
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON THE POWER OF LEARNING-AUGMENTED SEARCH TREES

Anonymous authors

Paper under double-blind review

ABSTRACT

We study learning-augmented binary search trees (BSTs) via Treaps with carefully designed priori-
ties. The result is a simple search tree in which the depth of each item x is determined by its predicted
weight wx. Specifically, each item x is assigned a composite priority of �blog log(1/wx)c+U(0, 1)
where U(0, 1) is the uniform random variable. By choosing wx as the relative frequency of x,
the resulting search trees achieve static optimality. This approach generalizes the recent learning-
augmented BSTs [Lin-Luo-Woodruff ICML‘22], which only work for Zipfian distributions, by ex-
tending them to arbitrary input distributions. Furthermore, we demonstrate that our method can
be generalized to a B-Tree data structure using the B-Treap approach [Golovin ICALP’09]. Our
search trees are also capable of leveraging localities in the access sequence through online self-
reorganization, thereby achieving the working-set property. Additionally, they are robust to predic-
tion errors and support dynamic operations, such as insertions, deletions, and prediction updates.
We complement our analysis with an empirical study, demonstrating that our method outperforms
prior work and classic data structures.

1 INTRODUCTION

The development of machine learning has sparked significant interest in its potential to enhance traditional data struc-
tures. First proposed by Kraska et al. (2018), the notion of learned index has gained much attention since then (Kraska
et al., 2018; Ding et al., 2020; Ferragina & Vinciguerra, 2020). Algorithms with predictions have also been devel-
oped for an increasingly wide range of problems, including shortest path (Chen et al., 2022a), network flow (Polak &
Zub, 2022; Lavastida et al., 2020), matching (Chen et al., 2022a; Dinitz et al., 2021; Chen & Indyk, 2021), spanning
tree (Erlebach et al., 2022), and triangles/cycles counting (Chen et al., 2022b), with the goal of obtaining algorithms
that get near-optimal performances when the predictions are good, but also recover prediction-less worst-case behavior
when predictions have large errors (Mitzenmacher & Vassilvitskii, 2020). The problem of using learning to accelerate
search trees, as in the original learned index question, has been widely studied in the field of data structures, focusing
on developing data structures optimal to the input sequence. Mehlhorn (1975a) showed that a nearly optimal static
tree can be constructed in linear time when estimates of key frequencies are provided. Extensive work on this topic
culminated in the study of dynamic optimality. Tango trees (Demaine et al., 2007) achieve a competitive ratio of
O(log log n) while splay trees (Sleator & Tarjan, 1985) and Greedy BSTs (Lucas, 1988; Munro, 2000; Demaine et al.,
2009) are conjectured to be within constant factors of optimal.
Treaps, introduced by Aragon & Seidel (1989), is a class of balanced BSTs distinguished by its use of randomization
to maintain a low tree height. Each node in a Treap is assigned not only a key but also a randomly generated priority
value. This design enables Treaps to satisfy the Heap property, ensuring that every node has a lower priority than its
parent. In general, Treaps use randomness to ensure a low height instead of balancing the tree preemptively. More
recently, Lin et al. (2022) introduced a learning-augmented Treap, demonstrating stronger guarantees compared to
traditional Treaps. However, it relies on the strong assumption of the Zipfian distribution.
Inspired by this line of work, our research is driven by a series of critical questions.

• Whether a more general learning-augmented BST exists and achieves static optimality?
• Can such BST also obtain good guarantees under the dynamic settings?
• Are they robust to the errors caused by the prediction oracles?

This paper addresses the questions affirmatively by developing new learning-augmented Treaps with carefully de-
signed priority scores, which are applicable to arbitrary input distributions in both static and dynamic settings. In the
static setting, we show that our learning-augmented Treaps are within a constant factor of the static optimal cost when
incorporating a prediction oracle for the frequency of each item. The proposed Treaps are robust to predicted errors,
where the additional cost induced by the inaccurate prediction grows linearly with the KL divergence between the
relative frequency and its estimation. For the dynamic setting, where the trees can undergo changes after each access,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

we show that given a prediction oracle for the time interval until the next access, our data structure can achieve the
working-set bound. This bound can be viewed as a strengthening of the static optimality bound that takes temporal
locality of keys into account. Such dynamic BSTs are robust to the prediction oracle as well, where the performance
degrades smoothly with the mean absolute error between the logarithm of the generated priorities and the ground truth
priorities. Additionally, under the external memory model, our learning-augmented BST can be naturally extended
to a B-Tree version via B-Treaps. Experimental results demonstrate that the proposed Treap outperforms other data
structures, even when the predictions are inaccurate.

1.1 OVERVIEW

Learning-Augmented Treaps via Composite Priority Functions. The Treap is a tree-balancing mechanism ini-
tially designed around randomized priorities (Aragon & Seidel, 1989). When the priorities are assigned randomly, the
resulting tree is balanced with high probability. Intuitively, this is because the root is likely to be picked among the
middle elements. However, if some node is accessed very frequently (e.g. 10% of the time), it’s natural to assign it a
larger priority. Therefore, setting the priority to be a function of access frequencies, as in Lin et al. (2022), is a natural
way to obtain an algorithm more efficient on more skewed access patterns. However, when the priority is set exactly
as the access frequency, some nodes would have super-logarithmic depth: if each element i is accessed i times, setting
priority exactly as the frequencies results in a path of size n. The total time for processing this access sequence of
size O(n2) degrades to ⌦(n3). Partly as a result of this, the analysis in Lin et al. (2022) was limited only to when
frequencies are under the Zipfian distribution.
Building upon these ideas, we introduce a composite priority function, a mixture of the randomized priority function
from Aragon & Seidel (1989) and the frequency-based priority function from Lin et al. (2022). This takes advantage of
the balance coming from the randomness and manages to work without the strong assumption from Lin et al. (2022).
Specifically, we show in Theorem 2.4 that by setting the composite priority function to be

