
I-CAN: IISc Conventional Academic Navigator
Chaithanya M G (SR: 24862) Kavipriya Ramasamy (SR: 24872) Muskan Jain (SR: 24743)

Parmar Jaydeep Ramniklal (SR: 24842) Prasanna Kumar B V (SR: 24774) Vivek H N (SR: 25613)

Project Github URL
I-CAN URL

Abstract. In the M.Tech Online program at the Indian Institute of
Science (IISc), remote students face challenges in staying informed
about academic updates and clarifying academic and administrative
queries due to fragmented information across various tools. Crucial
information such as project deadlines, exam schedules etc. are of-
ten buried in lengthy threads impacting student engagement and aca-
demic efficiency, particularly for new joiners who require timely clar-
ification on academic and institutional procedures. To address this
problem, we propose the development of an agentic university coor-
dination assistant, a conversational AI system that acts as a proxy
for the current coordination team (IKEN). This assistant empow-
ers students to ask natural language questions and receive accurate,
personalized, context-aware, and up-to-date responses on both aca-
demic logistics and program-specific inquiries. The system architec-
ture integrates a multi-source ingestion pipeline that extracts, pre-
processes and embeds heterogeneous data from institution website,
Teams channels, handbooks, emails and intranet content. The data is
transformed into vector embeddings using transformer-based models
and stored in a vector database to support efficient semantic retrieval.
A retrieval-augmented generation (RAG) pipeline, orchestrated us-
ing LangChain, dynamically constructs responses by interfacing with
large language models (LLMs).

1 Introduction

The M.Tech (Online) programme by IISc is designed for working
professionals to pace themselves and pursue their post-graduate de-
gree that has the same rigour, intense learning and practice as our
full-time M.Tech degree [5]. However, these students face systematic
challenges to stay up-to-date on academic or administrative informa-
tion. This is due to multiple portals to look into for information such
as Moodle, SAP, Teams etc.

Due to a lack of organised documentation or user-friendly search
tools, the IKEN coordination team currently responds to student en-
quiries manually, frequently answering the same questions. Even
though the IKEN Team provides a quick and speedy replies, some-
times students tend to miss important academic informations.

To address these challenges, we present I-CAN, a domain-adapted,
agentic coordination assistant — a retrieval-augmented conversa-
tional AI system that could help not only the students but also the
IKEN department to help student learn seamlessly during the course
of their online degrees.

2 Background and Related Work
The ready availability of Large Language Models has enabled the
development of intelligent bots that allows its users to converse in
their natural language and get access to wide range of information. In
educational purposes, especially in distance learning programs, these
tools could be helpful in bridging the gap between the institutional
knowledge and remote learners.

Jill Watson was one of the first virtual teaching assistants that was
developed by Georgia Tech, using IBM Watson, to answer student
queries on course forums [4]. However, such systems were often
rigid, rule-based, or limited to single-source data [6].

To address the issues linked with the static knowledge bases, Re-
trieval Augmented Generation (RAG) became more better choice for
these tasks. In RAG, user queries are supplemented with contextu-
ally relevant documents retrieved from a vector store before being
passed to an LLM for answer generation [2]. Tools like LangChain
have made it easier to build such pipelines by integrating components
like vector databases (e.g., FAISS), document loaders, retrievers, and
prompt templates[1].

For the matter of interest, coordination are handled with apps like:
Microsoft Teams or via emails or handbooks. Our project builds upon
the RAG paradigm, that we enhances using:

• Multi-source Ingestion: That involves ingestion of data from
sources like websites, PDFs and handbooks.

• Integration with different tools: This involves the usage of
Langchain tools to extend the functions, such as sending emails,
scheduling the meetings, etc.

• Academic domain adaptation: Using prompt engineering and cus-
tom templates, assistant is tuned for the IISc’s curriculum work-
flows.

Figure 1. Interface diagram

https://github.com/PrasannaBV/I-CAN-IISc-Conversational-Academic-Navigator
https://i-can-iisc-conversational-academic-navigator-socvulappvizzdq4j.streamlit.app/


3 Methodology
Through Streamlit UI, the user asks their query. There is a capability
to ingest data also from the UI such as the PDFs. These are then
converted into vector embeddings for retrieval. If no vector store is
found, agent is initialized with the ingested data from UI. Otherwise,
it would load the FAISS and reuse the previous content.

