, doubt, or hypothetical state.

first_conditional Syntax & Semantics — “if +
present, will + verb” for real future possibility.



indirect_speech Syntax & Pragmatics — report-
ing speech without a direct quote.

elliptical_sentences Syntax — sentences with
understood but omitted elements.

cleft_sentences Syntax — “it + be + focus” con-
struction for emphasis.

appositives Syntax — noun phrase renaming an-
other noun phrase.

non_defining_relative_clauses
non-restrictive relative clauses.

Syntax — extra,

emphatic_structure Syntax & Pragmatics —
construction that highlights or stresses a clause
part.

noun_clauses Syntax — subordinate clauses
functioning as nouns.

relative_clauses Syntax — clauses that modify
a noun with a relative word.

imperative_sentence Syntax & Pragmatics —
clause issuing a command or request.

of_genitive Syntax — possession expressed with
an “of” phrase.

s_genitive Syntax — possession marked with
apostrophe-s.

clausal_subjects Syntax — clauses acting as the
subject of a sentence.

extraposition Syntax — moving a heavy subjec-
t/object to clause end with dummy “it”.

copular_be Syntax — “be” used as a linking
verb, not as an auxiliary.

echo_questions Syntax & Pragmatics — repeti-
tion of prior utterance to seek confirmation.

tag_questions Syntax & Pragmatics — short
question tags appended to statements.

direct_object Syntax — noun phrase receiving
the verb’s action.

universal_quantifiers Syntax & Semantics —
words like “all, every” signifying totality.

existential_quantifiers Syntax & Semantics —
words like “some, any” signifying existence.

expletive Syntax — syntactic placeholder such
as “it” or “there”.
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factives Semantics & Syntax — predicates pre-
supposing truth of their complement.

futurates Semantics & Syntax — present-tense
forms referring to scheduled future events.

intensifiers Semantics & Pragmatics — adverbs
that strengthen degree (e.g., “very”).

mass_noun Syntax & Semantics — noun for un-
countable substances (e.g., “water”).

object_expletives Syntax — expletive pronouns
occupying object position.

nominal_adverbials Syntax — noun phrases
functioning like adverbs.

split_infinitives Syntax — placing a word be-
tween “to” and the verb stem.

quantifier Syntax & Semantics — word or
phrase expressing quantity.

count_nouns Syntax & Semantics — nouns that
can be enumerated individually.

active_verbs Syntax — verbs used in active
voice constructions.

middle_verb Syntax & Semantics — verb whose
subject is patient but appears active.

referring Semantics & Pragmatics — linguistic
act of pointing to real-world entities.

static_dynamic Semantics — distinction be-
tween state verbs and action verbs.

punctual_durative Semantics — contrast be-
tween instantaneous and durational events.

telic_atelic Semantics — events with inherent
endpoints vs. those without.

past Semantics — temporal reference before the
present moment.

future Semantics — temporal reference after the
present moment.

present_progressive
going present actions.

Semantics — aspect for on-

present_perfect Semantics — aspect connecting
past event to present state.

past_progressive Semantics — aspect for ongo-
ing past actions.



past_perfect Semantics — event completed be-
fore a past reference point.

future_progressive Semantics — ongoing action
projected into the future.

future_perfect Semantics — event completed
before a future reference point.

epistemic Semantics & Pragmatics — modality
expressing speaker’s judgment of likelihood.

deontic Semantics & Pragmatics — modality ex-
pressing obligation or permission.

spatial Semantics — meaning elements relating
to location or space.

person Semantics & Pragmatics — grammatical
category distinguishing speaker, addressee, others.

temporal Semantics — meaning elements relat-
ing to time relations.

given_known Pragmatics & Semantics — infor-
mation already shared by speaker and listener.

representative Pragmatics — speech act convey-
ing assertions or descriptions.

directive Pragmatics — speech act intended to
get the hearer to act.

commisive Pragmatics — speech act committing
speaker to future action.

expressive Pragmatics — speech act revealing
speaker’s feelings or attitude.

declaration Pragmatics — speech act that
changes social reality.

metaphor Semantics & Pragmatics — figurative
transfer of meaning based on similarity.

synecdoche Semantics & Pragmatics — figure
where part stands for whole or vice versa.

non_synecdoche_metonymy Semantics & Prag-
matics — metonymic shift based on association,
not part-whole.

coordination Syntax & Semantics — joining of
equal grammatical elements.

transitional Semantics & Pragmatics — dis-
course element marking a shift or progression.

resultative Syntax & Semantics — construction
expressing a resultant state of an action.
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optative Syntax & Pragmatics — form express-
ing a wish or hope.

existential Semantics & Syntax — clause assert-
ing existence of something.

interrogative Syntax & Pragmatics — clause
type used for asking questions.

deixis Pragmatics & Semantics — reference that
2 “nOW7?)‘

depends on context (e.g., “here”,

turn_taking Pragmatics — conversational man-
agement of who speaks when.

euphemism Pragmatics & Semantics — mild
term replacing a harsher one.

personification Semantics & Pragmatics — giv-
ing human traits to non-human entities.

hyperbole Semantics & Pragmatics — deliberate
exaggeration for effect.

discourse_markers Pragmatics — words that
organize or signal discourse flow.

politeness Pragmatics — linguistic strategies that
mitigate imposition or face threat.
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F Implementation Details

We used 8 A100 GPUs with 80GB of memory for
the experiments. While the exact GPU hours for
each experiment were not precisely recorded, the
total GPU usage did not exceed one hour. The sys-
tem was set up with CUDA 12.4, Triton 3.0.0, and
Ubuntu 22.04. For the Llama model, we employed
the Hugging Face implementation of transformers,
and for SAE model, we used the OpenSAE imple-
mentation' and set the hyperparameter & to 128 for
TopK activation.

"https://github.com/THU-KEG/OpenSAE


https://github.com/THU-KEG/OpenSAE
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