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Abstract

We examine the extent to which sublinear-sample property testing and estimation apply to
settings where samples are independently but not identically distributed. Specifically, we
consider the following distributional property testing framework: Suppose there is a set of
distributions over a discrete support of size k, p;, Ps, . .., Py, and we obtain ¢ independent
draws from each distribution. Suppose the goal is to learn or test a property of the
average distribution, p,,,. This setup models a number of important practical settings
where the individual distributions correspond to heterogeneous entities — either individuals,
chronologically distinct time periods, spatially separated data sources, etc. From a learning
standpoint, even with ¢ = 1 samples from each distribution, ©(k/e?) samples are necessary
and sufficient to learn p,,, to within error € in ¢; distance. To test uniformity or identity
— distinguishing the case that p,,, is equal to some reference distribution, versus has ¢,
distance at least € from the reference distribution, we show that a linear number of samples
in k is necessary given ¢ = 1 samples from each distribution. In contrast, for ¢ > 2, we
recover the usual sublinear sample testing guarantees of the i.i.d. setting: we show that
O(Vk/e? +1/e*) total samples are sufficient, matching the optimal sample complexity in
the i.i.d. case in the regime where ¢ > k~/4. Additionally, we show that in the ¢ = 2 case,
there is a constant p > 0 such that even in the linear regime with pk samples, no tester that
considers the multiset of samples (ignoring which samples were drawn from the same p;)
can perform uniformity testing. We further extend our techniques to the problem of testing
“closeness” of two distributions: given ¢ = 3 independent draws from each of py,p,,...,Pr
and qy,dy, ..., qy, one can distinguish the case that p,,, = Q,,, versus having ¢; distance

at least € using O(k2/3/58/3) total samples, where k is an upper bound on the support size,
matching the optimal sample complexity of the i.i.d. setting up to the e-dependence.

1 Introduction

The problem of estimating statistics of an unknown distribution, or determining whether the distribution
in question possesses a property of interest has been studied by the Statistics community for well over a
century. Interest in these problems from the TCS community was sparked by the seminal paper of Goldreich
(Goldreich & Ron, 2000), demonstrating the surprising result that such tasks might be accomplished given a
sample size that scales sublinearly with the support of the underlying distribution. Over the subsequent 20+
years, the lay of the land of sublinear sample property testing and estimation has largely been worked out:
for a number of natural properties of distributions (or pairs of distributions), testing or estimation can be
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accomplished with a sample size that is sublinear in the support size of the distributions in question, and in
most settings, the optimal sample complexities are now known to constant or subconstant factors.

More recently, these questions have been revisited with an eye towards relaxing the assumption that samples
are drawn i.i.d. from the distribution in question. The majority of such departures focused on relaxing the
independence assumption; this includes work from the robust statistics perspective where some portion of
samples may be adversarially corrupted, as well as other models of dependent sampling.

In this work, we consider the implications of relaxing the more innocuous-seeming assumption of identical
samples. Given samples drawn independently from a collection of distributions, pq,...,pr, there are a
number of different questions one can ask, including estimating properties of how the various distributions
are related. Here, however, we focus on the practically motivated question of testing or estimating properties
of the average distribution p,,, = % > p;- To what extent is sublinear sample testing or estimation still
possible in this setting, and do existing estimators suffice? Below, we describe several concrete practical
settings that motivate these questions.

Example 1. The “Federated” Setting: Consider the setting where there are a number of users/ individuals,
each with a corresponding distribution (over online purchases, language, biometrics, etc.) and the goal is
to test whether the average distribution is close to some reference. There might be significant heterogeneity
between users, and the number of samples (i.e., amount of data) collected from each user might be very
modest, due to privacy, bandwidth, or power considerations. Analogous settings arise when compiling training
datasets for LLMs, as there is significant heterogeneity between documents, websites, or clusters of websites,
and lightweight tools for testing properties of the average/aggregate distribution are useful.

Example 2. Chronological Heterogeneity: Consider a setting where samples are collected chronologically,
and the underlying distribution varies over time. Consider a wearable technology that periodically samples
biometric statistics, or language spoken. The goal may be to test whether the average distribution is close to
some reference (with the goal of providing an early warning of illness in the case of biometrics, or for early
detection of dementia in the case of sampling words spoken). Ideally, this test can be successfully accomplished
with far less data than would be required to learn. There is significant heterogeneity across time but samples
collected close together can be regarded as being sampled from the same distribution, p;.

