

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS UNDERSTANDING VALUABLE PREFERENCE DATA FOR LARGE LANGUAGE MODEL ALIGNMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language model (LLM) alignment is typically achieved through learning from human preference comparisons, making the quality of preference data critical to its success. Existing studies often pre-process raw training datasets to identify valuable preference pairs using external reward models or off-the-shelf LLMs, achieving improved overall performance but rarely examining whether individual, selected data point is genuinely beneficial. We assess data quality through individual influence on validation data using our newly proposed truncated influence function (TIF), which mitigates the over-scoring present in traditional measures and reveals that preference data quality is inherently a property of the model. In other words, a data pair that benefits one model may harm another. This leaves the need to improve the preference data selection approaches to be adapting to specific models. To this end, we introduce two candidate scoring functions (SFs) that are computationally simpler than TIF and positively correlated with it. They are also model dependent and can serve as potential indicators of individual data quality for preference data selection. Furthermore, we observe that these SFs inherently exhibit errors when compared to TIF. To this end, we combine them to offset their diverse error sources, resulting in a simple yet effective data selection rule that enables the models to achieve a more precise selection of valuable preference data. We conduct experiments across diverse alignment benchmarks and various LLM families, with results demonstrating that better alignment performance can be achieved using less data, showing the generality of our findings and new methods.

1 INTRODUCTION

Reinforcement learning with human feedback (RLHF) has emerged as a dominant fine-tuning paradigm for aligning large language models (LLMs) with human preferences (Bai et al., 2022b; Wang et al., 2024). Whether through training explicit reward models (Lambert et al., 2024) or optimizing policy with implicit rewards (Rafailov et al., 2023), the success of RLHF hinges heavily on the availability of high-quality preference data. Previous works (Shen et al., 2024; Pattnaik et al., 2024; Morimura et al., 2024; Deng et al., 2025; Chen et al., 2024) typically leverage external reward models or off-the-shelf LLMs to filter raw data, treating selected data as reliable sources for training their models or releasing them for open-source use (Cui et al., 2023; Bai et al., 2022a). This pre-processing paradigm dominates the RLHF community to improve data quality, contributing remarkably to the success of many publicly available LLMs such as Llama (Vavekanand & Sam, 2024), Qwen (Yang et al., 2025) and DeepSeek (Guo et al., 2025).

However, such pre-processing implicitly assumes that quality is an intrinsic property of data themselves: regardless of training configurations or models, certain data are consistently presumed to be more valuable for alignment than others. Therefore, a seemingly more realistic perspective is that the data quality is also a property of the model (Grosse et al., 2023; Xia et al., 2024). That is to say, some data points may be beneficial for certain models or configurations while being detrimental at others. We validate this new assumption as more reasonable based on the influence function (IF) (Koh & Liang, 2017), which quantifies the impact of each training data point on validation performance, thereby reflecting data quality. Nevertheless, we observe that the influence scores may overfit to the validation data, an issue that is particularly severe for open-world models like LLMs. To address this, we propose and verify a simple modification to the original IF, namely *truncated influence function* (TIF), which is shown to be more reliable for preference data selection and results in better overall

054 performance. Using TIF, we verify that data quality is model-dependent, varying across different
 055 models, with some data points proving beneficial for certain models yet harmful at others.
 056

057 Our above analysis suggests a reasonable yet seldom-discussed viewpoint: preference data selection
 058 should be performed for specific models and explicitly related to the training process. Although TIF
 059 provides a reliable and effective measure of data quality, its high computational cost on gradients limits
 060 its direct application for large-scale LLMs (Kwon et al., 2024). To address this, we introduce two
 061 simpler scoring functions (SFs) with lower computational costs yet sufficient potential to approximate
 062 TIF-*loss difference* (LossDiff) and *implicit reward margin* (IRM)—that are positively correlated
 063 with TIF yet require only forward passes. Considering that a single SF may exhibit specific errors
 064 relative to TIF, a combination indicator *LossDiff-IRM* is proposed to mitigate such errors, as their
 065 distinct bias sources may offset one another. Empirically, LossDiff-IRM achieves an average WinRate
 066 improvement of +13.58% over full-data training while using only 50%–64% of the data, across
 067 multiple LLM families, benchmarks, and alignment methods.

068 2 PRELIMINARY

070 To begin, we formalize pairwise preference data and introduce Direct Preference Optimization (DPO)
 071 as the base preference optimization approach used in our analysis and experiments, and then briefly
 072 review prior work on preference data selection.

073 **Pairwise Preference Data.** Pairwise preference dataset, denoted as $\mathcal{D} = \{d_i = (x^{(i)}, y_w^{(i)}, y_l^{(i)})\}_{i=1}^N$,
 074 is annotated by humans to reflect real human preference. Each pair consists of a prompt x and a
 075 pair of responses: the chosen response y_w and the rejected response y_l , which means that the human
 076 annotator prefers the chosen response rather than the rejected one, denoted as $y_w \succ y_l$.
 077

078 **Direct Preference Alignment.** Traditional RLHF (Bai et al., 2022b) often follows a two-stage
 079 pipeline: first training a reward model on preference data, and then optimizing the policy LLM using
 080 reinforcement learning (RL) algorithm such as PPO (Schulman et al., 2017). The two-stage RLHF is
 081 relatively complicated and resource-intensive. Recently, many studies (Rafailov et al., 2023; Azar
 082 et al., 2024; Zhao et al., 2023; Meng et al., 2024; Wu et al., 2024b;a) have tried to bypass the need for
 083 an explicit reward model and RL learning, to directly optimize the policy model from preference data.
 084 Among them, DPO (Rafailov et al., 2023) is a milestone work that derives the optimal policy and
 085 substitutes it into the Bradley–Terry (BT) model (Bradley & Terry, 1952), which yields its objective:
 086

$$\mathcal{L}_{\text{DPO}}(\theta; \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \in \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right], \quad (1)$$

087 where $\beta > 0$ controls the strength of the KL penalty between π_θ and π_{ref} , and σ is the sigmoid
 088 function. According to the derivation of DPO loss (Rafailov et al., 2023), the term inside the sigmoid
 089 can be interpreted as an *implicit reward margin* (IRM) between the chosen and rejected responses:
 090

$$\text{IRM}_\theta(d) = \beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)}. \quad (2)$$

091 This reward margin serves as an important indicator monitored during training to track how well the
 092 model differentiates the chosen response from the rejected one. For an individual data pair, the margin
 093 is negatively correlated with the DPO loss: larger margins correspond to lower loss values. Intuitively,
 094 the DPO adopts a contrastive-like structure that directly trains the policy LLM on preference pairs by
 095 encouraging a larger relative reward margin for the chosen response over the rejected one. The other
 096 alignment method SLiC (Zhao et al., 2023) used in this work is introduced in Appendix B.1.
 097

098 **Preference Data Quality.** Given annotator subjectivity and the open nature of the concept of
 099 preference, manually annotated preference data can be imperfect or noisy. Existing studies adopt
 100 multiple data processing strategies: Morimura et al. (2024) and Deng et al. (2025) filter out low-quality
 101 preference pairs based on external reward models. Pattnaik et al. (2024) organizes the preference
 102 data in a curriculum based on metrics such as GPT-4 score, external reward score, or log probability.
 103 Muldrew et al. (2024) and Shen et al. (2025) introduce active learning to improve data quality and
 104 annotation efficiency. Overall, these approaches mainly rely on external signals (e.g., GPT or reward
 105 model scores, or active human labeling) and implicitly view preference data quality as a property
 106 of the data itself, while overlooking the role of models, training configurations, and optimization
 107 objectives in shaping utility of preference data. Detailed related work refers to Appendix A.2.

108 3 ANALYSIS: TRUNCATED INFLUENCE FUNCTION (TIF)

110 Building upon influence function (IF), this section takes a model-centric perspective to investigate
 111 what kind of preference data truly valuable for model alignment.
 112

113 3.1 INFLUENCE FUNCTION

115 To quantify the quality of a data sample $d \in \mathcal{D}_{\text{train}}$, a classical idea is to measure its leave-one-out
 116 (LOO) (Evgeniou et al., 2004; Elisseeff et al., 2003) effect, which assesses the change in validation
 117 performance when the model is trained with versus without the data sample d :
 118

$$\text{LOO Effect}(d) = v(\theta_{\mathcal{D}_{\text{train}}}; \mathcal{D}_{\text{val}}) - v(\theta_{\mathcal{D}_{\text{train}} \setminus \{d\}}; \mathcal{D}_{\text{val}}), \quad (3)$$

120 where $v(\cdot)$ denotes a measurement to evaluate the model π_θ , and $\theta_{\mathcal{D}}$ denotes the model trained on the
 121 dataset \mathcal{D} . Intuitively, computing the exact LOO effect requires training $|\mathcal{D}_{\text{train}}| + 1$ separate models,
 122 which is infeasible in practice. To avoid repetitive retraining the model, *influence function* (IF) (Koh
 123 & Liang, 2017) provides a first-order Taylor approximation of the LOO effect using a gradient-based
 124 metric at the current parameters:
 125

$$\text{IF}(d; \pi_\theta; \mathcal{D}_{\text{val}}) = \nabla_\theta \mathcal{L}(\theta; \mathcal{D}_{\text{val}})^\top H_\theta^{-1} \nabla_\theta \ell(\theta; d) \approx \nabla_\theta \mathcal{L}(\theta; \mathcal{D}_{\text{val}})^\top \nabla_\theta \ell(\theta; d) \quad (4)$$

$$= \left(\frac{1}{|\mathcal{D}_{\text{val}}|} \sum_{i=1}^{|\mathcal{D}_{\text{val}}|} \nabla_\theta \ell(\theta; d_{\text{val}}^{(i)}) \right)^\top \nabla_\theta \ell(\theta; d), \quad (5)$$

130 where $\ell(\theta; d)$ is the training loss for the data d , and $H_\theta := \nabla_\theta^2 \mathcal{L}(\theta; \mathcal{D}_{\text{train}})$ is the Hessian matrix (Hamel-
 131 pel, 1974) of the total training loss with respect to model parameters θ . In practice, computing and
 132 inverting the Hessian matrix is often computationally intractable, especially for a large-scale model.
 133 A common approach is to approximate the Hessian H_θ as the identity matrix by assuming that the
 134 loss landscape is locally isotropic near θ (Koh & Liang, 2017; Wang et al., 2025; Xia et al., 2024).
 135 This simplification reduces the IF to a dot product between the gradient of the training data d and
 136 the expected gradient of the validation set. Intuitively, a higher IF means the training gradient better
 137 aligns with the validation gradient, suggesting the data is more beneficial for generalization.
 138

139 **Instantiation to DPO Loss.** By taking the DPO loss in Eq. (1) into the IF formulation in Eq. (4), we
 140 instantiate the IF under DPO objective for a give preference pair $d = (x, y_w, y_l)$:
 141

$$\text{IF}_{\text{DPO}}(d; \pi_\theta; \mathcal{D}_{\text{val}}) := \beta(1 - \sigma(\Delta_\theta)) \underbrace{\left(\frac{\beta}{|\mathcal{D}_{\text{val}}|} \sum_i (1 - \sigma(\Delta_\theta^{(i)})) (g_w^{(i)} - g_l^{(i)}) \right)}_{\substack{\text{preference generalization direction} \\ \text{w.r.t. validation set}}} \underbrace{g_w - g_l}_{\substack{\text{current preference} \\ \text{pair direction}}}, \quad (6)$$

142 where $g_* = \nabla_\theta \log \pi_\theta(y_*|x)$ denotes the gradient of the log-likelihood for response $y_* \in \{y_w, y_l\}$,
 143 and $\Delta_\theta = \beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)}$ is the reward difference term in the DPO loss. Unlike
 144 IF under pointwise objectives, which assesses the gradient consistency of a give data point with
 145 validation set (Koh & Liang, 2017; Wang et al., 2025), the DPO-based IF focuses on the gradient
 146 difference consistency, i.e., $g_w - g_l$, with the validation preferences, thereby serving as a proxy to
 147 assess quality of a preference pair d . Vanilla IF implicitly assumes the validation set is an oracle of
 148 generalization, thereby equating high-IF data with high quality. However, under this assumption, IF
 149 may overfit to the specific validation set. The instantiation to SLiC loss is provided in Appendix B.1.
 150

151 3.2 ANALYSIS: TRUNCATED INFLUENCE FUNCTION (TIF)

152 Since preference alignment is open-ended and a fully reliable validation set is hard to obtain, we
 153 propose the Truncated Influence Function (TIF) by partitioning data into three regions for analysis.
 154

155 **Analytical Setup.** We randomly sample a probing set $\mathcal{D}^{\text{prob}} = \{\mathcal{D}_{\text{train}}^{\text{prob}}, \mathcal{D}_{\text{val}}^{\text{prob}}, \mathcal{D}_{\text{test}}^{\text{prob}}\}$ from UltraFeed-
 156 back (Cui et al., 2023), containing 5,000, 3,000, 300 preference pairs for training, validation, and
 157 testing, respectively. Qwen3-0.6B-Base (Yang et al., 2025) and Llama-3.2-1B (Vavekanand & Sam,
 158 2024) are adopted as backbone models. Both models are first trained with supervised fine-tuning

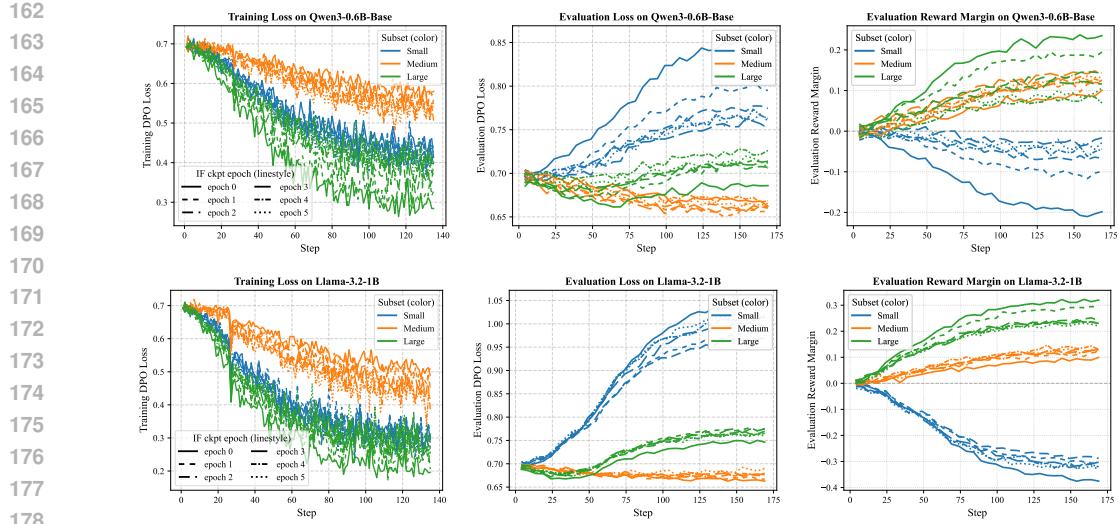


Figure 1: **Analysis of IF-based data partition on the Qwen3-0.6B-Base and Llama-3.2-1B.** From Left to Right: Training DPO loss, evaluation DPO loss and evaluation reward margin. Subsets of {small, medium, large} are denoted by {blue, orange, green}, respectively, while different line styles indicate IF values computed using different epoch checkpoints. More analysis refers to Appendix C.1.

