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Abstract

This paper continues the quest for designing the optimal physics bias for
neural networks predicting the dynamics of systems when the underlying
dynamics shall be inferred from the data directly. The description of physi-
cal systems is greatly simplified when the underlying symmetries of the sys-
tem are taken into account. In classical systems described via Hamiltonian
dynamics this is achieved by using appropriate coordinates, so-called cyclic
coordinates, which reveal conserved quantities directly. Without changing
the Hamiltonian, these coordinates can be obtained via canonical transfor-
mations. We show that such coordinates can be searched for automatically
with appropriate loss functions which naturally arise from Hamiltonian dy-
namics. As a proof of principle, we test our method on standard classical
physics systems using synthetic and experimental data where our network
identifies the conserved quantities in an unsupervised way and find im-
proved performance on predicting the dynamics of the system compared
to networks biasing just to the Hamiltonian. Effectively, these new coor-
dinates guarantee that motion takes place on symmetry orbits in phase
space, i.e. appropriate lower dimensional sub-spaces of phase space. By fit-
ting analytic formulae we recover that our networks are utilising conserved
quantities such as (angular) momentum.

1 Introduction

Building in a bias to neural networks has been a key mechanism to achieve extra-ordinary
performance in tasks such as classification. A standard example is to utilise translation
invariance in convolutional neural networks Krizhevsky et al. (2012) and by now building
in equivariance to other symmetries such as rotational symmetries has proven to be very
successful (e.g. Cohen & Welling (2016)).

Possible motions are constrained due to symmetries of the system. In technical terms,
motion takes place on a subspace of phase space. Energy conversation – related to invariance
under time translation – has been utilised in the context of Hamiltonian Neural Networks
(HNNs) Greydanus et al. (2019) where the energy functional, i.e. the Hamiltonian is inferred
from data. This approach has seen large improvements in predicting the dynamics over
baseline neural networks which simply try to predict the change of phase-space coordinates
in time. Here we extend this approach by learning and incorporating additional constraints
due to further symmetries of the system.

Coarsely speaking, finding symmetries corresponds to finding good coordinates. In classical
mechanics this is achieved by performing canonical transformations and identifying cyclic
coordinates which reveal conserved quantities. The aim of this paper is to demonstrate that
multiple conserved quantities can indeed be automatically found in this way which has not
been demonstrated beforehand.

Similar in spirit to learning the Hamiltonian, we formulate loss functions which enforce a
representation in terms of cyclic coordinates and use them as the input for our Hamiltonian,
differing from previous flow-based approaches searching for these coordinates (Bondesan &
Lamacraft, 2019; Li et al., 2020). We experimentally find as a proof of principle that
this mechanism identifies the underlying conserved quantities such as angular momentum,
momentum, the splitting into decoupled subsystems, and can find the number of conserved
quantities.
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Figure 1: Effect of additional loss components:
Loss-contours for the HNN-loss (6) (shown in gray)
and the Poisson loss (7) (red) arising from the angu-
lar momentum (‖{L,H}‖2) in the 2-body Hamilto-
nian (10) with respect to two model parameters m1

and m2. The data model corresponds to m1 = m2 =
g = 1 (indicated with a star) and we evaluate the
loss over our training set. The analytic constraint
m1 = m2 which arises from evaluating the Poisson
bracket {L,H} ∼ (m1 − m2) is clearly visible and
provides additional constraints on the model param-
eter space.

We demonstrate significant improvement in the predictions of the underlying Hamiltonian
and subsequently the dynamics of the system. From our trained networks, we can find
analytic expressions for the conserved quantities and determine the number of conserved
quantities.

2 Theory

We briefly describe the standard techniques in Hamiltonian mechanics which our network
utilises.1 We consider a classical system with N particles in d spatial dimensions. Such a
system can be described by the variables (q,p), where q = (q1, ..., qN ·d) are typically the
positions for each dimension of the objects and p = (p1, ..., pN ·d) are the corresponding
momenta. This is the input to our network and we are interested in predicting the time-
evolution of this system, i.e. (q,p) at later time steps.

This pair (q,p) is an element of phase space in which every point corresponds to a state
the system can take. The time evolution is governed by the Hamiltonian H(q,p)2 and the
associated Hamiltonian equations:

dq

dt
=
∂H
dp

= {q,H} , dp

dt
= −∂H

dq
= {p,H} , (1)

where {•, •} are the Poisson bracket. They are defined as

{f, g} :=

N ·d∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (2)

The Poisson bracket does not only arise for the time evolution of the canonical coordinates
(q,p) but also for any function of these coordinates g(q,p) which does not explicitly depend
on time:

dg(q,p)

dt
=

N ·d∑
i=1

∂g

∂qi

dqi
dt
− ∂g

∂pi

dpi
dt

= {g,H} , (3)

where we have used the Hamiltonian equations (1) in the last step. From this expression we
see that the Poisson bracket of a conserved quantity with the Hamiltonian H(q,p) vanishes
and that the Hamiltonian itself is a conserved quantity.

