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ABSTRACT

Large language model (LLM) alignment is typically achieved through learning from
human preference comparisons, making the quality of preference data critical to its
success. Existing studies often pre-process raw training datasets to identify valuable
preference pairs using external reward models or off-the-shelf LLMs, achieving
improved overall performance but rarely examining whether individual, selected
data point is genuinely beneficial. We assess data quality through individual
influence on validation data using our newly proposed truncated influence function
(TIF), which mitigates the over-scoring present in traditional measures and reveals
that preference data quality is inherently a property of the model. In other words, a
data pair that benefits one model may harm another. This leaves the need to improve
the preference data selection approaches to be adapting to specific models. To this
end, we introduce two candidate scoring functions (SFs) that are computationally
simpler than TIF and positively correlated with it. They are also model dependent
and can serve as potential indicators of individual data quality for preference
data selection. Furthermore, we observe that these SFs inherently exhibit errors
when compared to TIF. To this end, we combine them to offset their diverse error
sources, resulting in a simple yet effective data selection rule that enables the
models to achieve a more precise selection of valuable preference data. We conduct
experiments across diverse alignment benchmarks and various LLM families, with
results demonstrating that better alignment performance can be achieved using less
data, showing the generality of our findings and new methods.

1 INTRODUCTION

Reinforcement learning with human feedback (RLHF) has emerged as a dominant fine-tuning
paradigm for aligning large language models (LLMs) with human preferences (Bai et al., 2022b;
Wang et al., 2024). Whether through training explicit reward models (Lambert et al., 2024) or
optimizing policy with implicit rewards (Rafailov et al., 2023), the success of RLHF hinges heavily
on the availability of high-quality preference data. Previous works (Shen et al., 2024; Pattnaik
et al., 2024; Morimura et al., 2024; Deng et al., 2025; Chen et al., 2024) typically leverage external
reward models or off-the-shelf LLMs to filter raw data, treating selected data as reliable sources
for training their models or releasing them for open-source use (Cui et al., 2023; Bai et al., 2022a).
This pre-processing paradigm dominates the RLHF community to improve data quality, contributing
remarkably to the success of many publicly available LLMs such as Llama (Vavekanand & Sam,
2024), Qwen (Yang et al., 2025) and DeepSeek (Guo et al., 2025).

However, such pre-processing implicitly assumes that quality is an intrinsic property of data them-
selves: regardless of training configurations or models, certain data are consistently presumed to be
more valuable for alignment than others. Therefore, a seemingly more realistic perspective is that the
data quality is also a property of the model (Grosse et al., 2023; Xia et al., 2024). That is to say, some
data points may be beneficial for certain models or configurations while being detrimental at others.
We validate this new assumption as more reasonable based on the influence function (IF) (Koh &
Liang, 2017), which quantifies the impact of each training data point on validation performance,
thereby reflecting data quality. Nevertheless, we observe that the influence scores may overfit to the
validation data, an issue that is particularly severe for open-world models like LLMs. To address this,
we propose and verify a simple modification to the original IF, namely truncated influence function
(TIF), which is shown to be more reliable for preference data selection and results in better overall
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performance. Using TIF, we verify that data quality is model-dependent, varying across different
models, with some data points proving beneficial for certain models yet harmful at others.

Our above analysis suggests a reasonable yet seldom-discussed viewpoint: preference data selection
should be performed for specific models and explicitly related to the training process. Although TIF
provides a reliable and effective measure of data quality, its high computational cost on gradients limits
its direct application for large-scale LLMs (Kwon et al., 2024). To address this, we introduce two
simpler scoring functions (SFs) with lower computational costs yet sufficient potential to approximate
TIF–loss difference (LossDiff) and implicit reward margin (IRM)–that are positively correlated
with TIF yet require only forward passes. Considering that a single SF may exhibit specific errors
relative to TIF, a combination indicator LossDiff-IRM is proposed to mitigates such errors, as their
distinct bias sources may offset one another. Empirically, LossDiff-IRM achieves an average WinRate
improvement of +13.58% over full-data training while using only 50%–64% of the data, across
multiple LLM families, benchmarks, and alignment methods.

2 PRELIMINARY

To begin, we formalize pairwise preference data and introduce Direct Preference Optimization (DPO)
as the base preference optimization approach used in our analysis and experiments, and then briefly
review prior work on preference data selection.

Pairwise Preference Data. Pairwise preference dataset, denoted as D = {di = (x(i), y
(i)
w , y

(i)
l )}Ni=1,

is annotated by humans to reflect real human preference. Each pair consists of a prompt x and a
pair of responses: the chosen response yw and the rejected response yl, which means that the human
annotator prefers the chosen response rather than the rejected one, denoted as yw ≻ yl.

Direct Preference Alignment. Traditional RLHF (Bai et al., 2022b) often follows a two-stage
pipeline: first training a reward model on preference data, and then optimizing the policy LLM using
reinforcement learning (RL) algorithm such as PPO (Schulman et al., 2017). The two-stage RLHF is
relatively complicated and resource-intensive. Recently, many studies (Rafailov et al., 2023; Azar
et al., 2024; Zhao et al., 2023; Meng et al., 2024; Wu et al., 2024b;a) have tried to bypass the need for
an explicit reward model and RL learning, to directly optimize the policy model from preference data.
Among them, DPO (Rafailov et al., 2023) is a milestone work that derives the optimal policy and
substitutes it into the Bradley–Terry (BT) model (Bradley & Terry, 1952), which yields its objective:

LDPO(θ;D) = −E(x,yw,yl)∈D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
, (1)

where β > 0 controls the strength of the KL penalty between πθ and πref, and σ is the sigmoid
function. According to the derivation of DPO loss (Rafailov et al., 2023), the term inside the sigmoid
can be interpreted as an implicit reward margin (IRM) between the chosen and rejected responses:

IRMθ(d) = β log
πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

. (2)

This reward margin serves as an important indicator monitored during training to track how well the
model differentiates the chosen response from the rejected one. For an individual data pair, the margin
is negatively correlated with the DPO loss: larger margins correspond to lower loss values. Intuitively,
the DPO adopts a contrastive-like structure that directly trains the policy LLM on preference pairs by
encouraging a larger relative reward margin for the chosen response over the rejected one. The other
alignment method SLiC (Zhao et al., 2023) used in this work is introduced in Appendix B.1.

Preference Data Quality. Given annotator subjectivity and the open nature of the concept of
preference, manually annotated preference data can be imperfect or noisy. Existing studies adopt
multiple data processing strategies: Morimura et al. (2024) and Deng et al. (2025) filter out low-quality
preference pairs based on external reward models. Pattnaik et al. (2024) organizes the preference
data in a curriculum based on metrics such as GPT-4 score, external reward score, or log probability.
Muldrew et al. (2024) and Shen et al. (2025) introduce active learning to improve data quality and
annotation efficiency. Overall, these approaches mainly rely on external signals (e.g., GPT or reward
model scores, or active human labeling) and implicitly view preference data quality as a property
of the data itself, while overlooking the role of models, training configurations, and optimization
objectives in shaping utility of preference data. Detailed related work refers to Appendix A.2.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 ANALYSIS: TRUNCATED INFLUENCE FUNCTION (TIF)

Building upon influence function (IF), this section takes a model-centric perspective to investigate
what kind of preference data truly valuable for model alignment.

3.1 INFLUENCE FUNCTION

To quantify the quality of a data sample d ∈ Dtrain, a classical idea is to measure its leave-one-out
(LOO) (Evgeniou et al., 2004; Elisseeff et al., 2003) effect, which assesses the change in validation
performance when the model is trained with versus without the data sample d:

LOO Effect(d) = v (θDtrain ;Dval)− v
(
θDtrain\{d};Dval

)
, (3)

where v(·) denotes a measurement to evaluate the model πθ, and θD denotes the model trained on the
dataset D. Intuitively, computing the exact LOO effect requires training |Dtrain|+ 1 separate models,
which is infeasible in practice. To avoid repetitive retraining the model, influence function (IF) (Koh
& Liang, 2017) provides a first-order Taylor approximation of the LOO effect using a gradient-based
metric at the current parameters:

IF(d;πθ;Dval) = ∇θL(θ;Dval)
⊤H−1

θ ∇θℓ(θ; d) ≈ ∇θL(θ;Dval)
⊤∇θℓ(θ; d) (4)

=

 1

|Dval|

|Dval|∑
i=1

∇θℓ
(
θ; d

(i)
val

)⊤

∇θℓ(θ; d), (5)

where ℓ(θ; d) is the training loss for the data d, and Hθ := ∇2
θL(θ;Dtrain) is the Hessian matrix (Ham-

pel, 1974) of the total training loss with respect to model parameters θ. In practice, computing and
inverting the Hessian matrix is often computationally intractable, especially for a large-scale model.
A common approach is to approximate the Hessian Hθ as the identity matrix by assuming that the
loss landscape is locally isotropic near θ (Koh & Liang, 2017; Wang et al., 2025; Xia et al., 2024).
This simplification reduces the IF to a dot product between the gradient of the training data d and
the expected gradient of the validation set. Intuitively, a higher IF means the training gradient better
aligns with the validation gradient, suggesting the data is more beneficial for generalization.

Instantiation to DPO Loss. By taking the DPO loss in Eq. (1) into the IF formulation in Eq. (4), we
instantiate the IF under DPO objective for a give preference pair d = (x, yw, yl):

IFDPO(d;πθ;Dval) := β(1− σ(∆θ))

〈
β

|Dval|
∑
i

(
1− σ(∆

(i)
θ )

)(
g(i)w − g

(i)
l

)
︸ ︷︷ ︸

preference generalization direction
w.r.t. validation set

, gw − gl︸ ︷︷ ︸
current preference

pair direction

〉
,

(6)
where g∗ = ∇θ log πθ(y∗|x) denotes the gradient of the log-likelihood for response y∗ ∈ {yw, yl},
and ∆θ = β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x) is the reward difference term in the DPO loss. Unlike

IF under pointwise objectives, which assesses the gradient consistency of a give data point with
validation set (Koh & Liang, 2017; Wang et al., 2025), the DPO-based IF focuses on the gradient
difference consistency, i.e., gw − gl, with the validation preferences, thereby serving as a proxy to
assess quality of a preference pair d. Vanilla IF implicitly assumes the validation set is an oracle of
generalization, thereby equating high-IF data with high quality. However, under this assumption, IF
may overfit to the specific validation set. The instantiation to SLiC loss is provided in Appendix B.1.