Once the user query is submitted, Top-5 relevant documents are
retrieved. It then passes through prompt enhancer that classifies the
intent and construct an enhanced prompt using the query, retrieved
context and prompt templates. The data is then sent to OpenAI using
the LangChain Agent. Tools are invoked automatically when neces-
sary (e.g., sending mail or digest summary). Users then can rate the
output, improving the reward model iteratively which helps in fil-
ters/reranks responses, for the next generation. Figure 3 shows the
end to end flow of the whole process

Figure 2. Overall architecture diagram

The whole project is divided into 4 parts – frontend, backend, data
ingestion and tooling layer.

3.1 Data Ingestion

We are ingesting data from primary sources such as IKEN websites,
PDFs and CSVs from the IKEN Portal. We first developed a Website
processor that crawls the specified website and extracts the textual
content. This content is then converted into manageable text chunks
for further processing. Similarly, users can upload PDFs, which are
processed by PDF parsers, that extracts text and then converts them
into chunks.

All extracted content is split into overlapping text chunks using
a RecursiveCharacterTextSplitter with a chunk size of 300 charac-
ters and an overlap of 50 characters to preserve contextual conti-
nuity. We chose 50 because around 10–30% are commonly used in
practice depending on chunk size and task. These chunks are em-
bedded using OpenAI’s embedding models and stored in a FAISS
vector index[3] of dimensions 1536. The FAISS index enables ef-
ficient similarity-based retrieval, which serves as the backbone for
context-aware response generation in the retrieval-augmented gener-
ation (RAG) pipeline. Overall this activity resulted into 1304 chunks
of data across the contents.

3.2 Backend

Backend acts as a main component that connects, handles and man-
ages all the components together. At its core lies a LangChain-based

conversational agent, which serves as the primary interface for inte-
grating tools and APIs within the system.

3.2.1 Language Model and Retrieval-Augmented
Generation

We used OpenAI’s gpt-4o-mini because of its strong performance
and low latency. The model is invoked within the RAG framework
where it is prompted with the external knowledge base from FAISS
vector store. We set the model temperature to 0.4 which helped in
providing the response with minimal randomness.

3.2.2 LangChain Agent (RAG Pipeline)

The purpose of the block is to serve as a reasoning engine that re-
sponds to the student’s queries by using LLM. We used Langchain’s
agent architecture to implement RAG, which retrieves top-ranked
documents from the FAISS index and passes them as context to the
LLM. We have defined some of the prompt templates that help in de-
veloping an academic-aware, context-rich response. The agent also
integrates with tools that are autonomously invoked based on user
intent.

3.2.3 Prompt Enhancer

The prompt enhancer module improves the performance of the LLM
by analyzing user queries, injecting relevant metadata and retrieved
context, and selecting an appropriate intent-based prompt template.
This step helps guide the model toward more accurate and relevant
responses.

3.2.4 Agent to Agent

The core design, as shown in Figure 7, it involves a Router Agent
(Orchestrator) that parses user intent and dynamically delegates con-
trol to subordinate agents based on semantic content. Each sub-
agent (e.g. DigestAgent, PlannerAgent) is itself a fully functional
LangChain agent, initialized with its own reasoning loop, memory,
and toolset. When the Router Agent detects a query related to a
weekly summary or upcoming deadlines, it delegates execution by
invoking another agent as a tool,thus enabling recursive agent com-
position.

3.2.5 MCP Server

We created a simulated MCP server which acted as University server.
I-CAN Agent dynamically queries in MCP section in real time to
fetch authoritative course data. A JSON-RPC 2.0 payload is sent
to the MCP server (http://localhost:5001 in testing, replaceable with
the university’s production endpoint). The agent formats the MCP’s
structured response into natural language 4.

3.2.6 Feedback and Logging (Reward Model)

User feedback on LLM responses is collected via "Yes", "No", and
"Not Sure" buttons. User feedback on LLM responses is annotated by
human for testing purposes A reward model based on distilbert-base-
uncased is trained as a binary classifier using this feedback to predict
helpfulness of answers. The data was preprocessed, tokenized, and
converted into a HuggingFace-compatible Dataset. The dataset was



split into training and testing sets (80/20), and the model was fine-
tuned for three epochs with a batch size of 8 (542 data samples),
and having AdamW Optimizer using the HuggingFace Trainer API.
After training, the model outputs a softmax-based score between 0
and 1, representing the likelihood that a given answer would be rated
as helpful. The model outputs a confidence score which is used to
filter responses, with a threshold of 0.3, aligning future output with
user preferences.