The physics of this system is invariant under diffeomorphic coordinate transformations on
the canonical coordinates and we will use coordinate transformations to reveal the constants
of motions and hence the symmetries of the system. We use a particular type of diffeomor-
phic transformations T , namely canonical transformations which are transformations that
leave the structure of the Hamiltonian equations (1) and in particular the Poisson bracket
unchanged:

T : (q,p) 7→ (Q(q,p),P(q,p)) ,

{f, g}p,q = {f, g}P,Q, H(p,q) = H̃(P(p,q),Q(p,q)) . (4)

1We refer the reader for more details to standard textbooks such as Landau & Lifshitz (1982).
2We focus on time-independent Hamiltonians for simplicity.
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Figure 2: Structure of symmetry control networks: The network Tψ transforms the input
coordinates of phase space (p,q) to canonical coordinates where some coordinates are forced
to be cyclic. These coordinates are used as input to the Hamiltonian network Hφ. The
output, the time derivatives of our initial coordinates, is calculated from the Hamiltonian
using auto-differentiation.

We are interested in finding transformations T such that at least one coordinate satisfies

0 = Ṗi = − ∂H
∂Qi

= {Pi,H} . (5)

Such a coordinate Pi is conserved in the system and the Hamiltonian does not depend on
the associated Qi, i.e. it depends on fewer degrees of freedom and the motion in phase
space is restricted to a lower dimensional manifold. Put differently, the cyclic coordinates
provide via constraints of the type (5) additional restrictions on the allowed Hamiltonian
function which we learn with our symmetry control neural networks (cf. Figure 1 shows
explicit constraint from angular momentum conservation in a 2-body example in addition
to constraints arising from satisying the Hamiltonian equations of motion).

Symmetry Control Neural Networks: In a first step we search for such cyclic coordi-
nates with a network Tψ and use them as input for our Hamiltonian Hφ. The structure of
our two trainable networks is shown in Figure 2. In order to find cyclic coordinates and to
identify a Hamiltonian, our loss function contains several components:

1. The first loss ensures that our Hamiltonian satisfies Hamiltonian equations (1), which
we can ensure as follows:

LHNN =

N ·d∑
i=1

∥∥∥∥∂Hφ(P,Q)

∂pi
− dqi

dt

∥∥∥∥
2

+

∥∥∥∥∂Hφ(P,Q)

∂qi
+
dpi
dt

∥∥∥∥
2

. (6)

The time derivatives are provided by the data and the derivatives of the Hamiltonian
with respect to the input variables can be obtained using auto-differentiation. This is
the same loss as introduced in Greydanus et al. (2019).

2. To ensure that our transformation Tψ are of the type we are interested in (cf. Eq. (4)),
i.e. our new coordinates fullfil the Poisson algebra, we enforce the following loss:

LPoisson =

N ·d∑
i,j=1

‖{Qi, Pj} − δij‖2 +

N ·d∑
i,j>i

‖{Pi, Pj}‖2 + ‖{Qi, Qj}‖2 , (7)

where in some practical applications we only enforce this loss on n cyclic coordinate
pairs. The first part of this loss ensures that a vanishing solution is not allowed.

3. Hamilton’s equations have still to be satisfied with respect to the new coordinates. For
the cyclic coordinates we have enforced by our architecture that Hφ is independent of
Qi. However, to ensure that Pi is actually conserved, we require the following additional
loss:

L(n)
HQP =

n∑
i=1

∥∥∥∥dPidt
∥∥∥∥
2

+

∥∥∥∥dQidt − ∂Hφ(P,Q)

∂Pi

∥∥∥∥
2

+ β

N ·d∑
i=n+1

∥∥∥∥dPidt +
∂Hφ(P,Q)

∂Qi

∥∥∥∥
2

+

∥∥∥∥dQidt − ∂Hφ(P,Q)

∂Pi

∥∥∥∥
2

, (8)

where n denotes the number of cyclic variables we are imposing and β denotes a hy-
perparameter for our experiments. The time derivatives can be calculated using either
expressions in (3).
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Our total loss is a weighted sum of these three components:

L = LHNN + α1LPoisson + α2L(n)
HQP , (9)

where the weights αi are tuned.

For integrating the solutions in time from our respective symmetry control network we use a
fourth order Runge-Kutta integrator as in Greydanus et al. (2019) which unlike symplectic
integrators allows for a comparison with neural network approaches directly predicting the
dynamics of a system.3

3 Experiments

Our experiments are designed with the following goals in mind:

1. SCNN-base: We want to compare the performance of symmetry control neural net-
works with HNNs and baseline neural networks which directly predict (q̇, ṗ). In these
experiments we generally use the maximal number of conserved quantities. To eval-
uate the performance, we use the accuracy of the prediction and whether physically
conserved quantities are actually conserved.

2. SCNN-constraint: We explore whether imposing domain knowledge about symme-
tries improves the performance. This is motivated by the fact that we often know about
the existence of certain conserved quantities.