3.2 ANALYSIS: TRUNCATED INFLUENCE FUNCTION (TIF)

Since preference alignment is open-ended and a fully reliable validation set is hard to obtain, we
propose the Truncated Influence Function (TIF) by partitioning data into three regions for analysis.

Analytical Setup. We randomly sample a probing set Dprob = {Dprob
train,D

prob
val ,Dprob

test } from UltraFeed-
back (Cui et al., 2023), containing 5,000, 3,000, 300 preference pairs for training, validation, and
testing, respectively. Qwen3-0.6B-Base (Yang et al., 2025) and Llama-3.2-1B (Vavekanand & Sam,
2024) are adopted as backbone models. Both models are first trained with supervised fine-tuning
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Figure 1: Analysis of IF-based data partition on the Qwen3-0.6B-Base and Llama-3.2-1B. From
Left to Right: Training DPO loss, evaluation DPO loss and evaluation reward margin. Subsets of
{small, medium, large} are denoted by {blue, orange, green}, respectively, while different line styles
indicate IF values computed using different epoch checkpoints. More analysis refers to Appendix C.1.

(SFT) on UltraChat-200K (Ding et al., 2023), followed by five epochs of DPO on Dprob
train . At each-

epoch DPO checkpoint, we compute the IF values of all training pairs using Eq. (5) with respect to
Dprob

val and partition them into three equally sized subsets (small-, medium-, and large-IF). Each subset
is then used to continue DPO training from the checkpoint, while we monitor the evaluation DPO loss
and reward margin on Dprob

test to examine which type of data is more beneficial for alignment training.

Figure 1 reports the training dynamics on Qwen3-0.6B-Base and Llama-3.2-1B with different IF-
based partitions. Across both models, we observe several similar phenomena as follows:

• Small-IF data: Training loss decreases as expected, but evaluation loss increases while the evalu-
ation reward margin falls below zero. This indicates that small-IF pairs are largely uninformative
and of low quality, with a high likelihood of being noisy or ambiguous. Learning from such data
not only fails to help the model distinguish chosen from rejected responses but may also mislead
it, thereby harming alignment training and preference generalization.

• Large-IF data: Evaluation loss initially decreases but later rises, while the evaluation reward
margin continues to increase. This mismatch between loss and margin trajectories is counterintu-
itive, since DPO loss and reward margin are normally negatively correlated at the per-sample level.
The phenomenon indicates overfitting: training on large-IF data enlarges the margins of a small
subset of pairs while reducing the margins of many other pairs. Owing to the sigmoid saturation,
overly large margins contribute little to the loss, whereas the diminished margins of the majority
dominate it, ultimately causing the model to overfit to a narrow portion of preference pairs.

• Medium-IF data: As training loss decreases, evaluation loss steadily decreases while reward
margin increases, which aligns well with the intended learning dynamics of the DPO objective:
improving the model ability to distinguish human-preferred (chosen) responses from rejected
ones. This demonstrates that medium-IF preference pairs are high-quality data, providing the most
effective and stable signal for alignment training and fostering better preference generalization.

Overall, these findings differ from vanilla IF in traditional classification, where high-IF data is
typically regarded as the most valuable. In preference alignment, however, the most valuable data are
the medium-IF preference pairs. This counter-intuitive finding is nonetheless reasonable: preference
alignment is an open-ended task in which the chosen–rejected annotations inherently affected by
annotator subjectivity, making the validation gradient an imperfect proxy for reflecting the real human
preference direction. As a result, data with both extremely small and extremely large IF values is
low-quality, which provide little useful signal for alignment training. Therefore, we propose the
Truncated Influence Function (TIF), which offers a more robust criterion for assessing preference
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Table 1: Computational time and throughput rate analysis on probing set by Qwen3-0.6B-Base
and Llama-3.2-1B using one H100-80GB GPU. Top: Exact IF, consisting of the validation-gradient
computation and the per-pair IF inner-product computation. Bottom: LossDiff-IRM, consisting of
one forward on the training model and one forward on a validation-aligned auxiliary model.

Computational Time Throughput Rate (pair/sec)
IF Computation Val Gradient IF Total Val Gradient IF

Qwen3-0.6B-Base 1 h 17 m 31 s 1 h 59 m 45 s 3 h 17 m 16 s 1.55 1.44
Llama-3.2-1B 3 h 55 m 32 s 6 h 02 m 37 s 9 h 58 m 09 s 4.71 4.35

LossDiff-IRM Computation Training Forward Val Forward Total Training Forward Val Forward

Qwen3-0.6B-Base 1 min 5 s 59 s 2 m 4 s 76.92 84.74
Llama-3.2-1B 2 m 32 s 2 m 27 s 4 m 59 s 32.86 33.80
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Figure 2: Correlation analysis on Qwen3-0.6B-Base and Llama-3.2-1B. Top: correlation between
loss difference (LossDiff) and IF. Bottom: correlation between implicit reward margin (IRM) and IF.

Table 2: Overlap Coefficient analysis to assess the overlap of two selected sets.

Overlap Coefficient LossDiff vs. IF IRM vs. IF LossDiff-IRM vs. IF
Models Epoch 1 ckpt Epoch 2 ckpt Epoch 1 ckpt Epoch 2 ckpt Epoch 1 ckpt Epoch 2 ckpt

Qwen3-0.6B-Base 0.6953 0.6639 0.6883 0.6470 0.7820 0.7257
Llama-3.2-1B 0.6687 0.6582 0.6969 0.6025 0.7657 0.6963

data quality in LLM alignment training:
TIF(d;πθ;Dval) = I [δsmall < IF(d;πθ;Dval) < δlarge] , (7)

where δsmall and δlarge denote threshold percentiles that specify the boundaries of IF values. It can
be observed that the criterion of TIF depends on the current model πθ, which suggests that the
identification of valuable preference pairs is inherently model-dependent.

4 METHODOLOGY: LOSSDIFF-IRM DATA SELECTION

Although TIF provides a principled criterion for assessing the value of preference data, its computation
requires gradients on both the training and validation sets, which becomes prohibitive in the large-
scale model and dataset regime. As reported in the top of Table 1, computing exact IF on a probing
set of 5,000 pairs for a small Llama-3.2-1B model still takes about 10 hours, which is already
prohibitively slow. This computational cost makes TIF impractical as a per-sample scoring function
for preference data selection in alignment training at scale.

4.1 APPROXIMATION PROXY OF TIF

To address this challenge, we introduce lightweight, model-dependent indicators that require only
forward passes yet track TIF well. Concretely, we use two approximation proxies that are positively
correlated with IF at the per-pair level for efficient preference data selection as follows:
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Validation-based scoring function: Loss Difference (LossDiff). To bypass costly gradient com-
putations, we introduce an auxiliary model that is aligned on the validation set and approximate IF
by the loss difference between the current model and this auxiliary model. Specifically, for each
preference pair, we define its loss difference as follows:

LossDiff(d;πθ, πθval) = ℓ(θ; d)− ℓ(θval; d), (8)

where πθval is the auxiliary model aligned on validation set. An intuitive understanding is that a
larger value indicates that moving from θ toward θval reduces the loss on d, which is consistent with
the direction favored by the validation objective. We formally demonstrate that the LossDiff has
a positive correlation with the IF in Appendix B.2. Empirically, the top panel of Figure 2 shows
strong Pearson (Cohen et al., 2009) and Spearman (Hauke & Kossowski, 2011) correlations (e.g.,
r = 0.77, ρ = 0.80 on Qwen-0.6B-Base). Notably, this proxy requires only two forward passes per
pair without backpropagation and remains tied to the validation set by construction.

Validation-free scoring function: Implicit Reward Margin (IRM). Empirically, we find that the
IRM defined in Eq. (2) exhibits a strong positive correlation with IF at the per-pair level. As illustrated
in the bottom panel of Figure 2, the Pearson and Spearman correlations between IRM and IF reach
r = 0.67 and ρ = 0.66 on Llama-3.1-1B, respectively. Intuitively, IRM measures how strongly the
current model πθ prefers the chosen response over the rejected response relative to a reference, and
thus reflects the model-perceived difficulty of a preference pair. When training on a pair, the update
mainly pushes the policy to enlarge that pair’s margin; the validation objective is doing the same
at the validation distribution level. Consequently, pairs with larger positive IRM tend to produce
updates that are more consistent with the validation objective and thus yield larger IF. Moreover, IRM
is a validation-free scoring function and requires only forward computation from πθ.

From the Pearson and Spearman correlations, we also observe that the validation-based LossDiff
correlates higher with IF than the validation-free IRM. This is expected, as LossDiff explicitly
leverages a validation-aligned auxiliary model, with the validation set serving as a reference direction
for human preference. In contrast, IRM relies solely on the internal signals of current model, which
makes it more lightweight but also less anchored. More analysis is provided in Appendix C.2.

4.2 LOSSDIFF-IRM PREFERENCE DATA SELECTION

Using scoring function of either LossDiff or IRM alone may introduce method-specific errors. To
offset the diverse errors, we propose a combined indicator: LossDiff–IRM, which selects data falling
within the intersection of the medium percentile ranges defined by LossDiff and IRM. Specifically,
LossDiff-IRM selects a preference pair d if and only if

LossDiff–IRM(d;πθ;Dval) = I[ξsmall < LossDiff(d;πθ;Dval) < ξlarge]

∧ I[τsmall < IRM(d;πθ) < τlarge] .
(9)

where LossDiff-IRM(d;πθ;Dval) ∈ {0, 1}, (ξsmall, ξlarge) and (τsmall, τlarge) are percentile thresholds
that define the medium ranges for LossDiff and IRM, respectively. The procedure is as follows: we
first warm up πθ by training for a short stage (e.g., one epoch) on the training set, then obtain πθval by
training for one stage on the validation set. We then compute LossDiff using both πθ and πθval , and
IRM using πθ. Based on the combined rule in Eq. (9), we select preference data and retrain πθ for a
longer stage (e.g., two epochs in our experiments).