(SFT) on UltraChat-200K (Ding et al., 2023), followed by five epochs of DPO on $\mathcal{D}_{\text{train}}^{\text{prob}}$. At each-epoch DPO checkpoint, we compute the IF values of all training pairs using Eq. (5) with respect to $\mathcal{D}_{\text{val}}^{\text{prob}}$ and partition them into three equally sized subsets (small-, medium-, and large-IF). Each subset is then used to continue DPO training from the checkpoint, while we monitor the evaluation DPO loss and reward margin on $\mathcal{D}_{\text{test}}^{\text{prob}}$ to examine which type of data is more beneficial for alignment training.

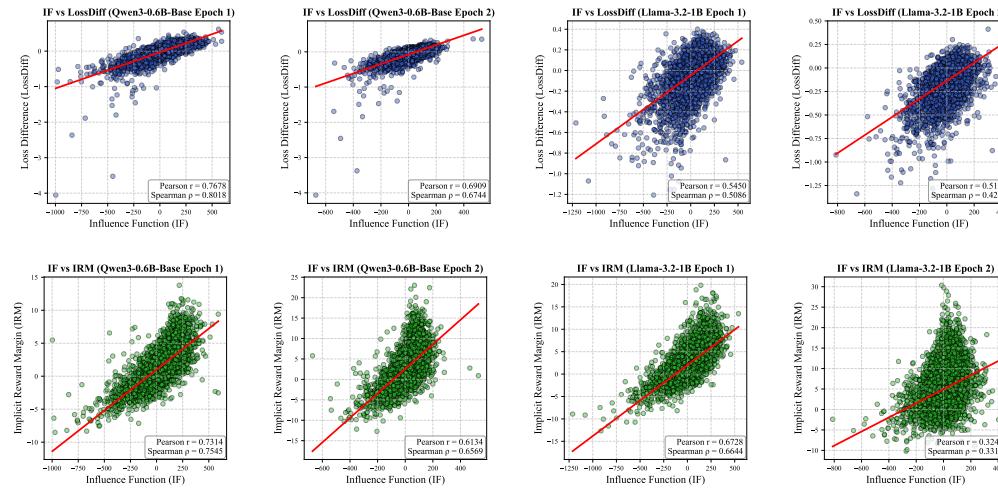
Figure 1 reports the training dynamics on Qwen3-0.6B-Base and Llama-3.2-1B with different IF-based partitions. Across both models, we observe several similar phenomena as follows:

- **Small-IF data:** Training loss decreases as expected, but evaluation loss increases while the evaluation reward margin falls below zero. This indicates that small-IF pairs are largely uninformative and of low quality, with a high likelihood of being noisy or ambiguous. Learning from such data not only fails to help the model distinguish chosen from rejected responses but may also mislead it, thereby harming alignment training and preference generalization.
- **Large-IF data:** Evaluation loss initially decreases but later rises, while the evaluation reward margin continues to increase. This mismatch between loss and margin trajectories is counterintuitive, since DPO loss and reward margin are normally negatively correlated at the per-sample level. The phenomenon indicates overfitting: training on large-IF data enlarges the margins of a small subset of pairs while reducing the margins of many other pairs. Owing to the sigmoid saturation, overly large margins contribute little to the loss, whereas the diminished margins of the majority dominate it, ultimately causing the model to overfit to a narrow portion of preference pairs.
- **Medium-IF data:** As training loss decreases, evaluation loss steadily decreases while reward margin increases, which aligns well with the intended learning dynamics of the DPO objective: improving the model ability to distinguish human-preferred (chosen) responses from rejected ones. This demonstrates that medium-IF preference pairs are high-quality data, providing the most effective and stable signal for alignment training and fostering better preference generalization.

Overall, these findings differ from vanilla IF in traditional classification, where high-IF data is typically regarded as the most valuable. In preference alignment, however, the most valuable data are the medium-IF preference pairs. This counter-intuitive finding is nonetheless reasonable: preference alignment is an open-ended task in which the chosen–rejected annotations inherently affected by annotator subjectivity, making the validation gradient an imperfect proxy for reflecting the real human preference direction. As a result, data with both extremely small and extremely large IF values is low-quality, which provide little useful signal for alignment training. Therefore, we propose the Truncated Influence Function (TIF), which offers a more robust criterion for assessing preference

216 **Table 1: Computational time and throughput rate analysis** on probing set by Qwen3-0.6B-Base
217 and Llama-3.2-1B using one H100-80GB GPU. *Top*: Exact IF, consisting of the validation-gradient
218 computation and the per-pair IF inner-product computation. *Bottom*: LossDiff-IRM, consisting of
219 one forward on the training model and one forward on a validation-aligned auxiliary model.

IF Computation	Computational Time			Throughput Rate (pair/sec)	
	Val Gradient	IF	Total	Val Gradient	IF
Qwen3-0.6B-Base	1 h 17 m 31 s	1 h 59 m 45 s	3 h 17 m 16 s	1.55	1.44
Llama-3.2-1B	3 h 55 m 32 s	6 h 02 m 37 s	9 h 58 m 09 s	4.71	4.35
LossDiff-IRM Computation	Training Forward	Val Forward	Total	Training Forward	Val Forward
Qwen3-0.6B-Base	1 min 5 s	59 s	2 m 4 s	76.92	84.74
Llama-3.2-1B	2 m 32 s	2 m 27 s	4 m 59 s	32.86	33.80



243 **Figure 2: Correlation analysis on Qwen3-0.6B-Base and Llama-3.2-1B.** *Top*: correlation between
244 loss difference (LossDiff) and IF. *Bottom*: correlation between implicit reward margin (IRM) and IF.

245 **Table 2: Overlap Coefficient analysis** to assess the overlap of two selected sets.

Overlap Coefficient	LossDiff vs. IF		IRM vs. IF		LossDiff-IRM vs. IF	
Models	Epoch 1 ckpt	Epoch 2 ckpt	Epoch 1 ckpt	Epoch 2 ckpt	Epoch 1 ckpt	Epoch 2 ckpt
Qwen3-0.6B-Base	0.6953	0.6639	0.6883	0.6470	0.7820	0.7257
Llama-3.2-1B	0.6687	0.6582	0.6969	0.6025	0.7657	0.6963

251 data quality in LLM alignment training:

$$TIF(d; \pi_\theta; \mathcal{D}_{\text{val}}) = \mathbb{I}[\delta_{\text{small}} < \text{IF}(d; \pi_\theta; \mathcal{D}_{\text{val}}) < \delta_{\text{large}}], \quad (7)$$

252 where δ_{small} and δ_{large} denote threshold percentiles that specify the boundaries of IF values. It can
253 be observed that the criterion of TIF depends on the current model π_θ , which suggests that the
254 identification of valuable preference pairs is inherently model-dependent.

257 4 METHODOLOGY: LOSSDIFF-IRM DATA SELECTION

258 Although TIF provides a principled criterion for assessing the value of preference data, its computation
259 requires gradients on both the training and validation sets, which becomes prohibitive in the large-
260 scale model and dataset regime. As reported in the top of Table 1, computing exact IF on a probing
261 set of 5,000 pairs for a small Llama-3.2-1B model still takes about 10 hours, which is already
262 prohibitively slow. This computational cost makes TIF impractical as a per-sample scoring function
263 for preference data selection in alignment training at scale.

264 4.1 APPROXIMATION PROXY OF TIF

265 To address this challenge, we introduce lightweight, *model-dependent* indicators that require only
266 forward passes yet track TIF well. Concretely, we use two approximation proxies that are positively
267 correlated with IF at the per-pair level for efficient preference data selection as follows:

270 **Validation-based scoring function: Loss Difference (LossDiff).** To bypass costly gradient computations, we introduce an auxiliary model that is aligned on the validation set and approximate IF by the *loss difference* between the current model and this auxiliary model. Specifically, for each preference pair, we define its loss difference as follows:

$$275 \quad \text{LossDiff}(d; \pi_\theta, \pi_{\theta_{\text{val}}}) = \ell(\theta; d) - \ell(\theta_{\text{val}}; d), \quad (8)$$

277 where $\pi_{\theta_{\text{val}}}$ is the auxiliary model aligned on validation set. An intuitive understanding is that a
 278 larger value indicates that moving from θ toward θ_{val} reduces the loss on d , which is consistent with
 279 the direction favored by the validation objective. We formally demonstrate that the LossDiff has
 280 a positive correlation with the IF in Appendix B.2. Empirically, the top panel of Figure 2 shows
 281 strong Pearson (Cohen et al., 2009) and Spearman (Hauke & Kossowski, 2011) correlations (e.g.,
 282 $r = 0.77, \rho = 0.80$ on Qwen-0.6B-Base). Notably, this proxy requires only two forward passes per
 283 pair without backpropagation and remains tied to the validation set by construction.

284 **Validation-free scoring function: Implicit Reward Margin (IRM).** Empirically, we find that the
 285 IRM defined in Eq. (2) exhibits a strong positive correlation with IF at the per-pair level. As illustrated
 286 in the bottom panel of Figure 2, the Pearson and Spearman correlations between IRM and IF reach
 287 $r = 0.67$ and $\rho = 0.66$ on Llama-3.1-1B, respectively. Intuitively, IRM measures how strongly the
 288 current model π_θ prefers the chosen response over the rejected response relative to a reference, and
 289 thus reflects the *model-perceived difficulty* of a preference pair. When training on a pair, the update
 290 mainly pushes the policy to enlarge that pair’s margin; the validation objective is doing the same
 291 at the validation distribution level. Consequently, pairs with larger positive IRM tend to produce
 292 updates that are more consistent with the validation objective and thus yield larger IF. Moreover, IRM
 293 is a validation-free scoring function and requires only forward computation from π_θ .

294 From the Pearson and Spearman correlations, we also observe that the validation-based LossDiff
 295 correlates higher with IF than the validation-free IRM. This is expected, as LossDiff explicitly
 296 leverages a validation-aligned auxiliary model, with the validation set serving as a reference direction
 297 for human preference. In contrast, IRM relies solely on the internal signals of current model, which
 298 makes it more lightweight but also less anchored. More analysis is provided in Appendix C.2.

300 4.2 LOSSDIFF-IRM PREFERENCE DATA SELECTION

303 Using scoring function of either LossDiff or IRM alone may introduce method-specific errors. To
 304 offset the diverse errors, we propose a combined indicator: *LossDiff-IRM*, which selects data falling
 305 within the intersection of the medium percentile ranges defined by LossDiff and IRM. Specifically,
 306 LossDiff-IRM selects a preference pair d if and only if

$$307 \quad \text{LossDiff-IRM}(d; \pi_\theta; \mathcal{D}_{\text{val}}) = \mathbb{I}[\xi_{\text{small}} < \text{LossDiff}(d; \pi_\theta; \mathcal{D}_{\text{val}}) < \xi_{\text{large}}] \\ 308 \quad \wedge \mathbb{I}[\tau_{\text{small}} < \text{IRM}(d; \pi_\theta) < \tau_{\text{large}}]. \quad (9)$$

311 where $\text{LossDiff-IRM}(d; \pi_\theta; \mathcal{D}_{\text{val}}) \in \{0, 1\}$, $(\xi_{\text{small}}, \xi_{\text{large}})$ and $(\tau_{\text{small}}, \tau_{\text{large}})$ are percentile thresholds
 312 that define the medium ranges for LossDiff and IRM, respectively. The procedure is as follows: we
 313 first warm up π_θ by training for a short stage (e.g., one epoch) on the training set, then obtain $\pi_{\theta_{\text{val}}}$ by
 314 training for one stage on the validation set. We then compute LossDiff using both π_θ and $\pi_{\theta_{\text{val}}}$, and
 315 IRM using π_θ . Based on the combined rule in Eq. (9), we select preference data and retrain π_θ for a
 316 longer stage (e.g., two epochs in our experiments).

317 **Empirical evidence.** We quantify the overlap of two selected sets using the Overlap Coefficient
 318 $\text{Overlap}(A, B) = \frac{|A \cap B|}{\min\{|A|, |B|\}} \in [0, 1]$. As reported in Table 2, the combined selector LossDiff-
 319 IRM achieves a higher Overlap Coefficient with the exact TIF-selected set than using LossDiff
 320 or IRM alone across Qwen3-0.6B-Base and Llama-3.2-1B. This indicates that combining the two
 321 scoring functions yields a selection that more closely approximates the TIF while being more
 322 computationally efficient at scale. As shown in the bottom of Table 1, LossDiff-IRM requires
 323 substantially less time and achieves higher throughput; for example, on Llama-3.2-1B it takes about
 5 minutes versus roughly 10 hours for exact IF.