�
�
log log

1

wx

⌫
+ U (0, 1) , (1)

the expected depth of node x is O(log(1/wx)). The predicted score wx 2 (0, 1), for instance, can be set as the relative
frequency or probability of each item.
Our Treap-based scheme generalizes to B-Trees, where each node has B instead of 2 children. These trees are highly
important in external memory systems due to the behavior of cache performances: accessing a block of B entries
has a cost comparable to the cost of accessing O(1) entries. By combining the B-Treaps by Golovin (2009) with the
composite priorities, we introduce a new learning-augmented B-Tree that achieves similar bounds under the External
Memory Model. We show in Theorem 3.1 that for any weights over elements w, by setting the priority to

�blog2 logB
1

wx
c+ U(0, 1), (2)

the expected depth of node x is O(logB(1/wx)). It is natural to see that our proposed data structures unify BSTs and
B-Trees. For simplicity, we provide the results of B-Trees in the remaining content.

Static Optimality of Learning-Augmented Search Trees. We can construct static optimal B-Trees if we set w to
be the marginal distribution of elements in the access sequence. That is, if we know the frequencies f1, f2, . . . , fn of
each element that appears in the access sequence, and let m =

P
i fi to be the length of the access sequence, then we

set the score wx = fx/m in Equation (2) and the corresponding B-Tree has a total access cost that achieves the static
optimality

X

i2[n]

fi logB
m

fi
.

Dynamic Learning-Augmented Search Trees. We also consider the dynamic setting in which we continually up-
date the priorities of a subset of items along with the sequence access. Rather than a fixed priority for each item, we
allow the priorities to change as keys get accessed. The setting has a wide range of applications in the real world. For
instance, consider accessing data in a relational database. A sequence of access will likely access related items one
after another. So even if the entries themselves get accessed with fixed frequencies, the distribution of the next item to
be accessed can be highly dependent on the set of recently accessed items. Consider the access sequence

4, 2, 3, 4, 5, 2, 3, 4, 5, 2, 3, 4, 5, 1, 4

versus the access sequence
5, 2, 4, 2, 1, 4, 4, 5, 3, 3, 3, 4, 5, 4, 2

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Static Dynamic

Learning
Oracle

! ∈ ℝ"

!!
!"

!#

Search Tree

priority * = − log log(1/2#) + 5(0,1)

depth 3 =
<(log(1/2$))

Search Tree at Time " − $ Search Tree at Time "

priority * = − log log(1/2%,#) + 5(0,1)

depth 3 =
<(log(1/2%,$))

% & $ %% ' ((' % &&'Sequence

Time "
Sequence(%

%

& '

$ (

% & $ %% ' ((' % &&' (%

%

& '

$ (

Learning
Oracle

!$,!
!$,"

!$,#

%

('

&

$

!(=) ∈ ℝ"

Figure 1: Sketch for static and dynamic learning augmented search trees. Since item 3 has a higher frequency around
time i, the dynamic search trees adjust the priority accordingly.

In both sequences, the item 4 is accessed the most frequently. So input dependent search trees should place it near
the root. However, in the second sequence, the item 3 is accessed three consecutive times around the middle. An
algorithm that’s allowed to modify the tree dynamically can then modify the tree to place 3 closer to root during those
calls. An illustration of this is in Figure 1. Note that we pay cost both when accessing the items and updating the trees.
Hence, there is a trade-off between the costs of updating items’ scores and the benefits of time-varying scores.

We study ways of designing composite priorities that cause this access cost to match known sequence-dependent
access costs of binary trees (and their natural generalizations to B-Trees). Here, we focus on the working-set bound,
which says that the cost of accessing an item should be, at most, the logarithm of the number of distinct items until they
get accessed again. To obtain this bound, we propose a new composite priority named working-set priority, based on
the number of distinct elements between two occurrences of the same item accessed at step i. We give the guarantees
for the dynamic Treaps with the working-set priority in Theorem 4.4. The dynamic search Treaps further demonstrate
the power of learning scores from data. While we have more data, we can quantify the dynamic environment in a more
accurate way and thus improve the efficiency of the data structure.

Robustness to Prediction Inaccuracy. Finally, we show the robustness of our data structures with inaccuracies in
prediction oracles. In the static case, we can directly relate the overhead of having inaccurate frequency predictions
to the KL divergences between the true relative frequencies px and their estimates qx. This is because our composite
priority can take any estimate. So plugging in the estimates qx gives the overall access cost

m ·
X

x

px log2

✓
1

qx

◆
,

which is exactly the cross entropy between p and q. On the other hand, the KL divergence between p and q is exactly
the cross entropy minus the entropy of p. So we get that the overhead of building the tree using noisy estimators q
instead of the true frequencies p is exactly m times the KL divergence between p and q. We formalize the argument
above in Section 2.3. We also achieve robustness results in the dynamic setting in Appendix C.2.

In all, our contributions can be summarized as follows:

• We introduce composite priorities that integrate learned advice into Treaps. The BSTs and B-Trees constructed
via these priorities are within constants of the static optimal ones for arbitrary distributions (Section 2, Section 3).

• When allowing updating trees along with accessing items, we design a working-set priority function, and the
corresponding Treaps with composite priorities can achieve the working-set bound (Section 4).

• Both static and dynamic learning-augmented search trees are robust to predictions (Section 2.3, Appendix C.2).
• Our experiments show favorable performance compared to prior work (Section 5).

1.2 RELATED WORK

In recent years, there has been a surge of interest in integrating machine learning models into algorithm designs. A new
field called Algorithms with Predictions (Mitzenmacher & Vassilvitskii, 2020) has garnered considerable attention,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

particularly in the use of machine learning models to predict input patterns to enhance performance. Examples of this
approach include online graph algorithms with predictions (Azar et al., 2022), improved hashing-based methods such
as Count-Min (Cormode & Muthukrishnan, 2005), and learning-augmented k-means clustering (Ergun et al., 2021).
Practical oracles for predicting desired properties, such as predicting item frequencies in a data stream, have been
demonstrated empirically (Hsu et al., 2019; Jiang et al., 2020).