Empirical evidence. We quantify the overlap of two selected sets using the Overlap Coefficient
Overlap(A,B) = A∩B

min{|A|,|B|} ∈ [0, 1]. As reported in Table 2, the combined selector LossDiff-
IRM achieves a higher Overlap Coefficient with the exact TIF-selected set than using LossDiff
or IRM alone across Qwen3-0.6B-Base and Llama-3.2-1B. This indicates that combining the two
scoring functions yields a selection that more closely approximates the TIF while while being more
computationally efficient at scale. As shown in the bottom of Table 1, LossDiff-IRM requires
substantially less time and achieves higher throughput; for example, on Llama-3.2-1B it takes about
5 minutes versus roughly 10 hours for exact IF.
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Table 3: Performance of LossDiff-IRM and baselines using DPO and SLiC. Cell background
colors indicate relative performance: darker colors denote better results within each model group.

Methods Dataset
Ratio

UltraFeedback AlpacaEval Vicuna-Bench Arena-Hard Methods Dataset
Ratio

UltraFeedback AlpacaEval Vicuna-Bench Arena-Hard
Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑

Llama-3.1-8B (DPO) Qwen3-8B-Base (DPO)
SFT 3.60 - 3.53 - 3.98 - 2.63 - SFT 6.97 - 6.88 - 7.94 - 6.64 -

Full Data 100% 5.77 77.61 5.87 78.41 6.04 73.75 4.68 81.39 Full Data 100% 7.64 61.41 7.92 63.85 8.21 62.14 7.58 59.61
Random 64% 5.52 74.83 5.59 75.93 5.46 68.13 4.64 81.27 Random 64% 7.71 61.47 7.94 64.12 8.26 58.93 7.57 62.07
GPT4 64% 6.04 80.57 6.21 81.09 6.86 80.31 4.96 84.30 GPT4 64% 7.69 62.19 8.01 63.81 8.28 52.19 7.62 61.53

Reward Model 64% 6.24 82.68 6.38 83.76 6.45 76.88 5.13 86.19 Reward Model 64% 7.81 64.19 8.24 69.35 8.56 66.25 7.61 64.78
LossDiff-IRM 64% 6.54 83.97 6.84 87.08 7.06 86.88 5.59 88.40 LossDiff-IRM 64% 8.05 67.32 8.36 71.52 8.72 67.19 7.83 68.63

Pythia-2.8B (DPO) Pythia-1.4B (DPO)
SFT 3.94 - 4.35 - 4.66 - 2.74 - SFT 3.50 - 3.65 - 4.20 - 2.37 -

Full Data 100% 4.60 70.53 4.95 67.05 5.35 67.50 2.97 60.71 Full Data 100% 3.70 65.88 3.99 66.17 4.71 64.38 2.65 60.24
Random 64% 4.54 68.27 4.79 64.03 5.15 68.13 3.00 63.25 Random 52% 3.78 67.43 4.05 68.16 4.56 61.25 2.60 61.64
GPT4 64% 4.71 72.02 4.96 67.10 5.39 73.75 3.08 64.15 GPT4 52% 3.96 70.75 4.28 70.96 4.89 68.75 2.83 64.20

Reward Model 64% 4.68 75.73 5.09 70.91 5.60 75.95 3.03 63.03 Reward Model 52% 3.83 70.80 4.18 70.83 4.84 68.75 2.71 64.76
LossDiff-IRM 64% 4.90 79.62 5.30 76.03 5.74 82.50 3.26 71.64 LossDiff-IRM 52% 4.23 78.49 4.49 76.43 5.28 76.88 2.96 71.72

Pythia-410M (DPO) Llama-3.1-8B (SLiC)
SFT 2.56 - 2.47 - 3.15 - 1.91 - SFT 3.60 - 3.53 - 3.98 - 2.63 -

Full Data 100% 2.81 75.25 2.77 73.51 3.10 69.37 2.06 59.47 Full Data 100% 5.09 70.72 5.13 72.13 5.40 71.88 3.98 73.75
Random 56% 2.94 76.03 2.92 76.62 3.58 70.63 2.06 57.08 Random 64% 4.94 69.52 4.89 67.05 5.26 67.50 3.95 70.35
GPT4 56% 2.95 76.78 2.95 79.81 3.49 79.37 2.15 61.44 GPT4 64% 5.48 75.61 5.40 72.89 6.05 67.81 4.28 75.27

Reward Model 56% 2.96 81.48 3.02 80.64 3.67 74.38 2.16 60.59 Reward Model 64% 5.34 73.64 5.54 75.03 5.55 68.75 4.50 78.32
LossDiff-IRM 56% 3.30 86.14 3.30 85.16 3.80 85.62 2.38 69.63 LossDiff-IRM 64% 5.94 79.51 5.84 78.84 5.85 76.56 4.65 83.12

Qwen3-8B-Base (SLiC) Pythia-2.8B (SLiC)
SFT 6.97 - 6.88 - 7.94 - 6.64 - SFT 3.94 - 4.35 - 4.66 - 2.74 -

Full Data 100% 7.55 59.54 7.61 59.71 8.05 54.69 7.21 59.61 Full Data 100% 4.36 67.46 4.48 61.66 4.90 65.00 2.93 59.04
Random 64% 7.57 57.76 7.63 62.05 7.97 47.94 7.25 59.18 Random 64% 4.31 63.00 4.56 59.73 5.16 65.62 2.98 57.58
GPT4 64% 7.64 59.91 7.89 63.62 8.21 58.37 7.33 59.47 GPT4 64% 4.50 69.09 4.73 63.00 5.12 65.62 2.89 58.38

Reward Model 64% 7.74 62.47 8.09 66.57 8.50 63.44 7.38 62.27 Reward Model 64% 4.43 70.03 4.76 64.92 5.50 71.88 2.91 59.18
LossDiff-IRM 64% 7.87 64.40 8.11 67.58 8.44 61.12 7.61 62.20 LossDiff-IRM 64% 4.82 76.36 5.02 68.85 5.47 74.38 3.19 64.83

Pythia-1.4B (SLiC) Pythia-410M (SLiC)
SFT 3.50 - 3.65 - 4.20 - 2.37 - SFT 2.56 - 2.47 - 3.15 - 1.91 -

Full Data 100% 3.66 63.58 3.98 63.68 4.67 60.00 2.65 58.95 Full Data 100% 2.81 73.80 2.82 73.91 3.31 71.25 2.03 57.49
Random 52% 3.81 66.18 3.96 63.99 4.34 56.25 2.66 60.26 Random 56% 2.67 69.23 2.69 70.68 3.09 63.12 2.14 59.77
GPT4 52% 3.84 69.24 4.12 65.55 4.69 63.75 2.68 59.80 GPT4 56% 2.80 72.75 2.85 74.53 3.23 75.62 2.15 60.07

Reward Model 52% 3.82 66.57 4.04 69.20 4.67 65.62 2.67 61.95 Reward Model 56% 2.87 77.41 2.94 78.39 3.50 75.00 2.15 60.11
LossDiff-IRM 52% 4.14 74.25 4.39 72.69 4.88 71.25 2.85 67.76 LossDiff-IRM 56% 3.07 80.08 3.09 84.39 3.83 79.36 2.21 62.40
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Figure 3: Ablation study on WinRate. Comparison of LossDiff-IRM vs. its ablations that select
data using only LossDiff (“w/ LossDiff”) or only IRM (“w/ IRM”). Top: DPO training. Bottom:
SLiC training. Single-Score results are provided in Appendix E.1 and Figure 12.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Setup. Our experiments are conducted on diverse LLM families, including Llama-3.1-
8B (Vavekanand & Sam, 2024), Qwen3-8B-Base (Yang et al., 2025), and the Pythia series
(2.8B/1.4B/410M) (Biderman et al., 2023). Following prior work (Ko et al., 2024; Wu et al.,
2024a), each pretrained LLM is first initialized with one epoch of supervised fine-tuning (SFT)
on UltraChat-200k (Tunstall et al., 2024), which serves as the starting point for subsequent align-
ment. We adopt UltraFeedback-Binarized (Cui et al., 2023) as the alignment dataset, consistent with
previous studies (Pattnaik et al., 2024; Gao et al., 2025; Ko et al., 2024). For validation set, we
perform stratified sampling to select 20% of the alignment data according to the GPT-4 score margin
between the chosen and rejected responses, and use the remaining 80% as training set. We employ
DPO (Rafailov et al., 2023) and SLiC (Zhao et al., 2023) as core preference optimization algorithms
used in our experiments. More details of experimental settings are provided in Appendix D.

Evaluation Setup. We evaluate the aligned LLMs on open-ended generation tasks using both
in-distribution (ID) and out-of-distribution (OOD) benchmarks. The ID evaluation is conducted on
the UltraFeedback test split, while OOD evaluation includes AlpacaEval (Li et al., 2023), Vicuna-
Bench (Chiang et al., 2023), and Arena-Hard (Li et al., 2024). We compare against full-data training
(Full Data) and several preference data selection strategies commonly used in prior work (Pattnaik
et al., 2024; Deng et al., 2025; Morimura et al., 2024): random sampling (Random), GPT-4 score
filtering (GPT4), and external reward-model filtering (Reward Model). We also compare with
several existing methods: curriculum learning-based CurriDPO (Pattnaik et al., 2024), margin-based
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Table 4: Performance comparisons of LossDiff-IRM with existing methods, including Cur-
riDPO (Pattnaik et al., 2024), MAP (Huang et al., 2025), and RS-DPO (Khaki et al., 2024).

Training Data UltraFeedback AlpacaEval Vicuna-Bench Arena-Hard
Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑

Llama-3.1-8B (DPO)
CurriDPO-GPT4 5.47 74.23 5.53 75.01 5.84 74.06 4.55 79.77
CurriDPO-Reward Model 5.51 74.62 5.54 74.29 5.59 74.06 4.62 79.49
MAP 6.04 79.99 6.21 80.88 6.34 74.69 5.08 85.30
RS-DPO 5.70 75.98 6.39 84.84 7.04 82.81 4.69 82.05
LossDiff-IRM 6.54 83.97 6.84 87.08 7.06 86.88 5.59 88.40

Qwen3-8B-Base (DPO)
CurriDPO-GPT4 7.61 61.04 7.74 62.35 8.16 54.69 7.52 62.51
CurriDPO-Reward Model 7.60 59.62 7.84 61.96 8.20 61.58 7.55 63.97
MAP 7.95 67.84 8.31 71.11 8.62 66.87 7.72 66.55
RS-DPO 7.88 64.87 8.36 74.07 8.93 71.90 7.48 61.32
LossDiff-IRM 8.05 67.32 8.36 71.52 8.72 67.19 7.83 68.63
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Figure 4: Impact of noisy validation set. Performance curves across different noise rates r =
{0.0, 0.1, 0.2, 0.3, 0.4}; dashed lines denote performance of Full-Data training.

selection MAP (Huang et al., 2025), and rejection sampling-based preference data generation method
RS-DPO (Khaki et al., 2024). All methods are trained under the same setup for a fair comparison.
We report two evaluation metrics via LLM-as-Judge (Zheng et al., 2023a): Single Score (Single) and
Length-controlled Win Rate vs. SFT (WinRate). Further details are in Appendix D.3.

