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Abstract

Large language models (LLMs) demonstrate001
exceptional performance on tasks requiring002
complex linguistic abilities, such as reference003
disambiguation and metaphor recognition/gen-004
eration. Although LLMs possess impressive005
capabilities, their internal mechanisms for pro-006
cessing and representing linguistic knowledge007
remain largely opaque. Prior research on lin-008
guistic mechanisms is limited by coarse granu-009
larity, limited analysis scale, and narrow focus.010
In this study, we propose LINGUALENS, a sys-011
tematic and comprehensive framework for ana-012
lyzing the linguistic mechanisms of large lan-013
guage models, based on Sparse Auto-Encoders014
(SAEs). We extract a broad set of Chinese and015
English linguistic features across four dimen-016
sions—morphology, syntax, semantics, and017
pragmatics. By employing counterfactual meth-018
ods, we construct a large-scale counterfactual019
dataset of linguistic features for mechanism020
analysis. Our findings reveal intrinsic represen-021
tations of linguistic knowledge in LLMs, un-022
cover patterns of cross-layer and cross-lingual023
distribution, and demonstrate the potential to024
control model outputs. This work provides a025
systematic suite of resources and methods for026
studying linguistic mechanisms, offers strong027
evidence that LLMs possess genuine linguistic028
knowledge, and lays the foundation for more in-029
terpretable and controllable language modeling030
in future research.031

1 Introduction032

Large language models (LLMs) demonstrate strong033

performance on tasks requiring different levels of034

linguistic competence, such as dependency pars-035

ing (Lin et al., 2022; Roy et al., 2023), reference036

disambiguation (Iyer et al., 2023), and metaphor037

interpretation (Wachowiak and Gromann, 2023;038

Yerukola et al., 2024; Tian et al., 2024).039

Although their linguistic abilities are often at-040

tributed to emergent capabilities from large-scale041

pretraining and model scale (Manning et al., 2020;042
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Would you please water the roses, for they are like faded verses of a ballad.
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Figure 1: The main linguistic features activated at dif-
ferent layers are observed when example sentences are
input to the model. Through a Sparse Auto-Encoder,
each layer’s activation values are mapped into a sparse
space and the basis vectors corresponding to predefined
linguistic features are extracted. According to the re-
sults, the model’s 32 layers are divided into four stages,
in order: Morphology and Core Syntax, Complex Syn-
tactic Constructions, Pragmatic Functions, and Deep
Semantics and Rhetoric.

Allen-Zhu and Li, 2023; Mahowald et al., 2024), 043

the underlying mechanisms by which LLMs pro- 044

cess these linguistic structures remain underex- 045

plored and lack systematic explanation (Saba, 046

2023). Therefore, our goal is to interpret the lin- 047

guistic mechanisms of LLMs by addressing the 048

following questions: (1) Can we identify the min- 049

imal components within an LLM responsible for 050

specific linguistic processing abilities? (2) Can 051

we comprehensively model the internal linguistic 052

functionalities of the model? 053

Prior attempts to explain LLM linguistic mech- 054

anisms typically rely on expert-designed prompts 055

that ask the model to elucidate its generation 056

process (Yin and Neubig, 2022). However, 057
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such behavior-based approaches do not provide058

structure-level mechanistic insights. More recent059

work seeks to link specific linguistic capabilities to060

internal structures—such as hidden states (Katz and061

Belinkov, 2023), attention heads (Wu et al., 2020),062

and activated neurons (Sajjad et al., 2022; Huang063

et al., 2023)—but they face two main challenges:064

Coarse interpretive granularity. Mechanistic065

interpretation aims to uncover atomic linguistic066

structures within LLMs. Yet even neurons—the067

finest native components—exhibit poly-semantic068

activations, responding to multiple conditions (Yan069

et al., 2024). This necessitates extracting070

finer-grained structures to truly interpret linguis-071

tic mechanisms.072

Limited analysis scale. Existing studies focus073

on one or a few linguistic features, often within074

a single subfield (e.g., syntax or semantics), ne-075

glecting large-scale, systematic analysis across di-076

verse linguistic phenomena. A scalable, automated077

framework is needed to interpret language mecha-078

nisms comprehensively.079

To address these challenges, we propose LIN-080

GUALENS, a framework that utilizes a sparse081

auto-encoder (SAE) to interpret LLM linguistic082

mechanisms. The SAE learns a projection ma-083

trix that decomposes LLM hidden states into an084

extremely high-dimensional feature space under085

a sparsity constraint, where each dimension cap-086

tures a single semantic concept (Figure 1). LIN-087

GUALENS comprises three modules: 1. Construc-088

tion of a large-scale, multilingual, counterfactual089

linguistic dataset to support systematic discovery090

of linguistic structures; 2. Sparse feature analy-091

sis to interpret the SAE-extracted features, provid-092

ing fine-grained and comprehensive mechanistic in-093

sights; 3. Feature intervention, manipulating LLM094

behavior via targeted interventions on interpretable095

features to verify causal relationships and enable096

controlled steering of language behavior.097

Specifically, we first build a large-scale hierarchi-098

cal counterfactual linguistic dataset with annotated099

corpora, categorizing features into morphology,100

syntax, semantics, and pragmatics. These widely101

studied linguistic abilities ensure the feasibility of102

interpretability. We automate feature extraction via103

SAE activation analysis and an LLM-based agent,104

and introduce a causal analysis method that inter-105

venes on SAE base vectors with an LLM judge106

to evaluate effects. Building on this, we analyze107

cross-layer function distribution and cross-lingual108

representation patterns differences of linguistic fea-109

tures. 110

We conduct extensive experiments on 111

Llama-3.1-8B (Grattafiori et al., 2024). Our 112

results demonstrate that LINGUALENS can effec- 113

tively identify linguistic competence features at 114

scale, laying the groundwork for further systematic 115

analysis. 116

2 Related Works 117

Linguistic mechanism interpretation has been a 118

ever-chasing goal since the emergence of LLMs. 119

Researchers build linguistic datasets to evaluate 120

the linguistic capability and to interpret linguis- 121

tic mechanisms. We review linguistic datasets for 122

LLMs and corresponding mechanistic interpreta- 123

tion works. We will also introduce the basic con- 124

cepts for sparse auto-encoder. 125

Linguistic Datasets for LLMs. Previous stud- 126

ies have introduced numerous linguistic datasets 127

for large-model research, which can be di- 128

vided into two main categories. The first 129

comprises minimal-pair challenge sets—such as 130

BLiMP (Warstadt et al., 2020), CLiMP (Xiang 131

et al., 2021), and SyntaxGym (Gauthier et al., 132

2020)—that use acceptability judgments to eval- 133

uate morphosyntactic competence. The sec- 134

ond consists of counterfactual or contrastive cor- 135

pora—including CAD (Sen et al., 2022), Contrast 136

Sets (Gardner et al., 2020), and Polyjuice (Wu et al., 137

2021)—that assess model by generating factual/- 138

counterfactual pairs. These resources focus primar- 139

ily on syntactic analysis and performance evalua- 140

tion, and are not suited for systematic investigation 141

of models’ internal linguistic representations. 142

Linguistic Mechanism Interpretation. Previ- 143

ous work has employed a variety of methods to 144

study linguistic mechanisms in large language mod- 145

els, including attention head analysis (What Does 146

BERT Look at? An Analysis of BERT’s Atten- 147

tion, 2019), probing classifiers (Belinkov, 2022; He 148

et al., 2024), causal intervention techniques (Fin- 149

layson et al., 2021; Hao and Linzen, 2023), and 150

neuron-level analyses (Sajjad et al., 2022). How- 151

ever, these approaches have not been applied in 152

a unified, large-scale framework to systematically 153

chart models’ full range of linguistic capabilities. 154

Sparse Auto-encoder. Recent work has em- 155

ployed sparse auto-encoders (SAEs) to interpret 156

the hidden-layer activations of large language mod- 157

els by decomposing them into a large set of concept 158

features (Gao et al., 2024). These concept features 159
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exhibit mono-semanticity and hold considerable160