3. Analytic formulae: We evaluate whether our networks actually use conserved quan-
tities in close proximity to known physically conserved quantities. To do this we fit
analytical formulae on the conserved quantities and check how accurately we can re-
cover known formulae.

Throughout, we run a hyperparameter analysis on how the different loss components in-
fluence our results to provide a first numerical analysis of these constraints. We test our
method on synthetic examples and freely available experimental data, several of which have
already been used in Greydanus et al. (2019).

3.1 Physical Systems and Objective of Experiments

We consider the two-body problem in two dimensions which is governed by the following
Hamiltonian

H =
p2x1
2m1

+
p2y1
2m1

+
p2x2
2m2

+
p2y2
2m2

− g

‖q1 − q2‖2
. (10)

To simplify the problem we set m1 = m2 = g = 1. We generate datasets with near circular
orbits where the whole system has a small velocity in an arbitrary direction to avoid acciden-
tal symmetries (see Appendix B for more details). Besides the Hamiltonian itself, conserved
quantities are the total momentum in x and y direction, and the angular momentum:

Px = px1 + px2 , Py = py1 + py2 ,

L = (px1 − px2) (qy1 − qy2)− (py1 − py2) (qx1 − qx2) . (11)

The second system is the 3-body system which is governed by the following Hamiltonian:

H =

3∑
i=1

p2xi
2mi

+
p2yi
2mi

− 1

2

3∑
i=1,j 6=i

g

‖qi − qj‖2
, (12)

3We find that the main numerical inaccuracy in the prediction arises from inaccuracies of the
Hamiltonian Hφ rather than the choice of this integrator when comparing it with standard symplec-
tic integrators (Rein & Liu, 2012). Here in this paper, our focus is on predicting the Hamiltonian
most accurately rather than making most accurate predictions with a Hamiltonian.
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where we take a univeral mass and coupling mi = g = 1. As in the 2-body example, we
consider systems which have a small velocity in an arbitrary direction (cf. Appendix B).
Again, the overall momentum in both directions and the angular momentum are conserved
quantities:

Px = px1 + px2 + px3 , Py = py1 + py2 + py3 ,

L = (2qx1 − qx2 − qx3) py1 − (2qy1 − qy2 − qy3) px1 + even permutations . (13)

The third system which we are interested in is the n-dimensional coupled oscillator
which is described by the following Hamiltonian

H =

n∑
i=1

p2i
2m

+

n∑
i,j=1

qiAijqj , (14)

where we use m = 1/2 and the coupling matrix Aij is a symmetric n × n−matrix with
positive eigenvalues. As this matrix is not diagonal, the potential energy of each oscillator
in these coordinates is influenced by the position of the other oscillators. By diagonalization
the system can be described by decoupled harmonic oscillators. The conserved quantities
are the energies of these subsystems:

Ei = p̃2i + λiq̃
2
i , (15)

where p̃ and q̃ are the canonical coordinates associated to the respective eigenvalue λi of
the coupling matrix Aij . Note that these systems include spring-like interactions.

To include a model with few conserved quantities and to show that the SCNN can be used
to determine the number of conserved quantities, we consider the double pendulum, a
chaotic system, where only energy is conserved. We test the performance of SCNNs on
a charged massive particle in a background magnetic field where the kinetic and
potential energy are not decoupled in the Hamiltonian. To estimate the feasibility of our
approach with experimental data where energy is not conserved, we test SCNNs on data
from two experiments presented in (Schmidt & Lipson (2009)): two-masses-three-springs is a
coupled two-dimensional harmonic oscillator, and we combine data from the physical
pendulum to a real spherical pendulum. Details about these systems can be found in
Appendix A and B.

3.2 Results

3.2.1 2-Body Problem

We have trained our networks with data from 800 trajectories with 50 datapoints each and
checked the performance on 200 different trajectories with 50 datapoints (cf. Appendix B
for more details). We tested a large set of different hyperparameters (cf. Appendix C),
where the large bulk of the models converges and reveals the conserved quantities. The
implementation of our experiments is submitted alongside with this paper. We compare the
following networks which all converge to a reasonable accuracy and our large training set
ensures that overfitting does not pose a problem here:

• The baseline architecture has two hidden dense layers with 200 hidden units and
tanh activation. The output is directly (q̇, ṗ).

• HNN: We use the original architecture with two hidden dense layers, both networks
using tanh activations and 200 hidden units.

• SCNN-base: we use a transformation network architecture with two hidden dense
layers (tanh activation) and a Hamiltonian neural network with two hidden dense layers
as above. We enforce four cyclic coordinates (the maximum possible number). As
described below, we vary the respective loss-weights and find that a loss with α1,2 =
0.001 works best.