Capitalizing on the existence of oracles that predict the properties of upcoming accesses, researchers are now devel-
oping more efficient learning-augmented data structures. Index structures in database management systems are one
significant application of learning-augmented data structures. One key challenge in this domain is to create search
algorithms and data structures that are efficient and adaptive to data whose nature changes over time. This has spurred
interest in incorporating machine learning techniques to improve traditional search tree performance.

The first study on learned index structures (Kraska et al., 2018) used deep-learning models to predict the position or
existence of records as an alternative to the traditional B-Tree or hash index. However, this study focused only on
the static case. Subsequent research (Ferragina & Vinciguerra, 2020; Ding et al., 2020; Wu et al., 2021) introduced
dynamic learned index structures with provably efficient time and space upper bounds for updates in the worst case.
These structures outperformed traditional B-Trees in practice, but their theoretical guarantees were often trivial, with
no clear connection between prediction quality and performance. More recently, Lin et al. (2022) proposed a learning-
augmented BST via Treaps that works under the Zipfian distribution.

Other related work on BSTs analyses and B-Trees under the external memory model is included in Appendix A.

2 LEARNING-AUGMENTED BINARY SEARCH TREES

In this section, we show that the widely taught Treap data structure can, with small modifications, achieve the static
optimality conditions sought after in previous studies of learned index structures (Lin et al., 2022; Hsu et al., 2019).
We start with definitions and basic properties of Treaps.
Definition 2.1 (Treap (Aragon & Seidel, 1989)). Let T be a BST over [n] and priority 2 Rn be a priority assignment
on [n]. We say (T, priority) is a Treap if priorityx priorityy whenever x is a descendent of y in T.

Given a priority assignment priority, one can construct a BST T such that (T, priority) is a Treap as follows. Take any
x⇤ 2 argmaxx priorityx and build Treaps on [1, x⇤ � 1] and [x⇤ +1, n] recursively using priority. Then, we just make
x⇤ the parent of both Treaps. Notice that if priorityx’s are distinct, the resulting Treap is unique.
Observation 1. Let priority 2 Rn, which assigns each item x to a unique priority. There is a unique BST T such that
(T, priority) is a Treap.

From now on, we always assume that priority has distinct values. Therefore, when priority is defined from the context,
the term Treap refers to the unique BST T . For each node x 2 [n], we use depth(x) to denote its depth in T , i.e., the
number of vertices on the path from the root to x.

Given any two items x, y 2 [n], one can determine whether x is an ancestor of y in a Treap without traversing the tree.

Observation 2. Given any x, y 2 [n], x is an ancestor of y if and only if priorityx = maxz2[x,y] priorityz .

Classical results from Aragon & Seidel (1989) state that if the priorities are randomly assigned, the depth of the Treap
cannot be too large. Also, Treaps can be made dynamic and support operations such as insertions and deletions.
Lemma 2.2 (Aragon & Seidel (1989)). Let U(0, 1) be the uniform distribution over the real interval [0, 1]. If priority ⇠
U(0, 1)n, each Treap node x has depth ⇥(log2 n) with high probability.

Proof. Notice that depth(x), the depth of item x in the Treap, is the number of ancestors of x in the Treap. Linearity
of expectation yields

E[depth(x)] =
X

y2[n]

E[1 if y is an ancestor of x or 0 otherwise] =
X

y2[n]

Pr (y is an ancestor of x)

=
X

y2[n]

Pr

✓
priorityy = max

z2[x,y]
priorityz

◆
=
X

y2[n]

1

|x� y + 1| = ⇥(log2 n).

Lemma 2.3 (Aragon & Seidel (1989)). Given a Treap T and some item x 2 [n], x can be inserted to or deleted from
T in O(depth(x))-time.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.1 LEARNING-AUGMENTED TREAPS

In this section, we present the construction of composite priorities and prove the following theorem.
Theorem 2.4 (Learning-Augmented Treap via Composite Priorities). Denote w = (w1, · · · , wn) 2 (0, 1)n as a score
associated with each item in [n] such that kwk1 = O(1). Consider the following priority assignment of each item:

priorityx
def
= �

�
log2 log2

1

wx

⌫
+ �x, (3)

where �x is drawn independently uniformly from (0, 1). The expected depth of any item x 2 [n] is O(log2(1/wx)).
Moreover, our proposed learning-augmented treap supports efficient updates, where we can use rotations to do inser-
tions, deletions, and weight changes. The following corollary follows naturally by Theorem 2.4 and Lemma 2.3.
Corollary 2.5. The data structure supports insertions and deletions naturally. Suppose the score of some node x
changes from w to w0 and a pointer to the node is given, the Treap can be maintained with O(| log2(w0/w)|) rotations
in expectation.

Proof Idea. Note that the priority in Equation (3) consists of two terms. We define x’s tier as ⌧x :=
j
log2 log2

1
wx

k
=

�bpriorityxc. Let St = {x 2 [n] | ⌧x = t} be the number of items whose tiers are equal t. We assume wlog that ⌧x � 0
for any x. Otherwise, ⌧x < 0 implies wx = ⌦(1), which can hold for only a constant number of items. So, we can
always put them at the top of the Treap, which increases the depths of other items by a constant.

The expected depth of x is the number of its ancestors. We show in Lemma 2.6 that the number of items at tier
t is bounded by |St| = 2O(2t). Furthermore, for each tier, the ties are broken randomly due to the random offset
�x ⇠ U(0, 1). Then, as we show in Lemma 2.7, any item has O(log2 |St|) = O(2t) ancestors with tier t in expectation.
Therefore, the expected depth E[depth(x)] can be bound by O(20 + 21 + . . .+ 2⌧x) = O(2⌧x) = O(log2(1/wx)).