interpretability potential (Huben et al., 2024). In161

particular, an SAE maps the hidden states f ∈ Rd162

in LLMs into the feature space with sparse activa-163

tions:164

f = SparseConstraint (Weh+ be) ,165

where the SAE is parameterized by We ∈166

R(r×d)×d,be ∈ R(r×d). r is the expansion ratio,167

defined as the factor by which the hidden state168

dimension is expanded. Commonly used sparse169

constraint include TopK (Gao et al., 2024) and170

JumpReLU (Rajamanoharan et al., 2024) functions.171

As each dimension of the sparse activation in f cor-172

responds to a base vector in We, this paper uses173

base vector to denote features extracted by SAE.174

3 Methodology175

LINGUALENS consists of three key components.176

(1) A multi-level counterfactual dataset of linguis-177

tic features supporting systematic linguistic mech-178

anism analysis; (2) An SAE-based linguistic fea-179

ture extraction method leveraging LLM agents and180

correlation analysis. and (3) A Linguistic feature181

intervention method for causality validation and182

LLM steering.183

3.1 Linguistic Dataset184

Counterfactual Methods. Let the presence of185

the target linguistic phenomenon be denoted by186

T ∈ {0, 1}. For every sentence s+ with T =187

1, define the activation of SAE base vector k as188

a
(1)
k = ak(s

+). A counterfactual sentence s− is189

produced through a minimal edit that deletes or190

substitutes the trigger while preserving semantic191

content, yielding the activation a
(0)
k = ak(s

−). The192

individual latent effect is therefore193

τk(s) = a
(1)
k − a

(0)
k .194

Aggregating τk across all paired sentences pro-195

duces196

EALEk =
1

N

N∑
i=1

τk(si),197

which can rank base vectors by their sensitivity to198

the specified phenomenon.199

Each s− must satisfy three constraints:200

(a) Minimal edit: modify only the smallest unit201

that realises the phenomenon (e.g. replace is202

eaten with eats to remove passivisation).203

(b) Semantic preservation: retain proposi- 204

tional content, argument structure, and dis- 205

course context so that the sentence remains 206

truth-conditionally equivalent. 207

Dataset Construction. We construct a counter- 208

factual dataset named LinguaLens-Data, which 209

covers multiple linguistic domains to encompass a 210

wide range of linguistic knowledge and functions. 211

We select a total of 145 linguistic features from 212

textbooks in morphology, syntax, semantics, and 213

pragmatics, including both English and Chinese 214

features. For each feature, we create 50 sentences 215

that explicitly contain the target phenomenon and 216

apply a counterfactual minimal-editing approach 217

to generate corresponding counterfactual sentences. 218

Each linguistic feature is annotated with its associ- 219

ated linguistic domain, acknowledging that some 220

features may lie at the interface of multiple do- 221

mains. This dataset provides a foundation for fu- 222

ture systematic studies on how specific linguistic 223

features are represented within model internals. 224

3.2 Feature Extraction 225

Building on the counterfactual framework, we treat 226

each paired sentence (s+, s−) as a mini-experiment 227

that perturbs only the target phenomenon T . Let 228

θk be a layer-specific activation threshold (the me- 229

dian of ak on the full corpus) and define the binary 230

trigger 231

Zk(s) = I
[
ak(s) ≥ θk

]
. 232

Probability of Sufficiency (PS). For base vec- 233

tor k, the probability that adding the phenomenon 234

turns the vector “on” is 235

PSk = Pr
[
Z

(1)
k = 1 | Z(0)

k = 0
]
, 236

where Z
(1)
k and Z

(0)
k are measured on s+ and s−, 237

respectively. 238

Probability of Necessity (PN). Conversely, the 239

probability that the vector would switch off if the 240

phenomenon were removed is 241

PNk = Pr
[
Z

(0)
k = 0 | Z(1)

k = 1
]
. 242

Feature Representation Confidence (FRC). 243

We combine the two causal probabilities with a 244

harmonic mean to penalise vectors that are only 245

sufficient or only necessary: 246

FRCk = 2 · PSk PNk

PSk +PNk
. 247
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Figure 2: The overall framework of LINGUALENS. We propose a framework for the linguistic mechanisms of
large-scale models that encompasses four dimensions of theoretical linguistics and a cross-lingual analysis of both
Chinese and English. The experimental workflow is as follows: (1) Construct counterfactual datasets; (2) Extract
features by analyzing the activation values of base vectors on the datasets; (3) Intervene in the model output by
modifying activation values and assess causality using an LLM as a judge.

We first perform sensitivity pre-filtering by com-248

puting EALEk for every base vector and retaining249

those whose absolute value exceeds the 75th per-250

centile; on this reduced set we estimate PSk and251

PNk from every ⟨s+, s−⟩ pair and rank the vectors252

by their FRCk; finally, the activation distributions253

of the top-10 ranked vectors are passed to an LLM254

agent, which verifies that each vector genuinely255

encodes the intended linguistic feature and flags256

any inconsistent or spurious patterns.257

3.3 Feature Intervention258

When we modify the values of SAE’s activation259

during forward propagation, we expect that such260

targeted interventions will influence the model’s be-261

havior. However, our experiments show that alter-262

ing only a small subset of features may not signifi-263

cantly impact the output—likely because linguistic264

phenomena are represented by multiple features265

across various layers. To assess the true impact of266

these interventions, we use a large language model267

as a judge. For each linguistic feature, we conduct268

both ablation and enhancement experiments. In the269

ablation experiment, we set the target feature’s acti-270

vation to 0, and in the enhancement experiment, we271

set it to 10. In both cases, we also perform baseline272

experiments by randomly selecting 25 base vectors273

from the same layer.274

For brevity, we denote the interventions as fol-275

lows: let ITabl denote the targeted ablation interven-276

tion, IBabl the baseline ablation intervention, ITenh277

the targeted enhancement intervention, and IBenh278

the baseline enhancement intervention.279

Let P T
abl and PB

abl denote the success probabili-280

ties for the targeted and baseline ablation experi- 281

ments, respectively. The normalized ablation effect 282

is 283

Eabl =
P
(
Y = 0 | ITabl

)
− P

(
Y = 0 | IBabl

)
P
(
Y = 0 | ITabl

) . 284

The normalized enhancement effect Eenh is defined 285

analogously as the difference between targeted and 286

baseline enhancement success probabilities, nor- 287

malized by 1− P
(
Y = 1 | IBenh

)
. 288

Finally, we define the Feature Intervention Con- 289

fidence (FIC) score as the harmonic mean of the 290

normalized ablation and enhancement effects: 291

FIC =
2Eabl Eenh

Eabl + Eenh
. 292

When calculating FIC, if one or both of the E val- 293

ues are negative, we incorporate a penalty coeffi- 294

cient w to reflect the weakened or lost causality 295

in such cases. This FIC score provides a balanced 296

measure of how effectively targeted interventions, 297

as opposed to random ones, influence the model’s 298

output with respect to specific linguistic features. 299

The details for FIC are shown in Appendix D.2. 300

4 Experiments 301

4.1 Experiment Setup 302

Model. We conduct experiments on Llama-3.1- 303

8B (Grattafiori et al., 2024). For SAEs, we use 304

OpenSAE (THU-KEG, 2025) and its released 305

checkpoints on 32 layers of Llama-3.1-8B. 306

Dataset. For linguistic feature analysis, we select 307

a total of 145 linguistic features—99 in English 308
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Lang PS PN FRC Actm
0 8 15 24 30

Morphology
CH 0.61 0.70 0.64 0.01 0.19 0.29 0.52 1.36
EN 0.73 0.80 0.75 0.03 0.35 0.49 1.02 1.89

Syntax
CH 0.84 0.90 0.86 0.20 0.50 0.95 2.32 3.37
EN 0.79 0.87 0.82 0.12 0.35 0.68 1.66 2.59