5.2 EXPERIMENTAL RESULTS

5.2.1 MAIN PERFORMANCE OF LOSS-IRM FOR PREFERENCE DATA SELECTION

LossDiff-IRM achieves better performance. Table 3 summarizes the performance of Loss-IRM
and competitors with DPO and SLiC. Across diverse LLM families, benchmarks and metrics, it can
be observed that LossDiff-IRM occupies more darker cells, and surpasses full-data training while
using only about 50%–65% of the data, indicating stronger performance. Specifically, compared to
full-data training, LossDiff-IRM achieves average WinRate improvements of +11.42%, +15.14%,
+16.63%, +18.28% and +17.71% on Llama-3.1-8B, Qwen3-8B-Base, and Pythia-2.8B/1.4B/410M
with DPO, respectively. Furthermore, we compute exact TIF on smaller Pythia-410M. Table 5 shows
that training on data selected by exact TIF and by LossDiff-IRM achieves comparable performance.
These results demonstrate the effectiveness and superiority of Loss-IRM in selecting real valuable
preference pairs that are really beneficial for current model alignment training.

LossDiff-IRM outperforms several data-centric baselines. Table 4 reports the performance com-
parisons of LossDiff-IRM with several existing data-centric methods. It can be observed that our
LossDiff-IRM outperforms these competitors on the most cases. Specifically, the average improve-
ment of WinRate achieves +2.62% over the best baselines across two models, especially achieving
improvements of +6.45% on average on Llama-3.8-8B. These results suggest the effectiveness of our
IF-driven analysis and LossDiff-IRM data selection strategy. Additionally, compared to CurriDPO
relied on external signals (GPT4 or reward model scores), MAP and RS-DPO, which adopt implicit
reward margins or generate model-specific preference pairs using the SFT model and thus partially
incorporate the model’s perspective, emerge as strong competitors. This aligns with the underlying
philosophy of our idea: valuable preference data are model-dependent, rather than relying on external
heuristics. The cost analysis between LossDiff-IRM and RS-DPO is provided in Appendix E.5.
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Table 5: Exact TIF vs. LossDiff-IRM. Performance comparison of Pythia-
410M trained on data selected by Exact TIF or LossDiff-IRM.

Method UltraFeedback AlpacaEval Vicuna-Bench
Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑

Pythia-410M (DPO)
Full Data 2.81 75.25 2.77 73.51 3.10 69.37

LossDiff-IRM 3.30 86.14 3.30 85.16 3.80 85.62
Exact TIF 3.13 85.42 3.21 86.19 4.01 84.38
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Figure 5: Overlap Co-
efficient of selections
across five models.

Table 6: Performance of training DPO and SLiC on Selected vs. Dropped set by LossDiff-IRM.
Comparison of training on Full Data, the LossDiff-IRM–selected data, and the dropped data.

Training Data UltraFeedback AlpacaEval Vicuna-Bench UltraFeedback AlpacaEval Vicuna-Bench
Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑

Llama-3.1-8B (DPO) Qwen3-8B-Base (DPO)
- Full Data 5.77 77.61 5.87 78.41 6.04 73.75 7.64 61.41 7.92 63.85 8.21 62.14

- w/ Selected Data 6.54 83.97 6.84 87.08 7.06 86.88 8.05 67.32 8.36 71.52 8.72 67.19
- w/ Dropped Data 4.56 64.25 4.48 61.15 4.69 62.81 7.51 54.82 7.58 58.33 7.79 46.88

Llama-3.1-8B (SLiC) Qwen3-8B-Base (SLiC)
- Full Data 5.09 70.72 5.13 72.13 5.40 71.88 7.55 59.54 7.61 59.71 8.05 54.69

- w/ Selected Data 5.94 79.51 5.84 78.84 5.85 76.56 7.87 64.40 8.11 67.58 8.44 61.12
- w/ Dropped Data 4.22 60.08 4.33 59.37 4.89 62.81 7.37 56.67 7.33 55.79 8.21 56.72

Preference data quality is model-dependent. We observe that LossDiff-IRM outperforms selection
based on Random, GPT4 score or external reward model, with only a few single-case exceptions,
e.g., Qwen3-8B-Base on Vicuna-Bench under SLiC. Under DPO, relative to the second-best result,
LossDiff-IRM delivers average WinRate improvements of +4.07%, +3.84%, +8.28%, +10.29%
and +8.13% on Llama-3.1-8B, Qwen3-8B-Base, and Pythia-2.8B/1.4B/410M, respectively. Notably,
GPT4 score selection can even reduce performance, such as on Qwen3-8B-Base with DPO. Moreover,
Figure 5 shows that the Overlap Coefficient between selections varies across models; pairs within the
same family (e.g., Pythia) exhibit higher overlap than cross-family pairs. Altogether, these findings
indicate that preference data quality is inherently model dependent, and static or model-agnostic
selectors may benefit one model yet harm another.

LossDiff-IRM is compatible to different preference optimization methods. For both DPO and
SLiC, LossDiff-IRM selection yields consistent and often substantial gains across diverse LLM
families and architectures, indicating the generality of the LossDiff-IRM method. This compatibility
stems from that the derivation and analysis of LossDiff-IRM criterion do not involve any strong
assumption about certain preference optimization algorithm, so that diverse methods can be initiated
under our LossDiff-IRM criterion, which serves as a plug-and-play preference data selection step.

5.2.2 FURTHER ANALYSIS

Combining LossDiff and IRM outperforms either alone. Figure 3 reports WinRate for LossDiff-
IRM and its two ablations: “w/ LossDiff” and “w/ IRM”, which select pairs using only LossDiff or
only IRM, respectively. Across both DPO and SLiC, the combined scoring function LossDiff-IRM
performs better than either single variant. This matches our intent: combining the two scoring
functions to offset specific errors each incurs when used alone to approximate TIF in data selection.

Dropped data is low-value for the current model alignment. We train DPO and SLiC using only
the subset that LossDiff-IRM drops and compare against Full Data and the LossDiff-IRM–selected
subset. Table 6 shows that training “w/ Dropped Data” yields the worst performance; in particular,
it reduces average WinRate by −12.59% relative to full-data training across two models and both
alignment methods, and even drops to 46.88% on Vicuna-Bench with Qwen3-8B-Base (SLiC). By
contrast, “w/ Selected Data” consistently improves alignment, indicating that LossDiff-IRM filters
out low-value pairs and favors data that really benefits the current model alignment learning.

LossDiff-IRM exhibits a certain robustness under validation-set noise. We corrupt the validation
set by flipping the chosen/rejected labels at rates r ∈ {0.1, 0.2, 0.3, 0.4} and then re-run selection.
Figure 4 shows the expected downward trend in performance as r increases, since LossDiff-IRM (and
TIF) uses the validation set to orient the score. Surprisingly, in many cases the selection upon noisy
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Figure 6: Analysis of percentile thresholds ξsmall, ξlarge, τsmall, τlarge of Llama-3.1-8B. We vary
ξsmall = (100− ξlarge) and τsmall = (100− τlarge) with in {0, 10, 20, 30}. Further analysis of Qwen3-
8B-Base is illustrated in Figure 14 and Appendix E.6.
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Figure 7: Visualization of layer-wise IF value computed on Qwen3-0.6B-Base.

validation set still exceeds full-data training (dashed lines) under noisy validation set. We attribute
this to the fact that LossDiff-IRM tends to medium-value data that are less sensitive to validation
noise. These results suggest the robustness of LossDiff-IRM to noisy validation set.

Analysis of percentile thresholds ξsmall, ξlarge, τsmall, τlarge. The percentile thresholds of LossDiff-
IRM are tuned as hyperparameters. We vary ξsmall = (100− ξlarge) and τsmall = (100− τlarge) with
in {0, 10, 20, 30}. Figure 6 illustrates the performance curves varying with different thresholds for
Llama-3.1-8B (DPO) across four benchmarks. It can be observed a rough trend: performance first
improves and then degrades as the thresholds become stricter, that is, as more data are filtered out.
This observation is expected, because initially, the threshold helps remove low-quality data; however,
beyond a certain point, the filtering starts to exclude informative and high-quality data, leading to
performance degradation. More analysis on Qwen3-8B-Base is provided in Appendix E.6.

IF values are not confined to specific layers. Figure 7 shows that IF may concentrate in certain layers
or spread across all layers, implying that layer-wise computation alone cannot reliably approximate
the exact IF and motivating the need for proxies such as our LossDiff–IRM. More visualization of IF
computed on other LLMs are provided in Appendix E.2.

6 CONCLUSION

In this work, we propose the Truncated Influence Function (TIF) as a principled lens to analyze
preference data quality in LLM alignment. Unlike prior approaches that treat data quality as an
inherent property of the data, our analysis adopts a model-side perspective and reveals that medium-IF
pairs, rather than small- or large-IF ones, provide the most effective training signal. To make TIF
practical at scale, we further introduce the LossDiff–IRM approximation, which closely matches TIF
while being far more efficient. Experiments demonstrate that LossDiff–IRM enables a “less is more”
effect, where using fewer but higher-quality preference pairs yields better alignment performance.
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corresponding source code is released at https://anonymous.4open.science/r/
LossDiff-IRM-ICLR26-Submission-893F. Both backbone models and datasets used in
our work are publicly available. Furthermore, all parameters, hyper-parameters, and procedural steps
required to reproduce our results are thoroughly recorded in the Experimental Details section and
corresponding Appendix. We believe that these components provide the community with details
necessary to verify and reproduce our work.