324 **Table 3: Performance of LossDiff-IRM and baselines using DPO and SLiC. Cell background**
325 **colors indicate relative performance: darker colors denote better results within each model group.**

326	Methods	Dataset	Ratio	UltraFeedback	AlpacaEval	Vicuna-Bench	Arena-Hard	Methods	Dataset	Ratio	UltraFeedback	AlpacaEval	Vicuna-Bench	Arena-Hard						
<i>Llama-3.1-8B (DPO)</i>																				
328	SFT		3.60	-	3.53	-	3.98	-	2.63	-	SFT	6.97	-	7.94	-	6.64	-			
329	Full Data	100%	5.77	77.61	5.87	78.41	6.04	73.75	4.68	81.39	Full Data	100%	7.64	61.41	7.92	63.85	8.21	62.14	7.58	59.61
330	Random	64%	5.52	74.83	5.59	75.93	5.46	68.13	4.64	81.27	Random	64%	7.71	61.47	7.94	64.12	8.26	58.93	7.57	62.07
331	GPT4	64%	6.00	80.57	6.21	81.09	6.06	80.31	4.96	84.30	GPT4	64%	7.69	62.19	8.01	63.38	8.28	7.62	61.53	
332	Reward Model	64%	6.24	82.68	6.38	83.51	6.45	76.88	5.81	86.19	Reward Model	64%	7.81	61.41	8.24	69.35	8.56	66.25	7.61	64.78
333	LossDiff-IRM	64%	6.54	83.97	6.84	87.08	7.06	86.98	5.59	88.40	LossDiff-IRM	64%	8.05	67.32	8.36	71.52	8.72	67.19	7.83	68.63
<i>Pythia-2.8B (DPO)</i>																				
334	SFT		3.94	-	4.35	-	4.66	-	2.74	-	SFT	3.50	-	3.65	-	4.20	-	2.37	-	
335	Full Data	100%	4.00	7.63	4.05	7.68	4.06	7.60	3.90	7.71	Full Data	100%	3.70	61.17	4.48	64.38	5.23	64.24		
336	Random	64%	4.54	68.27	4.79	64.03	5.15	68.13	5.00	63.25	Random	52%	3.78	67.43	4.05	68.16	4.56	61.25	2.60	61.64
337	GPT4	64%	4.71	72.02	4.96	71.10	5.39	73.75	3.08	64.15	GPT4	52%	3.96	70.75	4.28	70.96	4.89	68.75	2.83	64.20
338	Reward Model	64%	4.68	75.73	5.09	70.91	5.60	75.95	3.03	63.03	Reward Model	52%	3.83	70.80	4.18	70.83	4.84	68.75	2.71	64.76
339	LossDiff-IRM	64%	4.90	79.62	5.30	76.03	5.74	82.50	3.26	71.64	LossDiff-IRM	52%	4.23	78.49	4.49	76.43	5.28	76.88	2.96	71.72
<i>Qwen3-8B-Base (SLiC)</i>																				
340	SFT		2.56	-	2.47	-	3.15	-	1.91	-	SFT	3.60	-	3.53	-	3.98	-	2.63	-	
341	Full Data	100%	2.81	75.25	2.77	73.51	3.10	69.37	2.06	59.47	Full Data	100%	5.09	70.72	5.13	72.13	5.40	71.88	3.98	73.75
342	Random	56%	2.94	76.08	2.92	76.62	3.18	75.58	70.63	5.06	Random	64%	4.94	69.52	4.89	67.05	5.26	67.50	3.95	70.35
343	GPT4	56%	2.95	76.74	2.95	79.81	3.49	79.37	2.15	61.44	GPT4	64%	5.48	75.60	5.40	72.89	6.05	67.81	4.28	75.27
344	Reward Model	56%	2.96	81.48	3.02	80.64	3.67	74.38	2.16	60.27	Reward Model	52%	5.34	73.64	5.54	75.03	5.55	68.75	4.50	78.32
345	LossDiff-IRM	56%	3.00	86.14	3.30	85.16	3.80	85.62	2.38	69.63	LossDiff-IRM	64%	5.94	79.51	5.84	78.84	5.85	76.56	4.65	83.12
<i>Qwen3-8B-Base (SLiC)</i>																				
346	SFT		1.67	-	1.88	-	1.94	-	1.64	-	SFT	3.94	-	4.35	-	4.66	-	2.74	-	
347	Full Data	100%	7.55	59.54	7.61	60.71	7.21	54.69	7.21	59.61	Full Data	100%	4.56	67.46	4.48	61.66	4.90	65.00	5.00	59.04
348	Random	64%	7.56	67.76	7.63	62.05	7.97	67.94	7.45	59.18	Random	64%	4.31	63.11	4.46	59.73	4.60	63.62	2.98	57.58
349	GPT4	64%	7.64	59.91	7.89	63.62	8.21	58.37	7.33	59.47	GPT4	64%	4.50	69.09	4.73	63.00	5.12	65.62	2.89	58.38
350	Reward Model	64%	7.74	62.47	8.09	66.57	8.50	63.44	7.38	62.27	Reward Model	64%	4.43	70.03	4.76	64.92	5.50	71.88	2.91	59.18
351	LossDiff-IRM	64%	7.87	64.40	8.11	67.58	8.44	61.12	7.61	62.20	LossDiff-IRM	64%	4.82	76.30	5.02	68.85	5.47	74.38	3.19	64.83
<i>Pythia-1.4B (SLiC)</i>																				
352	SFT		1.50	-	3.65	-	4.20	-	2.37	-	SFT	2.56	-	2.47	-	3.15	-	1.91	-	
353	Full Data	100%	3.66	63.58	3.98	63.68	4.67	60.00	2.65	58.95	Full Data	100%	2.81	73.80	2.82	73.91	3.31	71.25	2.03	75.49
354	Random	52%	3.81	66.18	3.96	63.99	4.34	56.25	2.66	60.26	Random	56%	2.67	69.23	2.29	70.68	3.09	63.12	2.14	59.77
355	GPT4	52%	3.84	69.24	4.12	65.55	4.69	63.75	2.68	59.80	GPT4	56%	2.80	72.75	2.85	74.53	3.23	75.62	2.15	60.07
356	Reward Model	52%	3.82	66.57	4.04	69.20	4.67	65.62	2.67	61.95	Reward Model	56%	2.87	77.41	2.94	78.39	3.50	75.00	2.15	60.11
357	LossDiff-IRM	52%	4.14	74.25	4.39	72.69	4.88	71.25	2.85	67.76	LossDiff-IRM	56%	3.07	80.08	3.09	84.39	3.83	79.36	2.21	62.40
<i>Pythia-10M (SLiC)</i>																				
358	SFT		1.50	-	1.65	-	2.40	-	2.37	-	SFT	2.56	-	2.47	-	3.15	-	1.91	-	
359	DPO Ablation on UltraFeedback (Win Rate)										DPO Ablation on UltraFeedback (Win Rate)									
360	Full Data										Full Data									
361	Random										Random									
362	GPT4										GPT4									
363	Reward Model										Reward Model									
364	LossDiff-IRM										LossDiff-IRM									
365	SLiC Ablation on UltraFeedback (Win Rate)										SLiC Ablation on UltraFeedback (Win Rate)									
366	Full Data										Full Data									
367	Random										Random									
368	GPT4										GPT4									
369	Reward Model										Reward Model									
370	LossDiff-IRM										LossDiff-IRM									
371	SLiC Ablation on AlpacaEval (Win Rate)										SLiC Ablation on AlpacaEval (Win Rate)									
372	Full Data										Full Data									
373	Random										Random									
374	GPT4										GPT4									
375	Reward Model										Reward Model									
376	LossDiff-IRM										LossDiff-IRM									
377	SLiC Ablation on Vicuna-Bench (Win Rate)										SLiC Ablation on Vicuna-Bench (Win Rate)									
378	Full Data										Full Data									
379	Random										Random									
380	GPT4										GPT4									
381	Reward Model										Reward Model									
382	LossDiff-IRM										LossDiff-IRM									
383	SLiC Ablation on Arena-Hard (Win Rate)										SLiC Ablation on Arena-Hard (Win Rate)									
384	Full Data										Full Data									
385	Random										Random									
386	GPT4										GPT4									
387	Reward Model										Reward Model									
388	LossDiff-IRM										LossDiff-IRM									
389	SLiC Ablation on Vicuna-Bench (Win Rate)										SLiC Ablation on Vicuna-Bench (Win Rate)									
390	Full Data										Full Data									
391	Random										Random									
392	GPT4										GPT4									
393	Reward Model										Reward Model									
394	LossDiff-IRM										LossDiff-IRM									
395	SLiC Ablation on AlpacaEval (Win Rate)										SLiC Ablation on AlpacaEval (Win Rate)									
396	Full Data										Full Data									
397	Random										Random									
398	GPT4										GPT4									
399	Reward Model										Reward Model									
400	LossDiff-IRM										LossDiff-IRM									
401	SLiC Ablation on UltraFeedback (Win Rate)										SLiC Ablation on UltraFeedback (Win Rate)									
402	Full Data																			

378
 379 **Table 4: Performance comparisons of LossDiff-IRM with existing methods, including CurriDPO (Pattnaik et al., 2024), M_{AP} (Huang et al., 2025), and RS-DPO (Khaki et al., 2024).**
 380

381 Training Data	382 UltraFeedback		383 AlpacaEval		384 Vicuna-Bench		385 Arena-Hard	
	386 Single \uparrow	387 WinRate \uparrow	388 Single \uparrow	389 WinRate \uparrow	390 Single \uparrow	391 WinRate \uparrow	392 Single \uparrow	393 WinRate \uparrow
Llama-3.1-8B (DPO)								
CurriDPO-GPT4	5.47	74.23	5.53	75.01	5.84	74.06	4.55	79.77
CurriDPO-Reward Model	5.51	74.62	5.54	74.29	5.59	74.06	4.62	79.49
M_{AP}	6.04	79.99	6.21	80.88	6.34	74.69	5.08	85.30
RS-DPO	5.70	75.98	6.39	84.84	7.04	82.81	4.69	82.05
LossDiff-IRM	6.54	83.97	6.84	87.08	7.06	86.88	5.59	88.40
Qwen3-8B-Base (DPO)								
CurriDPO-GPT4	7.61	61.04	7.74	62.35	8.16	54.69	7.52	62.51
CurriDPO-Reward Model	7.60	59.62	7.84	61.96	8.20	61.58	7.55	63.97
M_{AP}	7.95	67.84	8.31	71.11	8.62	66.87	7.72	66.55
RS-DPO	7.88	64.87	8.36	74.07	8.93	71.90	7.48	61.32
LossDiff-IRM	8.05	67.32	8.36	71.52	8.72	67.19	7.83	68.63

Llama-3.1-8B (Single Score)

Y-axis: Single Score (6.0 to 7.0)

X-axis: Noise Rate (0.0 to 0.4)

Legend: UltraFeedback (blue circle), AlpacaEval (green square), Vicuna-Bench (red diamond), Full-Data Training (dashed line)

Llama-3.1-8B (WinRate)

Y-axis: WinRate (74 to 86)

X-axis: Noise Rate (0.0 to 0.4)

Legend: UltraFeedback (blue circle), AlpacaEval (green square), Vicuna-Bench (red diamond), Full-Data Training (dashed line)

Qwen3-8B-Base (Single Score)

Y-axis: Single Score (7.6 to 8.6)

X-axis: Noise Rate (0.0 to 0.4)

Legend: UltraFeedback (blue circle), AlpacaEval (green square), Vicuna-Bench (red diamond), Full-Data Training (dashed line)

Qwen3-8B-Base (WinRate)

Y-axis: WinRate (62 to 72)

X-axis: Noise Rate (0.0 to 0.4)

Legend: UltraFeedback (blue circle), AlpacaEval (green square), Vicuna-Bench (red diamond), Full-Data Training (dashed line)

401 **Figure 4: Impact of noisy validation set.** Performance curves across different noise rates $r =$
 402 $\{0.0, 0.1, 0.2, 0.3, 0.4\}$; dashed lines denote performance of Full-Data training.

403
 404 selection M_{AP} (Huang et al., 2025), and rejection sampling-based preference data generation method
 405 RS-DPO (Khaki et al., 2024). All methods are trained under the same setup for a fair comparison.
 406 We report two evaluation metrics via LLM-as-Judge (Zheng et al., 2023a): Single Score (Single) and
 407 Length-controlled Win Rate vs. SFT (WinRate). Further details are in Appendix D.3.

408 409 5.2 EXPERIMENTAL RESULTS

410 411 5.2.1 MAIN PERFORMANCE OF LOSS-IRM FOR PREFERENCE DATA SELECTION

412
 413 **LossDiff-IRM achieves better performance.** Table 3 summarizes the performance of Loss-IRM
 414 and competitors with DPO and SLiC. Across diverse LLM families, benchmarks and metrics, it can
 415 be observed that LossDiff-IRM occupies more darker cells, and surpasses full-data training while
 416 using only about 50%–65% of the data, indicating stronger performance. Specifically, compared to
 417 full-data training, LossDiff-IRM achieves average WinRate improvements of +11.42%, +15.14%,
 418 +16.63%, +18.28% and +17.71% on Llama-3.1-8B, Qwen3-8B-Base, and Pythia-2.8B/1.4B/410M
 419 with DPO, respectively. Furthermore, we compute exact TIF on smaller Pythia-410M. Table 5 shows
 420 that training on data selected by exact TIF and by LossDiff-IRM achieves comparable performance.
 421 These results demonstrate the effectiveness and superiority of Loss-IRM in selecting real valuable
 422 preference pairs that are really beneficial for current model alignment training.

423
 424 **LossDiff-IRM outperforms several data-centric baselines.** Table 4 reports the performance com-
 425 parisons of LossDiff-IRM with several existing data-centric methods. It can be observed that our
 426 LossDiff-IRM outperforms these competitors on the most cases. Specifically, the average improve-
 427 ment of WinRate achieves +2.62% over the best baselines across two models, especially achieving
 428 improvements of +6.45% on average on Llama-3.8-8B. These results suggest the effectiveness of our
 429 IF-driven analysis and LossDiff-IRM data selection strategy. Additionally, compared to CurriDPO
 430 relied on external signals (GPT4 or reward model scores), M_{AP} and RS-DPO, which adopt implicit
 431 reward margins or generate model-specific preference pairs using the SFT model and thus partially
 432 incorporate the model’s perspective, emerge as strong competitors. This aligns with the underlying
 433 philosophy of our idea: valuable preference data are model-dependent, rather than relying on external
 434 heuristics. The cost analysis between LossDiff-IRM and RS-DPO is provided in Appendix E.5.

432 Table 5: **Exact TIF vs. LossDiff-IRM.** Performance comparison of Pythia-
 433 410M trained on data selected by Exact TIF or LossDiff-IRM.

435 Method	436 UltraFeedback		436 AlpacaEval		436 Vicuna-Bench	
	436 Single \uparrow	436 WinRate \uparrow	436 Single \uparrow	436 WinRate \uparrow	436 Single \uparrow	436 WinRate \uparrow
Pythia-410M (DPO)						
438 Full Data	2.81	75.25	2.77	73.51	3.10	69.37
439 LossDiff-IRM	3.30	86.14	3.30	85.16	3.80	85.62
440 Exact TIF	3.13	85.42	3.21	86.19	4.01	84.38

441 Table 6: **Performance of training DPO and SLiC on Selected vs. Dropped set by LossDiff-IRM.**
 442 Comparison of training on Full Data, the LossDiff-IRM-selected data, and the dropped data.

444 Training Data	445 UltraFeedback		445 AlpacaEval		445 Vicuna-Bench		445 UltraFeedback		445 AlpacaEval		445 Vicuna-Bench	
	445 Single \uparrow	445 WinRate \uparrow	445 Single \uparrow	445 WinRate \uparrow	445 Single \uparrow	445 WinRate \uparrow	445 Single \uparrow	445 WinRate \uparrow	445 Single \uparrow	445 WinRate \uparrow	445 Single \uparrow	445 WinRate \uparrow
Llama-3.1-8B (DPO)												
- Full Data	5.77	77.61	5.87	78.41	6.04	73.75	7.64	61.41	7.92	63.85	8.21	62.14
- w/ Selected Data	6.54	83.97	6.84	87.08	7.06	86.88	8.05	67.32	8.36	71.52	8.72	67.19
- w/ Dropped Data	4.56	64.25	4.48	61.15	4.69	62.81	7.51	54.82	7.58	58.33	7.79	46.88
Qwen3-8B-Base (SLiC)												
- Full Data	5.09	70.72	5.13	72.13	5.40	71.88	7.55	59.54	7.61	59.71	8.05	54.69
- w/ Selected Data	5.94	79.51	5.84	78.84	5.85	76.56	7.87	64.40	8.11	67.58	8.44	61.12
- w/ Dropped Data	4.22	60.08	4.33	59.37	4.89	62.81	7.37	56.67	7.33	55.79	8.21	56.72

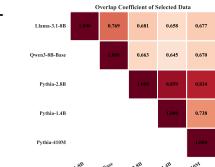


Figure 5: **Overlap Coefficient** of selections across five models.

