
SALKG: Learning From Knowledge Graph
Explanations for Commonsense Reasoning

Aaron Chan♣, Jiashu Xu♣, Boyuan Long♣,
Soumya Sanyal♣, Tanishq Gupta♢∗, Xiang Ren♣

♣University of Southern California, ♢IIT Delhi
{chanaaro, boyuanlo, jiashuxu, soumyasa, xiangren}@usc.edu,

Tanishq.Gupta.mt617@maths.iitd.ac.in

Abstract

Augmenting pre-trained language models with knowledge graphs (KGs) has
achieved success on various commonsense reasoning tasks. However, for a given
task instance, the KG, or certain parts of the KG, may not be useful. Although
KG-augmented models often use attention to focus on specific KG components,
the KG is still always used, and the attention mechanism is never explicitly taught
which KG components should be used. Meanwhile, saliency methods can measure
how much a KG feature (e.g., graph, node, path) influences the model to make
the correct prediction, thus explaining which KG features are useful. This paper
explores how saliency explanations can be used to improve KG-augmented models’
performance. First, we propose to create coarse (Is the KG useful?) and fine (Which
nodes/paths in the KG are useful?) saliency explanations. Second, to motivate
saliency-based supervision, we analyze oracle KG-augmented models which di-
rectly use saliency explanations as extra inputs for guiding their attention. Third,
we propose SALKG, a framework for KG-augmented models to learn from coarse
and/or fine saliency explanations. Given saliency explanations created from a task’s
training set, SALKG jointly trains the model to predict the explanations, then solve
the task by attending to KG features highlighted by the predicted explanations. On
three commonsense QA benchmarks (CSQA, OBQA, CODAH) and a range of
KG-augmented models, we show that SALKG can yield considerable performance
gains — up to 2.76% absolute improvement on CSQA. 2

1 Introduction
Natural language processing (NLP) systems generally need common sense to function well in the
real world [15]. However, NLP tasks do not always provide the requisite commonsense knowledge
as input. Moreover, commonsense knowledge is seldom stated in natural language, making it hard
for pre-trained language models (PLMs) [11, 35] — i.e., text encoders — to learn common sense
from corpora alone [9, 38]. In contrast to corpora, a knowledge graph (KG) is a rich, structured
source of commonsense knowledge, containing numerous facts of the form (concept1, relation,
concept2). As a result, many methods follow the KG-augmented model paradigm, which augments
a text encoder with a graph encoder that reasons over the KG (Fig. 2). KG-augmented models have
outperformed text encoders on various commonsense reasoning (CSR) tasks, like question answering
(QA) (Fig. 1) [31, 5, 36, 61], natural language inference (NLI) [7, 57], and text generation [33, 65].

Since KGs do not have perfect knowledge coverage, they may not contain useful knowledge for
all task instances (e.g., if the KG in Fig. 1 only consisted of the gray nodes). Also, even if the
KG is useful overall for a given task instance, only some parts of the KG may be useful (e.g., the

∗Work done while TG interned remotely at USC.
2Code and data are available at: https://github.com/INK-USC/SalKG.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/INK-USC/SalKG


green nodes in Fig. 1). Ideally, a KG-augmented model would know both if the KG is useful and
which parts of the KG are useful. Existing KG-augmented models always assume the KG should be
used, but do often use attention [54] to focus on specific KG components (e.g., nodes [13, 47, 60],
paths [56, 46, 5]) when predicting. Still, the attention mechanism is supervised (end-to-end) only by
the task loss, so the model is never explicitly taught which KG components should be used. Without
component-level supervision, the attention mechanism is more likely to overfit to spurious patterns.

How can we better teach the model whether each KG feature (e.g., graph, node, path) is useful
for solving the given task instance? Using the task’s ground truth labels, saliency methods [2] can
score each KG feature’s influence on the model making the correct prediction. Whereas attention
weights show which KG features the model already used, saliency scores indicate which KG features
the model should use. By binarizing these scores, we are able to produce saliency explanations,
which can serve as simple targets for training the model’s attention mechanism. For example,
Fig. 1 shows saliency explanations [market=1, produce=1, trading=0, merchant=1, store=0,
shop=0], stating that market, produce, and merchant are useful nodes for answering the question.

Figure 1: KG Saliency Explanations for Com-
monsense QA. Across different questions, the
KG’s usefulness can vary considerably. Coarse
explanations indicate if the KG is useful overall,
while fine explanations highlight useful nodes or
paths. Here, the fine explanations state that the
market, produce, and merchant nodes are
useful, while the other nodes are not.

In this paper, we investigate how saliency explana-
tions can be used to improve KG-augmented mod-
els’ performance. First, we propose to create coarse
(graph-level) and fine (node-/path-level) saliency ex-
planations. Since KGs have features at different gran-
ularities, saliency explanations can supply a rich array
of signals for learning to focus on useful KG fea-
tures. To create coarse explanations, we introduce an
ensemble-based saliency method which measures the
performance difference between a KG-augmented
model and its corresponding non-KG-augmented
model. To create fine explanations, we can adapt any
off-the-shelf saliency method, e.g., gradient-based
[10] or occlusion-based [30]. Second, to demonstrate
the potential of saliency-based supervision, we ana-
lyze the performance of oracle KG-augmented mod-
els, whose attention weights are directly masked with
coarse and/or fine saliency explanations.

Third, as motivated by our oracle model analysis, we
propose the Learning from Saliency Explanations of KG-Augmented Models (SALKG) framework.
Given coarse and/or fine explanations created from thse task’s training set, SALKG jointly trains
the model to predict the explanations, then solve the task by attending to KG features highlighted in
the predicted explanations. Using saliency explanations to regularize the attention mechanism can
help the model generalize better to unseen instances, especially when coarse and fine explanations
are used together as complementary learning signals. Indeed, on three standard commonsense QA
benchmarks (CSQA, OBQA, CODAH) and a range of KG-augmented models, we show that SALKG
can achieve considerable performance gains.

2 Preliminaries

Figure 2: KG-
Augmented Models
fuse knowledge from
text and KG inputs to
solve CSR tasks.

Since KGs abundantly provide structured commonsense knowledge, KG-
augmented models are often helpful for solving CSR tasks. CSR tasks are
generally formulated as multi-choice QA (discriminative) tasks [52, 39, 23],
but sometimes framed as open-ended response (generative) [33, 32] tasks.
Given that multi-choice QA has been more extensively studied, we consider
CSR in terms of multi-choice QA. Here, we present the multi-choice QA
problem setting (Fig. 1) and the structure of KG-augmented models (Fig. 2).

Problem Definition Given a question q and set of answer choices A = {ai},
a multi-choice QA model aims to predict a plausibility score ρ(q, ai) for each
(q, ai) pair, so that the predicted answer â = argmaxai∈A ρ(q, ai) matches
the target answer a∗. Let q ⊕ ai be the text statement formed from (q, ai),
where ⊕ denotes concatenation. For example, in Fig. 1, the text statement

2



for q ⊕ a∗ would be: What kind of store does a merchant have if they sell produce? market. We
abbreviate q ⊕ ai as xi and its plausibility score as ρ(xi).