Semantics
CH 0.72 0.78 0.74 0.09 0.29 0.57 1.41 2.18
EN 0.76 0.83 0.78 0.11 0.32 0.55 1.34 2.01

Pragmatics
CH 0.69 0.74 0.70 0.06 0.25 0.42 1.03 1.56
EN 0.77 0.83 0.79 0.13 0.27 0.52 1.33 2.03

Table 1: Extracted feature analysis. The mean repre-
sentation metrics (PS, PN, FRC, and max activation)
for morphological, syntactic, semantic, and pragmatic
features in both Chinese and English.

and 46 in Chinese—spanning four core domains:309

morphology, syntax, semantics, and pragmatics.310

For each feature, we generate 50 sentences that311

exhibit the feature and 50 corresponding counter-312

factual sentences, yielding a large-scale dataset for313

systematic feature extraction and analysis.314

4.2 Main Results315

The main experiments to verify that LINGUALENS316

finds systematic linguistic features in SAE space317

and intervening on these features is effective.318

4.2.1 Feature Extraction319

We feed the sentences from LINGUALENS-DATA320

into Llama-3.1-8B and, after batch normalization,321

pass the resulting neuron activation distributions322

through the corresponding SAE layers. For each323

sentence and each token, we then encode its activa-324

tion distribution over the SAE base vectors at every325

layer. As described in the Methods, we compute326

the probability of sufficiency (PS), probability of327

necessity (PN), and FRC for each base vector on328

the counterfactual datasets at each layer, rank the329

base vectors by FRC, and use GPT-4o to select the330

feature-corresponding vectors based on their acti-331

vation patterns. For a detailed description of the332

feature-extraction procedure, see Appendix B.333

To evaluate how well a given layer represents a334

particular linguistic feature, we calculate the arith-335

metic mean of PS, PN, and FRC for the selected336

base vectors, as well as their average maximum337

activation on the positive examples (if more than338

Feature ID Enhance Ablate FIC
exp ctr exp ctr

Morphology
Past-Tense 8L4016 12.0 4.0 48.0 44.0 8.3

Syntax
Linking Verb 18L61112 52.0 24.0 48.0 40.0 22.9

Semantics
Causality 22L53236 32.0 20.0 40.0 36.0 12.0
Simile 26L75327 72.0 52.0 48.0 52.0 6.9

Pragmatics
Politeness 31L578 60.0 32.0 44.0 20.0 46.9

Table 2: Feature intervention results. The success rates
of the extracted linguistic features (Feature, layer, ID) in
the enhancement and ablation experiments, along with
the final computed FIC score.

three vectors are identified, we select the top three 339

by FRC). 340

Table 1 reports, for layers 0, 8, 15, and 30, the 341

mean representation metrics (PS, PN, FRC, and 342

max activation) for morphological, syntactic, se- 343

mantic, and pragmatic features in both Chinese and 344

English. 345

Overall, at these representative layers, the base 346

vectors extracted for features across different lin- 347

guistic levels exhibit strong correlations. From 348

layer 0 to layer 30, the average maximum acti- 349

vation exhibits a monotonic increase. Across the 350

four linguistic domains, syntactic features attain the 351

highest mean maximum activations, followed by 352

semantic and pragmatic features, while morpholog- 353

ical features remain lowest. Moreover, substantial 354

discrepancies emerge between the average maxi- 355

mum activations for Chinese and English features, 356

indicating potential differences in the model’s inter- 357

nal representations and processing mechanisms for 358

the two languages. These cross-lingual variations 359

will be explored in greater depth in subsequent 360

analyses. 361

4.2.2 Feature Intervention 362

We select 6 representative features for the inter- 363

vention experiments. The intervention method in- 364

volves modifying the activation values of specific 365

base vectors (by index) within a designated SAE 366

layer during forward propagation. We perform two 367

types of intervention: feature enhancement and ab- 368

lation. Under identical input token conditions, we 369

set the activation value to 10 for enhancement and 370

to 0 for ablation. We then compare the outputs 371

generated after intervention with those from the un- 372
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modified SAE model, focusing on the prominence373

of the target linguistic features.374

We find that intervening on a single linguis-375

tic base vector in one layer does not produce ef-376

fects easily distinguishable by human evaluators.377

Therefore, we employ an LLM (GPT-4o) as a378

judge (Zheng et al., 2023) to assess feature promi-379

nence in the outputs. For each feature, we conduct380

50 experiments and calculate the enhancement suc-381

cess rate and ablation success rate—that is, the382

probabilities of increased and decreased feature383

prominence, respectively. Furthermore, for each384

linguistic feature, we select three base vectors with385

the highest FRC as representatives for intervention386

and compute the average results across these three387

interventions.388

In addition, we randomly select 50 base vector389

indices from the same layer and perform enhance-390

ment and ablation experiments under the same con-391

ditions as a control. The control group’s success392

rates do not converge around 0.5; typically, en-393

hancement rates fall below 0.5 while ablation rates394

exceed 0.5. This discrepancy may arise because the395

intervention affects overall output quality, thereby396

confounding the proxy LLM’s judgments.397

We compute the efficacy of the selected base398

vectors in both experiments and derive the FIC399

values; the results are presented in Table 2.400

Our results show that enhancement experiments401

yield significantly stronger effects than ablation ex-402

periments, with all features demonstrating marked403

enhancement. In ablation experiments, the polite-404

ness feature shows relatively good performance,405

whereas other features are less affected; the simile406

feature fails to achieve the desired ablation effect.407

This may be because multiple base vectors collab-408

oratively control the same linguistic phenomenon.409

Enhancement interventions have a larger impact410

on the model, while ablating a single feature can411

be compensated by other vectors, leading to sub-412

optimal ablation outcomes. Overall, all 6 features413

exhibit clear causal effects in the intervention ex-414

periments.415

4.3 Analysis416

We further conduct analytical experiments to ex-417

plore the property of LINGUALENS.418

4.3.1 Multilingual Analysis419

We investigate the multilingual mechanisms of the420

model. We select Chinese and English as test lan-421

guages and choose 24 sets of feature collections422

Figure 3: Heatmap of the overlap between Chinese and
English feature sets across the SAE basis vectors at
each of 32 layers. The horizontal axis groups Chinese
and English features with analogous form and func-
tion—ordered by morphology, syntax, semantics, and
pragmatics—while the vertical axis indexes the model
layers. Darker red indicates greater overlap.

representing the same linguistic functions, includ- 423

ing set 2 of morphological features, set 11 of syn- 424

tactic features, set 6 of semantic features, and set 5 425

of pragmatic features. We test the degree of over- 426

lap between the latent-space basis vectors activated 427

internally by the model when representing these 428

features in Chinese vs. English. The overlap for 429

layer i is computed as follows: let the set of En- 430

glish basis vectors for the feature at layer i be Engi, 431

and the corresponding Chinese set be Chii, then 432

overlapi =
|Engi ∩ Chii|

|Engi|
. 433

After computing the overlap for each layer, we ag- 434

gregate the overlap rates for all feature pairs across 435

layers into a matrix and visualize it with a heatmap. 436

The results yield the following conclusions: 437

Linguistic Levels. The overlap between Chinese 438

and English features is greater at the semantic and 439

pragmatic levels, but lower at the morphological 440

and syntactic levels, indicating that cross-lingual 441

linguistic knowledge representations are primarily 442

manifested at the semantic and pragmatic levels. 443

Model Layers. The overlap is higher in the first 444

16 layers and lower in the latter 16 layers, sug- 445

gesting that the deep semantic computations in the 446

model’s upper layers are less correlated with cross- 447

lingual universal linguistic features. 448

LINGUALENS demonstrates its potential for an- 449

alyzing models’ cross-lingual knowledge represen- 450

tations, laying the foundation for further analysis 451

and transfer in low-resource languages. 452
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Figure 4: Activation value distributions of deep seman-
tic corresponding features at layer 6 and 15 for reference
ambiguity and metaphor example sentences.