453 **Preference data quality is model-dependent.** We observe that LossDiff-IRM outperforms selection
 454 based on Random, GPT4 score or external reward model, with only a few single-case exceptions,
 455 e.g., Qwen3-8B-Base on Vicuna-Bench under SLiC. **Under DPO, relative to the second-best result,**
 456 **LossDiff-IRM delivers average WinRate improvements of +4.07%, +3.84%, +8.28%, +10.29%**
 457 **and +8.13% on Llama-3.1-8B, Qwen3-8B-Base, and Pythia-2.8B/1.4B/410M, respectively.** Notably,
 458 GPT4 score selection can even reduce performance, such as on Qwen3-8B-Base with DPO. Moreover,
 459 Figure 5 shows that the Overlap Coefficient between selections varies across models; pairs within the
 460 same family (e.g., Pythia) exhibit higher overlap than cross-family pairs. Altogether, these findings
 461 indicate that preference data quality is inherently model dependent, and static or model-agnostic
 462 selectors may benefit one model yet harm another.

463 **LossDiff-IRM is compatible to different preference optimization methods.** For both DPO and
 464 SLiC, LossDiff-IRM selection yields consistent and often substantial gains across diverse LLM
 465 families and architectures, indicating the generality of the LossDiff-IRM method. This compatibility
 466 stems from that the derivation and analysis of LossDiff-IRM criterion do not involve any strong
 467 assumption about certain preference optimization algorithm, so that diverse methods can be initiated
 468 under our LossDiff-IRM criterion, which serves as a plug-and-play preference data selection step.

469 5.2.2 FURTHER ANALYSIS

471 **Combining LossDiff and IRM outperforms either alone.** Figure 3 reports WinRate for LossDiff-IRM
 472 and its two ablations: “w/ LossDiff” and “w/ IRM”, which select pairs using only LossDiff or
 473 only IRM, respectively. Across both DPO and SLiC, the combined scoring function LossDiff-IRM
 474 performs better than either single variant. This matches our intent: combining the two scoring
 475 functions to offset specific errors each incurs when used alone to approximate TIF in data selection.

476 **Dropped data is low-value for the current model alignment.** We train DPO and SLiC using only
 477 the subset that LossDiff-IRM drops and compare against Full Data and the LossDiff-IRM-selected
 478 subset. Table 6 shows that training “w/ Dropped Data” yields the worst performance; in particular,
 479 it reduces average WinRate by -12.59% relative to full-data training across two models and both
 480 alignment methods, and even drops to 46.88% on Vicuna-Bench with Qwen3-8B-Base (SLiC). By
 481 contrast, “w/ Selected Data” consistently improves alignment, indicating that LossDiff-IRM filters
 482 out low-value pairs and favors data that really benefits the current model alignment learning.

483 **LossDiff-IRM exhibits a certain robustness under validation-set noise.** We corrupt the validation
 484 set by flipping the chosen/rejected labels at rates $r \in \{0.1, 0.2, 0.3, 0.4\}$ and then re-run selection.
 485 Figure 4 shows the expected downward trend in performance as r increases, since LossDiff-IRM (and
 TIF) uses the validation set to orient the score. Surprisingly, in many cases the selection upon noisy

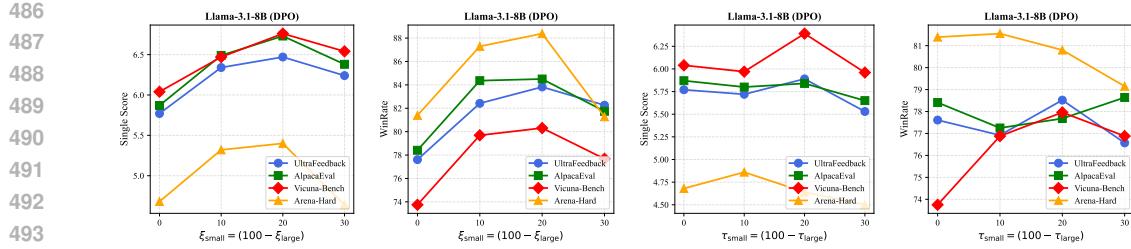


Figure 6: **Analysis of percentile thresholds ξ_{small} , ξ_{large} , τ_{small} , τ_{large} of Llama-3.1-8B.** We vary $\xi_{\text{small}} = (100 - \xi_{\text{large}})$ and $\tau_{\text{small}} = (100 - \tau_{\text{large}})$ with in $\{0, 10, 20, 30\}$. Further analysis of Qwen3-8B-Base is illustrated in Figure 14 and Appendix E.6.

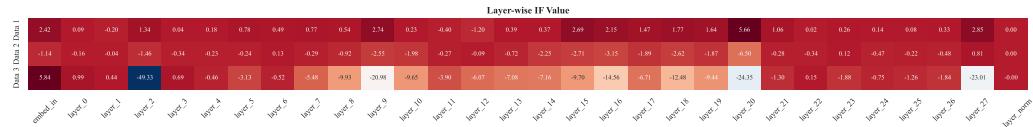


Figure 7: **Visualization of layer-wise IF value computed on Qwen3-0.6B-Base.**

validation set still exceeds full-data training (dashed lines) under noisy validation set. We attribute this to the fact that LossDiff-IRM tends to medium-value data that are less sensitive to validation noise. These results suggest the robustness of LossDiff-IRM to noisy validation set.

Analysis of percentile thresholds ξ_{small} , ξ_{large} , τ_{small} , τ_{large} . The percentile thresholds of LossDiff-IRM are tuned as hyperparameters. We vary $\xi_{\text{small}} = (100 - \xi_{\text{large}})$ and $\tau_{\text{small}} = (100 - \tau_{\text{large}})$ with in $\{0, 10, 20, 30\}$. Figure 6 illustrates the performance curves varying with different thresholds for Llama-3.1-8B (DPO) across four benchmarks. It can be observed a rough trend: performance first improves and then degrades as the thresholds become stricter, that is, as more data are filtered out. This observation is expected, because initially, the threshold helps remove low-quality data; however, beyond a certain point, the filtering starts to exclude informative and high-quality data, leading to performance degradation. More analysis on Qwen3-8B-Base is provided in Appendix E.6.

IF values are not confined to specific layers. Figure 7 shows that IF may concentrate in certain layers or spread across all layers, implying that layer-wise computation alone cannot reliably approximate the exact IF and motivating the need for proxies such as our LossDiff-IRM. More visualization of IF computed on other LLMs are provided in Appendix E.2.

6 CONCLUSION

In this work, we propose the Truncated Influence Function (TIF) as a principled lens to analyze preference data quality in LLM alignment. Unlike prior approaches that treat data quality as an inherent property of the data, our analysis adopts a model-side perspective and reveals that medium-IF pairs, rather than small- or large-IF ones, provide the most effective training signal. To make TIF practical at scale, we further introduce the LossDiff-IRM approximation, which closely matches TIF while being far more efficient. Experiments demonstrate that LossDiff-IRM enables a “less is more” effect, where using fewer but higher-quality preference pairs yields better alignment performance.

ETHICS STATEMENT

This study adheres to the Code of Ethics. It relies only on publicly available models and datasets, without the use of sensitive or privacy data, and poses no identifiable risks concerning privacy, security, or fairness. The work is conducted purely for scientific purposes, and no conflicts of interest are involved.

REPRODUCIBILITY STATEMENT

We are committed to ensure the reproducibility of our proposed method. The detailed descriptions of our approach and experimental settings are all provided in this paper. The

540 corresponding source code is released at <https://anonymous.4open.science/r/LossDiff-IRM-ICLR26-Submission-893F>. Both backbone models and datasets used in
 541 our work are publicly available. Furthermore, all parameters, hyper-parameters, and procedural steps
 542 required to reproduce our results are thoroughly recorded in the Experimental Details section and
 543 corresponding Appendix. We believe that these components provide the community with details
 544 necessary to verify and reproduce our work.

546

547 REFERENCES

548

549 Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
 550 Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, et al. A survey on data selection
 551 for language models. *arXiv preprint arXiv:2402.16827*, 2024.

552 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
 553 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
 554 human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp.
 555 4447–4455. PMLR, 2024.

556 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
 557 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
 558 reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022a.

559 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
 560 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
 561 reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022b.

562 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric
 563 Hallahan, Mohammad Aftab Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
 564 Pythia: A suite for analyzing large language models across training and scaling. In *International
 565 Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

566 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
 567 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

568 Tianchi Cai, Xierui Song, Jiyan Jiang, Fei Teng, Jinjie Gu, and Guannan Zhang. Ulma: Unified
 569 language model alignment with human demonstration and point-wise preference. *arXiv preprint
 570 arXiv:2312.02554*, 2023.

571 Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
 572 Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpaganus: Training a better alpaca with fewer data.
 573 In *The Twelfth International Conference on Learning Representations*, 2024.

574 Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 575 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
 576 impressing gpt-4 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April
 577 2023), 2(3):6, 2023.

578 Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
 579 Huang, and Israel Cohen. Pearson correlation coefficient. *Noise reduction in speech processing*,
 580 pp. 1–4, 2009.

581 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
 582 Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback.
 583 *arXiv preprint arXiv:2310.01377*, 2023.

584 Xun Deng, Han Zhong, Rui Ai, Fuli Feng, Zheng Wang, and Xiangnan He. Less is more: Improving
 585 ILM alignment via preference data selection. *arXiv preprint arXiv:2502.14560*, 2025.

586 Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen
 587 Zhou. Enhancing chat language models by scaling high-quality instructional conversations. In
 588 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp.
 589 3029–3051, 2023.

594 Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
 595 Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
 596 methods that learn from human feedback. *Advances in Neural Information Processing Systems*,
 597 36:30039–30069, 2023.

598 André Elisseeff, Massimiliano Pontil, et al. Leave-one-out error and stability of learning algorithms
 599 with applications. *NATO science series sub series iii computer and systems sciences*, 190:111–130,
 600 2003.

601 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
 602 alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.

603 Theodoros Evgeniou, Massimiliano Pontil, and André Elisseeff. Leave one out error, stability, and
 604 generalization of voting combinations of classifiers. *Machine learning*, 55:71–97, 2004.

605 Chengqian Gao, Haonan Li, Liu Liu, Zeke Xie, Peilin Zhao, and Zhiqiang Xu. Principled data
 606 selection for alignment: The hidden risks of difficult examples. *arXiv preprint arXiv:2502.09650*,
 607 2025.

608 Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
 609 Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
 610 with influence functions. *arXiv preprint arXiv:2308.03296*, 2023.

611 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 612 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 613 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

614 Frank R Hampel. The influence curve and its role in robust estimation. *Journal of the american
 615 statistical association*, 69(346):383–393, 1974.

616 Jan Hauke and Tomasz Kossowski. Comparison of values of pearson’s and spearman’s correlation
 617 coefficients on the same sets of data. *Quaestiones geographicae*, 30(2):87–93, 2011.

618 Kexin Huang, Junkang Wu, Ziqian Chen, Xue Wang, Jinyang Gao, Bolin Ding, Jiancan Wu, Xiangnan
 619 He, and Xiang Wang. Larger or smaller reward margins to select preferences for llm alignment?
 620 In *Forty-second International Conference on Machine Learning*, 2025.

621 Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. Rs-dpo: A hybrid rejection
 622 sampling and direct preference optimization method for alignment of large language models. In
 623 *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 1665–1680, 2024.

624 Jongwoo Ko, Saket Dingliwal, Bhavana Ganesh, Sailik Sengupta, Sravan Babu Bodapati, and Aram
 625 Galstyan. Sera: Self-reviewing and alignment of llms using implicit reward margins. In *The
 626 Thirteenth International Conference on Learning Representations*, 2024.

627 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 628 *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.

629 Keyi Kong, Xilie Xu, Di Wang, Jingfeng Zhang, and Mohan S Kankanhalli. Perplexity-aware
 630 correction for robust alignment with noisy preferences. *Advances in Neural Information Processing
 631 Systems*, 37:28296–28321, 2024.

632 Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
 633 Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
 634 conversations-democratizing large language model alignment. *Advances in Neural Information
 635 Processing Systems*, 36:47669–47681, 2023.

636 Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
 637 in lora-tuned llms and diffusion models. In *The Twelfth International Conference on Learning
 638 Representations*, 2024.

639 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 640 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
 641 for language modeling. *arXiv preprint arXiv:2403.13787*, 2024.

648 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
 649 and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
 650 pipeline. *arXiv preprint arXiv:2406.11939*, 2024.

651

652 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 653 Liang, and Tatsunori B Hashimoto. AlpacaEval: An automatic evaluator of instruction-following
 654 models, 2023.

655

656 Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu
 657 Liu. Statistical rejection sampling improves preference optimization. In *The Twelfth International
 658 Conference on Learning Representations*, 2024.

659

660 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
 661 free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235, 2024.

662

663 Yuchun Miao, Sen Zhang, Liang Ding, Rong Bao, Lefei Zhang, and Dacheng Tao. Inform: Mitigating
 664 reward hacking in rlhf via information-theoretic reward modeling. In *The Thirty-eighth Annual
 Conference on Neural Information Processing Systems*, 2024.

665

666 Tetsuro Morimura, Mitsuki Sakamoto, Yuu Jinnai, Kenshi Abe, and Kaito Ariu. Filtered direct
 667 preference optimization. In *Proceedings of the 2024 Conference on Empirical Methods in Natural
 668 Language Processing*, pp. 22729–22770, 2024.

669

670 William Muldrew, Peter Hayes, Mingtian Zhang, and David Barber. Active preference learning for
 671 large language models. In *International Conference on Machine Learning*, pp. 36577–36590.
 672 PMLR, 2024.

673

674 Koichi Nagatsuka, Clifford Broni-Bediako, and Masayasu Atsumi. Length-based curriculum learning
 675 for efficient pre-training of language models. *New Generation Computing*, 41(1):109–134, 2023.

676

677 Jinlong Pang, Na Di, Zhaowei Zhu, Jiaheng Wei, Hao Cheng, Chen Qian, and Yang Liu. Token cleaning:
 678 Fine-grained data selection for llm supervised fine-tuning. *arXiv preprint arXiv:2502.01968*,
 679 2025.

680

681 Pulkit Pattnaik, Rishabh Maheshwary, Kelechi Ogueji, Vikas Yadav, and Sathwik Tejaswi Madhusudhan.
 682 Enhancing alignment using curriculum learning & ranked preferences. In *Findings of the
 683 Association for Computational Linguistics: EMNLP 2024*, pp. 12891–12907, 2024.

684

685 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
 686 Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
 687 dataset for falcon llm: outperforming curated corpora with web data, and web data only. *arXiv
 688 preprint arXiv:2306.01116*, 2023.