REFERENCES

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
for language models. arXiv preprint arXiv:2402.16827, 2024.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
human preferences. In International Conference on Artificial Intelligence and Statistics, pp.
4447–4455. PMLR, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022a.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022b.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tianchi Cai, Xierui Song, Jiyan Jiang, Fei Teng, Jinjie Gu, and Guannan Zhang. Ulma: Unified
language model alignment with human demonstration and point-wise preference. arXiv preprint
arXiv:2312.02554, 2023.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
In The Twelfth International Conference on Learning Representations, 2024.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduction in speech processing,
pp. 1–4, 2009.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback.
arXiv preprint arXiv:2310.01377, 2023.

Xun Deng, Han Zhong, Rui Ai, Fuli Feng, Zheng Wang, and Xiangnan He. Less is more: Improving
llm alignment via preference data selection. arXiv preprint arXiv:2502.14560, 2025.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen
Zhou. Enhancing chat language models by scaling high-quality instructional conversations. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
3029–3051, 2023.

11

https://anonymous.4open.science/r/LossDiff-IRM-ICLR26-Submission-893F
https://anonymous.4open.science/r/LossDiff-IRM-ICLR26-Submission-893F


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. Advances in Neural Information Processing Systems,
36:30039–30069, 2023.
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LLM USAGE STATEMENT

Here we clarify how Large Language Models (LLMs) are used in this work. In preparing the
manuscript, LLMs served only as a writing assistants for writing improvements and were not involved
in research ideation or the generation of core content. For research methodology, LLM is a core
component of our proposed method. Specifically, we utilize the Llama-3.1-8B, Qwen3-8B-Base and
Pythia series as our backbone models to validate our proposed method.

A BACKGROUND AND RELATED WORK

A.1 SUPPLEMENT TO PRELIMINARY

Reinforcement Learning with Human Feedback (RLHF). RLHF aims to align the given policy
model πθ with human preference by optimizing the model to maximize the expected reward value
obtained from the reward model. The reward model is trained on a preference dataset, quantifying
the human preference into scalar values. Typically, the Bradley-Terry (BT) model (Bradley & Terry,
1952) is used to estimate the probability distribution that a chosen response yw is preferred over a
rejected one yl as follows:

p(yw ≻ yl|x) =
exp (r(x, yw))

exp (r(x, yw)) + exp (r(x, yl))
= σ(r(x, yw)− r(x, yl)), (10)

where r(x, y) denotes the latent reward function, and σ(·) is the Sigmoid function. Due to unob-
servability of the reward function, the traditional RLHF typically follows a two-stage pipeline: a
reward model rϕ(x, y) is pretrained on preference data; then, the policy model πθ is updated based
on the pretrained reward model using reinforcement learning (RL) algorithm like PPO Schulman
et al. (2017). The overall objective of RLHF can be formulated as follows:

LRLHF(θ;D) = Ex∼D,y∼πθ(·|x) [rϕ(x, y)] + βDKL[πθ(y|x)||πref(y|x)], (11)

where DKL[·||·] is the KL-divergence regulation term that constrains the policy model πθ to optimize
within the surrounding landscape of the reference model πref, avoiding policy collapse or training
instablity during alignment, and β is a hyperparameter to control trade-off between reward maximiza-
tion and KL penalty. The reference model is often the supervised fine-tuned (SFT) model (Zhang
et al., 2023) used to initialize the policy LLM.

A.2 RELATED WORK

LLM Preference Alignment. LLM preference alignment aims to steer LLM behaviors toward
responses that better reflect human preferences and values (Wang et al., 2024). A common approach
is RLHF that trains a reward model to provide reward signals for RL training (Bai et al., 2022b).
Though effective, the two-stage RLHF pipeline is complex and resource-intensive, suffering from
issues like reward hacking (Miao et al., 2024) and unstable optimization (Zheng et al., 2023b). To
address these limitations, recent studies (Rafailov et al., 2023; Azar et al., 2024; Zhao et al., 2023;
Meng et al., 2024; Ethayarajh et al., 2024) have proposed multiple alignment learning objectives that
bypass explicit reward modeling, offering a simpler formulation for direct LLM preference alignment,
such as DPO (Rafailov et al., 2023), IPO (Azar et al., 2024), SLiC (Zhao et al., 2023; Liu et al., 2024),
SimPO (Meng et al., 2024), KTO (Ethayarajh et al., 2024), CPO (Xu et al., 2024) and more (Wu et al.,
2024b;a; Liu et al., 2024). Among them, DPO serves as a milestone work that derives the close-form
expression of the optimal policy and substitutes it into the Bradley–Terry (BT) model, effectively
hiding reward learning within the policy optimization process. SLiC adopts a hinge loss to enlarge
the margin between the chosen and rejected responses. SimPO simplifies the DPO formulation and
achieves reference model-free optimization. KTO employ prospect theory to directly maximizes the
utility of generations rather than log-likelihood of preferences. Overall, while many efforts have been
devoted to improving alignment algorithms, relatively little attention (Deng et al., 2025; Gao et al.,
2025) has been given to understanding the preference data quality, especially from model perspective.

Data Selection for LLMs. Data selection (Albalak et al., 2024) aims to filter out low-quality
or noisy data and retain high-quality data for better training and generalization, which plays a
pivotal role in enhancing the performance and efficiency of LLMs across difference training stages,
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including pretraining (Penedo et al., 2023; Tang et al., 2024), supervised fine-tuning (SFT) (Pang
et al., 2025; Qin et al., 2024), and preference alignment (Shen et al., 2024; Gao et al., 2025).
Most existing approaches assess data from multiple considerations, such as importance (Xie et al.,
2023) and diversity (Zhang et al., 2024a), using a variety of metrics such as text length (Nagatsuka
et al., 2023), perplexity (Kong et al., 2024), text embeddings (Saranathan et al., 2024), or external
signals from humans (Wu et al., 2023) or ChatGPT (Chen et al., 2024). We notice that most
studies for LLM data selection primarily focus on the first two stages, i.e., pretraining and SFT,
whereas the selection of preference data for alignment has received comparatively limited exploration.
Existing studies (Pattnaik et al., 2024; Morimura et al., 2024; Deng et al., 2025) often employ
off-the-shelf LLMs or pretrained reward models to pre-process preference data. For example,
CurriDPO (Pattnaik et al., 2024) leverages the GPT-4 or reward model scores to organize curriculum
learning. fDPO (Morimura et al., 2024) integrates a reward model into the DPO training process,
filtering preference data based on reward scores. Muldrew et al. (2024) and Shen et al. (2025)
incorporate active learning into alignment to improve data quality and annotation efficiency. Overall,
these methods share a common trait: they rely on external signals–whether from powerful GPT
models, pretrained reward models, or active human labeling–and thereby treat data quality as an
inherent property of the data itself, while overlooking the role of the model and training objectives.
Motivated by this limitation, we examine preference data quality from the model’s perspective to
better understand which data are truly valuable for alignment.

B FORMAL DERIVATION

B.1 FORMULATIONS OF SLIC LOSS

Definition of SLiC Loss. Unlike DPO loss in Eq. (1), which optimizes a log-ratio difference between
chosen and rejected responses, SLiC (Zhao et al., 2023; Liu et al., 2024) minimizes a hinge loss on
normalized log-likelihood, formulated as follows:

LSLiC = E(x,yw,yl)∼D

[
max

(
0, 1−

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

))]
. (12)

Intuitively, SLiC loss enforces at least a fixed margin between the chosen and rejected responses.
When the margin is satisfied, the loss becomes zero, making the optimization focus on those pairs
that violate the margin constraint.

Instantiation of SLiC Loss for Influence Score. By taking SLiC loss into the influence function
formulation in Eq. (5), the SLiC-based influence function is derived as follows:

ISLiC(d;πθ;Dval) := β2Ihinge(d)

〈
1

|Dval|
∑
i

Ihinge

(
d
(i)
val

)(
g(i)w − g

(i)
l

)
︸ ︷︷ ︸

preference generalization direction
w.r.t. validation set

, gw − gl︸ ︷︷ ︸
current preference

pair direction

〉
, (13)

where

Ihinge(d) = I[1−∆θ > 0] and ∆θ = β log

[
πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

]
. (14)

Both DPO and SLiC assign higher IF values to preference pairs whose gradient difference direction
(i.e., gw − gl) is consistent with that of the validation preferences, and negative influence scores when
they oppose. In DPO, the IF is further scaled by 1− σ(∆θ), assigning near-zero scores to pairs with
large ∆θ, i.e., those already well learned by the model. Similarly, SLiC sets the IF to exactly zero for
margin-satisfied pairs (∆θ > 1). These well learned pairs naturally fall into the medium-IF region,
and are also considered as high-quality data that promote preference generalization.

B.2 RELATIONSHIP BETWEEN INFLUENCE INFLUNCTION AND LOSSDIFF

To analyze the positive correlation between influence function defined in Eq. (4) and LossDiff defined
in Eq. (8), we provide formal justification as follows:
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Lemma B.1 (Loss Difference (LossDiff) Correlates with Influence Function (IF)). Assume that the
validation-aligned model πθval is obtained by performing a single gradient descent step from the
current model πθ on the loss, i.e., θval = θ − η∇θL(θ;Dval), where η is the learning rate. For a give
training preference pair d, the loss difference and the influence function are positively correlated:

LossDiff(d;πθ, πθval) := ℓ(θ; d)− ℓ(θval; d) ∝ I(d;πθ;Dval), (15)

where I(d;πθ;Dval) is the influence function defined in Eq. (5).

Formal Derivation. By applying a first-order Taylor expansion of the loss ℓ(θ; d) at θ:, we get:

ℓ(θval; d) ≈ ℓ(θ; d) +∇θℓ(θ; d)
⊤(θval − θ). (16)

Then, rearranging terms gets:

ℓ(θ; d)− ℓ(θval; d) ≈ −∇θℓ(θ; d)
⊤(θval − θ). (17)

Now assume θval = θ − η∇θL(θ;Dval), where η > 0 is the learning rate. Substituting this into the
equation yields:

ℓ(θ; d)− ℓ(θval; d) ≈ η · ∇θℓ(θ; d)
⊤∇θL(θ;Dval) (18)

∝ ∇θℓ(θ; d)
⊤∇θL(θ;Dval) (19)

= I(d;πθ;Dval). (20)

Hence, the LossDiff defined in Eq. (8) is positively correlated to the IF defined in Eq. (4).