Lemma 2.6. For any non-negative integer t � 0, |St| = 2O(2t).
Proof. Observe that x 2 St if and only if

t log2 log2(1/wx) < t+ 1, and 22
t

 1

wx
< 22

t+1

.

Since the total score kwk1 = O(1), there are only poly(22
t+1

) = 2O(2t) such items.
Next, we bound the expected number of ancestors of item x in every St such that t ⌧x.

Lemma 2.7. Let x 2 [n] be any item and t ⌧x be a non-negative integer. The expected number of ancestors of x in
St is at most O(log2 |St|).

Proof. First, we show that any y 2 St is an ancestor of x with probability no more than 1/|St \ [x, y]|. Observation 2
says that y must have the largest priority among items [x, y]. Thus, a necessary condition for y being x’s ancestor is
that y has the largest priority among items in St \ [x, y]. However, priorities of items in St \ [x, y] are i.i.d. random
variables of the form �t+ U(0, 1). Thus, the probability that priorityy is the largest among them is 1/|St \ [x, y]|.
Now, we can bound the expected number of ancestors of x in St as follows:

E[number of ancestors of x in St] =
X

y2St

Pr (y is an ancestor of x)
X

y2St

1

|St \ [x, y]| 2 ·
|St|X

u=1

1

u
= O(log2 |St|),

where the second inequality comes from the fact that for a fixed value of u, there are at most two items y 2 St with
|St \ [x, y]| = u (one with y x, the other with y > x).

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. By Lemma 2.7 and Lemma 2.6, the expected depth of x can be bounded by

E[depth(x)] =
⌧xX

t=0

E[number of ancestors of x in St] O

⌧xX

t=0

log2 |St|
!

 O

⌧xX

t=0

2t
!

 O (2⌧x) .

We conclude the proof by observing that

⌧x log2 log2
1

wx
 ⌧x + 1, and 2⌧x log2

1

wx
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.2 STATIC OPTIMALITY

We present a priority assignment for constructing statically optimal Treaps given item frequencies. Given any
access sequence X = (x(1), . . . , x(m)), we define fx for any item x, to be its frequency in X , i.e. fx :=
| {i 2 [m] | x(i) = x} |, x 2 [n]. For simplicity, we assume that every item is accessed at least once, i.e., fx � 1, x 2
[n]. We prove the following result as a simple application of Theorem 2.4:
Theorem 2.8 (Static Optimality). For any item x 2 [n], we set its priority as

priorityx := �
�
log2 log2

m

fx

⌫
+ �x, �x ⇠ U(0, 1).

In the corresponding Treap, each node x has expected depth O(log2(m/fx)). Therefore, the total time for processing
the access sequence is O(

P
x fx log2(m/fx)), which matches the performance of the optimal static BSTs up to a

constant factor.

Proof. Given item frequencies , we define the following w assignment:

wx :=
fx
m

, x 2 [n]. (4)

One can verify that kwk1 = O(1). By Theorem 2.4, the expected depth of each item x is O(log2(m/fx)).

2.3 ROBUSTNESS GUARANTEES

In practice, one could only estimate qx ⇡ px = fx/m, x 2 [n]. A natural question arises: how does the estimation
error affect the performance? In this section, we analyze the drawbacks in performance given the estimation errors.
As a result, we will show that our Learning-Augmented Treaps are robust against noise and errors.

For each item x 2 [n], define px = fx/m to be the relative frequency of item x. One can view p as a probability
distribution over [n] such that p(x) = px. Then we can restate the expected depth of each item in Theorem 2.8 using
the notion of entropy. We define the entropy as follows and state the corollary in Corollary 2.10.
Definition 2.9 (Entropy). Given a probability distribution p over [n], define its Entropy as Ent(p) :=P

x px log2(1/px) = Ex⇠p[log2(1/px)].

Corollary 2.10. In Theorem 2.8, the expected depth of each item x is O(log2(1/px)) and the expected total cost is
O(m · Ent(p)), where Ent(p) =

P
x px log2(1/px) measures the entropy of the distribution p.

Now we consider the case when we cannot access the relative frequency px. Instead, we are given px’s estimator,
qx, and construct the data-augmented BST with qx. Similarly, we view q as a data distribution over [n] such that
q(x) = qx. Then we show that the total access of the treap built with qx equals the total access number m times the
cross entropy of p and q in Theorem 2.13. We start with some definitions.
Definition 2.11 (Cross Entropy). Given two distributions p, q over [n], define its Cross Entropy as Ent(p, q) :=P

x px log2(1/qx) = Ex⇠p[log2(1/qx)].

Definition 2.12 (KL Divergence). Given two distributions p, q over [n], define its KL Divergence as DKL(p, q) =
Ent(p, q)� Ent(p) =

P
x px log2(px/qx).

Next we analyze the run time given frequency estimations q.
Theorem 2.13. Given a distribution q, an estimate of the true relative frequencies distribution p. For any item x 2 [n],
we draw a random number �x ⇠ U(0, 1) and set its priority as

priorityx := �
�
log2 log2

1

qx

⌫
+ �x.

In the corresponding Treap, each node x has expected depth O(log2(1/qx)). Therefore, the total time for processing
the access sequence is O(m · Ent(p, q)).

Proof. Define the weights wx = qx for each item x 2 [n]. Clearly, kwk1 = 1 and we can apply Theorem 2.4 to prove
the bound on the expected depths. The total time for processing the access sequence is, by definition,

O

0

@
X

x2[n]

fx log2
1

qx

1

A = O

0

@m ·
X

x2[n]

px log2
1

qx

1

A = O (m · Ent(p, q)) .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2.4 ANALYSIS OF OTHER PRIORITY ASSIGNMENTS

In this section, we discuss two different priority assignments. For each assignment, we design an input distribution
that results in a greater expected depth than the expected depth with our priority assignment stated in Theorem 2.8.
We define the distribution p as p(x) = px = fx/m, x 2 [n]. We use f & g to indicate that f is greater or equal to g
up to a constant factor.