689

690 Yulei Qin, Yuncheng Yang, Pengcheng Guo, Gang Li, Hang Shao, Yuchen Shi, Zihan Xu, Yun Gu,
 691 Ke Li, and Xing Sun. Unleashing the power of data tsunami: A comprehensive survey on data
 692 assessment and selection for instruction tuning of language models. *Transactions on Machine
 693 Learning Research*, 2024.

694

695 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 696 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 697 in Neural Information Processing Systems*, 36:53728–53741, 2023.

698

699 Gayathri Saranathan, Mohammad Parwez Alam, James Lim, Suparna Bhattacharya, Soon Yee Wong,
 700 Martin Foltin, and Cong Xu. Dele: Data efficient llm evaluation. In *ICLR 2024 Workshop on
 Navigating and Addressing Data Problems for Foundation Models*, 2024.

701

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 702 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

Judy Hanwen Shen, Archit Sharma, and Jun Qin. Towards data-centric rlhf: Simple metrics for
 703 preference dataset comparison. *arXiv preprint arXiv:2409.09603*, 2024.

702 Yunyi Shen, Hao Sun, and Jean-Francois Ton. Active reward modeling: Adaptive preference labeling
 703 for large language model alignment. In *Forty-second International Conference on Machine*
 704 *Learning*, 2025.

705 Liping Tang, Nikhil Ranjan, Omkar Pangarkar, Xuezhi Liang, Zhen Wang, Li An, Bhaskar Rao,
 706 Linghao Jin, Huijuan Wang, Zhoujun Cheng, et al. Txt360: A top-quality llm pre-training dataset
 707 requires the perfect blend, 2024.

709 Lewis Tunstall, Edward Emanuel Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes
 710 Belkada, Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr:
 711 Direct distillation of lm alignment. In *First Conference on Language Modeling*, 2024.

712 Raja Vavekanand and Kira Sam. Llama 3.1: An in-depth analysis of the next-generation large
 713 language model. *Preprint*, July, 2024.

715 Qizhou Wang, Jin Peng Zhou, Zhanke Zhou, Saebyeol Shin, Bo Han, and Kilian Q Weinberger.
 716 Rethinking llm unlearning objectives: A gradient perspective and go beyond. In *The Thirteenth*
 717 *International Conference on Learning Representations*, 2025.

718 Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
 719 Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of llm alignment techniques:
 720 RLhf, rlaif, ppo, dpo and more. *arXiv preprint arXiv:2407.16216*, 2024.

722 Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jiawei Chen, Jinyang Gao, Bolin Ding,
 723 Xiang Wang, and Xiangnan He. Towards robust alignment of language models: Distributionally
 724 robustifying direct preference optimization. *arXiv preprint arXiv:2407.07880*, 2024a.

725 Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang, and
 726 Xiangnan He. beta-dpo: Direct preference optimization with dynamic beta. *Advances in Neural*
 727 *Information Processing Systems*, 37:129944–129966, 2024b.

728 Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin, Qi Su, and Chang Zhou. Self-evolved
 729 diverse data sampling for efficient instruction tuning. *arXiv preprint arXiv:2311.08182*, 2023.

731 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
 732 Selecting influential data for targeted instruction tuning. In *International Conference on Machine*
 733 *Learning*, pp. 54104–54132. PMLR, 2024.

734 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language
 735 models via importance resampling. *Advances in Neural Information Processing Systems*, 36:
 736 34201–34227, 2023.

738 Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
 739 Murray, and Young Jin Kim. Contrastive preference optimization: pushing the boundaries of
 740 llm performance in machine translation. In *Proceedings of the 41st International Conference on*
 741 *Machine Learning*, pp. 55204–55224, 2024.

742 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 743 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 744 2025.

745 Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin Zhuang, Tianyi Bai,
 746 Jiantao Qiu, Lei Cao, Ju Fan, et al. Harnessing diversity for important data selection in pretraining
 747 large language models. *arXiv preprint arXiv:2409.16986*, 2024a.

749 Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
 750 language model. *arXiv preprint arXiv:2401.02385*, 2024b.

751 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 752 Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. *arXiv*
 753 *preprint arXiv:2308.10792*, 2023.

755 Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
 756 Sequence likelihood calibration with human feedback. *arXiv preprint arXiv:2305.10425*, 2023.

756 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
757 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
758 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023a.
759

760 Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
761 Yuhao Zhou, Limao Xiong, et al. Delve into ppo: Implementation matters for stable rlhf. In
762 *NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following*, 2023b.
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 LLM USAGE STATEMENT
811

812 Here we clarify how Large Language Models (LLMs) are used in this work. In preparing the
813 manuscript, LLMs served only as a writing assistants for writing improvements and were not involved
814 in research ideation or the generation of core content. For research methodology, LLM is a core
815 component of our proposed method. Specifically, we utilize the Llama-3.1-8B, Qwen3-8B-Base and
816 Pythia series as our backbone models to validate our proposed method.

817
818 A BACKGROUND AND RELATED WORK
819820 A.1 SUPPLEMENT TO PRELIMINARY
821

822 **Reinforcement Learning with Human Feedback (RLHF).** RLHF aims to align the given policy
823 model π_θ with human preference by optimizing the model to maximize the expected reward value
824 obtained from the reward model. The reward model is trained on a preference dataset, quantifying
825 the human preference into scalar values. Typically, the Bradley-Terry (BT) model (Bradley & Terry,
826 1952) is used to estimate the probability distribution that a chosen response y_w is preferred over a
827 rejected one y_l as follows:

$$828 \quad p(y_w \succ y_l | x) = \frac{\exp(r(x, y_w))}{\exp(r(x, y_w)) + \exp(r(x, y_l))} = \sigma(r(x, y_w) - r(x, y_l)), \quad (10)$$

830 where $r(x, y)$ denotes the latent reward function, and $\sigma(\cdot)$ is the Sigmoid function. Due to unob-
831 servability of the reward function, the traditional RLHF typically follows a two-stage pipeline: a
832 reward model $r_\phi(x, y)$ is pretrained on preference data; then, the policy model π_θ is updated based
833 on the pretrained reward model using reinforcement learning (RL) algorithm like PPO Schulman
834 et al. (2017). The overall objective of RLHF can be formulated as follows:

$$835 \quad \mathcal{L}_{\text{RLHF}}(\theta; \mathcal{D}) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x)} [r_\phi(x, y)] + \beta \mathbb{D}_{\text{KL}}[\pi_\theta(y | x) || \pi_{\text{ref}}(y | x)], \quad (11)$$

836 where $\mathbb{D}_{\text{KL}}[\cdot || \cdot]$ is the KL-divergence regulation term that constrains the policy model π_θ to optimize
837 within the surrounding landscape of the reference model π_{ref} , avoiding policy collapse or training
838 instability during alignment, and β is a hyperparameter to control trade-off between reward maximiza-
839 tion and KL penalty. The reference model is often the supervised fine-tuned (SFT) model (Zhang
840 et al., 2023) used to initialize the policy LLM.

841 A.2 RELATED WORK
842

843 **LLM Preference Alignment.** LLM preference alignment aims to steer LLM behaviors toward
844 responses that better reflect human preferences and values (Wang et al., 2024). A common approach
845 is RLHF that trains a reward model to provide reward signals for RL training (Bai et al., 2022b).
846 Though effective, the two-stage RLHF pipeline is complex and resource-intensive, suffering from
847 issues like reward hacking (Miao et al., 2024) and unstable optimization (Zheng et al., 2023b). To
848 address these limitations, recent studies (Rafailov et al., 2023; Azar et al., 2024; Zhao et al., 2023;
849 Meng et al., 2024; Ethayarajh et al., 2024) have proposed multiple alignment learning objectives that
850 bypass explicit reward modeling, offering a simpler formulation for direct LLM preference alignment,
851 such as DPO (Rafailov et al., 2023), IPO (Azar et al., 2024), SLiC (Zhao et al., 2023; Liu et al., 2024),
852 SimPO (Meng et al., 2024), KTO (Ethayarajh et al., 2024), CPO (Xu et al., 2024) and more (Wu et al.,
853 2024b;a; Liu et al., 2024). Among them, DPO serves as a milestone work that derives the close-form
854 expression of the optimal policy and substitutes it into the Bradley-Terry (BT) model, effectively
855 hiding reward learning within the policy optimization process. SLiC adopts a hinge loss to enlarge
856 the margin between the chosen and rejected responses. SimPO simplifies the DPO formulation and
857 achieves reference model-free optimization. KTO employ prospect theory to directly maximizes the
858 utility of generations rather than log-likelihood of preferences. Overall, while many efforts have been
859 devoted to improving alignment algorithms, relatively little attention (Deng et al., 2025; Gao et al.,
860 2025) has been given to understanding the preference data quality, especially from model perspective.

861 **Data Selection for LLMs.** Data selection (Albalak et al., 2024) aims to filter out low-quality
862 or noisy data and retain high-quality data for better training and generalization, which plays a
863 pivotal role in enhancing the performance and efficiency of LLMs across difference training stages,

864 including pretraining (Penedo et al., 2023; Tang et al., 2024), supervised fine-tuning (SFT) (Pang
 865 et al., 2025; Qin et al., 2024), and preference alignment (Shen et al., 2024; Gao et al., 2025).
 866 Most existing approaches assess data from multiple considerations, such as importance (Xie et al.,
 867 2023) and diversity (Zhang et al., 2024a), using a variety of metrics such as text length (Nagatsuka
 868 et al., 2023), perplexity (Kong et al., 2024), text embeddings (Saranathan et al., 2024), or external
 869 signals from humans (Wu et al., 2023) or ChatGPT (Chen et al., 2024). We notice that most
 870 studies for LLM data selection primarily focus on the first two stages, i.e., pretraining and SFT,
 871 whereas the selection of preference data for alignment has received comparatively limited exploration.
 872 Existing studies (Pattnaik et al., 2024; Morimura et al., 2024; Deng et al., 2025) often employ
 873 off-the-shelf LLMs or pretrained reward models to pre-process preference data. For example,
 874 CurriDPO (Pattnaik et al., 2024) leverages the GPT-4 or reward model scores to organize curriculum
 875 learning. fDPO (Morimura et al., 2024) integrates a reward model into the DPO training process,
 876 filtering preference data based on reward scores. Muldrew et al. (2024) and Shen et al. (2025)
 877 incorporate active learning into alignment to improve data quality and annotation efficiency. Overall,
 878 these methods share a common trait: they rely on external signals—whether from powerful GPT
 879 models, pretrained reward models, or active human labeling—and thereby treat data quality as an
 880 inherent property of the data itself, while overlooking the role of the model and training objectives.
 881 Motivated by this limitation, we examine preference data quality from the model’s perspective to
 882 better understand which data are truly valuable for alignment.

883 B FORMAL DERIVATION

884 B.1 FORMULATIONS OF SLiC LOSS

885 **Definition of SLiC Loss.** Unlike DPO loss in Eq. (1), which optimizes a log-ratio difference between
 886 chosen and rejected responses, SLiC (Zhao et al., 2023; Liu et al., 2024) minimizes a hinge loss on
 887 normalized log-likelihood, formulated as follows:

$$888 \mathcal{L}_{\text{SLiC}} = \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\max \left(0, 1 - \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \right) \right]. \quad (12)$$

889 Intuitively, SLiC loss enforces at least a fixed margin between the chosen and rejected responses.
 890 When the margin is satisfied, the loss becomes zero, making the optimization focus on those pairs
 891 that violate the margin constraint.

892 **Instantiation of SLiC Loss for Influence Score.** By taking SLiC loss into the influence function
 893 formulation in Eq. (5), the SLiC-based influence function is derived as follows:

$$894 I_{\text{SLiC}}(d; \pi_\theta; \mathcal{D}_{\text{val}}) := \beta^2 \mathbb{I}_{\text{hinge}}(d) \left\langle \underbrace{\frac{1}{|\mathcal{D}_{\text{val}}|} \sum_i \mathbb{I}_{\text{hinge}}(d_{\text{val}}^{(i)}) (g_w^{(i)} - g_l^{(i)})}_{\substack{\text{preference generalization direction} \\ \text{w.r.t. validation set}}} \right. \left. \underbrace{g_w - g_l}_{\substack{\text{current preference} \\ \text{pair direction}}} \right\rangle, \quad (13)$$

900 where

$$901 \mathbb{I}_{\text{hinge}}(d) = \mathbb{I}[1 - \Delta_\theta > 0] \quad \text{and} \quad \Delta_\theta = \beta \log \left[\frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right]. \quad (14)$$

902 Both DPO and SLiC assign higher IF values to preference pairs whose gradient difference direction
 903 (i.e., $g_w - g_l$) is consistent with that of the validation preferences, and negative influence scores when
 904 they oppose. In DPO, the IF is further scaled by $1 - \sigma(\Delta_\theta)$, assigning near-zero scores to pairs with
 905 large Δ_θ , i.e., those already well learned by the model. Similarly, SLiC sets the IF to exactly zero for
 906 margin-satisfied pairs ($\Delta_\theta > 1$). These well learned pairs naturally fall into the medium-IF region,
 907 and are also considered as high-quality data that promote preference generalization.

915 B.2 RELATIONSHIP BETWEEN INFLUENCE INFLUNCTION AND LOSSDIFF

916 To analyze the positive correlation between influence function defined in Eq. (4) and LossDiff defined
 917 in Eq. (8), we provide formal justification as follows:

918 **Lemma B.1** (Loss Difference (LossDiff) Correlates with Influence Function (IF)). *Assume that the*
 919 *validation-aligned model $\pi_{\theta_{\text{val}}}$ is obtained by performing a single gradient descent step from the*
 920 *current model π_θ on the loss, i.e., $\theta_{\text{val}} = \theta - \eta \nabla_\theta \mathcal{L}(\theta; \mathcal{D}_{\text{val}})$, where η is the learning rate. For a give*
 921 *training preference pair d , the loss difference and the influence function are positively correlated:*

$$923 \quad \text{LossDiff}(d; \pi_\theta, \pi_{\theta_{\text{val}}}) := \ell(\theta; d) - \ell(\theta_{\text{val}}; d) \propto I(d; \pi_\theta; \mathcal{D}_{\text{val}}), \quad (15)$$

924 where $I(d; \pi_\theta; \mathcal{D}_{\text{val}})$ is the influence function defined in Eq. (5).