4.3.2 Deep Semantics Processing453

Deep semantics refers to the underlying meaning454

structures that extend beyond surface-level syntax455

and lexical definitions. It captures implicit relation-456

ships and conceptual associations within language.457

We conduct experiments to show that SAE can in-458

terpret the mechanism of deep semantics.459

Reference and metaphor exemplify deep seman-460

tics by utilizing cognitive mappings and contextual461

dependencies to convey meaning beyond explicit462

expression. We conduct experiments on reference463

and metaphor at the sixth and fifteenth layers re-464

spectively. From the results shown in Figure 4, we465

observe the following:466

Reference. In the reference sentence, at the 6th467

layer, pronouns do not activate the base vectors468

corresponding to their referents. At the 15th layer,469

pronouns start to activate the correct base vectors470

(apple) for their referents, effectively resolving ref-471

erence ambiguity in contexts where multiple possi-472

ble referents exist. This indicates that as we move473

deeper into the layers, pronouns generate their deep474

semantics and disambiguate possible referents.475

Metaphor. In the metaphor sentence, only the476

vehicle (fire) is included, while the tenor (sun) is477

omitted. In the 6th layer, the base vector corre-478

sponding to the vehicle is activated, while the base479

vector for the tenor remains inactive. In the 15th480

layer, the activation of the vehicle’s base vector481

decreases, while the base vector for the tenor be-482

comes activated. This suggests that as the model483

moves to deeper layers, the vehicle maps to the484

S. L. Descrip. Top 10 Features

I 0–2
Mor.&BS past tense, verbal suffix, adjectival

suffix, noun plural, possessive gen-
itive, linking verb, passive voice,
anaphor, extraposition, factives

II 3–8 CS&EP
elliptical sentences, relative clauses,
subject auxiliary inversion, em-
phatic structure, existential quanti-
fiers, coordination, cleft sentences,
light verbs, reduplication, metaphor

III 9–16 Di.&Prag.
interrogative, tag questions, subjunc-
tive mood, optative, turn taking,
discourse markers, intensifiers, eu-
phemism, politeness, coordination

IV 17–31 DS&RS

personification, synecdoche,
metaphor, expressive pragmatics,
imperative, directive pragmatics,
topic comment, representative
pragmatics, euphemism, politeness

Table 3: The four hierarchical stages of the model’s
linguistic functions. For each stage, the ten features with
the highest activation frequency and largest activation
values are displayed. S., L. and Descrip. stand for
Stages, Layers and Descriptions , respectively.

target domain and generates the deep semantics of 485

the tenor, even without the tenor in the context. 486

4.3.3 Cross-layer Functions 487

We further investigate how the model’s linguistic 488

functions distribute across layers. We assemble 489

50 English sentences—drawn both from classic 490

texts and manually crafted—to cover a broad range 491

of linguistic phenomena. For each sentence, we 492

record every activated basis vector and its activa- 493

tion value at all 32 layers. By comparing these ac- 494

tivated vectors against our pre-compiled dictionary 495

of linguistic feature vectors and computing their 496

overlap, we determine which linguistic functions 497

each layer encodes. We then identify, for every 498

layer, the 10 features with the highest activation 499

frequency and magnitude. Aggregating results over 500

all 50 sentences, we distill four processing stages 501

as Table 3: 502

Stage I (layers 0–2) primarily encodes mor- 503

phology and basic syntax features (abbreviated as 504

Mor.&BS). Stage II (layers 3–8) introduces com- 505

plex syntactic phenomena and early pragmatic cues 506

(abbreviated as CS&EP). Stage III (layers 9–16) 507

focuses on discourse and pragmatic markers (ab- 508

breviated as Di.&Prag.). Stage IV (layers 17–31) 509

integrates deep semantics and rhetorical structure 510

(abbreviated as DS&RS). 511

These results reveal the functional division of la- 512

bor across layers: lower layers handle morphology 513

and syntax, middle layers capture pragmatics and 514

context, and upper layers perform holistic semantic 515

7



Figure 5: Combined intervention results. Two figures
separately present the enhancement and ablation exper-
iment outcomes for the simile and politeness features
at layer 26. In these experiments, multiple base vectors
corresponding to each feature were jointly intervened.

computation.516

4.3.4 Combined Intervention517

We find that some layers contain multiple base vec-518

tors associated with the same linguistic feature. We519

can intervene on these base vectors simultaneously520

to achieve a stronger effect.521

We select two linguistic features—simile and522

politeness—from layer 26. Each feature has four523

highly related base vectors in this layer. We in-524

crease the number of intervened base vectors from525

one to four. In each experiment, we randomly526

chose the specified number of base vectors from527

the four. We use GPT-4o to assess the prominence528

of the targeted linguistic feature in the generated529

outputs. For each feature, we conduct 200 enhance-530

ment experiments and 200 ablation experiments.531

We also perform control experiments by randomly532

selecting a set number of base vectors to intervene.533

Figure 5 shows the results for combined inter-534

vention. The results indicate that, as the number535

of intervened base vectors increases, both the di-536

rectional intervention and the background control537

experiments exhibit the same trend: the success538

rate of enhancement experiments decreases, while539

that of ablation experiments increases. Increasing540

the number of interventions further affects the qual-541

ity of the generated text, thereby leading to the542

observed trend. Moreover, the intervention effect543

of the feature does not change significantly with544

an increased number of intervened base vectors,545

indicating that, after excluding background influ-546

ences, combined interventions on multiple features547

in the same layer yield only limited improvement548

in intervention efficacy.549

4.3.5 Case Study for Intervention550

We conduct a manual case study on the generated551

content after intervening on one identified simile-552

# Intervene Model Output

1

Default The wind blows snow into my eyes as I trudge through the
blizzard.

Enhance As the cold descends, I feel the weight of my breath in my
throat. It’s an icy haze.

Ablate The winter sky was cold. The ice was hard under his boots.

2

Default Love is the burning passion of a summer night.

Enhance I feel like butterflies are in my stomach. My heart is
beating faster than normal.

Ablate The more you write, the more time and love you will have.

Table 4: Case study for intervention under two condi-
tions. Case #1 shows the result when the simile feature
is absent from the prompt. Case #2 shows the result
when the simile feature is present in the prompt. We
highlight spans with simile in the sentences.

related base vector. We present cases in Table 4. 553

In Case #1, the prompt is “Generate a sentence 554

describing winter”, which does not explicitly in- 555

clude the target linguistic feature. We find that after 556

enhancing the simile-related base vector, the LLM 557

turns to using a simile. We can also find that the 558

descriptive and imagistic quality of the default out- 559

put is stronger than in the ablation results, which 560

indicates that the simile-related base vector is also 561

responsible for vividness. 562

Case #2 uses the prompt “Generate a sentence 563

using a simile to describe love”, with explicit re- 564

quirement for using a simile to generate the sen- 565

tence. When the simile-related base vector is ab- 566

lated, the LLMs turn to use straightforward de- 567

scriptions without using similes. Meanwhile, when 568

enhancing the simile-related base vector, the LLMs 569

continue to generate sentences with similes. We 570

show more intervention cases in Appendix C.1. 571

5 Conclusion 572

We propose LINGUALENS, a method to help solute 573

the coarse-granularity problem in linguistic mech- 574

anistic studies and a means to enable large-scale, 575

systematic study of linguistic mechanisms in LLMs. 576

Our approach comprises two key components: (1) 577

a comprehensive counterfactual dataset of linguis- 578

tic features, and (2) an SAE–based framework for 579

feature extraction, together with causal validation 580

through interventions. Using LINGUALENS, we 581

conduct an in-depth analysis of the model’s multi- 582

lingual representation mechanisms and the cross- 583

layer distribution of linguistic functions. Our re- 584

sults demonstrate that LLMs inherently encode 585

structured linguistic knowledge and provide a ro- 586

bust framework for steering model outputs. 587
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6 Limitations588