3.3 Tool Integration Layer

The tooling layer comprises all the tools invoked through LangChain.
We have implemented a variety of tools categorized as follows:

• Retrieval tools: These tools are designed to fetch information.
They include:

– Basic Retriever

– Enhanced Retriever

– Weekly Digest: It searches for the academic updates. It searches
the vector store for documents related to announcements. It
feeds them into GPT to summarize deadlines, announcements
and course updates 9.

– Personal Planner: It helps users plan their academic workload.
It searches based on the user’s query and extracts essential in-
formation.

• Utility tools: These tools provide functional capabilities as
needed. They include:

– Current Date: Retrieves the current date using a local Python
script.

– Email: sends the automated emails using GMail API. It authen-
ticates a user with OAuth of GMail and then constructs and
encodes an email message and sends it using the Gmail API’s.

– Calendar: Schedules a meeting using Google Calendar API.

– API Integrations: Enable integrations with external APIs as re-
quired

3.4 Frontend

We are using the Streamlit interface to abstract out our functionalities
with a user interface. We can see the user interface has a chat inter-
face to communicate with the LLM system. Apart from that, we also
have a provision to see the retrieved chunks, configurations and any
manual text inputs. We also provide a provision for feedback system
so that user can make use of the Reward Model from backend.

4 Evaluation
To evaluate the effectiveness of our RAG-based academic assis-
tant, we constructed an evaluation dataset comprising 271 question-
answer pairs. Each pair consists of a student query and a correspond-
ing ground-truth answer derived from the ingested documents. Our
evaluation protocol focuses on two key components: retrieval and
generation.

4.1 Retrieval

The objective is to evaluate whether the relevant documents are re-
trieved from the vector database for any given query. For each ques-
tion, we retrieved the 5 most relevant documents. The ground truth

Model Avg. BERTScore delta vs GPT-4o Significance Interpretation
GPT-4o 0.8429 – Baseline Foundational model
Vanilla RAG 0.8833 +0.0404 Likely significant Strong improvement with retrieval
RAG + Prompting 0.8794 +0.0365 Likely significant Prompting adds useful control

Table 1. BERTScore Comparison Across Models

Model Entailed Not Entailed Factual Consistency Rate Avg Conf (Entailed) Avg Conf (Not Entailed)
GPT-4o 41 230 15.13% 0.922 0.977
Vanilla RAG 54 217 19.93% 0.922 0.953
RAG + Prompting 32 239 11.81% 0.879 0.926

Table 2. FactCC Comparison Across Models

were first embedded using the OpenAI embedding model. Then we
calculated the cosine similarity of the ground truth embedding and
embeddings of the retrieved documents. If any of the documents has
a similarity score > 0.75, we considered it as a successful hit. We
used Hit(fraction of queries for which at least one relevant document
is retrieved)and MRR(Mean Reciprocal Rank based on first relevant
document position) as evaluation metrics.

4.2 Generation

To assess the quality of the response generation, we used BERTScore
to evaluate the similarity between then generated response and
ground truth. We used bert-score library with distilbert-base-uncased
as reference model. We then used the average F1 score to understand
semantic overlap between texts. We also used FactCC to check the
factual consistency of the generation along with the BertScore, which
is just checking the semantic consistency of the generations.

5 Results
5.1 Retrieval Evaluation

For the retrieval, we achieved a score of 1 that indicates that it is able
to hit atleast one document from the top 5 retrieved documents that
has a confidence score of more than 0.75. The average MRR score is
0.986, which concludes that out of the top 5 retrieved documents, the
pages with a higher score are either 1st or 2nd.

5.2 Generation Evaluation

Tables 1 and Table 2 show the results of the BertScore and
FactCC scores. We compared three generation setups—GPT-4o,
vanilla RAG, and RAG with prompting—across 271 samples using
BERTScore (semantic similarity) and a robust NLI model (FactCC-
style) for factual consistency. Vanilla RAG achieved the high-
est semantic similarity (BERTScore: 0.8833), followed closely by
prompted RAG (0.8794), with GPT-4o trailing (0.8429). However,
only vanilla RAG maintained strong factual consistency (19.93%),
outperforming GPT-4o (15.13%) and prompted RAG (11.81%). This
suggests that while prompting may refine output, it can reduce factual
accuracy by overriding retrieved content. The NLI model showed
greater confidence in "Not Entailed" predictions, reflecting common
evaluation biases. Overall, our findings confirm that semantic simi-
larity alone does not ensure factual correctness. Unaltered retrieval
grounding, as in vanilla RAG, provides the most balanced perfor-
mance for knowledge-intensive tasks.