926 *Formal Derivation.* By applying a first-order Taylor expansion of the loss $\ell(\theta; d)$ at θ , we get:

$$928 \quad \ell(\theta_{\text{val}}; d) \approx \ell(\theta; d) + \nabla_\theta \ell(\theta; d)^\top (\theta_{\text{val}} - \theta). \quad (16)$$

930 Then, rearranging terms gets:

$$932 \quad \ell(\theta; d) - \ell(\theta_{\text{val}}; d) \approx -\nabla_\theta \ell(\theta; d)^\top (\theta_{\text{val}} - \theta). \quad (17)$$

933 Now assume $\theta_{\text{val}} = \theta - \eta \nabla_\theta \mathcal{L}(\theta; \mathcal{D}_{\text{val}})$, where $\eta > 0$ is the learning rate. Substituting this into the
 934 equation yields:

$$936 \quad \ell(\theta; d) - \ell(\theta_{\text{val}}; d) \approx \eta \cdot \nabla_\theta \ell(\theta; d)^\top \nabla_\theta \mathcal{L}(\theta; \mathcal{D}_{\text{val}}) \quad (18)$$

$$938 \quad \propto \nabla_\theta \ell(\theta; d)^\top \nabla_\theta \mathcal{L}(\theta; \mathcal{D}_{\text{val}}) \quad (19)$$

$$939 \quad = I(d; \pi_\theta; \mathcal{D}_{\text{val}}). \quad (20)$$

940 Hence, the LossDiff defined in Eq. (8) is positively correlated to the IF defined in Eq. (4). \square

942 The formal justification assumes that the validation-aligned model $\pi_{\theta_{\text{val}}}$ is obtained by performing
 943 a single gradient descent step from the current model π_θ on the alignment loss computed over the
 944 validation set. While this assumption does not precisely reflect the actual training procedure, it
 945 serves as a reasonable local approximation. In preference alignment methods, they all explicitly
 946 or implicitly have a KL divergence term in preference optimization objectives (Bai et al., 2022b;
 947 Rafailov et al., 2023). The KL regularization term constrains both the π_θ and the $\pi_{\theta_{\text{val}}}$ to remain
 948 close to the reference model in parameter space. Since both θ and θ_{val} lie in a small neighborhood
 949 around the same reference model, it is reasonable to assume that θ_{val} can be approximated by a single
 950 gradient descent step from θ on the preference loss. This justifies the assumption used in Lemma B.1.

951 B.3 FORMAL ANALYSIS OF THE RELIABILITY OF MEDIUM-IF DATA SELECTION

953 We demonstrate that the reliability of selecting high-IF data decreases as the quality of the validation
 954 data decreases. We provide the derivation pipeline as follows:

956 Suppose the validation dataset is corrupted w.p. η . Then, the expected validation gradient v consists
 957 of the clean (c) and noisy (n) parts, following $g_v = (1 - \eta)g_c + \eta g_n$. For a training sample i with
 958 the gradient g_i , we have its influence weight as

$$959 \quad \omega_i = -g_v^\top g_i = -(1 - \eta)g_c^\top g_i - \eta g_n^\top g_i, \quad (21)$$

961 which can be further written as $\omega_i = \omega_i^* + \delta_i$, with ω_i^* the clean weight and $\delta_i = -\eta(g_n - g_c)^\top g_i$ the
 962 bias term. Assuming that $g_n - g_c$ is independent on g_i , with zero mean and isotropic variance $\sigma_n^2 I$,
 963 then we have $\text{Var}(\delta_i) = \eta^2 \sigma_n^2 \|g_i\|^2$ and $\text{Var}(\omega_i) = \sigma_w^2 + \tau^2$, with $\sigma_w^2 = \text{Var}(\omega_i)$ and $\tau^2 = \text{Var}(\delta_i)$.
 964 Accordingly, we have the expected correlation between ω^* and ω as

$$966 \quad \rho = \frac{\text{Cov}(\omega_i^*, \omega_i)}{\sqrt{\text{Var}(\omega_i^*) \text{Var}(\omega_i)}} = \sqrt{\sigma_w^2 / \sigma_w^2 + \tau^2}. \quad (22)$$

969 As observed, when the corruption rate η increases, the correlation ρ between the true and observed
 970 scores decreases, leading to a lower probability $p(i \in \mathcal{T}_{\text{true}}(k) | i \in \mathcal{T}_{\text{obs}}(k))$. Hence, the top- k
 971 sampling strategy becomes less reliable under high noise levels. Similar derivations hold for bottom- k
 972 sampling, making middle- k sampling tend to be more reliable.

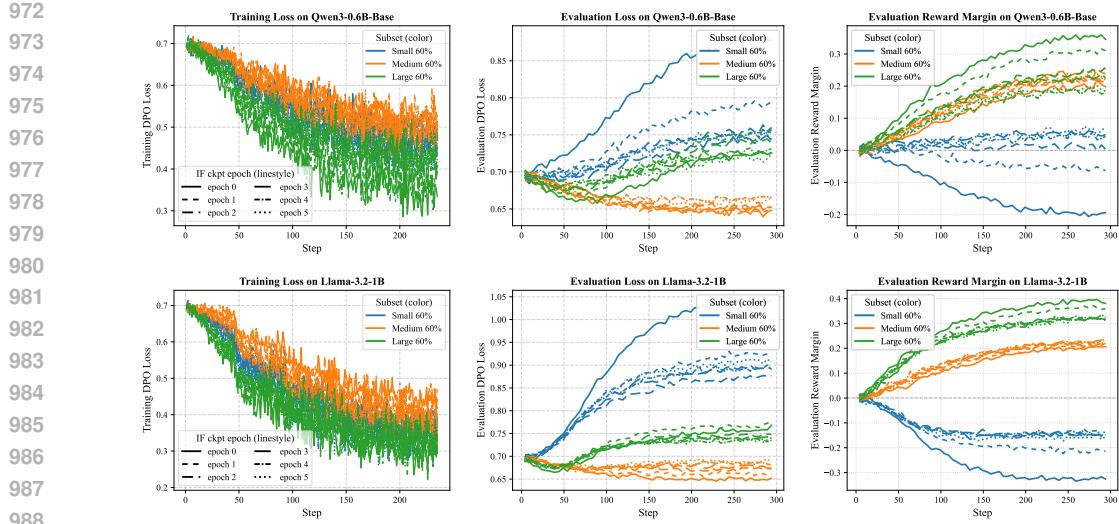


Figure 8: **Analysis of IF-based data partition with overlapping splits on Qwen3-0.6B-Base and Llama-3.2-1B.** From Left to Right: Training DPO loss, evaluation DPO loss and evaluation reward margin. Subsets of {small, medium, large}-60% are denoted by {blue, orange, green}, respectively, while different line styles indicate IF values computed using different epoch checkpoints. Previous analysis refers to Section 3.2 and Figure 1.

Table 7: **Further Overlap Coefficient analysis** on epoch-{3,4,5} DPO checkpoints to assess the overlap between two selected sets.

Overlap Coefficient	LossDiff vs. IF			IRM vs. IF			LossDiff-IRM vs. IF			
	Models	Epoch 3 ckpt	Epoch 4 ckpt	Epoch 5 ckpt	Epoch 3 ckpt	Epoch 4 ckpt	Epoch 5 ckpt	Epoch 3 ckpt	Epoch 4 ckpt	Epoch 5 ckpt
Qwen3-0.6B-Base		0.6593	0.6343	0.6340	0.6153	0.5983	0.6000	0.6917	0.6770	0.6747
Llama-3.2-1B		0.6319	0.6299	0.6292	0.5645	0.5512	0.5499	0.6687	0.6643	0.6673

C ADDITIONAL ANALYSIS

C.1 MORE ANALYSIS OF IF ON QWEN3-0.6B-BASE AND LLAMA-3.2-1B

As a supplement to Sec 3.2, we investigate whether introducing more medium-IF data into the small-IF and large-IF subsets can mitigate the adverse effects of extreme IF values. To this end, we adopt overlapping splits, dividing the data into large-60%, medium-60%, and small-60% subsets based on their IF scores, where the small-60% and large-60% subsets partially overlap with the medium-60% subset. Figure 8 shows the training dynamics of such overlapping data partition on Qwen3-0.6B-Base and Llama-3.2-1B. We observe similar phenomena shown as non-overlapping splits in Figure 1: small-IF data continues to be uninformative and large-IF data still drives overfitting. This suggests that extremely small- or large-IF pairs are detrimental, as even introducing smoother overlaps fails to mitigate their negative effects.

C.2 MORE ANALYSIS OF CORRELATION

As a supplement to Figure 2 and Table 2, which analyze the epoch-1,2 checkpoints of Qwen3-0.6B-Base and Llama-3.2-1B, Figure 9 and Table 7 present the results for the remaining epoch-3,4,5 checkpoints. We observe that as training progresses, the correlation between IRM and IF decreases more sharply than that between LossDiff and IF. For example, at epoch-5 of Llama-3.2-1B, the Pearson coefficient between IRM and IF drops to 0.0636. Nevertheless, the Overlap Coefficients of LossDiff-IRM remain consistently above 0.65, indicating a relatively high level of agreement with the exact IF-based selection and exceeding those of LossDiff or IRM alone. This supports our design choice: the errors of LossDiff and IRM in approximating IF are diverse and may partially offset each other, so combining them yields a selection that more closely matches the exact IF-based criterion.

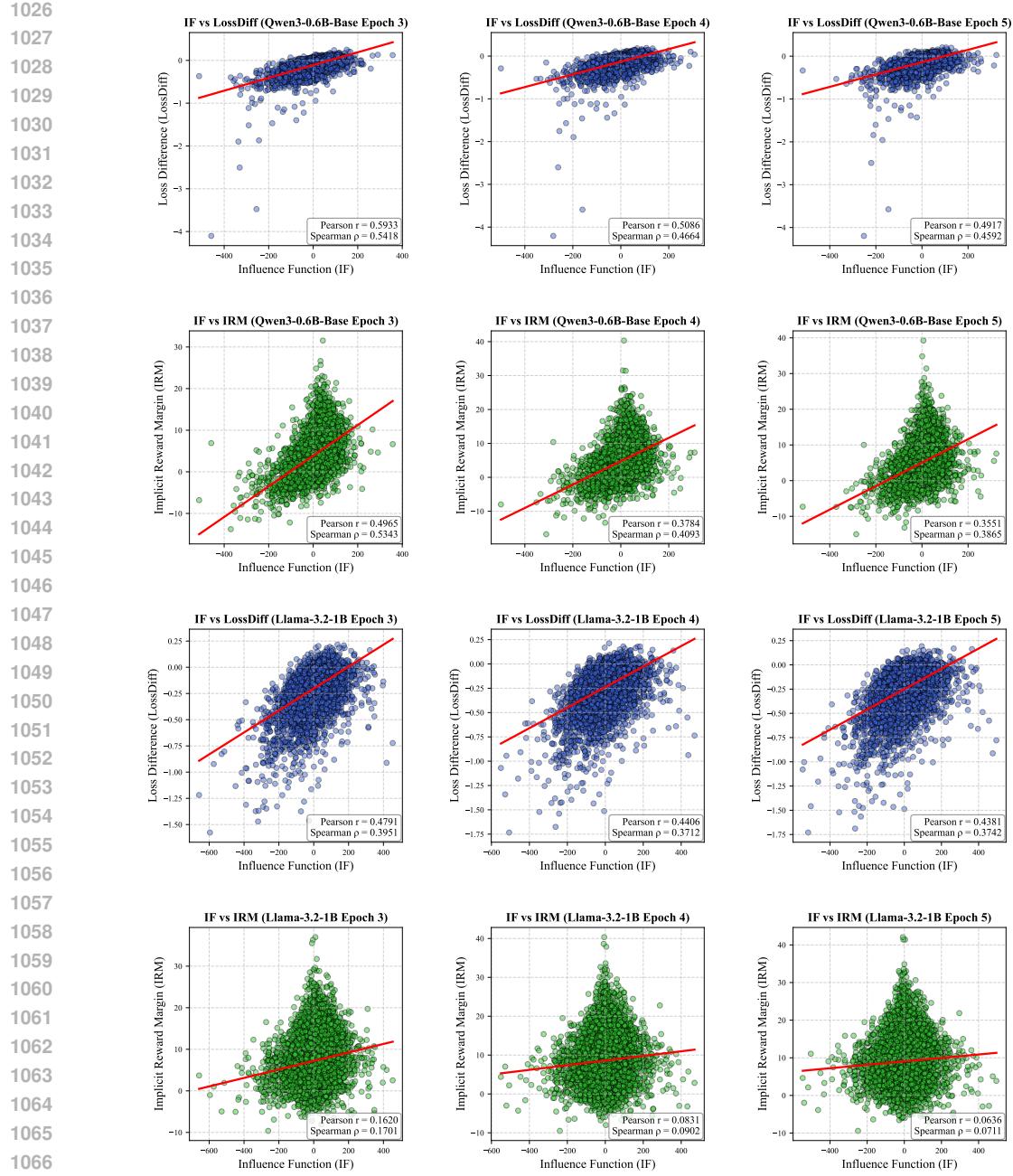


Figure 9: **Further correlation analysis on epoch- $\{3,4,5\}$ checkpoints of Qwen3-0.6B-Base and Llama-3.2-1B.** First Row: correlation between LossDiff and IF on Qwen3-0.6B-Base. Second Row: correlation between IRM and IF on Qwen3-0.6B-Base. Third Row: correlation between LossDiff and IF on Llama-3.2-1B. Fourth Row: correlation between IRM and IF on Llama-3.2-1B.