• SCNN-constraint: we impose domain knowledge about conserved momenta (Px,
Py) and angular momentum (L) respectively. The Hamiltonian is calculated with our
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Figure 3: Performance overview of the two-body and three-body experiments. Top line
includes sample trajectories for the ground truth, the baseline neural network, a HNN, and
our symmetry control networks. The colour coding is such that the same colour is used
throughout all plots in this figure. The top line also shows the deviation of the predicted
from the true trajectory. The solid line denotes the mean deviation over 50 trajectories
and the one sigma band is shown shaded around it. Bottom two lines: We show mean
squared deviation from conserved quantities where again we show the mean deviation over
50 trajectories and and the associated one sigma band.
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standard two hidden dense layers from the input (q,p). Beyond the HNN-loss, we
only impose the loss components ensuring {H,Pi} = 0 and {H,L} = 0 respectively
(cf. Figure 1 for a visualization). Improve on loss description, if we want to keep it.

For all networks we analyse the time evolution predicted from our trained network by deter-
mining the trajectory, the deviation from the ground truth and the evolution of the conserved
quantities. A sample for the predicted trajectories is shown for each network in Figure 3. To
quantify the accuracy of the respective networks we show the mean-squared deviation from
the ground truth trajectories which we obtain over 50 different trajectories on our trained
networks. We see a modest improvement with our SCNN-base architecture and an order
of magnitude improvement when we include domain knowledge about conserved quantities
for SCNN-constraint networks. Finally the bottom line of plots in Figure 3 shows the devi-
ation of conserved quantities predicted from our networks in comparison to the underlying
conserved quantity where we find an improvement compared to the HNN network.

To analyse the conserved quantities, we fit polynomials in (q,p) to the output of the cyclic
coordinates. Picking the solution with the lowest degree and good accuracy4 we recover
known conserved quantities of this system in the SCNN-base-model:

Pc1 =− 4.21 px1 − 4.21 px2 − 1.26 py1 − 1.29 py2 (0.03) ,

Pc2 =− 0.93 px1 − 0.92 px2 − 3.23 py1 − 3.22 py2 (0.03) ,

L =− 1.07 qx1py1 + 0.88 qx1py2 + 0.93 qx2py1 − 1.03 qx2py2

+ 1.01 qy1px1 − 0.89 qy1px2 − 0.92 qy2px1 + 0.99 qy2px2 (0.10) . (16)

where the remaining terms are smaller than 0.1 and the number in brackets denotes the
respective mean-squared error of the fit. The first two are clear linear combinations of
the conserved momenta in Equation (11) and the third one is corresponding to angular
momentum. To find these analytic fits we have simply used a polynomial ansatz and checked
that there are no significant changes when allowing for higher powers in the analytic ansatz
(cf. Appendix E).

3.2.2 Three-body problem

Apart from adapting the input and output dimensions appropriately, we keep the baseline
and HNN architecture unchanged to the two-body problem. For our symmetry control
networks we report results for a SCNN-base architectures with six cyclic coordinates and
SCNN-constraint architectures where we use our domain knowledge and enforce as in the
two-body examples the conservation of momenta and angular momentum.

We train our networks starting again at near circular orbits (cf. Appendix B). However, after
an initial circular motion for around 10 time steps the motion changes drastically when two
particles come close to each other. In our experiments, we are not able to capture these
dynamics and we do not aim to predict the dynamics after this initial drastic deviation. We
observe in our experiments that our symmetry control networks are capable to predict this
initial drastic change correctly. This is in contrast to the HNN and baseline networks whose
predictions for the trajectories are worse than for the symmetry control networks and do
not capture this change. We show an example of the trajectories in Figure 3, alongside with
the mean deviation of the trajectory, and the conservation of angular momentum, energy
and the prediction of kinetic and potential energy. Instead of predicting the deviation from
circular orbits, we find that the HNN networks predict more or less circular orbits, which
explains a relatively good conservation of angular momentum while predicting trajectories
which are worse with respect to the true trajectory.

3.2.3 Coupled harmonic oscillator

Again we keep the HNN architecture and the architectures in comparison to our previous
experiments unchanged apart from adapting the input and output dimensions. As these
experiments do not pose a large challenge for either HNNs and our symmetry control neural

4We check that there is no significant change in the fit accuracy when including higher order
polynomials.

7



Under review as a conference paper at ICLR 2021

Figure 4: Comparing the test loss for HNN
(blue), SCNN with one (red) and two (green)
cyclic coordinates over the training time. We
can see that too many conserved quantities lead
to a dramatic drop in performance, while choos-
ing the correct number of conserved quanti-
ties results in a similar performance than the
HNN. We averaged over 100 time steps to get a
smooth curve.

networks, we would like to focus on fitting analytic expressions for the conserved quantities
and the Hamiltonian. For instance, in the case of n = 2, we find that the conserved quantities
show explicitly the decoupling of the two sub-systems in our symmetry control networks.
We find for the conserved quantities the underlying energies of the subsystem, e.g.:

P1 = 0.67 q21 − 3.6 q1q2 + 8.23 q22 + 0.46 p21 − 1.78 p1p2 + 4.2 p22 (0.29),

P2 = −4.53 q21 − 1.74 q1q2 − 0.9 q22 − 4.5 p21 − 1.88 p1p2 − 0.57 p22 (0.26), (17)

where the largest of the neglected terms arises with a factor smaller than 0.05 and the MSE
of the fit is shown in the brackets. The entire Hamiltonian is also fitted very accurately as

H = 1.02 q21 − 0.41 q1q2 + 1.89 q22 + 0.97 p21 + 0.99 p22 (0.01), (18)

where the largest term which is neglected has a factor smaller than 0.05 and the MSE error
is shown in the brackets. For these experiments we have used a SCNN-base with two
cyclic coordinates. Details regarding the data we have used for training and testing can be
found in Appendix B.

3.2.4 Double Pendulum

The double pendulum is a good example to see what happens when looking at more con-
served quantities than there exist. We tested the SCNN with one and two conserved quan-
tities while setting the values of αi = 1 to increase the effect of our symmetry ensuring loss
components (β = 0 for comparability). Comparing with the HNN, we find that the the test
loss (LHNN ) of the SCNN is very similar to the loss of the HNN for one conserved quantity,
while for two conserved quantities the convergence is much slower and after 50000 steps the
difference is still a factor three over the complete test set (see Figure 4). We are not able to
find an analytical formular of the conserved quantity but this comes as no surprise due to
the complicated structure of the Hamiltonian (cf. Appendix A).

3.2.5 Further Experiments and Summary of Performance

We have analysed the effect of varying the loss weights on our physical systems and find
no large effects when varying the weights in the range 10−3 < α < 1 (cf. Appendix D for
detailed results). A summary of the performance of our SCNNs in comparison to HNNs can
be found in Table 1. To estimate the performance on the trajectories and the overall energy
conservation we have integrated the mean square deviation from the true trajectory and the
energy of the system respectively. Whereas the performance on the test loss is comparable
to the HNN and baseline (a notable exception being the real harmonic oscillator and the
double pendulum), the trajectories and energy are predicted much more accurately. An
exception is the harmonic oscillator which already is very well captured with a HNN.

4 Related Work

There are several related directions where symmetries have been learned and utilised with
neural networks. Also the use of physics bias not just via the Hamiltonian framework is
playing a large role in related works. We briefly comment on several of them:
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Test loss Trajectory Energy
Task SCNN (HNN) SCNN (HNN) SCNN (HNN)

Two-body 5.25± 0.15 82e2± 11e2 14.79± 2.32
(×106) (2.13± 0.04) (114e3± 9e3) (19.12± 1.92)

Three-body 6.85± 1.96 14.0e2± 3.4e2 77.1e2± 55.6e2
(×105) (32.52± 2.08) (60.0e2± 8.8e2) (13.5± 2.4)

HO (×106) 42.23± 1.19 1.15e3± 0.96e2 32.39± 9.24
(8.49± 0.23) (2.29e2± 1.39e2) (8.75± 2.88)

Double Pend. 24.46± 2.00 13.2e2± 5.0e2 18.6± 5.6
(47.01± 3.97) (18.0e2± 6.3e2) (229.3± 169.4)

Real Sph. Pend. 6.84± 0.78 — —
(6.61± 0.75) — —

Real HO(×100) 1.85± 0.33 — —
(6.10± 1.83) — —

Table 1: Sum-
mary of quantita-
tive results across
tasks. All quanti-
ties are multiplied
with 103 if not
otherwise stated.

• The baseline approach to predict dynamics has been studied in many other approaches
previously (e.g. Grzeszczuk et al. (1998) for early work on this topic).

• An alternative to describing dynamics via Hamiltonian is via Lagrangian. The equiva-
lent approach to HNNs in terms of learning Lagrangians is discussed in (Cranmer et al.,
2020; Gupta et al., 2019; Lutter et al., 2019).

• Canonical transformations to cyclic coordinates have been utilised in the context of
flow-networks. Bondesan & Lamacraft (2019) aim at finding the canonical transforma-
tion to cyclic coordinates but they do not study the improved predictions using those
coordinates and their loss uses finite difference as opposed to an auto-differentiation
loss we utilise here. Li et al. (2020) requires all coordinates to be cyclic (i.e. the system
is integrable) which is not the case in our approach.

• Predicting the coordinates (q,p) from images has been pursued in (Greydanus et al.,
2019; Toth et al., 2019). Here this would add an additional network before our input
with the target output (q,p) as was explicitly demonstrated to work in (Toth et al.,
2019).

• Very accurate prediction of dynamics can be performed using interaction networks
(Battaglia et al., 2016; Watters et al., 2017). Biasing the local interactions via the
Hamiltonian in graph networks has been discussed in Sanchez-Gonzalez et al. (2019).
It would be very interesting to apply our approach in this framework to analyse the
performance at larger systems.