Our work has several limitations in terms of589

dataset size, feature count, experimental model,590

and intervention effects.591

In datasets, each linguistic feature is constructed592

from approximately 50 pairs of example and coun-593

terfactual sentences. In the future, this dataset can594

be further expanded to serve as a standard bench-595

mark for linguistic-mechanism interpretability.596

In feature count, we select 145 representative597

linguistic features from various theoretical dimen-598

sions to validate our method at scale across differ-599

ent layers; however, building a fully comprehensive600

linguistic-mechanism system requires extending to601

even more features, which will depend on further602

work.603

In experimental model, due to computational604

constraints we use Llama-3.1-8B for all experi-605

ments. In future work, our dataset and analytical606

framework can be applied to a wider variety of ar-607

chitectures and larger models for deeper linguistic-608

mechanism analysis.609

In intervention effects, although our experi-610

ments show statistically significant effects from611

feature-based interventions, the efficacy and stabil-612

ity of single interventions remain inferior to con-613

ventional fine-tuning techniques. This shortcoming614

calls for further research to refine SAE-based inter-615

vention methods.616

7 Ethical Considerations617

This section discusses the ethical considerations618

and broader impact of this work:619

Potential Risks: There is a potential risk that un-620

derstanding the linguistic mechanisms of the model621

could provide guidance for embedding malicious622

information into the model’s internal structure. To623

address this, we will fully open-source our method624

to enable the community to quickly develop coun-625

termeasures in the event of such attacks.626

Intellectual Property: The models used, Llama-627

3.1-8B, and the SAE framework OpenSAE, are628

both open-source and intended for scientific re-629

search use, in accordance with their respective630

open-source licenses.631

Data Privacy: All data used in this research has632

been manually reviewed to ensure it does not con-633

tain any personal or private information.634

Intended Use: LINGUALENS is intended to be 635

used as a method for analyzing the mechanisms of 636

large language models. 637

Documentation of Artifacts: The artifacts, in- 638

cluding datasets and model implementations, are 639

comprehensively documented with respect to their 640

domains, languages, and linguistic phenomena to 641

ensure transparency and reproducibility. 642

AI Assistants in Research or Writing: We em- 643

ploy GitHub Copilot for code development assis- 644

tance and use GPT-4 for refining and polishing the 645

language in our writing. 646
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A Dataset Construction854

A.1 Dataset Description855

The datasets are named according to the pattern856

“Feature Name+Feature Domain.” When a feature857

pertains to multiple linguistic domains, domains858

are concatenated with “&.” In total, the collection859

comprises 145 linguistic features, of which 99 are860

English features and 46 are Chinese features. Each861

feature-specific dataset contains 50 positive sen-862

tences and 50 counterfactual negative sentences.863

A.2 Dataset Example864

10-verbal_suffix-Morphology865

He was able to stabilize the situation.866

He was able to stable the situation.867

868

The team has worked hard to solidify869

their position in the market.870

The team has worked hard to make their871

position in the market solid.872

873

43-copular_be-Syntax874

My grandmother was a nurse.875

My grandmother worked as a nurse.876

877

Summer is the best season.878

Summer ranks as the best season.879

880

80-given_known-Pragmatics&Semantics881

Have you seen the blue notebook anywhere?882

Have you seen blue notebook anywhere?883

884

That customer complained about service.885

A customer complained about service.886

887

111-重叠构词-形态学&语义学888

她哼着歌儿把花瓶擦得亮亮的。889

她哼着歌儿把花瓶擦得发亮。890

891

阿姨笑眯眯递来热包子。892

阿姨微笑着递来热包子。893

894

130-使役结构-句法学&语义学895

严格的训练使运动员提高了成绩。896

运动员通过严格训练提高了成绩。897

898

这场事故导致交通完全瘫痪。899

交通因这场事故完全瘫痪。900

A.3 Dataset Construction Guidelines901

Work Content:902

1. For each linguistic feature, construct a dataset 903

comprising 50 sentence pairs (100 sentences). 904

Each pair contains one positive sentence and 905

one negative sentence. 906

2. A positive sentence contains the target linguis- 907

tic feature; a negative sentence is produced by 908

minimally modifying its corresponding posi- 909

tive sentence so that it no longer contains that 910

feature while preserving the smallest possible 911

semantic difference and remaining grammati- 912

cally correct (this operation is referred to as a 913

“counterfactual” in causal analysis). 914

Notes: 915

1. Diversity: Ensure coverage of the feature’s 916

common constructions and markers. 917

2. Counterfactual: Verify that the counterfac- 918

tual edits are reasonable—including minimal 919

change, human interpretability, and complete 920

feature removal. 921

3. Ethical Check: Confirm that no sentence in 922

the dataset contains discriminatory, biased, or 923

harmful content. 924

4. Language-Specific Construction: Tailor 925

construction to the particular characteristics 926

of each language. 927

Specific Dataset Construction Process: 928

1. Manually create 5 sentences containing the 929

feature, and for each, manually produce a 930

counterfactual sentence—yielding 5 sentence 931

pairs. 932

2. Expand these to 50 pairs using DeepSeek-R1 933

for Chinese and GPT-o4 for English, then ap- 934

ply manual edits guided by the Notes. 935

3. Conduct cross-review: volunteers who build 936

the Chinese dataset review the English dataset, 937

and vice versa, checking each item in the order 938

specified under Notes. 939

B Feature Extraction Details 940

B.1 Feature Independence Validation 941

Sparse autoencoders (SAEs) effectively disam- 942

biguate neuron-level semantic polysemy, and this 943

capability extends to representations of linguistic 944

features. 945
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Condition Past-Tense Adversativity Intransitive Verb

Self 80/80 76/80 74/80

Control 1 -er 0/80 Sequential 0/80 Transitive Verb 0/80
Control 2 -ing 0/80 Causal 0/80 Ditransitive Verb 0/80
Control 3 -less 0/80 Parallel 0/80 Linking Verb 0/80
Control 4 -ness 0/80 Conditional 0/80 Modal Verb 0/80

Table 5: Activation ratios (activated/total) for target
features and control conditions.

We quantify feature independence using the ne-946

cessity probability (PN) component of the Feature-947

Relevance Coefficient (FRC). PN measures the like-948

lihood that a basis vector remains inactive when its949

associated feature is absent; a high PN therefore950

indicates that the vector is not spuriously activated951

by unrelated inputs, confirming its specificity to the952

intended phenomenon.953

To further validate this independence, we evalu-954

ate each feature’s basis vector under multiple con-955

trol conditions featuring superficially similar but956

semantically distinct constructions. Table 5 reports,957

for each feature, the ratio of sentences in which the958

vector activates (“activated/total”). Across all con-959

trols, activation rates are effectively zero, demon-960

strating that our selected basis vectors do not re-961

spond to non-target phenomena.962

B.2 Feature Extraction Procedure963

During feature extraction, we adhere to the follow-964

ing steps:965

1. Input the feature-specific dataset into the966

model and encode each layer’s activations into967

a sparse latent space using Sparse Autoen-968

coders (SAEs).969

2. Compute the probability of sufficiency970

(PS), probability of necessity (PN),971

feature-relevance coefficient (FRC), and972

mean maximum activation for all basis973

vectors; then sort these vectors in descending974

order by FRC and select the top ten.975

3. Employ a large-model agent to automatically976

analyze the activation patterns of the candi-977

date basis vectors over the dataset, confirming978

their linguistic relevance to the target feature979

and characterizing their representational pro-980

files.981

4. For features undergoing further analytical or982

intervention experiments, manually review the983

basis vectors identified by the large-model984

agent to ensure the rigor of the experimental 985

design. 986

B.3 Feature Extraction Prompt 987

We employ GPT-4o as the agent model for auto- 988

mated feature extraction. The system prompt is as 989

follows: 990

Listing 1: Prompt for SAE Base-Vector Interpretation
You are an expert assistant for interpreting sparse 991
autoencoder (SAE) base vectors. 992