The formal justification assumes that the validation-aligned model πθval is obtained by performing
a single gradient descent step from the current model πθ on the alignment loss computed over the
validation set. While this assumption does not precisely reflect the actual training procedure, it
serves as a reasonable local approximation. In preference alignment methods, they all explicitly
or implicitly have a KL divergence term in preference optimization objectives (Bai et al., 2022b;
Rafailov et al., 2023). The KL regularization term constrains both the πθ and the πθval to remain
close to the reference model in parameter space. Since both θ and θval lie in a small neighborhood
around the same reference model, it is reasonable to assume that θval can be approximated by a single
gradient descent step from θ on the preference loss. This justifies the assumption used in Lemma B.1.

B.3 FORMAL ANALYSIS OF THE RELIABILITY OF MEDIUM-IF DATA SELECTION

We demonstrate that the reliability of selecting high-IF data decreases as the quality of the validation
data decreases. We provide the derivation pipeline as follows:

Suppose the validation dataset is corrupted w.p. η. Then, the expected validation gradient v consists
of the clean (c) and noisy (n) parts, following gv = (1− η)gc + ηgn. For a training sample i with
the gradient gi, we have its influence weight as

ωi = −g⊤v gi = −(1− η)g⊤c gi − ηg⊤n gi, (21)

which can be further written as ωi = ω∗
i + δi, with ω∗

i the clean weight and δi = −η(gn− gc)
⊤gi the

bias term. Assuming that gn − gc is independent on gi, with zero mean and isotropic variance σ2
nI ,

then we have Var(δi) = η2σ2
n||gi||2 and Var(ωi) = σ2

w + τ2, with σ2
w = Var(ωi) and τ2 = Var(δi).

Accordingly, we have the expected correlation between ω∗ and ω as

ρ =
Cov(ω∗

i , ωi)√
Var(ω∗

i )Var(ωi)
=

√
σ2
w/σ

2
w + τ2. (22)

As observed, when the corruption rate η increases, the correlation ρ between the true and observed
scores decreases, leading to a lower probability p(i ∈ Ttrue(k)|i ∈ Tobs(k)). Hence, the top-k
sampling strategy becomes less reliable under high noise levels. Similar derivations hold for bottom-k
sampling, making middle-k sampling tend to be more reliable.
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Figure 8: Analysis of IF-based data partition with overlapping splits on Qwen3-0.6B-Base and
Llama-3.2-1B. From Left to Right: Trainin DPO loss, evaluation DPO loss and evaluation reward
margin. Subsets of {small, medium, large}-60% are denoted by {blue, orange, green}, respectively,
while different line styles indicate IF values computed using different epoch checkpoints. Previous
analysis refers to Section 3.2 and Figure 1.

Table 7: Further Overlap Coefficient analysis on epoch-{3,4,5} DPO checkpoints to assess the
overlap between two selected sets.

Overlap Coefficient LossDiff vs. IF IRM vs. IF LossDiff-IRM vs. IF
Models Epoch 3 ckpt Epoch 4 ckpt Epoch 5 ckpt Epoch 3 ckpt Epoch 4 ckpt Epoch 5 ckpt Epoch 3 ckpt Epoch 4 ckpt Epoch 5 ckpt

Qwen3-0.6B-Base 0.6593 0.6343 0.6340 0.6153 0.5983 0.6000 0.6917 0.6770 0.6747
Llama-3.2-1B 0.6319 0.6299 0.6292 0.5645 0.5512 0.5499 0.6687 0.6643 0.6673

C ADDITIONAL ANALYSIS

C.1 MORE ANALYSIS OF IF ON QWEN3-0.6B-BASE AND LLAMA-3.2-1B

As a supplement to Sec 3.2, we investigate whether introducing more medium-IF data into the
small-IF and large-IF subsets can mitigate the adverse effects of extreme IF values. To this end, we
adopt overlapping splits, dividing the data into large-60%, medium-60%, and small-60% subsets
based on their IF scores, where the small-60% and large-60% subsets partially overlap with the
medium-60% subset. Figure 8 shows the training dynamics of such overlapping data partition on
Qwen3-0.6B-Base and Llama-3.2-1B. We observe similar phenomena shown as non-overlapping
splits in Figure 1: small-IF data continues to be uninformative and large-IF data still drives overfitting.
This suggests that extremely small- or large-IF pairs are detrimental, as even introducing smoother
overlaps fails to mitigate their negative effects.

C.2 MORE ANALYSIS OF CORRELATION

As a supplement to Figure 2 and Table 2, which analyze the epoch-1,2 checkpoints of Qwen3-0.6B-
Base and Llama-3.2-1B, Figure 9 and Table 7 present the results for the remaining epoch-3,4,5
checkpoints. We observe that as training progresses, the correlation between IRM and IF decreases
more sharply than that between LossDiff and IF. For example, at epoch-5 of Llama-3.2-1B, the
Pearson coefficient between IRM and IF drops to 0.0636. Nevertheless, the Overlap Coefficients of
LossDiff–IRM remain consistently above 0.65, indicating a relatively high level of agreement with
the exact IF-based selection and exceeding those of LossDiff or IRM alone. This supports our design
choice: the errors of LossDiff and IRM in approximating IF are diverse and may partially offset each
other, so combining them yields a selection that more closely matches the exact IF-based criterion.
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Figure 9: Further correlation analysis on epoch-{3,4,5} checkpoints of Qwen3-0.6B-Base and
Llama-3.2-1B. First Row: correlation between LossDiff and IF on Qwen3-0.6B-Base. Second Row:
correlation between IRM and IF on Qwen3-0.6B-Base. Third Row: correlation between LossDiff and
IF on Llama-3.2-1B. Fourth Row: correlation between IRM and IF on Llama-3.2-1B.

D MORE EXPERIMENTAL DETAILS

D.1 DATASET DETAILS

The details of the datasets used in this work is introduced as follows:
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Table 8: Statistics of the datasets used in this work.

Dataset Purpose # Instances Unit
Train Val Eval

UltraChat-200K SFT 207,865 - 23,110 Dialogues
UltraFeedback-Binarized Pref. Train 48,908 12,227 - Pairs
UltraFeedback Test set Evaluation - - 1,000 Pairs
AlpacaEval Evaluation - - 805 Prompts
Vicuna-Bench Evaluation - - 80 Prompts

• UltraChat-200K1 (Tunstall et al., 2024): This is a heavily filtered subset version of Ultra-
Chat (Ding et al., 2023), which was originally used for training ZePhyr-7B-β model. The filtering
process removes dialogues containing grammatical errors or assistant responses with phrases such
as “I do not have emotions” or “I don’t have opinions.” After filtering, training set of UltraChat-
200K contains 207,865 multi-turn dialogues generated by ChatGPT, covering a wide range of
topics. Currently, it is widely adopted for supervised fine-tuning (SFT) of LLMs in research
community (Ko et al., 2024; Zhang et al., 2024b). We also use this dataset to perform SFT on
LLMs as preparation for subsequent preference alignment.

• UltraFeedback-Binarized2 (Cui et al., 2023): This is a preprocessed pairwise version of the
UltraFeedback3 dataset, designed for LLM preference alignment. The dataset contains 64k
prompts collected from diverse sources. For each prompt, four responses are generated by
different LLMs and then evaluated by GPT-4 along four axes: instruction-following, truthfulness,
honesty, and helpfulness. To construct preference pairs of the UltraFeedback-Binarized, the
response with the highest overall score is selected as the “chosen” response, while one of the
remaining three is randomly selected as the “rejected” response. We perform stratified sampling
based on the GPT-4 score difference between chosen and rejected responses, holding out 20% of
the training split as a validation set, using the remaining 80% as our full training set in this work.
The resulting dataset contains 48,908 training pairs and 12,227 validation pairs.

• UltraFeedback Test Set (Cui et al., 2023): This test set is provided alongside the UltraFeedback-
Binarized dataset and constructed using the same preprocessing procedure. It contains 2,000
high-quality preference pairs. To reduce the cost of LLM-based evaluation in our experiments, we
randomly sample 1,000 pairs from this set to form the UltraFeedback evaluation dataset used in
this paper. To reduce the cost of LLM-as-a-Judge (Zheng et al., 2023a) evaluation, we randomly
sample 1,000 pairs from this set to construct the UltraFeedback benchmark used in this work.

• AlpacaEval4 (Li et al., 2023): This is a lightly modified version of the AlpacaFarm (Dubois
et al., 2023) evaluation set, containing 805 challenging prompts spanning a wide range of topics.
Following previous studies (Ko et al., 2024; Gao et al., 2025), we employ AlpacaEval to evaluate
the instruction-following capability of the trained LLMs in this paper.

• Vicuna-Bench (Chiang et al., 2023): This is a dataset containing 80 diverse questions originally
used to evaluate the Vicuna series of LLMs. Following previous work (Pattnaik et al., 2024; Ko
et al., 2024), we adopt it to evaluate the open-ended question-answering ability of the model.

The statistics information of above datasets used in this paper is summarized in Table 8.

D.2 TRAINING DETAILS

We conduct experiments using various LLM families, including Llama-3.1-8B (Vavekanand & Sam,
2024), Qwen3-8B-Base (Yang et al., 2025) and the Pythia series (Pythia-2.8B/1.4B/410M) (Biderman
et al., 2023). Due to GPU limit, Llama-3.1-8B and Qwen3-8B-Base are trained using LoRA with
rLoRA = 32, αLoRA = 32 and drop out = 0.05, whereas the Pythia models are trained in a full-
parameter setting. As described in the previous section, we first perform one epoch of SFT on each
model based on UltraChat-200K dataset to initialize the alignment learning.

1https://huggingface.co/datasets/HuggingFaceH4/ultrachat 200k
2https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback binarized
3https://huggingface.co/datasets/openbmb/UltraFeedback
4https://huggingface.co/datasets/tatsu-lab/alpaca eval
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Table 9: Training Setup Details.