• Obtaining analytic formulae for the network output on physical systems has been pur-
sued in (Cranmer et al., 2019; Sahoo et al., 2018; Wetzel et al., 2020).

5 Discussion

One great challenge in physics is the search for conserved quantities and underlying symme-
tries. Our architecture provides an approach on how to find these symmetries using neural
networks automatically without prior knowledge of them. We find interesting performance
on simple toy systems where the symmetries are well known. We are able to identify these
symmetries and by using them we can improve on performance with Hamiltonian neural
networks.

It will be extremely interesting to extend on this proof of concept analysis by applying it to
state of the art predictive networks such as in (Sanchez-Gonzalez et al., 2019) which as of
now only utilise the Hamiltonian and not all of the symmetries.

A second line of investigation is in the realm of physics. An example for an area of future
application is in integrable systems which for classical systems is satisfied if all coordinates
are cyclic. Determining whether a system is integrable is generally speaking unknown and
our method provides an automated route to search for the required structures.

We hope to report on progress in these directions at future conferences.
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A Additional systems

This appendix presents details about some of the physical systems we have tested our SCNNs
on.

A.1 Spherical Pendulum

The spherical pendulum is governed by the following Hamiltonian:

H =
p2x + p2y

2m
−m g

√
l2 − q2x − q2y , (19)

where we take a univeral mass m = 1
2 coupling g = 1

2 and pendulum length l = 1. Our data
generation is described in Appendix B. In this system, the angular momentum in z-direction
is conserved:

L = qxpy − qypx . (20)

Additionally, one can find the different Hamiltonians for the subsystems due to the fact
that the spherical pendulum can be seen as a two-dimensional harmonic oscillator with
degenerate eigenvalues.
We use the same architecture as for the harmonic oscillator, and focus on fitting conserved
quantities. We enforce two cyclic coordinates (the maximal possible number) and scan over
α1 = α2 ∈ {100, 10−1, 10−2, 10−3}, and are able to extract the conserved quantities (using
α = 10−3):

P1 = 1.19 q2x + 0.4 qxqy + 0.72 q2y + 1.77 p2x + 0.51 pxpy + 1.09 p2y − 0.83 qxpy + 0.84 qypx ,

P2 = −0.65 q2x + 0.58 qxqy − 1.38 q2y − 0.96 p2x + 0.77 pxpy − 1.92 p2y − 1.18 qxpy + 1.18 qypx ,

(21)

with MSE of 0.003 and 0.002 and the omitted terms are below 0.05. One can see here the
degenerated energies. The fitted Hamiltonian is:

H = 0.68 q21 + 0.71 q22 + 1.02 p21 + 1.02 p22 (0.03). (22)

The true Hamiltonian (19) and the found one differ only by a factor of 0.005, and, therefore,
linear regression finds a harmonic oscillator like structure.

A.2 Charged Particle in a Magnetic Field

The charged particle in a magnetic field, where we choose a circular B-field plus an electric
field, is governed by the following Hamiltonian:

H =
1

2m

(
(px + q qy B)

2
+ (py − q qx B)

2
)

+ k
(
q2x + q2y

)
, (23)

where we take a univeral mass m = 1
2 , electric field k = 1, charge q = 1 and B-field B = 1.

Here, the angular momentum in z-direction is conserved

L = qxpy − qypx . (24)
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We use the same neural network architecture as in the previous example, and enforce cyclic
coordinate conditions on the maximum number of coordinates, but in this case we used
α1 = α2 = 10−2 due to the better performance when fitting the analytic quantities. Using
linear regression, we find the following analytic expressions for the conserved quantities and
for Hamiltonian:

P1 = 3.59 q2x + 3.58 q2y + 1.80 p2x + 1.79 p2y − 2.74 qxpy + 2.75 qypx (0.43),

P2 = −2.33 q2x − 2.32 q2y − 1.17 p2x − 1.17 p2y + 2.97 qxpy − 2.96 qypx (0.32),

H = 2.00 q2x + 2.00 q2y + 1.00 p2x + 1.00 p2y − 2.01 qxpy + 2.01 qypx (0.01), (25)

where we omitted terms smaller than 0.05 and the numbers in the bracket indicate the MSE
of the fit.

A.3 Real harmonic oscillator

As in the previous cases, we use the SCNN architecture to predict the motion of the particle.
We are limited to the given data points from the datasets, and therefore only have one given
trajectory. Therefore, the SCNN is not able to find the subsystems of the two dimensional
harmonic oscillator, but is able to act on the test set with a good accuracy and performs
much better than the HNN (see Table 1).

B Data

B.1 Two-body problem

As described in the main text we set both masses and the coupling to unity. We sample
1000 trajectories with 50 data points each over a time span of 20 which corresponds of at
least two third of a full circle. We uniformly sample the starting point for the first body q1

from the box [0.5, 1.5]2. The starting position for the second body is at q2 = −q1.