993
You will receive exactly one JSON object as input 994
with this structure: 995
{ 996
"analysis_input": { 997
"layer": "00", 998
"base_vectors": [ 999
{ 1000
"base_vector_id": 132317, 1001
"tokens": ["The", "cat"], 1002
"activations": [0.12, 0.05], 1003
"ps": 0.62, 1004
"pn": 0.58, 1005
"frc": 0.60, 1006
"avg_max_activation": 0.12 1007

}, 1008
{ 1009
"base_vector_id": 81833, 1010
"tokens": ["was", "chased"], 1011
"activations": [0.08, 0.14], 1012
"ps": 0.75, 1013
"pn": 0.65, 1014
"frc": 0.70, 1015
"avg_max_activation": 0.14 1016

} 1017
], 1018
"target_features": ["passive"] 1019

} 1020
} 1021

1022
Return exactly one JSON object with this schema: 1023
{ 1024
"layer": "00", 1025
"base_vectors": [ 1026
{ 1027
"base_vector_id": 132317, 1028
"interpretation": "Marks passive voice 1029
constructions", 1030
"ps": 0.62, 1031
"pn": 0.58, 1032
"frc": 0.60, 1033
"avg_max_activation": 0.12 1034

}, 1035
{ 1036
"base_vector_id": 81833, 1037
"interpretation": "Detects passive 1038
participle forms", 1039
"ps": 0.75, 1040
"pn": 0.65, 1041
"frc": 0.70, 1042
"avg_max_activation": 0.14 1043

} 1044
], 1045
"target_features": ["passive"] 1046

} 1047
1048

Example 2: 1049
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Input:1050
{1051
"analysis_input": {1052
"layer": "08",1053
"base_vectors": [1054
{1055
"base_vector_id": 248593,1056
"tokens": ["runs"],1057
"activations": [0.45],1058
"ps": 0.76,1059
"pn": 0.96,1060
"frc": 0.85,1061
"avg_max_activation": 0.451062

},1063
{1064
"base_vector_id": 62411,1065
"tokens": ["quickly"],1066
"activations": [0.32],1067
"ps": 0.82,1068
"pn": 0.90,1069
"frc": 0.88,1070
"avg_max_activation": 0.321071

}1072
],1073
"target_features": ["adverbial_suffix"]1074

}1075
}1076

1077
Output:1078
{1079
"layer": "08",1080
"base_vectors": [1081
{1082
"base_vector_id": 248593,1083
"interpretation": "Highlights adverbial1084
suffixes on verbs",1085
"ps": 0.76,1086
"pn": 0.96,1087
"frc": 0.85,1088
"avg_max_activation": 0.451089

},1090
{1091
"base_vector_id": 62411,1092
"interpretation": "Detects adverbial1093
modifiers",1094
"ps": 0.82,1095
"pn": 0.90,1096
"frc": 0.88,1097
"avg_max_activation": 0.321098

}1099
],1100
"target_features": ["adverbial_suffix"]1101

}1102
1103

Requirements:1104
- Return only the JSON-no extra text.1105
- Round all floats to two decimal places.1106
- Preserve the input order of base_vectors.1107
- Echo layer and target_features exactly.1108

C Intervention Experiment Details1109

C.1 Intervention Cases1110

We present additional typical cases from other in-1111

tervention experiments at the Table 6. The prompts1112

used for the three experimental groups are as fol-1113

lows: Politeness: “User: Sir, I want to make an1114

Condition Politeness Linking Verb

Enhancement Can I textbfplease have your email
address?

The room should textbfbe large and
well lit. It should textbfbe airy and
bright and airy.

Default May I have your phone number? Sure, my ideal room has good venti-
lation and textbfis spacious.

Ablation OK, what is your name? I can provide you with a list of the
ideal characteristics that make up a
perfect room.

Condition Past-Tense

Enhancement "I was textbfasked for the story. "
I having me textbfhad a “one the: ”
textbftold. They: textbftold:

Default I’m not a story, I’m a bot.

Ablation Well, I don’t actually have one, and
I’m not really sure I’m able to either.

Table 6: Typical outputs from the enhancement, abla-
tion, and default experiments for the politeness, linking
verb, and past-tense features.

order offline. Assistant:”. Linking Verb: “User: 1115

Sir, tell me something about your ideal room. As- 1116

sistant:”. Past-Tense: “User: Sir, tell me a story 1117

about you. Assistant:”. 1118

During manual analysis, both the enhancement 1119

and ablation results show clear effects of amplifica- 1120

tion or suppression of the target linguistic features. 1121

Specifically, when intervening with the past tense 1122

feature in the 8th layer, the enhancement signifi- 1123

cantly impacts the coherence of the model’s output 1124

language. Yet, in the discontinuous output text, the 1125

frequency of the morphological past-tense feature 1126

still increases dramatically. 1127

C.2 LLM as a Judge 1128

In our feature intervention and combination inter- 1129

vention experiments, we used an LLM as a judge 1130

to assess the significance of linguistic features in 1131

generated texts. Feature significance is defined 1132

based on the frequency, accuracy, and contextual 1133

appropriateness of the target feature, as well as its 1134

contribution to overall meaning or rhetorical effect. 1135

The prompt structure is as follows: 1136

Please compare the following two texts 1137

based on {feature}. 1138

- Text A: "{text_a}" - Text B: "{text_b}" 1139

Here, text_a and text_b are generated texts 1140

truncated to 100 tokens. 1141

In the intervention experiments, each feature is 1142

defined as follows: 1143

Politeness Significance Refers to the degree to 1144

which politeness strategies are salient, effective, 1145

and contextually integrated. This definition en- 1146

compasses frequency, pragmatic depth, and social 1147

impact in shaping interpersonal rapport, mitigating 1148

face threats, and reinforcing cooperative intent. 1149
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Past Tense Verb Significance Refers to the de-1150