KG-Augmented Models KG-augmented models use additional supervision from knowledge graphs
to solve the multi-choice QA task. They encode the text and KG inputs individually as embeddings,
then fuse the two embeddings together to use for prediction. A KG is denoted as G̃ = (Ṽ, R̃, Ẽ),
where Ṽ , R̃, and Ẽ are the KG’s nodes (concepts), relations, and edges (facts), respectively. An edge
is a directed triple of the form e = (c1, r, c2) ∈ Ẽ , in which c1, c2 ∈ Ṽ are nodes, and r ∈ R̃ is the
relation between c1 and c2. A path is a connected sequence of edges in the KG. When answering
a question, the model does not use the entire KG, since most information in G̃ is irrelevant to xi.
Instead, the model uses a smaller, contextualized KG Gi = (Vi,Ri, Ei), which is built from G̃ using
xi. Gi can be constructed heuristically by extracting edges from G̃ [31, 37], generating edges with a
PLM [5], or both [56, 60]. In this paper, we consider KG-augmented models where Gi is built by
heuristically by extracting edges from G̃ (see Sec. A.1 for more details), since most KG-augmented
models follow this paradigm. If xi and Gi are not discussed in the context of other answer choices,
then we further simplify xi’s and Gi’s notation as x and G, respectively. Since the model never uses
the full KG at once, we use “KG” to refer to G in the rest of the paper.

As in prior works [31, 5], a KG-augmented model FKG has three main components: text encoder
ftext, graph encoder fgraph, and task predictor ftask (Fig. 2). Meanwhile, its corresponding non-KG-
augmented model FNo-KG has no graph encoder but has a slightly different task predictor f̄task which
only takes x as input. In both FKG and FNo-KG, the task predictor outputs ρ(x). Let x and g be the
embeddings of x and G, respectively. Then, the workflows of FKG and FNo-KG are defined below:

x = ftext(x); g = fgraph(G,x); FKG(x,G) = ftask(x⊕ g); FNo-KG(x) = f̄task(x).

Typically, ftext is a PLM [11, 35], fgraph is a graph neural network (GNN) [13, 47] or edge/path
aggregation model [31, 5, 46], and ftask and f̄task are multilayer perceptrons (MLPs). In general,
fgraph reasons over G by encoding either nodes or paths, then using soft attention to pool the encoded
nodes/paths into g. Let Ltask be the task loss for training FKG and FNo-KG. For multi-choice QA, Ltask
is cross-entropy loss, with respect to the distribution over A. For brevity, when comparing different
models, we may also refer to FKG and FNo-KG as KG and No-KG, respectively.

3 Creating KG Saliency Explanations
Now, we show how to create coarse and fine saliency explanations, which tell us if the KG or certain
parts of the KG are useful. These explanations can be used as extra inputs to mask oracle models’
attention (Sec. 4) or as extra supervision to regularize SALKG models’ attention (Sec. 5). We first
abstractly define a unit as either G itself or a component of G. A unit can be a graph, node, path, etc.,
and we categorize units as coarse (the entire graph G) or fine (a node or path within G) (Table 1).
Given a model and task instance (x,G), we define an explanation as a binary indicator of whether
a unit u of G is useful for the model’s prediction on (x,G). If u is useful, then u should strongly
influence the model to solve the instance correctly. By making explanations binary, we can easily use
explanations as masks or learning targets (since binary labels are easier to predict than real-valued
scores) for attention weights.

3.1 Coarse Saliency Explanations Explanation Setting Unit
Coarse KG
Fine (MHGRN) Node
Fine (PathGen) Path
Fine (RN) Path

Table 1: KG unit types
used for different explana-
tion modes (Sec. 3) and
graph encoders (Sec. 4.2).

Since G may not always be useful, a KG-augmented model should ideally
know when to use G. Here, the unit u is the graph G. Given instance
(x,G), a coarse saliency explanation yc(x,G) ∈ {0, 1} indicates if G
helps the model solve the instance. By default, FKG assumes G is used,
so we propose an ensemble-based saliency formulation for yc(x,G). That
is, we define yc(x,G) as stating if FKG (i.e., uses G) or FNo-KG (i.e., does
not use G) should be used to solve (x,G). Under this formulation, each
(x,G) has coarse units G and None, where None means “G is not used”.

To get yc(x,G), we begin by computing coarse saliency score sc(x,G) ∈ R, which we define as
the performance difference between FKG and FNo-KG. For QA input xi = q ⊕ ai and its KG Gi,
let pKG(xi,Gi) and pNo-KG(xi) be the confidence probabilities for xi predicted by FKG and FNo-KG,
respectively.

3



sc(xi,Gi)

=

{
pKG(xi,Gi)− pNo-KG(xi), ai = a∗,

pNo-KG(xi)− pKG(xi,Gi), ai ̸= a∗.
(1)

Ideally, a QA model should predict higher prob-
abilities for answer choices ai that are correct,
and vice versa. To capture this notion, we de-
fine sc(xi,Gi) in Eq. 1, where a∗ denotes the
correct answer. Note that sc(xi,Gi) is positive if
pKG(xi,Gi) is higher than pNo-KG(xi) for correct
choices and lower for incorrect choices. We obtain yc(xi,Gi) by binarizing sc(xi,Gi) to 0 or 1 based
on whether it is greater than or less than a threshold T , respectively. If yc(xi,Gi) = 1, then the KG is
useful, and vice versa. See the appendix for more details about why we use ensemble-based saliency
for coarse explanations (Sec. A.2) and how we tune T (Sec. A.6).

3.2 Fine Saliency Explanations
Even if G is useful, not every part of G may be useful. Hence, fine saliency explanations can identify
which parts of a KG are actually useful. For a given instance (x,G), we denote the fine saliency
explanation for a fine unit u in G as yf(u;x,G) ∈ {0, 1}. Fine units can be nodes, paths, etc. in
the KG. If a graph encoder fgraph encodes a certain type of unit, it is natural to define yf(u;x,G)
with respect to such units. For example, MHGRN [13] encodes G’s nodes, so we define MHGRN’s
fine saliency explanations with respect to nodes. Similar to coarse saliency explanations, to obtain
yf(u;x,G), we first compute fine saliency score sf(u;x,G) ∈ R, and then binarize it. For a QA input
xi = q ⊕ ai and its KG Gi, let uij be the jth fine unit in Gi and pKG(xi,Gi) denote FKG’s predicted
probability for xi. There are many existing saliency methods (a.k.a. attribution methods) [10, 51, 30]
for calculating the importance score of an input, with respect to a model and a given label. While
sf(uij ;xi,Gi) can be computed via any saliency method, we use gradient-based and occlusion-based
methods, since they are the most common types of saliency methods [2].

Let ϕ(uij ;xi,Gi) denote the raw saliency score given by some saliency method. Gradient-based
methods measure an input’s saliency via the gradient of the model’s output with respect to the
input. We use the gradient×input (Grad) method [10], where ϕ(uij ;xi,Gi) is the dot product of
uij’s embedding and the gradients of pKG(xi,Gi) with respect to uij . Occlusion-based methods
measure an input’s saliency as how the model’s output is affected by erasing that input. We use
the leave-one-out (Occl) method [30], where ϕ(uij ;xi,Gi) is the decrease in pKG(xi,Gi) if uij is
removed from Gi, i.e., ϕ(uij ;xi,Gi) = pKG(xi,Gi) - pKG(xi,Gi \ uij).

sf(uij ;xi,Gi)

=

{
ϕ(uij ;xi,Gi), ai = a∗

−ϕ(uij ;xi,Gi), ai ̸= a∗
(2)

Intuitively, a unit is more useful if it increases the probabil-
ity of correct answer choice a∗, and vice versa. Thus, we
define the saliency score sf(uij ;xi,Gi) for unit uij as Eq. 2.
Next, we binarize the saliency scores to get yf(uij ;xi,Gi),
by selecting the top-k%-scoring units in Gi and setting
yf(uij ;xi,Gi) = 1 (i.e., uij is useful) for these units. For
all other units in G, we set yf(uij ;xi,Gi) = 0 (i.e., uij is not useful). See the appendix for more
details about the fine saliency methods (Sec. A.3) and tuning threshold k (Sec. A.6).