The first priority assignment is used in Lin et al. (2022). They assign priorities according to px entirely, i.e., priorityx =
px, x 2 [n]. Assuming that items are ordered randomly, and p is a Zipfian distribution, Lin et al. (2022) shows Static
Optimality. However, it does not generally hold, and the expected access cost could be ⌦(n), while our data structure
(Theorem 2.4) has a O(log2 n) worst-case depth bound.
Theorem 2.14. Consider the priority assignment that assigns the priority of each item to be priorityx := px, x 2 [n].
There is a distribution p over [n] such that the expected access time, Ex⇠p[depth(x)] = ⌦(n).

Proof. We define for each item x, px := 2(n�x+1)
n(n+1) . One could easily verify that p is a distribution over [n]. In

addition, the smaller the item x, the larger the priority priorityx. Thus, by the definition of Treaps, item x has depth x.
The expected access time of x sampled from p can be lower bounded as follows:

Ex⇠p[depth(x)] =
X

x2[n]

px · depth(x) =
X

x2[n]

2(n� x+ 1)

n(n+ 1)
· x =

2

n(n+ 1)

X

x2[n]

x(n� x+ 1)

& 2

n(n+ 1)
· n3 & n.

Next, we consider the priority assignment priorityx := �blog2 1/pxc+ �x, �x ⇠ U(0, 1).
Theorem 2.15. Consider the following priority assignment that sets the priority of each node x as priorityx :=
�blog2 1/pxc + �x, �x ⇠ U(0, 1). There is a distribution p over [n] such that the expected access time,
Ex⇠p[depth(x)] = ⌦(log22 n).

Proof. We assume WLOG that n is an even power of 2. Define K = 1
2 log2 n. We partition [n] into K + 1 segments

S1, . . . , SK , SK+1 ✓ [n]. For i = 1, 2, . . . ,K, we add 21�i · n/K elements to Si. Thus, S1 has n/K elements, S2

has n/2K, and SK has
p
n/K elements. The rest are moved to SK+1.

Now, we can define the distribution p. Elements in SK+1 have zero-mass. For i = 1, 2, . . . ,K, elements in Si has
probability mass 2i�1/n. One can directly verify that p is indeed a probability distribution over [n].

In the Treap with the given priority assignment, Si forms a subtree of expected height ⌦(log2 n) since |Si| � n1/3 for
any i = 1, 2, . . . ,K (Lemma 2.2). In addition, every element of Si passes through Si+1, Si+2, . . . , SK on its way to
the root since they have strictly larger priorities. Therefore, the expected depth of element x 2 Si is ⌦((K�i) log2 n).
One can lower bound the expected access time (which is the expected depth) as:

Ex⇠p[depth(x)] &
KX

i=1

X

x2Si

px · (K � i) · log2 n =
KX

i=1

p(Si) · (K � i) · log2 n

=
KX

i=1

1

K
· (K � i) · log2 n & K log2 n & log22 n,

where we use p(Si) = |Si| · 2i�1/n = 1/K and K = ⇥(log2 n). That is, the expected access time is at least
⌦(log22 n).

3 LEARNING-AUGMENTED B-TREES

We now extend the ideas above, specifically the composite priority notions, to B-Trees in the External Memory Model.
The main results are shown as follows. Full details are included in Appendix B. We show that the learning-augmented
B-Treaps (Appendix B.1) obtain static optimality (Appendix B.2) and is robust to the noisy predicted scores (Ap-
pendix B.3).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 3.1 (Learning-Augmented B-Treap via Composite Priorities). Denote w = (w1, · · · , wn) 2 (0, 1)n as
a score associated with each element of [n] such that kwk1 = O(1) and a branching factor B = ⌦(ln1/(1�↵) n),
consider the following priority assignment scheme:

priorityx := �blog2 logB
1

wx
c+ �x, �x ⇠ U(0, 1).

There is a randomized data structure that maintains a B-Tree TB over U such that

1. Each item x has expected depth O(1
↵ logB(1/wx)).

2. Insertion or deletion of item x into/from T touches O(1
↵ logB(1/wx)) nodes in TB in expectation.

3. Updating the weight of item x from w to w0 touches O(1
↵ | logB(w

0/w)|) nodes in TB in expectation.

In addition, if B = O(n1/2��) for some � > 0, all above performance guarantees hold with high probability 1� �. If
we are given the frequency fx for each x and set the priority as

priorityx := �
�
log2 logB

m

fx

⌫
+ �x, �x ⇠ U(0, 1).

Then the total access cost O(
P

x fx logB(m/fx)) achieves the static optimality.

4 DYNAMIC LEARNING-AUGMENTED SEARCH TREES

In this section, we investigate the properties of dynamic search trees that permit modifications concurrent with se-
quence access. Prioritizing items that are anticipated to be accessed in the near future to reside at lower depths within
the tree can significantly reduce access times. Nonetheless, updating the B-trees introduces additional costs. The
overarching goal is to minimize the composite cost, which includes both the access operations across the entire se-
quence and the modifications to the B-trees. In the main content, we specifically concentrate on the study of locally
dynamic B-trees, which are characterized by the restriction that tree modifications are limited solely to the adjustment
of priorities for the items being accessed.

Here, we construct a dynamic learning-augmented B-trees that achieves the working-set property. In data structures,
the working set is the collection of data that a program uses frequently over a given period. This concept is important
because it helps us understand how a program interacts with memory and thus enables us to design more efficient data
structures and algorithms. For example, if a program is sorting a list, the working set might be the elements of the list
it is comparing and swapping right now. The size of the working set can affect how fast the program runs. A smaller
working set can make the program run faster because it means the program doesn’t need to reach out to slower parts
of memory as often. In other words, if we know which parts of a data structure are used most, we can organize the
data or even the memory in a way that makes accessing these parts faster, which can speed up the entire program.