D MORE EXPERIMENTAL DETAILS

D.1 DATASET DETAILS

The details of the datasets used in this work is introduced as follows:

1080
1081
1082 Table 8: **Statistics of the datasets** used in this work.
1083
1084
1085
1086
1087
1088
1089

Dataset	Purpose	# Instances			Unit
		Train	Val	Eval	
UltraChat-200K	SFT	207,865	-	23,110	Dialogues
UltraFeedback-Binarized	Pref. Train	48,908	12,227	-	Pairs
UltraFeedback Test set	Evaluation	-	-	1,000	Pairs
AlpacaEval	Evaluation	-	-	805	Prompts
Vicuna-Bench	Evaluation	-	-	80	Prompts

1090
1091 • **UltraChat-200K¹** (Tunstall et al., 2024): This is a heavily filtered subset version of Ultra-
1092 Chat (Ding et al., 2023), which was originally used for training ZePhyr-7B- β model. The filtering
1093 process removes dialogues containing grammatical errors or assistant responses with phrases such
1094 as “I do not have emotions” or “I don’t have opinions.” After filtering, training set of UltraChat-
1095 200K contains 207,865 multi-turn dialogues generated by ChatGPT, covering a wide range of
1096 topics. Currently, it is widely adopted for supervised fine-tuning (SFT) of LLMs in research
1097 community (Ko et al., 2024; Zhang et al., 2024b). We also use this dataset to perform SFT on
1098 LLMs as preparation for subsequent preference alignment.
1099
1100 • **UltraFeedback-Binarized²** (Cui et al., 2023): This is a preprocessed pairwise version of the
1101 UltraFeedback³ dataset, designed for LLM preference alignment. The dataset contains 64k
1102 prompts collected from diverse sources. For each prompt, four responses are generated by
1103 different LLMs and then evaluated by GPT-4 along four axes: instruction-following, truthfulness,
1104 honesty, and helpfulness. To construct preference pairs of the UltraFeedback-Binarized, the
1105 response with the highest overall score is selected as the “chosen” response, while one of the
1106 remaining three is randomly selected as the “rejected” response. We perform stratified sampling
1107 based on the GPT-4 score difference between chosen and rejected responses, holding out 20% of
1108 the training split as a validation set, using the remaining 80% as our full training set in this work.
1109 The resulting dataset contains 48,908 training pairs and 12,227 validation pairs.
1110
1111 • **UltraFeedback Test Set** (Cui et al., 2023): This test set is provided alongside the UltraFeedback-
1112 Binarized dataset and constructed using the same preprocessing procedure. It contains 2,000
1113 high-quality preference pairs. To reduce the cost of LLM-based evaluation in our experiments, we
1114 randomly sample 1,000 pairs from this set to form the UltraFeedback evaluation dataset used in
1115 this paper. To reduce the cost of LLM-as-a-Judge (Zheng et al., 2023a) evaluation, we randomly
1116 sample 1,000 pairs from this set to construct the UltraFeedback benchmark used in this work.
1117
1118 • **AlpacaEval⁴** (Li et al., 2023): This is a lightly modified version of the AlpacaFarm (Dubois
1119 et al., 2023) evaluation set, containing 805 challenging prompts spanning a wide range of topics.
1120 Following previous studies (Ko et al., 2024; Gao et al., 2025), we employ AlpacaEval to evaluate
1121 the instruction-following capability of the trained LLMs in this paper.
1122
1123 • **Vicuna-Bench** (Chiang et al., 2023): This is a dataset containing 80 diverse questions originally
1124 used to evaluate the Vicuna series of LLMs. Following previous work (Pattnaik et al., 2024; Ko
1125 et al., 2024), we adopt it to evaluate the open-ended question-answering ability of the model.
1126

1127 The statistics information of above datasets used in this paper is summarized in Table 8.
1128
1129
1130 D.2 TRAINING DETAILS
1131
1132
1133 We conduct experiments using various LLM families, including Llama-3.1-8B (Vavekanand & Sam,
1134 2024), Qwen3-8B-Base (Yang et al., 2025) and the Pythia series (Pythia-2.8B/1.4B/410M) (Biderman
1135 et al., 2023). Due to GPU limit, Llama-3.1-8B and Qwen3-8B-Base are trained using LoRA with
1136 $r_{\text{LoRA}} = 32$, $\alpha_{\text{LoRA}} = 32$ and $\text{drop_out} = 0.05$, whereas the Pythia models are trained in a full-
1137 parameter setting. As described in the previous section, we first perform one epoch of SFT on each
1138 model based on UltraChat-200K dataset to initialize the alignment learning.
1139

1140 ¹https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
1141 ²https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
1142 ³<https://huggingface.co/datasets/openbmb/UltraFeedback>
1143 ⁴https://huggingface.co/datasets/tatsu-lab/alpaca_eval

Table 9: **Training Setup Details.**

Stage	Hyperparameter	Llama-3.1-8B	Qwen3-8B-Base	Pythia-410M	Pythia-1.4B	Pythia-2.8B
SFT	Learning rate			2e-5		
	Optimizer			AdamW		
	Scheduler			Cosine		
	# Epoch			1		
	Batch Size	8	8	64	32	8
	Gradient accumulations	8	8	1	2	8
Alignment	Learning rate		2e-4		5e-7	
	Optimizer			AdamW		
	Scheduler			Linear		
	# Epoch			2		
	Batch Size	16	16	32	8	2
	Gradient accumulations	1	1	1	4	16
	β			0.1 (DPO) / 0.1 (SLiC)		
	r_{LoRA}	32	32		-	
	α_{LoRA}	32	32		-	
	drop_out _{LoRA}	32	32		-	

Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question displayed below. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of the response. Begin your evaluation by providing a short explanation. Be as objective as possible. After providing your explanation, please finally rate the response on a scale of 1 to 10 by strictly following this format: “[rating]”, for example: “Rating: [[5]]”.

[Question]
{question}

[The Start of Assistant’s Answer]
{response}
[The End of Assistant’s Answer]

Figure 10: **Pointwise single-answer grading prompt to compute metric of “Single”.**

We then apply two preference alignment algorithms, i.e., DPO and SLiC, to validate the effectiveness of our proposed LossDiff-IRM. For both DPO and SLiC, we train for two epochs with the AdamW optimizer and a linear learning rate scheduler. The batch sizes and gradient accumulation steps are set to $\{16, 16, 32, 8, 2\}$ and $\{1, 1, 1, 4, 16\}$ for the five models, respectively. The hyperparameter of KL penalty β in DPO and SLiC is set 0.1 for both DPO and SLiC following previous work (Ko et al., 2024). All experiments are conducted using bfloat16 dtype in our experiments. All experiments are conducted on two NVIDIA H100-80GB GPU using the Hugging Face TRL⁵ library. All training hyperparameters refer to Table 9

D.3 EVALUATION DETAILS

To evaluate the aligned LLMs, we use the vllm⁶ library to accelerate inference and generate responses with sampling temperature set to 1.0, top- p of 0.95, and a maximum generation length of 512 tokens to control the generation length. For LLM-as-a-judge evaluation, we adopt GLM-4-Plus⁷ Pythia experiments, while for Llama-3.1-8B and Qwen3-8B-Base we adopt the open-source Qwen3-32B to reduce API token costs. We adopt two types of prompting strategies: (1) a pointwise single-answer

⁵<https://huggingface.co/docs/trl/index>

⁶<https://docs.vllm.ai/en/latest/>

⁷<https://bigmodel.cn/>

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200

Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user question displayed below. You should choose the assistant that follows the user’s instructions and answers the user’s question better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their responses. Begin your evaluation by comparing the two responses and provide a short explanation. Avoid any position biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by strictly following this format: “[A]” if assistant A is better, “[B]” if assistant B is better, and “[C]” for a tie.

1201
 1202
 1203

[User Question]

{question}

1204
 1205
 1206
 1207

[The Start of Assistant A’s Answer]

{response_a}

[The End of Assistant A’s Answer]

1208
 1209
 1210
 1211
 1212
 1213
 1214

[The Start of Assistant B’s Answer]

{response_b}

[The End of Assistant B’s Answer]

Figure 11: **Pairwise comparison prompt to compute metric of “WinRate vs. SFT”.**

1215
 1216
 1217

grading prompt, which yields the Single Score, and (2) a pairwise comparison prompt, which produces the Win Rate vs. SFT. The temperature of the judge is set to 0.0 for both two metrics. The prompt templates for both evaluation metrics are shown in Fig. 10 and Fig. 11. The WinRate is computed by assigning a weight of 1 to wins, 0.5 to ties, and 0 to losses. Formally:

$$\text{WinRate} = \frac{n_{\text{win}} + 0.5 \times n_{\text{tie}}}{n_{\text{win}} + n_{\text{tie}} + n_{\text{loss}}}, \quad (23)$$

1225
 1226
 1227
 1228
 1229

where n_{win} , n_{tie} , and n_{loss} denote the number of wins, ties, and losses, respectively. To mitigate position bias, we repeat the pairwise evaluation with swapped answer orders and report the averaged Win Rate. For the GPT-4 and RM baselines, high-quality preference pairs are selected based on GPT-4 score differences from UltraFeedback and reward differences computed by the OpenAssistant reward model⁸, respectively.

1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

We compare our LossDiff-IRM with several data-centric preference alignment methods, including:

- **CurriDPO (Pattnaik et al., 2024)** is a curriculum learning-based method, which orders preference pairs to organize curriculum learning based on various criteria, such as GPT4 score (CurriDPO-GPT4) and reward model score (CurriDPO-Reward Model).
- **M_{AP} (Huang et al., 2025)** is a margin-based preference data selection metric, called alignment potential, which integrates both explicit and implicit reward margins to quantify preference data.
- **RS-DPO (Khaki et al., 2024)** combines rejection sampling (RS) with DPO to generate high-quality preference data for DPO training. RS-DPO requires an external reward model to quantify preference pairs during rejection sampling.

⁸<https://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5>

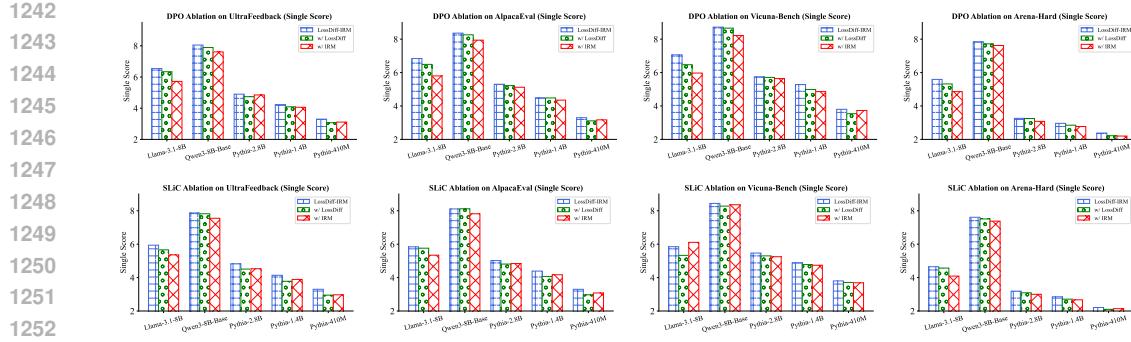


Figure 12: **Ablation study on Single Score.** Comparison of LossDiff-IRM and its ablated variants that select data relying solely on LossDiff (“w/ LossDiff”) or solely on IRM (“w/ IRM”). **Top:** Training with DPO. **Bottom:** Training with SLiC. The ablation of WinRate is provided in Figure 3.

Table 10: **Concrete performance of ablation study of LossDiff-IRM with DPO**, which is corresponding to Figure 3 and Figure 12.

LLM	DPO	Dataset Ratio	UltraFeedback		AlpacaEval		Vicuna-Bench	
			Single \uparrow	WinRate \uparrow	Single \uparrow	WinRate \uparrow	Single \uparrow	WinRate \uparrow
Llama-3.1-8B	LossDiff-IRM	64%	6.54	83.97	6.84	87.08	7.06	86.88
	w/ LossDiff	80%	6.34	82.42	6.49	84.36	6.47	79.69
	w/ IRM	80%	5.72	76.92	5.80	77.25	5.97	76.88
Qwen3-8B-Base	LossDiff-IRM	64%	8.05	67.32	8.36	71.52	8.72	67.19
	w/ LossDiff	80%	7.89	64.71	8.26	68.10	8.66	65.62
	w/ IRM	80%	7.61	61.73	7.94	63.88	8.22	59.38
Pythia-2.8B	LossDiff-IRM	64%	4.90	79.62	5.30	76.03	5.74	82.50
	w/ LossDiff	80%	4.74	76.83	5.22	72.44	5.71	81.01
	w/ IRM	80%	4.85	75.40	5.12	72.38	5.64	73.12
Pythia-1.4B	LossDiff-IRM	64%	4.23	78.49	4.49	76.43	5.28	76.88
	w/ LossDiff	80%	4.09	75.20	4.48	75.75	4.99	75.62
	w/ IRM	80%	4.06	74.22	4.35	74.41	4.86	72.50
Pythia-410M	LossDiff-IRM	64%	3.30	86.14	3.30	85.16	3.80	85.62
	w/ LossDiff	80%	3.07	80.64	3.11	82.21	3.54	80.63
	w/ IRM	70%	3.11	82.58	3.17	82.96	3.73	85.00

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 ABLATION STUDY: SINGLE SCORE

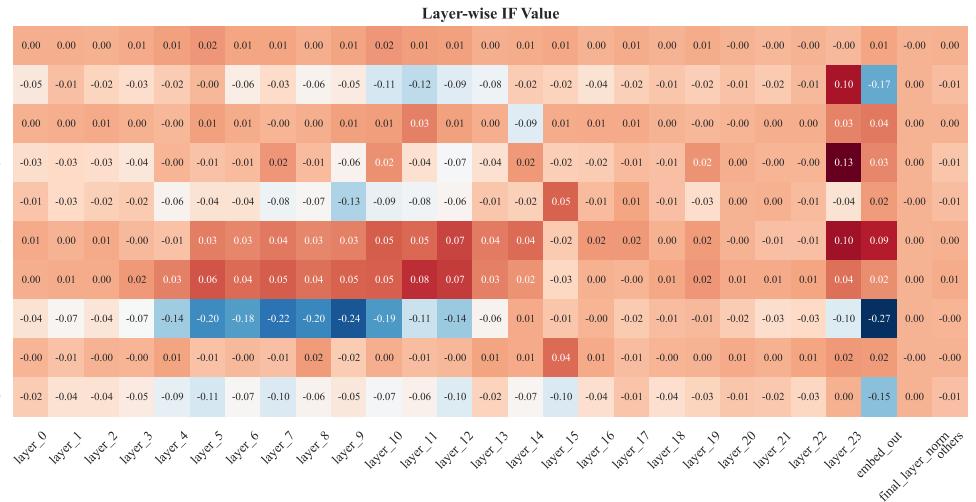
As a supplement to Figure 3, Figure 12 reports the Single Score for LossDiff-IRM and its two ablated variants: “w/ LossDiff” and “w/ IRM”, which select data depending on LossDiff or IRM alone. Similar to the Win Rate results in Figure 3, the full LossDiff-IRM consistently outperforms its ablations. This results corroborates the higher Overlap Coefficients of LossDiff-IRM shown in Table 2 and Table 7, indicating that the combination of the two scoring functions provides a more reliable criterion for data selection than either one alone. Furthermore, Table 10 and Table 11 summarize the concrete performance of ablation studies with DPO and SLiC respectively.

E.2 MORE VISUALIZATION OF IF

As a supplement to Figure 7, Figure 13 visualizes additional layer-wise IF values computed on the Pythia-410M model using the full UltraFeedback training and validation sets. Consistent with earlier observations, no single layer dominates the IF values, suggesting that approximating IF using gradients from only one or a few layers is not reliable and motivating the need for exploring effective correlated approximation proxies such as our LossDiff-IRM.