We choose the velocity of both bodies in such a way that the bodies describe near circular
orbits and we give the entire system an overall momentum pcom = (ε1, ε2)

p1 = (1 + ε) pcirc + pcom ,

p2 = −p1 + 2 pcom , (26)

where ε and ε1,2 are sampled from a normal distribution with σ = 0.05 and 0.1 respectively.

We take 80 percent of the data for training and use the rest for testing.

B.2 Three-body problem

The setup is relatively similar to the two-body problem as we consider three body near
circular motions and give the overall system an overall momentum. We initialise the three
particles on the corners of an equilateral triangle. The velocity of the first particle is given
as follows

p1 = (1 + ε) pcirc + pcom , (27)

where the remaining velocities are chosen accordingly as in the two-body problem and where
the center of mass motion and the deviation from the circular motion are exactly generated
as in the two-body example. We use 5000 trajectories with 20 data points for training and
testing of our networks. The time span is 5 which corresponds to motion which is mostly
circular. When using longer time spans, we find that convergence of the networks becomes
problematic.

B.3 n-dimensional harmonic oscillator

The underlying Hamiltonian (14) is generated as follows. The coupling matrix is generated
as the product of an orthogonal matrix S and a diagonal matrix D as Aij = SD2ST .

12
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The entries of the diagonal matrix D are random entries sampled uniformly in the interval
[1 −

√
10] which are then rounded to one digit to ensure that the values are sufficiently

rational, i.e. that the motion is periodic. For instance, if we choose an entry in D2 equal to
2 the motion is not periodic whereas if we choose 1.96 the motion is periodic. The matrix S
is obtained by generating random normal distributed entries (mean 0 and standard deviation
0) and we then orthonormalize the vectors.

The initial conditions (q(t = 0),p(t = 0)) are a 2n-dimensional vector which we generate as
follows. We generate a vector with random entries (uniform sample) in the interval (0− 2).
We then normalize the vector to unit length and then re-scale it uniformly to a vector of
length in the interval (0.2, 2.0).

For our dataset we utilise 100 initial conditions and generate 500 points on the trajectory.
These points are taken from a time span of 10 which corresponds to a time where multiple
periodic motions are included. We split it into equal size training and test set.

B.4 Spherical Pendulum

As described above we fix all parameters, and sample the starting conditions
(q (t = 0) ,p (t = 0)) from a uniform distribution from the interval (−1, 1). We ensure,
that the energy is well-defined and negative.

For our dataset we utilise 100 initial conditions and generate 500 points on the trajectory.
These points are take from a time span of 10 which corresponds to a time where multiple
periodic motions are included. We use a 80:20 split for the training and test set.

B.5 Charged particle in a magnetic field

As described above we fix all parameters, and sample the starting conditions
(q (t = 0) ,p (t = 0)) from a uniform distribution from the interval (−1, 1), We then nor-
malize the vector to unit length and then re-scale it uniformly to a vector of length in the
interval (0.1, 1.0). For our dataset we utilise 100 initial conditions and generate 500 points
on the trajectory. These points are take from a time span of 10 which corresponds to a time
where multiple periodic motions are included. We use a 80:20 split for the training and test
set.

B.6 Double pendulum

As described in the main text we fix all parameters, and sample the starting conditions
(q (t = 0) ,p (t = 0) = 0) from a uniform distribution from the interval (0, 2π). Note, that
θ1 and θ2 are angles and therefore, we have to ensure that they always lie in the inter-
val (0, 2π). For our dataset we utilise 100 intial conditions and generate 500 points on the
trajectory. These points are take from a time span of 10 which corresponds to a time where
multiple periodic motions are included. We use a 80:20 split for the training and test set.

B.7 Real harmonic oscillator

In this real world example we use data from the paper Schmidt & Lipson (2009), namely
the example which is called

”
two-masses-three-springs“. To measure the data points, they

use a system with two fixed boundary points, connected by a system with three springs and
two masses. As this corresponds to two real harmonic oscillators we refer to this system as
real harmonic oscillator. The dataset consists of one trajectory from a real world system
which is loosing energy. To make it comparable to the paper of Greydanus et al. (2019), we
used the same split (taking the first 80 percent as training set, and the remaining part as
test set). Therefore we have a different distribution in the training set and the test set.
Because the data consists of only a single trajectory of data points we are technically not
able to find a conserved quantity. Therefore, we just test the performance and check how
well the network generalizes to the test set.
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Two-body MSE Trajectory

α1

α2 100 10−1 10−2 10−3

100 7.41± .66× 100 9.87± 1.16× 100 6.06± 0.61× 10−1 3.30± 0.70× 10−1

10−1 2.88± 0.23× 101 1.58± 0.08× 101 1.34± 0.11× 10−1 1.83± 0.32× 10−1

10−2 3.00± 0.48× 100 2.25± 0.48× 10−1 8.59± 2.39× 10−1 4.14± 0.28× 10−1

10−3 4.49± 0.30× 101 5.94± 2.51× 10−1 1.67± 0.25× 10−1 1.01± 0.12× 10−1

Table 2: Loss-hyperparameter scan for the two-body problem. We show the integrated MSE
of the predicted and true trajectories.