4 ORACLE: Using KG Saliency Explanations as Inputs

In this section, we analyze KG saliency explanations’ potential to improve KG-augmented models’
performance. Recall that creating saliency explanations requires the task’s ground truth labels (Sec.
3), so directly using test set explanations is infeasible. Still, before exploring ways to leverage training
set explanations (Sec. 5), we first establish upper bounds on how much models can benefit from
saliency explanations. Here, we study three key questions: (1) Does the model improve when provided
oracle access to coarse/fine explanations? (2) Are coarse and fine explanations complementary? (3)
How do gradient-based explanations compare to occlusion-based explanations?

4.1 ORACLE Models

ORACLE models are KG-augmented models with oracle access to saliency explanations. An ORACLE
model uses ground truth labels to create explanations (even at inference time), and then uses the
explanations as extra inputs to perform hard attention over the units. We define the model attention
weights that are modified based on saliency explanations as saliency weights. Below, we introduce
the ORACLE-Coarse, ORACLE-Fine, and ORACLE-Hybrid models, shown in Fig. 3a-c.

4



Model Output Saliency Weights

ORACLE-Coarse F∗
c (x,G) = yc(x,G)FKG(x,G) + (1− yc(x,G))FNo-KG(x) [yc(x,G), 1− yc(x,G)]

ORACLE-Fine F∗
f (x,G) ∼ FKG(x,G) ŷf(x,G)⊙ yf(x,G)

ORACLE-Hybrid F∗
h (x,G) = yh(x,G)F∗

f (x,G) + (1− yh(x,G))FNo-KG(x) [yh(x,G), 1− yh(x,G)]

Table 2: Comparison of ORACLE Models. For each ORACLE Model, we show its output and saliency weights.
Note that the explanations are given (not predicted), so there is no Lsal. While F∗

c and F∗
h are both ensembles of

FKG and FNo-KG, F∗
f has the same architecture as FKG (denoted by ∼) besides the attention masking.

CSQA Test Accuracy (%) OBQA Test Accuracy (%)
MHGRN PathGen RN MHGRN PathGen RN

Model BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa BERT RoBERTa

No-KG 55.44 70.59 55.44 70.59 55.44 70.59 53.60 68.40 53.60 68.40 53.60 68.40
KG 56.57 73.33 56.65 72.04 55.60 71.07 53.20 69.80 55.00 67.80 58.60 70.20
No-KG + KG 56.57 71.39 57.45 73.00 56.73 68.49 55.60 70.60 54.40 70.6 53.40 69.60

ORACLE-Coarse 66.16 81.39 68.57 80.10 67.28 79.69 70.60 79.40 65.00 76.60 69.00 79.00

ORACLE-Fine (Grad) 74.86 76.15 79.61 87.35 81.39 83.24 67.60 72.60 73.80 73.40 68.00 62.80
ORACLE-Fine (Occl) 91.06 87.99 79.61 75.34 73.73 68.41 77.00 71.20 83.60 62.60 55.60 61.40

ORACLE-Hybrid (Grad) 85.50 84.21 90.49 92.83 92.26 93.56 80.80 84.80 85.60 92.80 85.40 86.80
ORACLE-Hybrid (Occl) 95.89 98.63 88.96 96.78 85.25 95.25 87.00 89.60 92.80 90.60 67.40 80.60

Table 3: ORACLE Performance on CSQA and OBQA

ORACLE-Coarse ORACLE-Coarse (F∗
c ) uses coarse explanations to do hard attention over FKG’s

and FNo-KG’s predictions. First, FKG and FNo-KG are trained separately, then frozen. Next, for each
instance (x,G), they are used to create a coarse explanation yc(x,G) ∈ {0, 1}. Then, F∗

c is defined
as an ensemble model that performs hard attention over coarse units (G and None) by weighting
FKG’s prediction with yc(x,G) and FNo-KG’s prediction with 1− yc(x,G) (Table 2; Fig. 3a). In other
words, yc(x,G) and 1− yc(x,G) are the saliency weights for F∗

c .

ORACLE-Fine ORACLE-Fine (F∗
f ) has the same architecture as FKG and uses fine explanations to

do hard attention over fine units (i.e., nodes or paths in G). First, FKG is trained, then frozen. As usual,
FKG uses soft attention over fine units in G to compute graph embedding g (Sec. 2). Then, for each
fine unit u in G, FKG is used to create fine explanation yf(u;x,G) ∈ {0, 1}. Let ŷf(u;x,G) ∈ [0, 1]
denote F∗

f ’s soft attention weight for u. We train F∗
f the same way as FKG, except each ŷf(u;x,G)

is (hard attention) masked with yf(u;x,G), i.e., ŷf(u;x,G) ← ŷf(u;x,G) ⊙ yf(u;x,G), where ⊙
denotes element-wise multiplication (Table 2; Fig. 3b). This means only units with yf(u;x,G) = 1
will have ŷf(u;x,G) > 0 and thus be able to influence F∗

f ’s prediction. Let yf(x,G) and ŷf(x,G)
denote the explanations and soft attention weights, respectively, for all units in the graph. Then,
ŷf(x,G)⊙ yf(x,G) are the saliency weights for F∗

f .

ORACLE-Hybrid ORACLE-Hybrid (F∗
h ) unifies ORACLE-Coarse and ORACLE-Fine as a single

model, thus leveraging the coarse-fine hierarchy inherent in KG saliency explanations. First, F∗
f

(which uses fine explanations) and FNo-KG are separately trained, then frozen. Then, for each (x,G),
F∗

f and FNo-KG are used to create yh(x,G) ∈ {0, 1}, which we define as the coarse explanation for
F∗

f and FNo-KG. yh(x,G) is computed the same way as yc(x,G), besides replacing FKG with F∗
f .

Finally, similar to F∗
c , F∗

h is an ensemble that performs hard attention over coarse units by weighting
F∗

f ’s prediction with yh(x,G) and FNo-KG’s prediction with 1− yh(x,G) (Table 2; Fig. 3c). That is,
yh(x,G) and 1− yh(x,G) are the saliency weights for F∗

h .

4.2 Evaluation Protocol

We use the CSQA [52] and OBQA [39] multi-choice QA datasets. For CSQA, we use the accepted
in-house data split from [31], as the official test labels are not public. As in prior works, we use the
ConceptNet [49] KG for both datasets. We report accuracy, the standard metric for multi-choice QA.
For FNo-KG and FKG, we pick the best model over three seeds, then use them to create explanations
for ORACLE models. We use thresholds T = 0.01 and k = 10 for coarse and fine explanations,
respectively. For text encoders, we use BERT(-Base) [11] and RoBERTa(-Large) [35]. For graph
encoders, we use MHGRN [13], PathGen [56], and Relation Network (RN) [46, 31]. MHGRN has
node units, while PathGen and RN have path units. As baseline models, we use FNo-KG, FKG, and
FNo-KG + FKG, where FNo-KG + FKG is an ensemble whose prediction is the mean of FNo-KG’s and
FKG’s predictions. ORACLE and baseline models are trained only with task loss Ltask.