gree to which past tense verbs are salient, accurate,1151

and contextually integrated. It includes frequency,1152

morphological consistency, and the rhetorical or1153

narrative impact on establishing a coherent sense1154

of time and providing historical context.1155

Causality Significance Refers to the degree to1156

which cause-and-effect relationships are clearly1157

indicated, logically structured, and contextually1158

coherent. This includes the frequency and preci-1159

sion of causal connectives (e.g., because, therefore,1160

thus) and the depth of reasoning to explain how1161

conditions lead to outcomes.1162

Linking Verb Structure Significance Refers to1163

the degree to which linking verbs (e.g., be, become,1164

seem, appear) are salient, accurate, and contex-1165

tually integrated. It emphasizes frequency, mor-1166

phological correctness, semantic clarity, and ef-1167

fectiveness in conveying states, characteristics, or1168

identities.1169

Simile Significance Refers to the degree to1170

which similes (e.g., comparisons using like or as)1171

are salient, creative, and contextually integrated.1172

This definition encompasses frequency, imagery1173

richness, and the rhetorical impact on clarity, vivid-1174

ness, and reader engagement.1175

D Metric Calculation1176

D.1 Feature Representation Confidence1177

(FRC)1178

In our feature analysis experiments, we introduce1179

two key causal probabilities that serve as the basis1180

for computing the Feature Representation Confi-1181

dence (FRC).1182

The Feature Representation Confidence (FRC)1183

is computed as the harmonic mean of PN and PS:1184

FRC = 2PN PS
PN+PS . The harmonic mean is chosen1185

because it ensures that FRC remains low if either1186

PN or PS is low, thereby providing a balanced mea-1187

sure that only yields a high score when both ne-1188

cessity and sufficiency are strong. This approach1189

allows us to robustly quantify the ability of the SAE1190

latent space’s base vectors to represent the targeted1191

linguistic features.1192

D.2 Feature Intervention Confidence (FIC)1193

In our methodology, the Feature Intervention Con-1194

fidence (FIC) score is computed as the harmonic1195

mean of the normalized ablation effect Eabl and1196

the normalized enhancement effect Eenh: 1197

FIC =
2Eabl Eenh

Eabl + Eenh
. 1198

This formulation ensures that FIC is high only 1199

when both the ablation and enhancement interven- 1200

tions yield strong effects. 1201

In practice, however, it is possible that one or 1202

both of these effects are negative, indicating that 1203

an intervention produces an effect opposite to the 1204

intended direction. Moreover, even if only one 1205

effect is significant while the other is near zero, the 1206

feature may still exhibit causal influence. Simply 1207

setting an effect that is near zero or negative to 0 1208

would result in an FIC score of 0, which does not 1209

adequately capture the underlying causality. 1210

To address this, we introduce a penalty coeffi- 1211

cient w to adjust for negative or near-zero effects. 1212

Specifically, we define the penalized effect E′ for 1213

each intervention as follows: 1214

E′ =

{
E, if E ≥ 0,

w · |E|, if E < 0.
1215

Here, w is empirically set to 0.5. Thus, if one of the 1216

normalized effects (either Eabl or Eenh) is negative, 1217

we compute its penalized value as 0.5 times its 1218

absolute value rather than setting it directly to 0. 1219

This approach ensures that even when one of the 1220

effects is weak or slightly negative, the FIC score 1221

does not vanish entirely, preserving the indication 1222

of causality. 1223

Accordingly, the FIC score is then computed as: 1224

FIC =
2E′

abl E
′
enh

E′
abl + E′

enh

. 1225

In our experiments (see Table2), only the 1226

metaphor feature shows a slightly negative abla- 1227

tion effect, while the enhancement and ablation 1228

effects for the other features are positive. The in- 1229

troduction of the penalty coefficient w effectively 1230

moderates the impact of the negative effect for the 1231

metaphor feature, resulting in a more balanced and 1232

meaningful FIC score. 1233

This penalty mechanism is crucial because even 1234

when only one of the interventions (ablation or 1235

enhancement) shows a significant effect, it still 1236

provides evidence of the feature’s causal role. By 1237

incorporating w, we ensure that such cases are not 1238

misrepresented by an FIC score of 0, thus offering a 1239

more robust measure of the overall causal strength. 1240
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E Linguistic Structure1241

E.1 Linguistics Levels1242

Morphology The study of the internal structure1243

of words—how roots, prefixes, suffixes, and inflec-1244

tional endings combine to create different word1245

forms and convey grammatical information such as1246

tense, number, or case.1247

Syntax The study of how words are arranged into1248

larger units—phrases, clauses, and sentences—and1249

the rules that govern their permissible order and1250

hierarchical relationships within a language.1251

Semantics The field that investigates meaning at1252

the level of words, phrases, and sentences: how1253

linguistic expressions map to concepts, objects,1254

events, or states of affairs in the world, and how1255

compositional principles let smaller meanings com-1256

bine into larger ones.1257

Pragmatics The study of how context and com-1258

municative intentions shape meaning in real-world1259

use—how speakers choose utterances to achieve1260

goals, how listeners infer implied or indirect mean-1261

ing, and how factors like shared knowledge, dis-1262

course history, and social norms influence interpre-1263

tation.1264

E.2 Linguistic Feature List1265

past_tense Morphology & Semantics — verb1266

form that locates an event before speech time.1267

noun_plural Morphology — form marking more1268

than one noun referent.1269

agentive_suffix Morphology — suffix creating1270

nouns for the doer of an action.1271

negation_prefix Morphology — prefix that re-1272

verses or denies the base meaning.1273

degree_prefix Morphology — prefix intensify-1274

ing or scaling the base concept.1275

temporal_prefix Morphology — prefix adding1276

time relations such as “pre-” or “post-”.1277

quantitative_prefix Morphology — prefix con-1278

veying amount or number.1279

spatial_or_directional_prefix Morphology —1280

prefix indicating place or direction.1281

nominal_suffix Morphology — suffix that turns1282

a base into a noun.1283

verbal_suffix Morphology — suffix that turns a 1284

base into a verb. 1285

adjectival_suffix Morphology — suffix that 1286

turns a base into an adjective. 1287

adverbial_suffix Morphology — suffix that 1288

turns a base into an adverb. 1289

possessive_form Morphology & Syntax — mor- 1290

phological marking of ownership or relation. 1291

third_person_singular Morphology & Syntax 1292

— verb agreement form for he/she/it. 1293

past_participle Morphology & Syntax — verb 1294

form used in perfect aspect or passive voice. 1295

present_participle Morphology & Syntax — “- 1296

ing” form used for progressives or gerunds. 1297

comparative Morphology & Semantics — form 1298

showing a higher degree of a property. 1299

superlative Morphology & Semantics — form 1300

showing the highest degree of a property. 1301

past_tense_irregular Morphology — past form 1302

that does not end in “-ed”. 1303

past_participle_irregular Morphology — irreg- 1304

ular past participle form. 1305

intransitive_verb Syntax — verb that takes no 1306

direct object. 1307

transitive_verb Syntax — verb that requires a 1308

direct object. 1309

linking_verb Syntax — verb that links subject 1310

to a complement. 1311

anaphor Syntax & Pragmatics — expression that 1312

refers back to an antecedent. 1313

subject_auxiliary_inversion Syntax — swap- 1314

ping subject and auxiliary (e.g., questions). 1315

subject_verb_inversion Syntax — reversing 1316

subject and main verb order. 1317

passive_voice Syntax & Semantics — clause 1318

where patient becomes grammatical subject. 1319

subjunctive_mood Syntax & Semantics — form 1320

expressing wish, doubt, or hypothetical state. 1321

first_conditional Syntax & Semantics — “if + 1322

present, will + verb” for real future possibility. 1323
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indirect_speech Syntax & Pragmatics — report-1324

ing speech without a direct quote.1325

elliptical_sentences Syntax — sentences with1326

understood but omitted elements.1327

cleft_sentences Syntax — “it + be + focus” con-1328

struction for emphasis.1329

appositives Syntax — noun phrase renaming an-1330

other noun phrase.1331

non_defining_relative_clauses Syntax — extra,1332

non-restrictive relative clauses.1333

emphatic_structure Syntax & Pragmatics —1334

construction that highlights or stresses a clause1335

part.1336

noun_clauses Syntax — subordinate clauses1337

functioning as nouns.1338

relative_clauses Syntax — clauses that modify1339

a noun with a relative word.1340

imperative_sentence Syntax & Pragmatics —1341

clause issuing a command or request.1342

of_genitive Syntax — possession expressed with1343

an “of” phrase.1344

s_genitive Syntax — possession marked with1345

apostrophe-s.1346

clausal_subjects Syntax — clauses acting as the1347

subject of a sentence.1348

extraposition Syntax — moving a heavy subjec-1349

t/object to clause end with dummy “it”.1350

copular_be Syntax — “be” used as a linking1351

verb, not as an auxiliary.1352

echo_questions Syntax & Pragmatics — repeti-1353

tion of prior utterance to seek confirmation.1354

tag_questions Syntax & Pragmatics — short1355

question tags appended to statements.1356

direct_object Syntax — noun phrase receiving1357

the verb’s action.1358

universal_quantifiers Syntax & Semantics —1359

words like “all, every” signifying totality.1360

existential_quantifiers Syntax & Semantics —1361

words like “some, any” signifying existence.1362

expletive Syntax — syntactic placeholder such1363

as “it” or “there”.1364

factives Semantics & Syntax — predicates pre- 1365

supposing truth of their complement. 1366

futurates Semantics & Syntax — present-tense 1367

forms referring to scheduled future events. 1368

intensifiers Semantics & Pragmatics — adverbs 1369

that strengthen degree (e.g., “very”). 1370

mass_noun Syntax & Semantics — noun for un- 1371

countable substances (e.g., “water”). 1372

object_expletives Syntax — expletive pronouns 1373

occupying object position. 1374

nominal_adverbials Syntax — noun phrases 1375

functioning like adverbs. 1376

split_infinitives Syntax — placing a word be- 1377

tween “to” and the verb stem. 1378

quantifier Syntax & Semantics — word or 1379

phrase expressing quantity. 1380

count_nouns Syntax & Semantics — nouns that 1381

can be enumerated individually. 1382

active_verbs Syntax — verbs used in active 1383

voice constructions. 1384

middle_verb Syntax & Semantics — verb whose 1385

subject is patient but appears active. 1386

referring Semantics & Pragmatics — linguistic 1387

act of pointing to real-world entities. 1388

static_dynamic Semantics — distinction be- 1389

tween state verbs and action verbs. 1390

punctual_durative Semantics — contrast be- 1391

tween instantaneous and durational events. 1392

telic_atelic Semantics — events with inherent 1393

endpoints vs. those without. 1394

past Semantics — temporal reference before the 1395

present moment. 1396

future Semantics — temporal reference after the 1397

present moment. 1398

present_progressive Semantics — aspect for on- 1399

going present actions. 1400

present_perfect Semantics — aspect connecting 1401

past event to present state. 1402

past_progressive Semantics — aspect for ongo- 1403

ing past actions. 1404
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past_perfect Semantics — event completed be-1405