Stage Hyperparameter Llama-3.1-8B Qwen3-8B-Base Pythia-410M Pythia-1.4B Pythia-2.8B

SFT

Learning rate 2e-5
Optimizer AdamW
Scheduler Cosine
# Epoch 1

Batch Size 8 8 64 32 8
Gradient accumulations 8 8 1 2 8

Alignment

Learning rate 2e-4 5e-7
Optimizer AdamW
Scheduler Linear
# Epoch 2

Batch Size 16 16 32 8 2
Gradient accumulations 1 1 1 4 16

β 0.1 (DPO) / 0.1 (SLiC)
rLoRA 32 32 -
αLoRA 32 32 -

drop outLoRA 32 32 -

Figure 10: Pointwise single-answer grading prompt to compute metric of “Single”.

We then apply two preference alignment algorithms, i.e, DPO and SLiC, to validate the effectiveness
of our proposed LossDiff-IRM. For both DPO and SLiC, we train for two epochs with the AdamW
optimizer and a linear learning rate scheduler. The batch sizes and gradient accumulation steps are set
to {16, 16, 32, 8, 2} and {1, 1, 1, 4, 16} for the five models, respectively. The hyperparameter of KL
pernalty β in DPO and SLiC is set 0.1 for both DPO and SLiC following previous work (Ko et al.,
2024). All experiments are conducted using bfloat16 dtype in our experiments. All experiments are
conducted on two NVIDIA H100-80GB GPU using the Hugging Face TRL5 library. All training
hyperparameters refer to Table 9

D.3 EVALUATION DETAILS

To evaluate the aligned LLMs, we use the vllm6 library to accelerate inference and generate responses
with sampling temperature set to 1.0, top-p of 0.95, and a maximum generation length of 512 tokens
to control the generation length. For LLM-as-a-judge evaluation, we adopt GLM-4-Plus7 Pythia
experiments, while for Llama-3.1-8B and Qwen3-8B-Base we adopt the open-source Qwen3-32B to
reduce API token costs. We adopt two types of prompting strategies: (1) a pointwise single-answer

5https://huggingface.co/docs/trl/index
6https://docs.vllm.ai/en/latest/
7https://bigmodel.cn/
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Figure 11: Pairwise comparison prompt to compute metric of “WinRate vs. SFT”.

grading prompt, which yields the Single Score, and (2) a pairwise comparison prompt, which produces
the Win Rate vs. SFT. The temperature of the judge is set to 0.0 for both two metrics. The prompt
templates for both evaluation metrics are shown in Fig. 10 and Fig. 11. The WinRate is computed by
assigning a weight of 1 to wins, 0.5 to ties, and 0 to losses. Formally:

WinRate =
nwin + 0.5× ntie

nwin + ntie + nloss
, (23)

where nwin, ntie, and nloss denote the number of wins, ties, and losses, respectively. To mitigate
position bias, we repeat the pairwise evaluation with swapped answer orders and report the averaged
Win Rate. For the GPT-4 and RM baselines, high-quality preference pairs are selected based on
GPT-4 score differences from UltraFeedback and reward differences computed by the OpenAssistant
reward model8, respectively.

We compare our LossDiff-IRM with several data-centric preference alignment methods, including:

• CurriDPO (Pattnaik et al., 2024) is a curriculum learning-based method, which orders preference
pairs to organize curriculum learning based on various creteria, such as GPT4 score (CurriDPO-
GPT4) and reward model score (CurriDPO-Reward Model).

• MAP (Huang et al., 2025) is a margin-based preference data selection metric, called alignment
potential, which integrates both explicit and implicit reward margins to quantify preference data.

• RS-DPO (Khaki et al., 2024) combines rejection sampling (RS) with DPO to generate high-
quality preference data for DPO training. RS-DPO requires an external reward model to quantify
preference pairs during rejection sampling.

8https://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5
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Figure 12: Ablation study on Single Score. Comparison of LossDiff-IRM and its ablated variants
that select data relying solely on LossDiff (“w/ LossDiff”) or solely on IRM (“w/ IRM”). Top:
Training with DPO. Bottom: Training with SLiC. The ablation of WinRate is provided in Figure 3.

Table 10: Concrete performance of ablation study of LossDiff-IRM with DPO, which is corre-
sponding to Figure 3 and Figure 12.

LLM DPO Dataset
Ratio

UltraFeedback AlpacaEval Vicuna-Bench
Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑

Llama-3.1-8B
LossDiff-IRM 64% 6.54 83.97 6.84 87.08 7.06 86.88
w/ LossDiff 80% 6.34 82.42 6.49 84.36 6.47 79.69

w/ IRM 80% 5.72 76.92 5.80 77.25 5.97 76.88

Qwen3-8B-Base
LossDiff-IRM 64% 8.05 67.32 8.36 71.52 8.72 67.19
w/ LossDiff 80% 7.89 64.71 8.26 68.10 8.66 65.62

w/ IRM 80% 7.61 61.73 7.94 63.88 8.22 59.38

Pythia-2.8B
LossDiff-IRM 64% 4.90 79.62 5.30 76.03 5.74 82.50
w/ LossDiff 80% 4.74 76.83 5.22 72.44 5.71 81.01

w/ IRM 80% 4.85 75.40 5.12 72.38 5.64 73.12

Pythia-1.4B
LossDiff-IRM 64% 4.23 78.49 4.49 76.43 5.28 76.88
w/ LossDiff 80% 4.09 75.20 4.48 75.75 4.99 75.62

w/ IRM 80% 4.06 74.22 4.35 74.41 4.86 72.50

Pythia-410M
LossDiff-IRM 64% 3.30 86.14 3.30 85.16 3.80 85.62
w/ LossDiff 80% 3.07 80.64 3.11 82.21 3.54 80.63

w/ IRM 70% 3.11 82.58 3.17 82.96 3.73 85.00

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ABLATION STUDY: SINGLE SCORE

As a supplement to Figure 3, Figure 12 reports the Single Score for LossDiff-IRM and its two
ablated variants: “w/ LossDiff” and “w/ IRM”, which select data depending on LossDiff or IRM
alone. Similar to the Win Rate results in Figure 3, the full LossDiff-IRM consistently outperforms
its ablations. This results corroborates the higher Overlap Coefficients of LossDiff-IRM shown
in Table 2 and Table 7, indicating that the combination of the two scoring functions provides a
more reliable criterion for data selection than either one alone. Furthermore, Table 10 and Table 11
summarize the concrete performance of ablation studies with DPO and SLiC respectively.

E.2 MORE VISUALIZATION OF IF

As a supplement to Figure 7, Figure 13 visualizes additional layer-wise IF values computed on
the Pythia-410M model using the full UltraFeedback training and validation sets. Consistent with
earlier observations, no single layer dominates the IF values, suggesting that approximating IF using
gradients from only one or a few layers is not reliable and motivating the need for exploring effective
correlated approximation proxies such as our LossDiff-IRM.
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Table 11: Concrete performance of ablation studt of LossDiff-IRM with SLiC, which is corre-
sponding to Figure 3 and Figure 12.

LLM SLiC Dataset
Ratio

UltraFeedback AlpacaEval Vicuna-Bench
Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑

Llama-3.1-8B
LossDiff-IRM 64% 5.94 79.51 5.84 78.84 5.85 76.56
w/ LossDiff 80% 5.66 76.44 5.76 77.58 5.33 70.94

w/ IRM 80% 5.36 72.73 5.34 72.64 6.11 74.37

Qwen3-8B-Base
LossDiff-IRM 64% 7.87 64.40 8.11 67.58 8.44 61.12
w/ LossDiff 64% 7.82 62.42 8.12 65.27 8.28 58.13

w/ IRM 80% 7.55 59.62 7.82 62.11 8.36 55.63

Pythia-2.8B
LossDiff-IRM 64% 4.82 76.36 5.02 68.85 5.47 74.38
w/ LossDiff 80% 4.51 71.01 4.81 66.48 5.30 70.63

w/ IRM 80% 4.53 71.74 4.84 66.79 5.25 67.50

Pythia-1.4B
LossDiff-IRM 64% 4.14 74.25 4.39 72.69 4.88 71.25
w/ LossDiff 80% 3.78 67.87 4.07 68.06 4.78 66.25

w/ IRM 80% 3.89 70.29 4.17 67.29 4.74 66.87

Pythia-410M
LossDiff-IRM 64% 3.30 86.14 3.30 85.16 3.80 85.62
w/ LossDiff 80% 2.95 75.20 2.97 76.53 3.71 72.50

w/ IRM 70% 2.97 78.54 3.08 79.39 3.69 77.50
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Figure 13: Visualization of layer-wise IF value computed on Pythia-410M.

E.3 RESULTS OF DIRECT TRAINING ON TRAIN, VAL, OR TRAIN+VAL SETS

Since this work introduces an additional validation set, a natural question is how models perform
when trained directly on this validation set or on the union of training and validation sets. As a
supplement, Table 12 reports the results of models trained on the training set, validation set, and
the combined training + validation set, under both DPO and SLiC. We observe that none of these
settings clearly outperforms the others, despite differences in dataset size. This highlights that
existing datasets such as UltraFeedback contain a substantial amount of low-quality data, so randomly
splitting out a validation set or simply enlarging the training set by taking their union does not yield
performance gains. In contrast, when applying our LossDiff-IRM data selection on the training set,
performance improves significantly, further confirming that LossDiff-IRM effectively identifies the
valuable preference data beneficial for current model alignment.
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Table 12: Results of training on training, validation, or training + validation sets, respectively.