B.8 Real Spherical Pendulum

In this real world example we use data from the paper Schmidt & Lipson (2009), namely the
example of the real pendulum. Due to the fact that we want to have more than one degree
of freedom (otherwise the only conserved quantity is the energy), we use always a pair of
two data points from the one-dimensional pendulum to get a two dimensional movement
which is physically equivalent to a spherical pendulum. We use the first 80 percent of the
data points as training set, and the remaining ones as test set. Because this is a real-world
system it looses some energy, and therefore, we have a slightly different distribution on the
training set and the test set, but this difference is no limitation for the search of conserved
quantities.

C Hyperparameters

We have performed some hyper-parameter searches for our symmetry control networks on
which we give an overview here.

By varying the hidden layer size between 50-300, we find that there is a minimum size of
layer size 100 to find convergence of our networks. We have varied the number of hidden
layers up to 5 hidden layers. Two hidden layers are already sufficient (tested up to 5 hidden
layers), hence we restricted ourselves on them. Coarsely speaking, we find that the precise
architecture is less relevant in our current experiments.

More relevant are the pre-factors in the loss. Depending on the choice, we can either
force our networks for better performance on the predictions or obtaining the conserved
quantities. For this trade-off, we have optimized the experiments in this paper on the
particle trajectories.

We find that pytorch’s standard orthogonal initialization provides the best results out of
the standard initializations. We have not observed a large random seed dependence.

D Loss Prefactors

In our analysis of the loss factors we consider SCNNs with maximum number of conserved
quantities. This leaves us with two loss hyperparameters α1 and α2 which we analyze
here. We scanned them over the values {100, 10−1, 10−2, 10−3} for the 2-body problem.
The results are in Table 2 below, where you can see the average error of the trajectories as
used in the main text. As a comparison, the error of the HNN is significantly higher with
1.15± 0.09× 10−1.

The second measure we compare are the conserved quantities. Therefore, we look at the
conservation of energy and angular momentum which is shown in Table 3 and 4. As a
comparison, the error of the energy for HNN is 1.91 ± 0.19 × 10−5 and 1.23 ± 0.10 × 10−3

for the angular momentum.
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Two-body deviation energy

α1

α2 100 10−1 10−2 10−3

100 2.20± 0.29× 10−1 2.04± 1.38× 100 4.83± 4.74× 100 2.01± 0.77× 10−5

10−1 2.88± 0.23× 101 1.68± 0.56× 100 8.80± 1.77× 10−5 5.40± 1.04× 10−6

10−2 2.43± 0.28× 10−1 8.75± 3.47× 10−3 6.01± 3.38× 10−4 3.50± 0.48× 10−5

10−3 1.87± 0.38× 10−1 3.34± 2.61× 10−3 5.49± 0.54× 10−5 1.13± 0.20× 10−5

Table 3: Loss-hyperparameter scan for the two-body problem. We show the integrated
deviation of the energy between the predicted and true trajectories.

Deviation of Angular Momentum for Two-body system

α1

α2 100 10−1 10−2 10−3

100 1.69± 0.21× 101 1.70± 0.15× 100 2.42± 2.37× 10−1 7.22± 3.82× 10−3

10−1 1.33± 0.18× 102 1.08± 0.35× 102 4.74± 1.28× 10−3 7.81± 2.15× 10−4

10−2 5.08± 0.60× 101 5.95± 2.37× 100 4.94± 2.78× 10−1 1.64± 0.31× 10−4

10−3 1.16± 0.15× 102 4.15± 3.00× 100 3.74± 0.74× 10−3 2.97± 0.63× 10−4

Table 4: Loss-hyperparameter scan for the two-body problem. We show the integrated
deviation of the angular momentum between the predicted and true trajectories.

E Power for Multinomial-Expansion

In this appendix we elaborate how we decide which power for the multinomial expansion.
For illustration purposes, we use the two-body example here.

We use the test set as the coordinates and fit a multinomial function using LinearRegression
and PolynomialFeatures implemented in sklearn (Pedregosa et al., 2011). When looking at
the MSE-plot for the different degrees (cf. Figure 5), one can directly find a cut-off to
determine the correct degree. Coordinate 1 and Coordinate 2 have degree one (both give
us momentum conservation), while the fourth one can be fitted by a multinomial of order
two (It is equivalent to the angular momentum). On the other hand, one can directly see,
that Coordinate 3 has no multinomial expression, the error is small, but does not converge
to a specific value.
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Figure 5: Comparing the MSE depending on the degree of the used polynomials. We can
see a drastic drop of the error for a specific degree. When looking at the linear regression
prefactors, we can identify the conserved quantity. The only distinct behaviour of the MSE
is for coordinate 3. Here, we are not able to find a suitable fit due to the problem, that we
are not able to fit the Hamiltonian function for the 2-body-problem with polynomials.
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