We define the working-set size as the number of distinct items accessed between two consecutive accesses. Corre-
spondingly, we design a time-varying score, working-set score, as the reciprocal of the square of one plus working-set
size. We will show that the working-set score is locally changed and there exists a data structure that achieves the
working-set property, which states that the time to access an element is a logarithm of its working-set size.

The formal definitions and the main theorems in this section are presented as follows. We include more general results
for dynamic B-trees and omitted proofs in Appendix C.
Definition 4.1 (Previous and Next Access prev(i, x) and next(i, x)). Let prev(i, x) be the previous access of item x at
or before time i, i.e, prev(i, x) := max {i0 i | x(i0) = x} . Let next(i, x) to be the next access of item x after time i,
i.e, next(i, x) := min {i0 > i | x(i0) = x} .
Definition 4.2 (Working-set Size work(i, x)). Define the working-set size work(i, x) to be the number of distinct items
accessed between the previous access of item x at or before time i and the next access of item x after time i. That is,

work(i, x)
def
= |{x(prev(i, x) + 1), · · · , x(next(i, x))}|.

If x does not appear after time i, we define work(i, x) := n.

Definition 4.3 (Working-set Score !(i, x)). Define the time-varying score as the reciprocal of the square of one plus
working-set size. That is,

!(i, x) =
1

(1 + work(i, x))2

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Theorem 4.4 (Dynamic Search Tree with Working-set Priority). With the working-set size work(i, x) known and the
branching factor B = ⌦(ln1.1 n), there is a randomized data structure that maintains a B-tree TB over [n] with the
priorities assigned as

priority(i, x) = �blog2 logB(1 + work(i, x))2c+ U(0, 1).

Upon accessing the item x at time i, the expected depth of item x is O(log2(1 + work(i, x)). The expected total cost
for processing the whole access sequence X is the following. The data structure satisfies the working-set property.

cost(X,!) = O

n logB n+

mX

i=1

logB(1 + work(i, x))

!
.

In particular, if B = O
�
n1/2��

�
for some � > 0, the guarantees hold with probability 1� �.

Remark. Consider two sequences with length m, X1 = (1, 2, · · · , n, 1, 2, · · · , n, · · · , 1, 2, · · · , n), X2 =
(1, 1, · · · , 1, 2, 2, · · · , 2, · · · , n, n, · · · , n). Two sequences have the same total cost if we have a fixed score. However,
X2 should have less cost because of its repeated pattern. Given the frequency freq as a time-invariant priority, by
Theorem 3.1, the optimal static costs are

cost(X1, freq) = cost(X2, freq) = O(m log2 n).

But for the dynamic BSTs, with the working-set score, we calculate both costs from Theorem 4.4 as

cost(X1,!) = O(m log2(n+ 1)), cost(X2,!) = O(n log2 n+m log2 3).

This means that our proposed priority can better capture the timing pattern of the sequence and thus can even do better
than the optimal static setting.

Finally, we use the following theorem to show the robustness of the results when the scores are inaccurate.
Theorem 4.5 (Dynamic Search Tree with Working-set Priority). Given the predicted locally changed working-set
score e!(i) 2 (0, 1)n satisfying ke!(i)k1 = O(1), e!i,j � 1/poly(n) and the branching factor B = ⌦(ln1.1 n), there
is a randomized data structure that maintains a B-Tree over the n keys such that the expected total cost for processing
the whole access sequence X is

cost(X, e!) = cost(X,!) +O

mX

i=1

��logB !i,x(i) � logB e!i,x(i)

��
!
.

In particular, if B = O(n1/2��) for some � > 0, the guarantees hold with probability 1� �.

5 EXPERIMENTS

In this section, we give experimental results that compare our learning-augmented Treap with prior work Lin et al.
(2022) and classical search tree data structures including Red-Black Trees, AVL Trees, Splay Trees, B-Trees of order
3, and randomized Treaps. Experiments are conducted in a similar manner in Lin et al. (2022): (1) All keys are inserted
in a random order to avoid insertion order sensitivity. (2) The total access cost is measured by the total number of
comparisons needed while accessing keys.

We consider a synthetic data setting, with n unique items appearing in a sequence of length m. We assume the input
data is drawn from a specified distribution. In our experiments, we explore three types of data distributions: the Zipfian
distribution, the distribution described in Theorem 2.14, and the uniform distribution. We define the frequency of each
item i as fi and its relative frequency as pi = fi/m. In all the experiments, we take m to be one of [2000, 6000,
10000, 16000, 20000], and choose n to be 1000. The x-axis represents the number of unique items, and y-axis is the
number of comparisons that we make, which indicates the access cost. All results are based on ten independent trials.

Zipfian Distribution. As a starting point, we consider Zipfian distribution, which is required by the data structure
proposed in Lin et al. (2022). The Zipfian distribution with parameter ↵ has relative frequencies pi = 1

i↵Hn,↵
, where

Hn,↵ =
Pn

i=1
1
i↵ is the nth generalized harmonic number of order ↵. In the experiments, we choose ↵ = 1.

Adversarial Distribution. In the proof of Theorem 2.14, we construct a distribution with relative frequency given
by pi =

2(n�i+1)
n(n+1) . We prove that using the priority assignment as in Lin et al. (2022), the expected depth is ⌦(n).

Uniform Distribution. We also consider uniform distribution, where the relative frequency of each item is pi = 1
n .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.1 PERFECT PREDICTION ORACLE ON FREQUENCY

We first assume that we are given a perfect prediction oracle on the item frequency.

For the Zipfian distribution, as shown in Figure 2, our Treaps beat all other data structures except Lin et al. (2022),
which requires Zipfian distribution assumption. Specifically, our data structure has 6-32% less cost than Splay Trees,
13-49% than AVL Trees and Red-Black Trees, and 43-103% than B-Trees of order 3 and randomized Treaps.