5



Figure 3: Schematics for ORACLE and SALKG Models. Red arrows indicate the ORACLE pipeline, where the
target explanation is provided as input. Purple arrows indicate the SALKG pipeline, where the target explanation
is used as supervision for the predicted explanation. In SALKG-Coarse and SALKG-Hybrid, the saliency
predictor has the same architecture as FKG. Meanwhile, ORACLE-Fine and SALKG-Fine (shown as white
module, with text encoder and task predictor omitted) both have the same architecture as FKG.

4.3 Analysis

In Table 3, we show CSQA and OBQA performance for the baseline and ORACLE models. We
analyze these results via the three questions below.

Does the model improve when provided oracle access to coarse/fine explanations? Yes. ORACLE-
Coarse beats all baselines, while ORACLE-Fine beats all baselines except on OBQA RN+RoBERTa.
These results motivate us to develop a framework for models to improve performance by learning
from coarse/fine explanations. Also, on average, ORACLE-Fine outperforms ORACLE-Coarse, which
suggests that fine explanations may often provide richer signal than their coarse counterparts. Indeed,
fine explanations indicate the saliency of every unit in the KG, while coarse explanations only indicate
the saliency of the KG as a whole.

Are coarse and fine explanations complementary? Yes. Across all settings, ORACLE-Hybrid
performs significantly better than ORACLE-Coarse and ORACLE-Fine. This suggests that coarse and
fine explanations are complementary and that it is effective to leverage both hierarchically.

How do gradient-based explanations compare to occlusion-based explanations? Overall, Grad and
Occl perform similarly. Grad performs better on some settings (e.g., MHGRN), while Occl performs
better on others (e.g., RN). See Table 8 and Sec. A.9 for more Grad vs. Occl experiments.

In our ORACLE pilot study, KG-augmented models achieve large performance gains when given
explanations as input. This suggests that, if oracle explanations can somehow be predicted accurately
during inference without using ground truth labels, then KG-augmented models can still achieve
improvements without directly using explanations as input. This motivates us to train KG-augmented
models with explanation-based supervision via SALKG, which we describe in Sec. 5.

5 SALKG: Using KG Saliency Explanations as Supervision
Based on the analysis from Sec. 4.3, we propose the SALKG framework for KG-augmented models
to learn from coarse/fine saliency explanations. Whereas ORACLE models (Sec. 4.1) use explanations
directly as extra inputs, SALKG models only use them as extra supervision during the training phase.
With explanations created from the training set via FKG and FNo-KG, SALKG models are jointly
trained to predict the explanations (via saliency loss Lsal) and use the predicted explanations to solve
the task (via task loss Ltask). Thus, SALKG models have the following objective: LS = Ltask + λLsal,
where λ ≥ 0 is a loss weighting parameter. This multitask objective not only encourages SALKG
models to focus on useful KG units for solving the task, but also to learn more general graph/node/path
representations. Below, we present SALKG-Coarse, SALKG-Fine, and SALKG-Hybrid models.

SALKG-Coarse Unlike ORACLE-Coarse, SALKG-Coarse (Fc) is not given oracle coarse explana-
tion yc(x,G) as input. Instead, a saliency predictor Sc (with the same architecture asFKG) is trained to
predict the oracle coarse explanation. Sc predicts coarse explanation as probability ŷc(x,G) ∈ [0, 1].
Fc’s output is an ensemble that does soft attention over coarse units by weighting FKG’s and FNo-KG’s
predictions with saliency weights ŷc(x,G) and 1− ŷc(x,G), respectively (Table 4; Fig. 3a). Here,
Lsal(ŷc(x,G), yc(x,G)) is the cross-entropy loss.

6



Model Output Saliency Weights Saliency Loss (Lsal)

SALKG-Coarse Fc(x,G) = ŷc(x,G)FKG(x,G) + (1− ŷc(x,G))FNo-KG(x) [ŷc(x,G), 1− ŷc(x,G)] CE(ŷc(x,G), yc(x,G))
SALKG-Fine Ff(x,G) ∼ FKG(x,G) ŷf(x,G) KL(ŷf(x,G), yf(x,G))
SALKG-Hybrid Fh(x,G) = ŷh(x,G)Ff(x,G) + (1− ŷh(x,G))FNo-KG(x) [ŷh(x,G), 1− ŷh(x,G)] CE(ŷh(x,G), yh(x,G))

Table 4: Comparison of SALKG Models. For each SALKG Model, we show its output, saliency weights, and
Lsal. While Fc and Fh are both ensembles, Ff has the same architecture as FKG (denoted by ∼). “CE” denotes
cross-entropy loss, while “KL” denotes KL divergence loss.

SALKG-Fine Similarly, SALKG-Fine (Ff) is not given oracle fine explanation yf(u;x,G) as input,
although both have the same architecture as FKG. Instead, for each fine unit u, Ff’s attention
mechanism is trained to predict yf(u;x,G) as soft attention weight ŷf(u;x,G) ∈ [0, 1] (Table 4;
Fig. 3b). As before, ŷf(x,G) = [ŷf(u;x,G)]u∈G are the soft attention weights for (x,G), while
yf(x,G) = [yf(u;x,G)]u∈G are the fine explanations for (x,G). Then, ŷf(x,G) are the saliency
weights for Ff, trained with KL divergence loss Lsal(ŷf(x,G), yf(x,G)).
SALKG-Hybrid Similar to the other SALKG variants, SALKG-Hybrid (Fh) does not use any
oracle explanations. Like in SALKG-Coarse, a saliency predictor Sh is trained to predict oracle
coarse explanation yh(x,G) (Sec. 4.1). Predicted coarse explanation probabilities ŷh(x,G) ∈ [0, 1]
are then used as soft attention over coarse units by weighting Ff’s and FNo-KG’s predictions with
weights ŷh(x,G) and 1− ŷh(x,G), respectively (Table 4; Fig. 3c). Here, Lsal(ŷh(x,G), yh(x,G)) is
cross-entropy loss.

6 Experiments
6.1 Evaluation Protocol

We evaluate SALKG models on the CSQA [52], OBQA [39], and CODAH [6] multi-choice QA
datasets (Sec. A.5). In addition to the baselines in Sec. 4.2, we consider two new baselines, RANDOM
and HEURISTIC, which help show that coarse/fine saliency explanations provide strong learning
signal for KG-augmented models to focus on useful KG features. We follow the same evaluation
protocol in Sec. 4.2, except we now also report mean and standard deviation performance over
multiple seeds. See Sec. A.4 for a more detailed description of the evaluation protocol.

RANDOM RANDOM is a variant of SALKG where each unit’s explanation is random. RANDOM-
Coarse is like SALKG-Coarse, but with each yc(x,G) uniformly sampled from {0, 1}. RANDOM-Fine
is like SALKG-Fine, but randomly picking k% of units in G to set yf(u;x,G) = 1. RANDOM-Hybrid
is like SALKG-Hybrid, but with each yh(x,G) uniformly sampled from {0, 1} as well as using
RANDOM-Fine instead of SALKG-Fine.

HEURISTIC Each G has three node types: question nodes (i.e., nodes in q), answer nodes (i.e.,
nodes in ai), and intermediate nodes (i.e., other nodes) [31]. Let QA nodes be nodes in q or ai.
HEURISTIC is a variant of SALKG where each unit’s explanation is based on the presence of QA
nodes in G. Let N̄ be the mean number of QA nodes per KG (in train set), and let N(G) be the
number of QA nodes in G. HEURISTIC-Coarse is like SALKG-Coarse, except yc(x,G) = 1 if and
only if N(G) > N̄ . HEURISTIC-Fine is like SALKG-Fine, but how yf(u;x,G) is set depends on
whether the fine units are nodes or paths. For node units, yf(u;x,G) = 1 if and only if u is a QA
node. For path units, yf(u;x,G) = 1 if and only if u consists only of QA nodes. HEURISTIC-Hybrid
is like SALKG-Hybrid, but with yh(x,G) = 1 if and only if N(G) > N̄ , while HEURISTIC-Fine is
used instead of SALKG-Fine.