LLM Training
Data Method UltraFeedback AlpacaEval Vicuna-Bench

Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑

Llama-3.1-8B

Val DPO 5.28 72.77 5.34 73.26 5.83 73.44
Train + Val DPO 5.50 75.16 5.47 73.24 5.50 71.95

Train DPO 5.77 77.61 5.87 78.41 6.04 73.75
Train DPO + LossDiff-IRM 6.54 83.97 6.84 87.08 7.06 86.88
Val SLiC 5.19 72.50 5.16 72.39 5.29 67.50

Train + Val SLiC 5.03 67.41 5.07 69.82 5.15 66.56
Train SLiC 5.09 70.72 5.13 72.13 5.40 71.88
Train SLiC + LossDiff-IRM 5.94 79.51 5.84 78.84 5.85 76.56

Qwen3-8B-Base

Val DPO 7.83 61.73 8.07 67.81 8.36 65.33
Train + Val DPO 7.72 62.01 7.88 63.77 8.18 52.50

Train DPO 7.64 61.41 7.92 63.85 8.21 62.14
Train DPO + LossDiff-IRM 8.05 67.32 8.36 71.52 8.72 67.19
Val SLiC 7.71 60.62 8.07 64.59 8.38 58.44

Train + Val SLiC 7.56 58.44 7.78 60.93 8.22 60.59
Train SLiC 7.55 59.54 7.61 59.71 8.05 54.69
Train SLiC + LossDiff-IRM 7.87 64.40 8.11 67.58 8.44 61.12

Pythia-2.8B

Val DPO 4.63 70.88 4.80 64.51 5.49 69.37
Train + Val DPO 4.54 71.39 4.86 63.67 5.35 66.25

Train DPO 4.60 70.53 4.95 67.50 5.35 67.50
Train DPO + LossDiff-IRM 4.90 79.62 5.30 76.03 5.74 82.50
Val SLiC 4.42 67.70 4.71 62.11 4.89 61.88

Train + Val SLiC 4.33 64.29 4.63 57.49 4.84 56.25
Train SLiC 4.36 67.46 4.48 61.66 4.90 65.00
Train SLiC + LossDiff-IRM 4.82 76.36 5.02 68.85 5.47 74.38

Pythia-1.4B

Val DPO 3.69 66.45 4.06 66.22 4.65 65.65
Train + Val DPO 3.80 65.50 4.01 64.30 4.69 65.62

Train DPO 3.70 65.88 3.99 66.17 4.71 64.38
Train DPO + LossDiff-IRM 4.23 78.49 4.49 76.43 5.28 76.88
Val SLiC 3.76 66.75 4.02 63.33 4.64 59.38

Train + Val SLiC 3.68 63.67 3.98 63.12 4.45 59.38
Train SLiC 3.66 63.58 3.98 63.68 4.67 60.00
Train SLiC + LossDiff-IRM 4.14 74.25 4.39 72.69 4.88 71.25

Pythia-410M

Val DPO 2.72 72.57 2.77 73.04 3.74 72.50
Train + Val DPO 2.77 73.62 2.80 73.85 3.31 73.75

Train DPO 2.81 75.25 2.77 73.51 3.10 69.37
Train DPO + LossDiff-IRM 3.30 86.14 3.30 85.16 3.80 85.62
Val SLiC 2.68 71.13 2.73 71.74 3.51 66.25

Train + Val SLiC 2.83 73.17 2.84 73.60 3.21 63.12
Train SLiC 2.81 73.80 2.82 73.91 3.31 71.25
Train SLiC + LossDiff-IRM 3.07 80.08 3.09 84.39 3.83 79.36

Table 13: Performance of introducing more validation data. The validation set is extended by
introducing validation set from OASST (Köpf et al., 2023) and GoldenHH (Cai et al., 2023).

LLM Validation
Dataset DPO UltraFeedback AlpacaEval Vicuna-Bench

Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑

Pythia-2.8B

N/A Full Data 4.60 70.53 4.95 67.50 5.35 67.50
Ultra LossDiff-IRM 4.90 79.62 5.30 76.03 5.74 82.50

Ultra + OASST LossDiff-IRM 4.88 78.71 5.11 74.16 5.85 76.88
Ultra + GoldenHH LossDiff-IRM 4.99 80.07 5.28 74.06 5.89 74.38

Pythia-1.4B

N/A Full Data 3.70 65.88 3.99 66.17 4.71 64.38
Ultra LossDiff-IRM 4.23 78.49 4.49 76.43 5.28 76.88

Ultra + OASST LossDiff-IRM 4.17 77.26 4.44 77.11 4.91 77.22
Ultra + GoldenHH LossDiff-IRM 4.36 80.12 4.69 79.02 5.39 81.01

Pythia-410M

N/A Full Data 2.81 75.25 2.77 73.51 3.10 69.37
Ultra LossDiff-IRM 3.30 86.14 3.30 85.16 3.80 85.62

Ultra + OASST LossDiff-IRM 3.11 84.77 3.19 85.24 3.96 86.25
Ultra + GoldenHH LossDiff-IRM 3.25 84.62 3.28 86.71 3.73 83.75

E.4 IMPACT OF INTRODUCING MORE VALIDATION DATA

Since LossDiff-IRM relies on a validation set as a reference for data selection, Figure 4 has examined
the effect of noisy validation sets. A remaining question is whether enlarging the validation set by
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Table 14: Time cost analysis between RS-DPO and LossDiff-IRM.

Trained Model # Prompts RS-DPO LossDiff-IRM

Time Throughput (prompts/sec) Time Throughput (prompts/sec)

Llama-3.1-8B 48,908 4 h 34 min 2.97 2 h 14 min 6.08
Qwen3-8B-Base 48,908 4 h 50 min 2.81 2h 43 min 5.03
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Figure 14: Analysis of percentile thresholds ξsmall, ξlarge, τsmall, τlarge of Qwen3-8B-Base. We vary
ξsmall = (100− ξlarge) and τsmall = (100− τlarge) with in {0, 10, 20, 30}. Analysis for Llama-3.1-8B
is illustrated in Figure 6.

incorporating data from multiple sources can further improve its effectiveness. As a supplement,
Table 13 reports the performance of LossDiff-IRM when the original Ultra validation set is extended
with additional data from OASST (Köpf et al., 2023) and GoldenHH (Cai et al., 2023), resulting in
{Ultra + OASST} and {Ultra + GoldenHH}, each containing 22,227 preference pairs. We observe
that extending Ultra with OASST or GoldenHH yields only marginal improvements on certain
models or benchmarks, without consistent or significant gains. Notably, regardless of whether
the validation set is Ultra, {Ultra + OASST}, or {Ultra + GoldenHH}, applying LossDiff-IRM
consistently outperforms training on the full dataset. These results suggest that a large validation
preference set is not strictly necessary for effective LossDiff-IRM selection. LossDiff-IRM remains
certain robustness even when the validation set differs from the training distribution, as long as it
provides a rough reference direction for distinguishing preference data quality.

E.5 TIME COST ANALYSIS BETWEEN LOSSDIFF-IRM AND RS-DPO

High-quality preference data selection and generation are two types of data-centric methods. For
example, RS-DPO (Khaki et al., 2024) focuses on generating new high-quality preference pairs
through rejection sampling using the SFT model, whereas our LossDiff-IRM focuses on analyzing
existing annotated preference pairs to identify valuable preference pairs. Specifically, RS-DPO
requires an external reward model to evaluate the responses generated by the SFT model. Given N
prompts and K sampled responses per prompt, RS-DPO needs to score N ×K responses with the
reward model in order to construct contrastive preference pairs. For LossDiff-IRM, it requires scoring
all preference pairs with both the current model and an auxiliary model. For the same scale of N
preference pairs, LossDiff-IRM requires N forward passes with the current model and N forward
passes with the auxiliary model, resulting in a total of 2N forward passes, where the two models share
the same architecture and differ only in parameters. To facilitate a direct comparison, Table 14 reports
the data processing time cost of RS-DPO (including data generation and rejection sampling) using
the OpenAssistant-1.4B reward model with K=8, as well as the data-selection time of LossDiff-IRM.
All experiments were conducted on a single H100-80GB GPU.

The dominant cost of RS-DPO comes from using the reward model to evaluate all N ×K responses
generated by the SFT model. Even using a relatively small 1.4B reward model, the time cost is
actually higher than LossDiff-IRM. Therefore, the time cost of LossDiff-IRM is at least on par with
RS-DPO, and even often smaller, especially when considering that RS-DPO scales with K or uses a
larger reward model.
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Figure 15: Visualization of distribution of LossDiff and implicit reward margin for Llama-3.1-8B
and Qwen3-8B-Base, respectively.

Table 15: Concrete performance of LossDiff-IRM with noisy validation set, which is correspond-
ing to Figure 4.

Method UltraFeedback AlpacaEval Vicuna-Bench
Single ↑ WinRate ↑ Single ↑ WinRate ↑ Single ↑ WinRate ↑

Llama-3.1-8B
Full Data 5.77 77.61 5.87 78.41 6.04 73.75
LossDiff-IRM 6.54 83.97 6.84 87.08 7.06 86.88
+ Noise Rate = 0.1 6.44 83.79 6.69 85.99 6.76 81.56
+ Noise Rate = 0.2 6.19 80.76 6.35 81.30 6.67 78.44
+ Noise Rate = 0.3 6.19 80.71 6.24 82.03 6.54 82.50
+ Noise Rate = 0.4 5.95 79.02 6.01 80.37 6.54 78.75

Qwen3-8B-Base
Full Data 7.64 61.41 7.92 63.85 8.21 62.14
LossDiff-IRM 8.05 67.32 8.36 71.52 8.72 67.19
+ Noise Rate = 0.1 7.70 63.78 8.11 68.75 8.47 65.62
+ Noise Rate = 0.2 7.99 66.70 8.26 69.57 8.61 61.25
+ Noise Rate = 0.3 7.97 65.98 8.15 69.16 8.65 66.25
+ Noise Rate = 0.4 7.84 63.90 8.26 68.35 8.49 65.62

E.6 MORE ANALYSIS OF PERCENTILE THRESHOLDS

As a supplement, Figure 14 provides the analysis of percentile thresholds ξsmall, ξlarge, τsmall, τlarge for
Qwen3-8B-Base. The rough trends are similar as for Llama-3.1-8B: performance first improves and
then degrades as the thresholds become stricter. Following this observation, we finally set ξsmall and
ξsmall as 10, τsmall and τsmall as 10 for all models.

E.7 VISUALIZATION OF DISTRIBUTION OF LOSSDIFF AND IRM

Figure 15 visualizes the LossDiff and IRM distributions for Llama-3.1-8B and Qwen3-8B-Base,
respectively. We observe that both LossDiff and IRM exhibit distributional shapes resembling
unimodal, Gaussina-like distributions, where the majority of data lies in the middle region and only a
small number of data fall in the extremes. In our data selection strategy, both criteria concentrate data
in their middle ranges, taking their intersection would not result in an extremely small subset. The
overlap between their medium regions remains sufficiently large and high-quality for alignment.

E.8 ADDITIONAL SUPPLEMENT

As a supplement to Figure 3 and Figure 12, we report the corresponding numerical results in Table 10.
In addition, Figure 4 shows the impact of noisy validation sets on LossDiff-IRM under different noise
rates, with the detailed results provided in Table 15.
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