fore a past reference point.1406

future_progressive Semantics — ongoing action1407

projected into the future.1408

future_perfect Semantics — event completed1409

before a future reference point.1410

epistemic Semantics & Pragmatics — modality1411

expressing speaker’s judgment of likelihood.1412

deontic Semantics & Pragmatics — modality ex-1413

pressing obligation or permission.1414

spatial Semantics — meaning elements relating1415

to location or space.1416

person Semantics & Pragmatics — grammatical1417

category distinguishing speaker, addressee, others.1418

temporal Semantics — meaning elements relat-1419

ing to time relations.1420

given_known Pragmatics & Semantics — infor-1421

mation already shared by speaker and listener.1422

representative Pragmatics — speech act convey-1423

ing assertions or descriptions.1424

directive Pragmatics — speech act intended to1425

get the hearer to act.1426

commisive Pragmatics — speech act committing1427

speaker to future action.1428

expressive Pragmatics — speech act revealing1429

speaker’s feelings or attitude.1430

declaration Pragmatics — speech act that1431

changes social reality.1432

metaphor Semantics & Pragmatics — figurative1433

transfer of meaning based on similarity.1434

synecdoche Semantics & Pragmatics — figure1435

where part stands for whole or vice versa.1436

non_synecdoche_metonymy Semantics & Prag-1437

matics — metonymic shift based on association,1438

not part-whole.1439

coordination Syntax & Semantics — joining of1440

equal grammatical elements.1441

transitional Semantics & Pragmatics — dis-1442

course element marking a shift or progression.1443

resultative Syntax & Semantics — construction1444

expressing a resultant state of an action.1445

optative Syntax & Pragmatics — form express- 1446

ing a wish or hope. 1447

existential Semantics & Syntax — clause assert- 1448

ing existence of something. 1449

interrogative Syntax & Pragmatics — clause 1450

type used for asking questions. 1451

deixis Pragmatics & Semantics — reference that 1452

depends on context (e.g., “here”, “now”). 1453

turn_taking Pragmatics — conversational man- 1454

agement of who speaks when. 1455

euphemism Pragmatics & Semantics — mild 1456

term replacing a harsher one. 1457

personification Semantics & Pragmatics — giv- 1458

ing human traits to non-human entities. 1459

hyperbole Semantics & Pragmatics — deliberate 1460

exaggeration for effect. 1461

discourse_markers Pragmatics — words that 1462

organize or signal discourse flow. 1463

politeness Pragmatics — linguistic strategies that 1464

mitigate imposition or face threat. 1465

性_抽象名词后缀 形态学— 后缀“-性” 构成 1466

表示“-ness/-ity”的抽象名词。 1467

化_动词性后缀 形态学— 后缀“-化” 构成动 1468

词，表示“使. . . /成为. . . ”。 1469

们_复数后缀 形态学& 语义学— 后缀“-们” 1470

标记人称复数。 1471

重叠构词 形态学& 语义学— 通过词素重叠 1472

构词，以强调或表迭代。 1473

不及物动词 句法学& 语义学— 不能带直接 1474

宾语的动词。 1475

及物动词 句法学& 语义学— 需要直接宾语 1476

的动词。 1477

系动词 句法学—连接主语与补语的动词。 1478

属格 句法学& 语义学— 所有格或所属关系 1479

的语法标记。 1480

逆向结构 句法学& 语义学— 为强调或疑问 1481

而颠倒正常语序。 1482

被动语态 句法学& 语义学— 将承事者作为 1483

句法主语的被动结构。 1484

主题_述评句 句法学&语用学—将句子拆分 1485

为主题和述评部分的结构。 1486
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回指 句法学& 语义学& 语用学— 指代先行1487

项的表达方式。1488

间接引语 句法学& 语用学— 不引用原话的1489

转述形式。1490

省略句 句法学& 语用学— 上下文可恢复的1491

省略结构。1492

同位结构 句法学— 两个等价名词短语并列1493

重命名的结构。1494

反问句 句法学& 语用学— 期望无真实答案1495

的修辞性疑问句。1496

感叹词 语用学—表达突发情感的独立词。1497

祈使句 句法学& 语用学— 用于发布命令或1498

请求的句式。1499

语气助词 形态学& 语义学& 语用学— 表示1500

说话人态度的助词。1501

轻动词 句法学& 语义学— 与名词搭配使1502

用，语义轻的动词。1503

主观数量 语义学& 语用学— 说话人评估的1504

模糊数量表达。1505

使役结构 句法学&语义学—表示“使/让某人1506

做. . . ”的致使结构。1507

条件句 句法学& 语义学— 表达“如果. . .，1508

就. . . ”条件关系的句子。1509

兼语句 句法学— 一个名词在结构中既作宾1510

语又作主语。1511

情态 语义学& 语用学— 表示能力、必要性1512

等的情态范畴。1513

时体标记 形态学& 语义学— 标记时态或体1514

的形式。1515

假设 语义学& 语用学— 表示假设情景的表1516

达。1517

受事主语句 句法学& 语义学— 主语为动作1518

承事者的句子。1519

可能 语义学& 语用学— 表示可能性或潜在1520

性的表达。1521

因果 语义学& 语用学— 表示因果关系的表1522

达。1523

并列 句法学& 语义学— 平等地并列元素的1524

结构。1525

明喻 语义学& 语用学— 用“像”等词显性标1526

记的比喻。1527

暗喻 语义学& 语用学— 无显性比较词的隐 1528

喻。 1529

比较 语义学— 表示相似或差异的语言表 1530

达。 1531

致使 句法学& 语义学— 表示结果状态的致 1532

使表达。 1533

让步 语义学&语用学—虽承认. . .但仍. . .的 1534

让步关系。 1535

转折 语义学& 语用学— 标记对比或转折的 1536

关系。 1537

递进 语义学& 语用学— 表示进一步增强信 1538

息的关系。 1539

指示 语义学& 语用学— 根据上下文指示实 1540

体的表达。 1541

话轮转换 语用学— 对话中管理轮到谁发言 1542

的结构。 1543

委婉语 语用学—缓和直接性的委婉表达。 1544

拟人 语义学& 语用学— 将人类特征赋予非 1545

人实体的表达。 1546

夸张 语义学& 语用学— 为强调而故意夸大 1547

的表达。 1548

话语标记 语用学— 引导和组织话语流程的 1549

词语。 1550

礼貌 语用学— 表示礼貌或维护面子策略的 1551

语言手段。 1552

数量词 句法学& 语义学— 数词加量词短 1553

语，表示确切数量。 1554

F Implementation Details 1555

We used 8 A100 GPUs with 80GB of memory for 1556

the experiments. While the exact GPU hours for 1557

each experiment were not precisely recorded, the 1558

total GPU usage did not exceed one hour. The sys- 1559

tem was set up with CUDA 12.4, Triton 3.0.0, and 1560

Ubuntu 22.04. For the Llama model, we employed 1561

the Hugging Face implementation of transformers, 1562

and for SAE model, we used the OpenSAE imple- 1563

mentation1 and set the hyperparameter k to 128 for 1564

TopK activation. 1565

1https://github.com/THU-KEG/OpenSAE
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