6.2 Main Results
Table 5 shows performance on CSQA, while Table 6 shows performance on OBQA and CODAH.
Best performance is highlighted in green , second-best performance is highlighted in blue , and

best non-SALKG performance is highlighted in red (if it is not already green or blue). For SALKG
(unlike ORACLE), we find that Occl usually outperforms Grad, so we only report Occl performance
in Tables 5-6. For a comparison of Grad and Occl on SALKG, see Table 8 and Sec. A.9. Being
an ensemble, No-KG + KG tends to beat both No-KG and KG if both have similar performance.
Otherwise, No-KG + KG’s performance is in between No-KG’s and KG’s.

Across all datasets, we find that SALKG-Hybrid and SALKG-Coarse are consistently the two
best models. On CSQA, SALKG-Hybrid has the highest performance on BERT+MHGRN,

7



CSQA Test Accuracy (%)
MHGRN PathGen RN

Model BERT RoBERTa BERT RoBERTa BERT RoBERTa

No-KG 53.13 (±2.34) 69.65 (±1.06) 53.13 (±2.34) 69.65 (±1.06) 53.13 (±2.34) 69.65 (±1.06)
KG 57.48 (±0.89) 73.14 (±0.78) 56.54 (±0.73) 72.58 (±0.57) 56.46 (±1.22) 71.37 (±1.20)
No-KG + KG 56.14 (±2.28) 72.15 (±0.67) 57.29 (±1.30) 72.44 (±0.72) 55.98 (±1.98) 71.15 (±0.81)

RANDOM-Coarse 55.04 (±1.44) 71.06 (±1.09) 55.09 (±1.08) 71.15 (±1.06) 55.15 (±1.23) 69.06 (±2.96)
RANDOM-Fine 54.69 (±2.54) 73.09 (±1.06) 54.66 (±0.97) 71.26 (±3.19) 49.88 (±1.75) 69.08 (±1.95)
RANDOM-Hybrid 52.43 (±2.60) 71.93 (±0.77) 55.24 (±0.58) 71.35 (±0.34) 54.36 (±0.35) 70.12 (±0.35)

HEURISTIC-Coarse 55.55 (±2.29) 72.15 (±0.84) 56.92 (±0.18) 72.57 (±0.49) 56.42 (±1.11) 71.18 (±0.77)
HEURISTIC-Fine 52.54 (±1.67) 71.50 (±1.01) 54.00 (±1.89) 71.11 (±0.93) 52.04 (±2.13) 65.08 (±3.67)
HEURISTIC-Hybrid 56.35 (±0.81) 72.58 (±0.32) 56.83 (±0.48) 71.33 (±0.87) 54.38 (±3.30) 65.07 (±2.02)

SALKG-Coarse 57.98 (±0.90) 73.64 (±1.05) 57.75 (±0.77) 73.07 (±0.25) 57.50 (±1.25) 73.11 (±1.13)
SALKG-Fine 54.36 (±2.34) 70.00 (±0.81) 54.39 (±2.03) 72.12 (±0.91) 54.30 (±1.41) 71.64 (±1.51)
SALKG-Hybrid 58.70 (±0.65) 73.37 (±0.12) 59.87 (±0.42) 72.67 (±0.65) 58.78 (±0.14) 74.13 (±0.71)

Table 5: SALKG Performance on CSQA

OBQA Test Accuracy (%) CODAH Test Accuracy (%)
Model (RoBERTa) MHGRN PathGen RN MHGRN PathGen
No-KG 68.73 (±0.31) 68.73 (±0.31) 68.73 (±0.31) 83.96 (±0.79) 83.96 (±0.79)
KG 68.87 (±2.16) 68.40 (±1.59) 66.80 (±4.73) 84.02 (±1.27) 84.02 (±1.62)
No-KG + KG 68.53 (±0.95) 69.67 (±1.45) 69.40 (±0.35) 84.08 (±1.46) 84.69 (±1.48)

RANDOM-Coarse 68.11 (±1.12) 67.18 (±4.13) 65.02 (±2.57) 83.48 (±0.91) 84.68 (±1.65)
RANDOM-Fine 57.60 (±5.33) 55.13 (±7.00) 48.53 (±4.82) 74.77 (±6.90) 80.48 (±1.23)
RANDOM-Hybrid 68.33 (±0.40) 69.53 (±0.31) 69.27 (±0.12) 83.86 (±0.69) 83.75 (±0.60)

HEURISTIC-Coarse 69.24 (±2.47) 65.58 (±6.08) 64.29 (±3.06) 82.64 (±0.10) 82.52 (±0.18)
HEURISTIC-Fine 57.27 (±3.76) 51.80 (±2.95) 50.53 (±3.51) 82.25 (±1.43) 82.55 (±2.03)
HEURISTIC-Hybrid 68.47 (±0.23) 68.40 (±0.00) 68.60 (±0.20) 82.16 (±2.11) 82.73 (±1.51)

SALKG-Coarse 69.93 (±0.56) 70.02 (±0.55) 71.29 (±0.57) 85.79 (±1.83) 85.43 (±1.88)
SALKG-Fine 64.82 (±0.97) 51.51 (±0.87) 62.29 (±0.85) 84.08 (±1.14) 83.36 (±0.81)
SALKG-Hybrid 70.20 (±0.69) 69.80 (±0.49) 70.47 (±0.91) 85.17 (±0.54) 84.42 (±0.64)

Table 6: SALKG Performance on OBQA and CODAH

BERT+PathGen, BERT+RN, and RoBERTa+RN, while SALKG-Coarse is the best on
RoBERTa+MHGRN and RoBERTa+PathGen. In particular, on RoBERTa+RN, BERT+RN, and
BERT+PathGen, SALKG-Hybrid beats max(No-KG, KG, No-KG + KG) by large margins of 2.76%,
2.58%, and 2.32%, respectively. Meanwhile, OBQA and CODAH, SALKG is not as dominant but
still yields improvements overall. On OBQA, SALKG-Coarse is the best on RoBERTa+RN (beating
max(No-KG, KG, No-KG + KG) by 1.89%) and RoBERTa+PathGen, while SALKG-Hybrid per-
forms best on RoBERTa+MHGRN. On CODAH, SALKG-Coarse gets the best performance on both
RoBERTa+MHGRN (beating max(No-KG, KG, No-KG + KG) by 1.71%) and RoBERTa+PathGen.
SALKG-Coarse outperforming SALKG-Hybrid on OBQA and CODAH indicates that local KG
supervision from fine explanations may not be as useful for these two datasets. On the other hand,
SALKG-Fine is consistently weaker than SALKG-Hybrid and SALKG-Coarse, but still shows slight
improvement for RoBERTa+RN on CSQA. These results show that learning from KG saliency
explanations is generally effective for improving KG-augmented models’ performance, especially in
CSQA when both coarse and fine explanations are used to provide complementary learning signals
for SALKG-Hybrid. Furthermore, across all datasets, we find that SALKG outperforms RANDOM
and HEURISTIC on every setting. This is evidence that explanations created from saliency methods
can provide better learning signal than those created randomly or from simple heuristics.