1296
1297 Table 11: **Concrete performance of ablation studt of LossDiff-IRM with SLiC**, which is corre-
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

LLM	SLiC	Dataset Ratio	UltraFeedback		AlpacaEval		Vicuna-Bench	
			Single \uparrow	WinRate \uparrow	Single \uparrow	WinRate \uparrow	Single \uparrow	WinRate \uparrow
Llama-3.1-8B	LossDiff-IRM	64%	5.94	79.51	5.84	78.84	5.85	76.56
	w/ LossDiff	80%	5.66	76.44	5.76	77.58	5.33	70.94
	w/ IRM	80%	5.36	72.73	5.34	72.64	6.11	74.37
Qwen3-8B-Base	LossDiff-IRM	64%	7.87	64.40	8.11	67.58	8.44	61.12
	w/ LossDiff	64%	7.82	62.42	8.12	65.27	8.28	58.13
	w/ IRM	80%	7.55	59.62	7.82	62.11	8.36	55.63
Pythia-2.8B	LossDiff-IRM	64%	4.82	76.36	5.02	68.85	5.47	74.38
	w/ LossDiff	80%	4.51	71.01	4.81	66.48	5.30	70.63
	w/ IRM	80%	4.53	71.74	4.84	66.79	5.25	67.50
Pythia-1.4B	LossDiff-IRM	64%	4.14	74.25	4.39	72.69	4.88	71.25
	w/ LossDiff	80%	3.78	67.87	4.07	68.06	4.78	66.25
	w/ IRM	80%	3.89	70.29	4.17	67.29	4.74	66.87
Pythia-410M	LossDiff-IRM	64%	3.30	86.14	3.30	85.16	3.80	85.62
	w/ LossDiff	80%	2.95	75.20	2.97	76.53	3.71	72.50
	w/ IRM	70%	2.97	78.54	3.08	79.39	3.69	77.50

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
Figure 13: **Visualization of layer-wise IF value computed on Pythia-410M.**

E.3 RESULTS OF DIRECT TRAINING ON TRAIN, VAL, OR TRAIN+VAL SETS

Since this work introduces an additional validation set, a natural question is how models perform when trained directly on this validation set or on the union of training and validation sets. As a supplement, Table 12 reports the results of models trained on the training set, validation set, and the combined training + validation set, under both DPO and SLiC. We observe that none of these settings clearly outperforms the others, despite differences in dataset size. This highlights that existing datasets such as UltraFeedback contain a substantial amount of low-quality data, so randomly splitting out a validation set or simply enlarging the training set by taking their union does not yield performance gains. In contrast, when applying our LossDiff-IRM data selection on the training set, performance improves significantly, further confirming that LossDiff-IRM effectively identifies the valuable preference data beneficial for current model alignment.

Table 12: **Results of training on training, validation, or training + validation sets, respectively.**

LLM	Training Data	Method	UltraFeedback		AlpacaEval		Vicuna-Bench	
			Single ↑	WinRate ↑	Single ↑	WinRate ↑	Single ↑	WinRate ↑
Llama-3.1-8B	Val	DPO	5.28	72.77	5.34	73.26	5.83	73.44
	Train + Val	DPO	5.50	75.16	5.47	73.24	5.50	71.95
	Train	DPO	5.77	77.61	5.87	78.41	6.04	73.75
	Train	DPO + LossDiff-IRM	6.54	83.97	6.84	87.08	7.06	86.88
	Val	SLiC	5.19	72.50	5.16	72.39	5.29	67.50
	Train + Val	SLiC	5.03	67.41	5.07	69.82	5.15	66.56
	Train	SLiC	5.09	70.72	5.13	72.13	5.40	71.88
	Train	SLiC + LossDiff-IRM	5.94	79.51	5.84	78.84	5.85	76.56
Qwen3-8B-Base	Val	DPO	7.83	61.73	8.07	67.81	8.36	65.33
	Train + Val	DPO	7.72	62.01	7.88	63.77	8.18	52.50
	Train	DPO	7.64	61.41	7.92	63.85	8.21	62.14
	Train	DPO + LossDiff-IRM	8.05	67.32	8.36	71.52	8.72	67.19
	Val	SLiC	7.71	60.62	8.07	64.59	8.38	58.44
	Train + Val	SLiC	7.56	58.44	7.78	60.93	8.22	60.59
	Train	SLiC	7.55	59.54	7.61	59.71	8.05	54.69
	Train	SLiC + LossDiff-IRM	7.87	64.40	8.11	67.58	8.44	61.12
Pythia-2.8B	Val	DPO	4.63	70.88	4.80	64.51	5.49	69.37
	Train + Val	DPO	4.54	71.39	4.86	63.67	5.35	66.25
	Train	DPO	4.60	70.53	4.95	67.50	5.35	67.50
	Train	DPO + LossDiff-IRM	4.90	79.62	5.30	76.03	5.74	82.50
	Val	SLiC	4.42	67.70	4.71	62.11	4.89	61.88
	Train + Val	SLiC	4.33	64.29	4.63	57.49	4.84	56.25
	Train	SLiC	4.36	67.46	4.48	61.66	4.90	65.00
	Train	SLiC + LossDiff-IRM	4.82	76.36	5.02	68.85	5.47	74.38
Pythia-1.4B	Val	DPO	3.69	66.45	4.06	66.22	4.65	65.65
	Train + Val	DPO	3.80	65.50	4.01	64.30	4.69	65.62
	Train	DPO	3.70	65.88	3.99	66.17	4.71	64.38
	Train	DPO + LossDiff-IRM	4.23	78.49	4.49	76.43	5.28	76.88
	Val	SLiC	3.76	66.75	4.02	63.33	4.64	59.38
	Train + Val	SLiC	3.68	63.67	3.98	63.12	4.45	59.38
	Train	SLiC	3.66	63.58	3.98	63.68	4.67	60.00
	Train	SLiC + LossDiff-IRM	4.14	74.25	4.39	72.69	4.88	71.25
Pythia-410M	Val	DPO	2.72	72.57	2.77	73.04	3.74	72.50
	Train + Val	DPO	2.77	73.62	2.80	73.85	3.31	73.75
	Train	DPO	2.81	75.25	2.77	73.51	3.10	69.37
	Train	DPO + LossDiff-IRM	3.30	86.14	3.30	85.16	3.80	85.62
	Val	SLiC	2.68	71.13	2.73	71.74	3.51	66.25
	Train + Val	SLiC	2.83	73.17	2.84	73.60	3.21	63.12
	Train	SLiC	2.81	73.80	2.82	73.91	3.31	71.25
	Train	SLiC + LossDiff-IRM	3.07	80.08	3.09	84.39	3.83	79.36

Table 13: **Performance of introducing more validation data.** The validation set is extended by introducing validation set from OASST (Köpf et al., 2023) and GoldenHH (Cai et al., 2023).

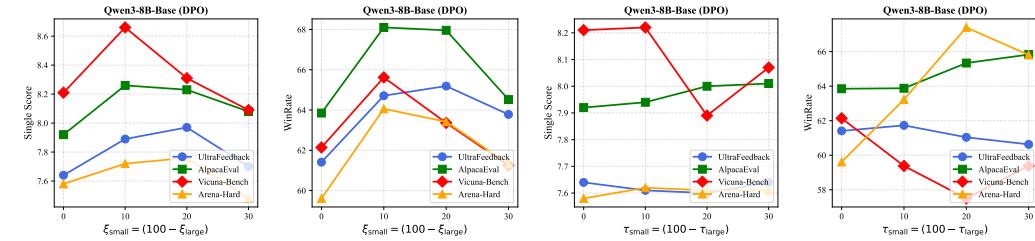
LLM	Validation Dataset	DPO	UltraFeedback		AlpacaEval		Vicuna-Bench	
			Single \uparrow	WinRate \uparrow	Single \uparrow	WinRate \uparrow	Single \uparrow	WinRate \uparrow
Pythia-2.8B	N/A	Full Data	4.60	70.53	4.95	67.50	5.35	67.50
	Ultra	LossDiff-IRM	4.90	79.62	5.30	76.03	5.74	82.50
	Ultra + OASST	LossDiff-IRM	4.88	78.71	5.11	74.16	5.85	76.88
	Ultra + GoldenHH	LossDiff-IRM	4.99	80.07	5.28	74.06	5.89	74.38
Pythia-1.4B	N/A	Full Data	3.70	65.88	3.99	66.17	4.71	64.38
	Ultra	LossDiff-IRM	4.23	78.49	4.49	76.43	5.28	76.88
	Ultra + OASST	LossDiff-IRM	4.17	77.26	4.44	77.11	4.91	77.22
	Ultra + GoldenHH	LossDiff-IRM	4.36	80.12	4.69	79.02	5.39	81.01
Pythia-410M	N/A	Full Data	2.81	75.25	2.77	73.51	3.10	69.37
	Ultra	LossDiff-IRM	3.30	86.14	3.30	85.16	3.80	85.62
	Ultra + OASST	LossDiff-IRM	3.11	84.77	3.19	85.24	3.96	86.25
	Ultra + GoldenHH	LossDiff-IRM	3.25	84.62	3.28	86.71	3.73	83.75

E.4 IMPACT OF INTRODUCING MORE VALIDATION DATA

Since LossDiff-IRM relies on a validation set as a reference for data selection, Figure 4 has examined the effect of noisy validation sets. A remaining question is whether enlarging the validation set by

Table 14: **Time cost analysis between RS-DPO and LossDiff-IRM.**

Trained Model	# Prompts	RS-DPO		LossDiff-IRM	
		Time	Throughput (prompts/sec)	Time	Throughput (prompts/sec)
Llama-3.1-8B	48,908	4 h 34 min	2.97	2 h 14 min	6.08
Qwen3-8B-Base	48,908	4 h 50 min	2.81	2h 43 min	5.03

Figure 14: **Analysis of percentile thresholds** ξ_{small} , ξ_{large} , τ_{small} , τ_{large} of Qwen3-8B-Base. We vary $\xi_{small} = (100 - \xi_{large})$ and $\tau_{small} = (100 - \tau_{large})$ with in {0, 10, 20, 30}. Analysis for Llama-3.1-8B is illustrated in Figure 6.

incorporating data from multiple sources can further improve its effectiveness. As a supplement, Table 13 reports the performance of LossDiff-IRM when the original Ultra validation set is extended with additional data from OASST (Köpf et al., 2023) and GoldenHH (Cai et al., 2023), resulting in {Ultra + OASST} and {Ultra + GoldenHH}, each containing 22,227 preference pairs. We observe that extending Ultra with OASST or GoldenHH yields only marginal improvements on certain models or benchmarks, without consistent or significant gains. Notably, regardless of whether the validation set is Ultra, {Ultra + OASST}, or {Ultra + GoldenHH}, applying LossDiff-IRM consistently outperforms training on the full dataset. These results suggest that a large validation preference set is not strictly necessary for effective LossDiff-IRM selection. LossDiff-IRM remains certain robustness even when the validation set differs from the training distribution, as long as it provides a rough reference direction for distinguishing preference data quality.

E.5 TIME COST ANALYSIS BETWEEN LOSSDIFF-IRM AND RS-DPO

High-quality preference data selection and generation are two types of data-centric methods. For example, RS-DPO (Khaki et al., 2024) focuses on generating new high-quality preference pairs through rejection sampling using the SFT model, whereas our LossDiff-IRM focuses on analyzing existing annotated preference pairs to identify valuable preference pairs. Specifically, RS-DPO requires an external reward model to evaluate the responses generated by the SFT model. Given N prompts and K sampled responses per prompt, RS-DPO needs to score $N \times K$ responses with the reward model in order to construct contrastive preference pairs. For LossDiff-IRM, it requires scoring all preference pairs with both the current model and an auxiliary model. For the same scale of N preference pairs, LossDiff-IRM requires N forward passes with the current model and N forward passes with the auxiliary model, resulting in a total of $2N$ forward passes, where the two models share the same architecture and differ only in parameters. To facilitate a direct comparison, Table 14 reports the data processing time cost of RS-DPO (including data generation and rejection sampling) using the OpenAssistant-1.4B reward model with $K=8$, as well as the data-selection time of LossDiff-IRM. All experiments were conducted on a single H100-80GB GPU.

The dominant cost of RS-DPO comes from using the reward model to evaluate all $N \times K$ responses generated by the SFT model. Even using a relatively small 1.4B reward model, the time cost is actually higher than LossDiff-IRM. Therefore, the time cost of LossDiff-IRM is at least on par with RS-DPO, and even often smaller, especially when considering that RS-DPO scales with K or uses a larger reward model.

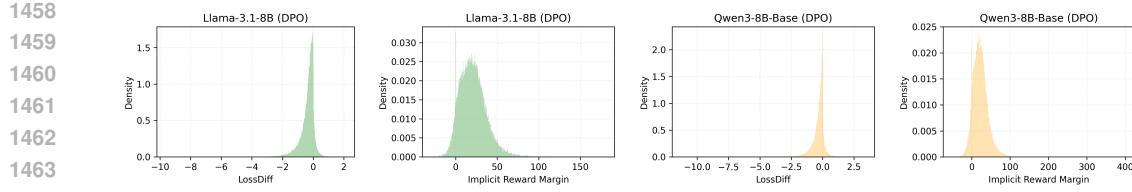


Figure 15: **Visualization of distribution of LossDiff and implicit reward margin for Llama-3.1-8B and Qwen3-8B-Base, respectively.**

Table 15: **Concrete performance of LossDiff-IRM with noisy validation set**, which is corresponding to Figure 4.

Method	UltraFeedback		AlpacaEval		Vicuna-Bench	
	Single \uparrow	WinRate \uparrow	Single \uparrow	WinRate \uparrow	Single \uparrow	WinRate \uparrow
Llama-3.1-8B						
Full Data	5.77	77.61	5.87	78.41	6.04	73.75
LossDiff-IRM	6.54	83.97	6.84	87.08	7.06	86.88
+ Noise Rate = 0.1	6.44	83.79	6.69	85.99	6.76	81.56
+ Noise Rate = 0.2	6.19	80.76	6.35	81.30	6.67	78.44
+ Noise Rate = 0.3	6.19	80.71	6.24	82.03	6.54	82.50
+ Noise Rate = 0.4	5.95	79.02	6.01	80.37	6.54	78.75
Qwen3-8B-Base						
Full Data	7.64	61.41	7.92	63.85	8.21	62.14
LossDiff-IRM	8.05	67.32	8.36	71.52	8.72	67.19
+ Noise Rate = 0.1	7.70	63.78	8.11	68.75	8.47	65.62
+ Noise Rate = 0.2	7.99	66.70	8.26	69.57	8.61	61.25
+ Noise Rate = 0.3	7.97	65.98	8.15	69.16	8.65	66.25
+ Noise Rate = 0.4	7.84	63.90	8.26	68.35	8.49	65.62

E.6 MORE ANALYSIS OF PERCENTILE THRESHOLDS

As a supplement, Figure 14 provides the analysis of percentile thresholds ξ_{small} , ξ_{large} , τ_{small} , τ_{large} for Qwen3-8B-Base. The rough trends are similar as for Llama-3.1-8B: performance first improves and then degrades as the thresholds become stricter. Following this observation, we finally set ξ_{small} and ξ_{large} as 10, τ_{small} and τ_{large} as 10 for all models.

E.7 VISUALIZATION OF DISTRIBUTION OF LOSSDIFF AND IRM

Figure 15 visualizes the LossDiff and IRM distributions for Llama-3.1-8B and Qwen3-8B-Base, respectively. We observe that both LossDiff and IRM exhibit distributional shapes resembling unimodal, Gaussian-like distributions, where the majority of data lies in the middle region and only a small number of data fall in the extremes. In our data selection strategy, both criteria concentrate data in their middle ranges, taking their intersection would not result in an extremely small subset. The overlap between their medium regions remains sufficiently large and high-quality for alignment.

E.8 ADDITIONAL SUPPLEMENT

As a supplement to Figure 3 and Figure 12, we report the corresponding numerical results in Table 10. In addition, Figure 4 shows the impact of noisy validation sets on LossDiff-IRM under different noise rates, with the detailed results provided in Table 15.