6 Conclusion
We can conclude that we developed a conversational agent that can
be helpful for the students of Mtech (Online) throughout their aca-
demics. Students can access this through deployed MVP website:
I-CAN.

https://i-can-iisc-conversational-academic-navigator-socvulappvizzdq4j.streamlit.app/


References
[1] Zilliz (2024), How do I integrate LangChain with vector databases like

Milvus or FAISS?, Zilliz, 2024.
[2] AWS, What is RAG? - Retrieval-Augmented Generation AI Explained,

AWS, 2025. Accessed: 2025-06-20.
[3] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely

Szilvasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and
Hervé Jégou, ‘The faiss library’, (2024).

[4] Ashok K. Goel and Lalith Polepeddi, Jill Watson: A Virtual Teaching
Assistant for Online Education, 120–143, Routledge, New York, 2018.

[5] IKEN, IKEN Website, IKEN, 2025. Accessed: 2025-06-20.
[6] Kakar S. Maiti P. Taneja K. Goel A. (2024) Lindgren, R., Does Jill

Watson Increase Teaching Presence?, ACM Digital Library, 2024.



Contributions by Authors
• Chaithanya M G: I composed question–answer pairs with ground

truth data to measure output quality with metrics such as
BERTScore. I also investigated dynamic ingestion from Share-
Point for timely alert and announcement but could not finish it
because of API limitations and the requirement for an AD account.

• Kavipriya Ramasamy: Email ingestion, evaluation dataset prepa-
ration

• Muskan Jain:

– Project Report Preparation

– Evaluation: Implemented the Retrieval Side validation scripts.

– Static ingestion tools for ingesting data from the CSVs

– Tools: Implemented Utility tools - Gmail integration and Cal-
endar Integration.

– Ingestion Tools: Implemented bulk ingestion scripts. This
helped in ingesting into the vector store.

– Implemented the dynamic ingestion scripts so that it updates
the data after specified time.

– Validation script: Worked on the questionnaire for the valida-
tions.

• Parmar Jaydeep Ramniklal: Composed question–answer pairs
with ground truth data to measure output quality with metrics such
as BERTScore

• Prasanna Kumar B V:

– Designed system architecture and backend for the Agent RAG
pipeline with UI integration.

– Built static ingestion tools: PDF parser, website processor, and
manual entry interface. Trained and integrated a reward model
for response filtering.

– Implemented agent-to-agent delegation (Planner and Digester
agents). Enabled tool calling for Weekly Digest, Scheduler,
Personal Planner, and external API integrations.

– Developed an MCP simulation for real-time API calling.

– Prepared evaluation datasets and automated evaluation using
BERTScore, FactCC and results interpretation.

– Implemented prompt personalization via structured user con-
text injection. Experimented LangGraph for dynamic agent
workflows, LLM-as-a-Judge experimentation

– Contributed to project report preparation.

• Vivek H N:

– Prompt Engineering:Designed user prompts to improve the ac-
curacy, tone, and relevance of LLM responses for academic
queries in a RAG pipeline.

– Deployment: Set up and deployed the Streamlit-based frontend
on Streamlit Cloud, managing environment configuration, se-
crets handling (e.g., API keys), and testing for stability.



Appendix

Figure 3. End to End Flow across different blocks

Figure 4. MCP server workflow

Figure 5. MCP integrated Chat interface

Figure 6. Chain of Thoughts with MCP

Figure 7. Agent-to-Agent communication

Figure 8. Agent to Agent delegation

Figure 9. Email received from weekly digest

Figure 10. Running the Weekly digest

Figure 11. Prompt to invoke Weekly Digest



Figure 12. Flow Diagram using Langgraph

Figure 13. Prompt Personalization via Structured User Context Injection

Figure 14. Personalization Flow


	Introduction
	Background and Related Work
	Methodology
	Data Ingestion
	Backend
	Language Model and Retrieval-Augmented Generation
	LangChain Agent (RAG Pipeline)
	Prompt Enhancer
	Agent to Agent
	MCP Server
	Feedback and Logging (Reward Model)

	Tool Integration Layer
	Frontend

	Evaluation
	Retrieval
	Generation

	Results
	Retrieval Evaluation
	Generation Evaluation

	Conclusion