Comparison to Published CSQA Baselines To further demonstrate that SALKG models perform
competitively, we also compare SALKG (using MHGRN and PathGen) to the many KG-augmented
model baseline results published in [13, 56, 60], for the CSQA in-house split. The baselines we
consider are RN [46], RN + Link Prediction [13], RGCN [47], GAT [55], GN [4], GconAttn [57],
MHGRN [13], and PathGen [56]. For the non-SALKG versions of MHGRN, PathGen, and RN, we
quote the published results. Since these published results average over four seeds (instead of three),
we report SALKG results over four seeds in Table 7. We find that most of the listed SALKG variants
can outperform all of the baselines. For MHGRN, SALKG-Coarse (MHGRN) performs the best
overall, SALKG-Hybrid (MHGRN) beats vanilla MHGRN, and SALKG-Fine (MHGRN) is on par
with vanilla MHGRN. For PathGen, SALKG-Hybrid (PathGen) and SALKG-Coarse (PathGen) both
slightly outperform vanilla PathGen, while SALKG-Fine (PathGen) performs worse.

8



Model (RoBERTa) CSQA Test Accuracy (%)
RN [46] 70.08 (±0.21)
RN + Link Prediction [56] 69.33 (±0.98)
RGCN [47] 68.41 (±0.66)
GAT [55] 71.20 (±0.72)
GN [4] 71.12 (±0.45)
GconAttn [57] 69.88 (±0.47)
MHGRN [13] 71.11 (±0.81)
PathGen [56] 72.68 (±0.42)

SALKG-Coarse (MHGRN) 74.01 (±0.14)
SALKG-Fine (MHGRN) 72.68 (±1.46)
SALKG-Hybrid (MHGRN) 73.87 (±0.48)
SALKG-Coarse (PathGen) 72.76 (±0.12)
SALKG-Fine (PathGen) 71.21 (±1.31)
SALKG-Hybrid (PathGen) 73.03 (±0.84)

Table 7: Comparison of SALKG to Published
CSQA Baselines. SALKG models that outper-
form all baselines are shown in bold.

CSQA Leaderboard Submission In addition to
our experiments on the CSQA in-house split, we
evaluated SALKG on the CSQA official split by sub-
mitting SALKG to the CSQA leaderboard. Since the
best models on the CSQA leaderboard use the AL-
BERT [24] text encoder, and PathGen was the highest
graph encoder on the leaderboard out of the three we
experimented with, we trained SALKG-Hybrid (AL-
BERT+PathGen), which achieved a test accuracy of
75.9%. For reference, a previously submitted AL-
BERT+PathGen achieved a test accuracy of 75.6%
on the CSQA leaderboard. This result suggests that
the proposed SALKG training procedure can yield
some improvements over baselines that do not use
explanation-based regularization.

Why does SALKG-Fine perform poorly? In general, SALKG-Fine does not perform as well as
SALKG-Coarse and SALKG-Hybrid. Often, SALKG-Fine is noticeably worse than KG and No-KG.
Recall that the KG model and SALKG-Fine model both assume that the KG should always be used
to solve the given instance. Still, the success of SALKG-Coarse shows that the KG sometimes may
not be useful. But why does SALKG-Fine almost always perform worse than the KG model?

We believe it is because SALKG-Fine is more committed to the flawed assumption of universal KG
usefulness. Whereas the KG model is trained to solve the task always using the KG as context, SalKG-
Fine is trained to both solve the task always using the KG as context (i.e., global KG supervision) and
attend to specific parts of the KG (i.e., local KG supervision). Since SALKG-Fine is trained with both
global and local KG supervision, it is much more likely to overfit, as the KG is not actually useful for
all instances. That is, for training instances where the KG should not be used, SALKG-Fine is pushed
to not only use the KG, but also to attend to specific parts of the KG. This leads to a SalKG-Fine
model that does not generalize well to test instances where the KG is not useful.

To address this issue, we proposed the SALKG-Hybrid model, which is designed to take the best
of both SALKG-Coarse and SALKG-Fine. For a given instance, SALKG-Hybrid uses its SALKG-
Coarse component to predict whether the KG is useful, then uses its SALKG-Fine component to
attend to the useful parts of the KG only if the KG is predicted to be useful. Indeed, we find that
SALKG-Hybrid performs much better than SALKG-Fine and is the best model overall on CSQA.
These results support our hypothesis about why SALKG-Fine performs relatively poorly.

6.3 Ablation Studies CSQA Dev Accuracy (%)
Model (BERT) MHGRN PathGen
SALKG-Coarse 59.49 (±0.05) 60.72 (±0.58)
- w/ Grad 56.84 (±2.27) 56.18 (±2.31)
- w/ Occl 57.60 (±0.74) 56.32 (±1.66)

SALKG-Fine (Occl) 57.28 (±0.95) 59.13 (±2.35)
- w/ Grad 56.05 (±1.03) 58.80 (±1.08)

SALKG-Hybrid (Occl) 59.92 (±0.31) 60.88 (±0.05)
- w/ Grad 60.17 (±0.21) 59.71 (±0.08)

SALKG-Fine (Occl) 57.28 (±0.95) 59.13 (±2.35)
- w/ Random Prune 50.61 (±0.68) 54.10 (±2.13)
- w/ Heuristic Prune 50.72 (±0.46) 50.53 (±0.74)

SALKG-Fine (Occl) 57.28 (±0.95) 59.13 (±2.35)
- w/ BCE Sal. Loss 50.83 (±1.75) 55.15 (±2.58)

Table 8: Ablation Studies. Best model in bold.

In Table 8, we validate our SALKG design choices
with ablation studies. We report dev accuracy for
BERT+MHGRN and BERT+PathGen on CSQA.

Are ensemble-based coarse explanations effec-
tive? By default, SALKG-Coarse uses our proposed
ensemble-based coarse explanations (Sec. 3.1). Alter-
natively, we consider using Grad and Occl to create
coarse explanations. For Grad, we compute ϕ the
same way as in Sec. 3.2, except using graph embed-
ding g instead of node/path embeddings. Since a zero
vector would have zero gradient, this is equivalent
to comparing g to a zero vector baseline. For Occl,
we compute ϕ as the decrease in pKG if g is replaced
with a zero vector. For both Grad and Occl, we set sc = ϕ. In Table 8, we see that our default
SALKG-Coarse significantly outperforms SALKG-Coarse with both Grad and Occl. In Sec. A.2, we
further discuss why Grad and Occl are ill-suited for creating coarse explanations.

For SALKG, is Occl better than Grad? In Tables 5-6, we report SALKG-Fine and SALKG-Hybrid
performance with Occl fine explanations. In Table 8, we compare Occl and Grad on SALKG-Fine
and SALKG-Hybrid. Overall, Occl slightly outperforms Grad, although Grad beats Occl on MHGRN

9



for SALKG-Hybrid. Their relative performance could also depend on the choice of top-k%, which
we plan to explore later. In Sec. A.9, we further compare Occl and Grad on other settings.

How does SALKG-Fine’s soft KG pruning compare to hard KG pruning? SALKG-Fine does soft
pruning of unhelpful fine units via soft attention. We compare SALKG-Fine to two baselines where
the KG is filtered via hard pruning, which cannot be easily incorporated into end-to-end training.
For RANDOM Prune and HEURISTIC Prune, we respectively create RANDOM and HEURISTIC
explanations, then hard prune all negative units from the KG. The KG-augmented model then uses
the pruned KG as its KG input. In Table 8, we see that SALKG-Fine significantly outperforms the
two baselines, showing the benefits of jointly training the model on saliency and QA prediction.