As shown in Figure 3 and Figure 4, for the adversarial distribution and the uniform distribution, our learning-
augmented Treaps outperform all other data structures, including Lin et al. (2022). Specifically, our learning-
augmented Treaps outperforms Lin et al. (2022) by 32-85% in both datasets. The experiments verify that our data
structure works for arbitrary distribution while prior work (Lin et al., 2022) only works for Zipfian distribution.

Figure 2: Zipfian distribution, ↵ = 1. Figure 3: Adverserial Distribution. Figure 4: Uniform distribution.

5.2 INACCURATE PREDICTION ORACLE ON FREQUENCY

We consider the scenario where our learning-augmented Treaps are constructed based on an inaccurate prediction of
item frequencies. Specifically, we assume that the predicted frequency follows the adversarial distribution. However,
the actual access sequence is generated by a mixture of two distributions: with probability w, the item follows the
adversarial distribution and with probability 1�w, it follows the Zipfian distribution (Figure 5, Figure 6, Figure 7) or
uniform distribution (Figure 8, Figure 9, Figure 10). In both settings, we compare our Treaps against Splay trees and
randomized Treaps. Our experiments show that our Treaps outperform both alternatives, even when 75% of the data
comes from an unknown distribution (either Zipfian or uniform). Furthermore, as the prediction quality decreases, the
performance of our Treaps remains stable, demonstrating their robustness.

Figure 5: Mixture distribution, Zipfian
has mixing weight 25%.

Figure 6: Mixture distribution, Zipfian
has mixing weight 50%.

Figure 7: Mixture distribution, Zipfian
has mixing weight 75%.

Figure 8: Mixture distribution, uniform
has mixing weight 25%.

Figure 9: Mixture distribution, uniform
has mixing weight 50%.

Figure 10: Mixture distribution, uniform
has mixing weight 75%.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

M Adelson-Velskii and Evgenii Mikhailovich Landis. An algorithm for the organization of information. Technical
report, Joint Publications research service Washington DC, 1963.

Brian Allen and J. Ian Munro. Self-organizing binary search trees. J. ACM, 25(4):526–535, 1978.

Cecilia R Aragon and Raimund Seidel. Randomized search trees. In FOCS, volume 30, pp. 540–545, 1989.

Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online graph algorithms with predictions. In Proceedings of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 35–66. SIAM, 2022.

Mihai Bădoiu, Richard Cole, Erik D Demaine, and John Iacono. A unified access bound on comparison-based dynamic
dictionaries. Theoretical Computer Science, 382(2):86–96, 2007.

Michael A Bender, Roozbeh Ebrahimi, Haodong Hu, and Bradley C Kuszmaul. B-trees and cache-oblivious b-trees
with different-sized atomic keys. ACM Transactions on Database Systems (TODS), 41(3):1–33, 2016.

Prosenjit Bose, Karim Douieb, and Stefan Langerman. Dynamic optimality for skip lists and b-trees. In Proceedings
of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1106–1114. Citeseer, 2008.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, and Stefan Langerman. Competitive online search
trees on trees. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1878–1891. SIAM, 2020.

Gerth Stølting Brodal and Rolf Fagerberg. Lower bounds for external memory dictionaries. In SODA, volume 3, pp.
546–554, 2003.

Trevor Brown. B-slack trees: Space efficient b-trees. In Scandinavian Workshop on Algorithm Theory, pp. 122–133.
Springer, 2014.

Trevor Brown. B-slack trees: Highly space efficient b-trees. arXiv preprint arXiv:1712.05020, 2017.

Adam L Buchsbaum, Michael H Goldwasser, Suresh Venkatasubramanian, and Jeffery R Westbrook. On external
memory graph traversal. In SODA, pp. 859–860, 2000.

Clément L Canonne. A short note on learning discrete distributions. arXiv preprint arXiv:2002.11457, 2020.

Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak. Pinning down the strong wilber 1 bound for binary
search trees. arXiv preprint arXiv:1912.02900, 2019.

Justin Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph algorithms via learned predic-
tions. In International Conference on Machine Learning, pp. 3583–3602. PMLR, 2022a.

Justin Y Chen and Piotr Indyk. Online bipartite matching with predicted degrees. arXiv preprint arXiv:2110.11439,
2021.

Justin Y Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, Tal
Wagner, David P Woodruff, and Michael Zhang. Triangle and four cycle counting with predictions in graph streams.
arXiv preprint arXiv:2203.09572, 2022b.

Richard Cole. On the dynamic finger conjecture for splay trees. part ii: The proof. SIAM Journal on Computing, 30
(1):44–85, 2000.

Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger conjecture for splay trees. part
i: Splay sorting log n-block sequences. SIAM Journal on Computing, 30(1):1–43, 2000.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,
3rd Edition. MIT Press, 2009. ISBN 978-0-262-03384-8. URL http://mitpress.mit.edu/books/
introduction-algorithms.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min sketch and its appli-
cations. Journal of Algorithms, 55(1):58–75, 2005.

Erik D Demaine, Dion Harmon, John Iacono, and Mihai Patraşcu. Dynamic optimality—almost. SIAM Journal on
Computing, 37(1):240–251, 2007.

11

http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Erik D Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Patraşcu. The geometry of binary search trees.
In Proceedings of the 20th annual ACM-SIAM symposium on Discrete algorithms (SODA), pp. 496–505. SIAM,
2009.

Jonathan C Derryberry and Daniel D Sleator. Skip-splay: Toward achieving the unified bound in the bst model. In
Workshop on Algorithms and Data Structures, pp. 194–205. Springer, 2009.

Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chandramouli,
Johannes Gehrke, Donald Kossmann, et al. Alex: an updatable adaptive learned index. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data, pp. 969–984, 2020.

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Faster matchings via
learned duals. Advances in Neural Information Processing Systems, 34:10393–10406, 2021.