Is it effective to train SALKG-Fine with KL divergence? We train SALKG-Fine’s explanation
predictor (i.e., attention mechanism) using KL divergence as the saliency loss. Thus, within a KG,
the distribution over attention weights constitutes a single prediction. Alternatively, we could treat
each attention weight as a separate prediction and train the attention mechanism using binary cross
entropy (BCE) loss. In Table 8, we find that using KL divergence yields much higher performance
than using BCE loss. This suggests that the attention weights should not be trained separately, as
each attention weight is highly dependent on other attention weights in the same KG.

6.4 Case Studies
We visualize coarse/fine explanations created from BERT+PathGen on CSQA, with 1-hop or 2-hop
paths as fine units. For coarse explanations, we show examples of positive (i.e., useful) and negative
KGs. Since KGs are too large to show here, we uniformly sample three paths per KG. For the positive
KG example, the question is James loved to play violin. He did it in his spare time because he found
it what?, the answer choice is relaxing, and the target answer is relaxing. Its paths are: (1) play –[is
related to]–> x <–[is used for]– relaxing , (2) violin –[is used for]–> x –[is used for]–> relaxing , and
(3) time <–[has subevent]– x –[has subevent]–> relax . For the negative KG example, the question is
Where do soldiers not deployed eat their food?, the answer choice is neighbor’s house, and the target
answer is military base. Its paths are: (1) soldier <–[is related to]– x <–[is related to]– house , (2)
eat –[is related to]–> x –[is at location of]–> house , and (3) food <–[is related to]– x –[is at location of]–>
house . For fine explanations, we show examples of positive and negative paths from the same KG.
Here, the question is Where can you find a bar before traveling a long distance?, the answer choice is
airport, and the target answer is airport. The positive path is: bar –[is at location]–> airport . The
negative path is: travel <–[is used for]– x –[is at location]– airport . We can roughly see that the
positive KGs/paths are useful for predicting the correct answer, and vice versa. However, as shown in
[45], the model’s judgment of KG/path usefulness may not always align with human judgment. See
Sec. A.16 for more illustrative examples of coarse/fine explanations.

7 Related Work
Creating Model Explanations Many methods aim to explain PLMs’ predictions by highlighting
important tokens in the model’s text input. Such methods are usually gradient-based [51, 29, 10],
attention-based [40, 53, 14, 25], or occlusion-based [12, 42, 22, 30]. Similarly, for graph encoders, a
number of works use post-hoc optimization to identify important nodes [19, 62] or subgraphs [62]
in the graph input. Meanwhile, KG-augmented models’ attention weights can be used to explain
which parts of the KG are important [31, 13, 34, 56, 60]. These KG explanations can be interpreted
as identifying knowledge in the KG that is complementary to the knowledge encoded in the PLM.

Learning From Model Explanations Besides manual inspection, explanations can be used in
various ways, like extra supervision or regularization [43, 17, 41, 1], pruned inputs [21, 3, 28],
additional inputs [16, 8], and intermediate variables [58, 66, 44]. The most similar work to ours is
[43], which proposed training a student model to mimic a teacher model’s predictions by regularizing
the student model’s attention via text explanations created from the teacher model. However, [43]
aims to evaluate explanations, while our goal is to improve performance via explanations. To the best
of our knowledge, SALKG is the first to supervise KG-augmented models with KG explanations.

See Sec. A.20 for a more comprehensive overview of the related literature.

8 Conclusion
In this paper, we proposed creating coarse and fine explanations for KG-augmented models, then using
these explanations as extra inputs (ORACLE) or supervision (SALKG). Across three commonsense QA

10



benchmarks, SALKG achieves strong performance, especially when both coarse and fine explanations
are used. In future work, we plan to explore incorporating active learning into SALKG, so that models
can also leverage explanation-based feedback from humans about KG saliency.

9 Acknowledgments
This research is supported in part by the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA), via Contract No. 2019-19051600007,
the DARPA MCS program under Contract No. N660011924033, the Defense Advanced Research
Projects Agency with award W911NF-19-20271, NSF IIS 2048211, NSF SMA 1829268, and gift
awards from Google, Amazon, JP Morgan, and Sony. We would like to thank all of our collaborators
at the USC INK Research Lab for their constructive feedback on this work.

References
[1] Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. arXiv preprint

arXiv:1711.00482, 2017.
[2] Jasmijn Bastings and Katja Filippova. The elephant in the interpretability room: Why use

attention as explanation when we have saliency methods? arXiv preprint arXiv:2010.05607,
2020.

[3] Joost Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with differentiable
binary variables. arXiv preprint arXiv:1905.08160, 2019.

[4] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[5] Antoine Bosselut and Yejin Choi. Dynamic knowledge graph construction for zero-shot
commonsense question answering. arXiv preprint arXiv:1911.03876, 2019.

[6] Michael Chen, Mike D’Arcy, Alisa Liu, Jared Fernandez, and Doug Downey. CODAH: An
adversarially-authored question answering dataset for common sense. In Proceedings of the
3rd Workshop on Evaluating Vector Space Representations for NLP, pages 63–69, Minneapolis,
USA, June 2019. Association for Computational Linguistics.

[7] Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Diana Inkpen, and Si Wei. Neural natural language
inference models enhanced with external knowledge. arXiv preprint arXiv:1711.04289, 2017.

[8] John D Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, Jacob Andreas, John DeNero,
Pieter Abbeel, and Sergey Levine. Guiding policies with language via meta-learning. arXiv
preprint arXiv:1811.07882, 2018.

[9] Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in
artificial intelligence. Communications of the ACM, 58(9):92–103, 2015.

[10] Misha Denil, Alban Demiraj, and Nando De Freitas. Extraction of salient sentences from
labelled documents. arXiv preprint arXiv:1412.6815, 2014.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of NAACL), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[12] Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard
Socher, and Byron C Wallace. Eraser: A benchmark to evaluate rationalized nlp models. arXiv
preprint arXiv:1911.03429, 2019.

[13] Yanlin Feng, Xinyue Chen, Bill Yuchen Lin, Peifeng Wang, Jun Yan, and Xiang Ren. Scal-
able multi-hop relational reasoning for knowledge-aware question answering. arXiv preprint
arXiv:2005.00646, 2020.

[14] Reza Ghaeini, Xiaoli Z Fern, and Prasad Tadepalli. Interpreting recurrent and attention-based
neural models: a case study on natural language inference. arXiv preprint arXiv:1808.03894,
2018.

[15] David Gunning. Machine common sense concept paper. arXiv preprint arXiv:1810.07528,
2018.

11



[16] Peter Hase and Mohit Bansal. When can models learn from explanations? a formal framework
for understanding the roles of explanation data. arXiv preprint arXiv:2102.02201, 2021.

[17] Peter Hase, Shiyue Zhang, Harry Xie, and Mohit Bansal. Leakage-adjusted simulatability: Can
models generate non-trivial explanations of their behavior in natural language? arXiv preprint
arXiv:2010.04119, 2020.

[18] Matthew Honnibal and Mark Johnson. An improved non-monotonic transition system for
dependency parsing. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1373–1378, Lisbon, Portugal, September 2015. Association for
Computational Linguistics.

[19] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi Chang.
Graphlime: Local interpretable model explanations for graph neural networks. arXiv preprint
arXiv:2001.06216, 2020.

[20] Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint
arXiv:1902.10186, 2019.

[21] Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, and Byron C Wallace. Learning to faithfully
rationalize by construction. arXiv preprint arXiv:2005.00115, 2020.

[22] Akos Kádár, Grzegorz Chrupała, and Afra Alishahi. Representation of linguistic form and
function in recurrent neural networks. Computational Linguistics, 43(4):761–780, 2017.

[23] Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. QASC: A
dataset for question answering via sentence composition. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 8082–8090.
AAAI Press, 2020.

[24] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942, 2019.

[25] Jaesong Lee, Joong-Hwi Shin, and Jun-Seok Kim. Interactive visualization and manipulation of
attention-based neural machine translation. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages 121–126, 2017.

[26] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. Graph classification using structural attention.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1666–1674, 2018.

[27] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International
Conference on Machine Learning, pages 3734–3743. PMLR, 2019.

[28] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155, 2016.

[29] Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding neural
models in nlp. arXiv preprint arXiv:1506.01066, 2015.

[30] Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220, 2016.

[31] Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xiang Ren. KagNet: Knowledge-aware graph
networks for commonsense reasoning. In Proceedings of EMNLP-IJCNLP, pages 2829–2839,
Hong Kong, China, November 2019. Association for Computational Linguistics.

[32] Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin
Choi, and Xiang Ren. CommonGen: A constrained text generation challenge for generative
commonsense reasoning. In Findings of the Association for Computational Linguistics: EMNLP
2020, pages 1823–1840, Online, November 2020. Association for Computational Linguistics.

[33] Ye Liu, Yao Wan, Lifang He, Hao Peng, and Philip S Yu. Kg-bart: Knowledge graph-augmented
bart for generative commonsense reasoning. arXiv preprint arXiv:2009.12677, 2020.

[34] Ye Liu, Tao Yang, Zeyu You, Wei Fan, and Philip S Yu. Commonsense evidence generation and
injection in reading comprehension. arXiv preprint arXiv:2005.05240, 2020.

12



[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[36] Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang, Nan Duan, Ming Gong, Linjun Shou, Daxin
Jiang, Guihong Cao, and Songlin Hu. Graph-based reasoning over heterogeneous external
knowledge for commonsense question answering. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8449–8456, 2020.

[37] Kaixin Ma, Jonathan Francis, Quanyang Lu, Eric Nyberg, and Alessandro Oltramari. Towards
generalizable neuro-symbolic systems for commonsense question answering. In Proceedings of
the First Workshop on Commonsense Inference in Natural Language Processing, pages 22–32,
Hong Kong, China, November 2019. Association for Computational Linguistics.

[38] Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

[39] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages 2381–2391, Brussels,
Belgium, October-November 2018. Association for Computational Linguistics.

[40] Akash Kumar Mohankumar, Preksha Nema, Sharan Narasimhan, Mitesh M Khapra, Bal-
aji Vasan Srinivasan, and Balaraman Ravindran. Towards transparent and explainable attention
models. arXiv preprint arXiv:2004.14243, 2020.

[41] Sharan Narang, Colin Raffel, Katherine Lee, Adam Roberts, Noah Fiedel, and Karishma Malkan.
Wt5?! training text-to-text models to explain their predictions. arXiv preprint arXiv:2004.14546,
2020.

[42] Nina Poerner, Benjamin Roth, and Hinrich Schütze. Evaluating neural network explanation meth-
ods using hybrid documents and morphological agreement. arXiv preprint arXiv:1801.06422,
2018.

[43] Danish Pruthi, Bhuwan Dhingra, Livio Baldini Soares, Michael Collins, Zachary C Lipton,
Graham Neubig, and William W Cohen. Evaluating explanations: How much do explanations
from the teacher aid students? arXiv preprint arXiv:2012.00893, 2020.

[44] Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yourself!
leveraging language models for commonsense reasoning. arXiv preprint arXiv:1906.02361,
2019.

[45] Mrigank Raman, Aaron Chan, Siddhant Agarwal, Peifeng Wang, Hansen Wang, Sungchul Kim,
Ryan Rossi, Handong Zhao, Nedim Lipka, and Xiang Ren. Learning to deceive knowledge
graph augmented models via targeted perturbation. arXiv preprint arXiv:2010.12872, 2020.

[46] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning. In
Advances in neural information processing systems, pages 4967–4976, 2017.

[47] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic
Web Conference, pages 593–607. Springer, 2018.

[48] Sofia Serrano and Noah A Smith. Is attention interpretable? arXiv preprint arXiv:1906.03731,
2019.

[49] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: an open multilingual graph
of general knowledge. In Proceedings of AAAI, pages 4444–4451, 2017.

[50] Julia Strout, Ye Zhang, and Raymond J Mooney. Do human rationales improve machine
explanations? arXiv preprint arXiv:1905.13714, 2019.

[51] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International Conference on Machine Learning, pages 3319–3328. PMLR, 2017.

[52] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA:
A question answering challenge targeting commonsense knowledge. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149–4158,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

13



[53] Martin Tutek and Jan Šnajder. Staying true to your word:(how) can attention become explana-
tion? arXiv preprint arXiv:2005.09379, 2020.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

[55] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[56] Peifeng Wang, Nanyun Peng, Pedro Szekely, and Xiang Ren. Connecting the dots: A knowledge-
able path generator for commonsense question answering. arXiv preprint arXiv:2005.00691,
2020.

[57] Xiaoyan Wang, Pavan Kapanipathi, Ryan Musa, Mo Yu, Kartik Talamadupula, Ibrahim Abde-
laziz, Maria Chang, Achille Fokoue, Bassem Makni, Nicholas Mattei, et al. Improving natural
language inference using external knowledge in the science questions domain. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 7208–7215, 2019.

[58] Sarah Wiegreffe, Ana Marasovic, and Noah A Smith. Measuring association between labels
and free-text rationales. arXiv preprint arXiv:2010.12762, 2020.

[59] Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. arXiv preprint
arXiv:1908.04626, 2019.

[60] Jun Yan, Mrigank Raman, Aaron Chan, Tianyu Zhang, Ryan Rossi, Handong Zhao, Sungchul
Kim, Nedim Lipka, and Xiang Ren. Learning contextualized knowledge structures for com-
monsense reasoning. arXiv preprint arXiv:2010.12873, 2020.

[61] Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering. arXiv preprint
arXiv:2104.06378, 2021.

[62] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnex-
plainer: Generating explanations for graph neural networks. In Advances in neural information
processing systems, pages 9244–9255, 2019.

[63] Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.

[64] Xinyan Zhao and VG Vydiswaran. Lirex: Augmenting language inference with relevant
explanation. arXiv preprint arXiv:2012.09157, 2020.

[65] Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao, Jingfang Xu, and Xiaoyan Zhu. Com-
monsense knowledge aware conversation generation with graph attention. In IJCAI, pages
4623–4629, 2018.

[66] Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiaodan Liang, Maosong Sun, Chenyan Xiong,
and Jian Tang. Towards interpretable natural language understanding with explanations as latent
variables. arXiv preprint arXiv:2011.05268, 2020.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

14



(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15


	Introduction
	Preliminaries
	Creating KG Saliency Explanations
	Coarse Saliency Explanations
	Fine Saliency Explanations

	Oracle: Using KG Saliency Explanations as Inputs
	Oracle Models
	Evaluation Protocol
	Analysis

	SalKG: Using KG Saliency Explanations as Supervision
	Experiments
	Evaluation Protocol
	Main Results
	Ablation Studies
	Case Studies

	Related Work
	Conclusion
	Acknowledgments