Jon Ergun, Zhili Feng, Sandeep Silwal, David P Woodruff, and Samson Zhou. Learning-augmented k-means cluster-
ing. arXiv preprint arXiv:2110.14094, 2021.

Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schlöter. Learning-augmented query policies for
minimum spanning tree with uncertainty. arXiv preprint arXiv:2206.15201, 2022.

Rolf Fagerberg, David Hammer, and Ulrich Meyer. On optimal balance in b-trees: What does it cost to stay in perfect
shape? In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-dynamic compressed learned index with provable
worst-case bounds. Proceedings of the VLDB Endowment, 13(8):1162–1175, 2020.

Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. Why are learned indexes so effective? In International
Conference on Machine Learning, pp. 3123–3132. PMLR, 2020.

Daniel Golovin. Uniquely represented data structures with applications to privacy. PhD thesis, Carnegie Mellon
University, 2008.

Daniel Golovin. B-treaps: A uniquely represented alternative to b-trees. In Automata, Languages and Programming:
36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I 36, pp. 487–499.
Springer, 2009.

Leo J Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In 19th Annual Symposium on
Foundations of Computer Science (sfcs 1978), pp. 8–21. IEEE, 1978.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation algorithms. In
International Conference on Learning Representations, 2019.

TC Hu and AC Tucker. Optimum binary search trees. Technical report, WISCONSIN UNIV MADISON MATHE-
MATICS RESEARCH CENTER, 1970.

John Iacono. Alternatives to splay trees with O(log n) worst-case access times. In Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms, pp. 516–522, 2001.

John Iacono. Key-independent optimality. Algorithmica, 42(1):3–10, 2005.

John Iacono. In pursuit of the dynamic optimality conjecture. In Space-Efficient Data Structures, Streams, and
Algorithms, pp. 236–250. Springer, 2013.

HV Jagadish, PPS Narayan, Sridhar Seshadri, S Sudarshan, and Rama Kanneganti. Incremental organization for data
recording and warehousing. In VLDB, pp. 16–25, 1997.

Chris Jermaine, Anindya Datta, and Edward Omiecinski. A novel index supporting high volume data warehouse
insertion. In VLDB, volume 99, pp. 235–246, 1999.

Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P Woodruff. Learning-augmented data stream algorithms.
ICLR, 2020.

Marek Karpinski, Lawrence L Larmore, and Wojciech Rytter. Sequential and parallel subquadratic work algorithms
for constructing approximately optimal binary search trees. In SODA, pp. 36–41. Citeseer, 1996.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index structures. In
Proceedings of the 2018 international conference on management of data, pp. 489–504, 2018.

Thomas Lavastida, Benjamin Moseley, R Ravi, and Chenyang Xu. Learnable and instance-robust predictions for
online matching, flows and load balancing. arXiv preprint arXiv:2011.11743, 2020.

Honghao Lin, Tian Luo, and David Woodruff. Learning augmented binary search trees. In International Conference
on Machine Learning, pp. 13431–13440. PMLR, 2022.

Joan Marie Lucas. Canonical forms for competitive binary search tree algorithms. Rutgers University, Department of
Computer Science, Laboratory for Computer . . . , 1988.

Giorgos Margaritis and Stergios V Anastasiadis. Efficient range-based storage management for scalable datastores.
IEEE Transactions on Parallel and Distributed Systems, 25(11):2851–2866, 2013.

Kurt Mehlhorn. Best possible bounds for the weighted path length of optimum binary search trees. In H. Barkhage
(ed.), Automata Theory and Formal Languages, 2nd GI Conference, Kaiserslautern, May 20-23, 1975, volume 33
of Lecture Notes in Computer Science, pp. 31–41. Springer, 1975a.

Kurt Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5(4):287–295, 1975b.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. arXiv preprint arXiv:2006.09123, 2020.

J Ian Munro. On the competitiveness of linear search. In European symposium on algorithms, pp. 338–345. Springer,
2000.

Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured merge-tree (lsm-tree). Acta
Informatica, 33:351–385, 1996.

Adam Polak and Maksym Zub. Learning-augmented maximum flow. arXiv preprint arXiv:2207.12911, 2022.

Arnold L Rosenberg and Lawrence Snyder. Time-and space-optimality in b-trees. ACM Transactions on Database
Systems (TODS), 6(1):174–193, 1981.

Roodabeh Safavi and Martin P Seybold. B-treaps revised: Write efficient randomized block search trees with high
load. arXiv preprint arXiv:2303.04722, 2023.

Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal of the ACM (JACM), 32
(3):652–686, 1985.

Jeffrey Scott Vitter. External memory algorithms and data structures: Dealing with massive data. ACM Computing
surveys (CsUR), 33(2):209–271, 2001.

Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing. Updatable learned index with
precise positions. Proceedings of the VLDB Endowment, 14(8):1276–1288, 2021.

F Frances Yao. Speed-up in dynamic programming. SIAM Journal on Algebraic Discrete Methods, 3(4):532–540,
1982.

Ke Yi. Dynamic indexability and the optimality of b-trees. Journal of the ACM (JACM), 59(4):1–19, 2012.

13

	Introduction
	Overview
	Related Work

	Learning-Augmented Binary Search Trees
	Learning-Augmented Treaps
	Static Optimality
	Robustness Guarantees
	Analysis of Other Priority Assignments

	Learning-Augmented B-Trees
	Dynamic Learning-Augmented Search Trees
	Experiments
	Perfect Prediction Oracle on Frequency
	Inaccurate Prediction Oracle on Frequency

	Other Releated Works
	Learning-Augmented B-Trees
	Learning-Augmented B-Treaps
	Static Optimality
	Robustness Guarantees

	Dynamic Learning-Augmented Search Trees
	Locally Dynamic B-trees
	Robustness Guarantees
	Working Set Property
	General Results for Dynamic B-Trees
	Dynamic B-Treap with Given Priorities
	Dynamic B-Treap with Predicted Priorities