Example 3. Spatially Segregated Sampling: Consider a setting where the goal is to sample species (of
animals, bacteria, etc.) and test whether the overall distribution is close to a reference distribution. In many
such settings, the distribution of species has significant spatial variation — the distribution of soil bacteria
n a grassy spot is quite different from the distribution in dense forest, similarly, the distribution of wildlife
observed by trail-cameras in national parks varies according to the location of the cameras. Again, the goal
s to accomplish this statistical test with less data than would be required to learn the underlying average
distribution.

In some of these motivating settings, one may assume some structure in how the various distributions relate
to each other— for example in chronological settings, for most indices 4, p; is similar to p,_;. Nevertheless, it
is still worth understanding whether such assumptions must be leveraged. Indeed, for learning the average
distribution p,,, to within total variation distance ¢, the sample complexity is the same as in the i.i.d. case,
O(k/e?) where k is the support size, without any assumptions on the p;s. At the highest level, our results
demonstrate that as soon as one draws at least ¢ = 2 samples from each distribution, this non-identically
distributed setting recovers much of the power of sublinear-sample property testing. The caveat is that one
must design new algorithms for this setting that are cognizant of which distribution each sample was drawn
from; as we show, testers that return a function of the multiset of examples do not suffice.

1.1 Summary of Results

First, we establish that in the case that we draw ¢ = 1 samples from each distribution p4,...,pp, one can
learn the average distribution with the same sample complexity as in the i.i.d. setting. Despite this, with
¢ = 1 sample from each distribution, sublinear-sample uniformity or identity testing is impossible:

Claim 1.1 (Learning the distribution, proof in Appendix A). Given access to T distributions, py,. .., Pr,
each supported on a common domain of size < k, for any € > 0, given ¢ = 1 samples drawn from each
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P, one can output a distribution p,,, such that with probability at least 2/3, drv(Payg: Pave) < €, provided
T = O(k/e*). Furthermore, Q(k/c*) samples are necessary, even if py = ... = pp = P, for such a
guarantee.

Claim 1.2 (Impossibility result with ¢ = 1, proof in Appendix B). Given access to T < k/2 distributions,
Pis---, Py, and ¢ =1 sample drawn from each distribution, no tester can distinguish the case that the average
distribution, p,,, s the uniform distribution of support k, versus has total variation distance at least 1/4
from Unif (k), with probability of success greater than 2/3.

The above impossibility of sublinear-sample testing in the case of ¢ = 1 sample from each distribution follows
from the following simple construction, which also provides intuition behind the positive results for ¢ > 2 :
Consider the instance where T' = k/2, and each p; is a point mass on a distinct element, versus the instance
where each p, is a uniform distribution over two distinct domain elements that are disjoint from the supports
of p; for j # i. In both instances, given ¢ = 1 sample from each distribution, one will observe T' = k/2 distinct
elements each observed exactly once. Despite this, in the second instance, p,,, is uniform over support #,
whereas in the former the average distribution has total variation distance 1/4 from Unif (k).

Our first main result is that with just ¢ = 2 samples from each distribution, we recover the full strength of
sublinear sample uniformity (and identity) testing. The key intuition is that with two samples from each
distribution, we can count both the collision statistics within distributions, as well as the collisions across
distributions, and build an unbiased estimator for ||p,,,||3. We then leverage techniques from Diakonikolas
et al. (2016) and adapt them to this setting of non-identical samples to bound the variance of our estimator
to get the following sublinear sample complexity for uniformity testing.

Theorem 1.3 (Uniformity testing, proof in Section 3). There is an absolute constant, «, such that given
access to T distributions, p, ..., pr, each supported on a common domain of size < k, for any € > 0, provided
T > a(Vk/e? +1/e*) and given ¢ = 2 samples drawn from each p;, there exists a testing algorithm that
succeeds with probability 2/3 and distinguishes whether,

Pavg = Unif(k)  wersus  drv(p,yg, Unif(k)) > ¢ .

Note that when € > k~'/4, our sample complexity for uniformity testing simplifies to O(\/E /%), which
matches the optimal sample complexity for testing uniformity in the i.i.d. setting. Since the setting of non-
identical samples is a generalization of the i.i.d. setting, the lower bound of Q(\/E /%) for testing uniformity
in the i./i.d. setting also holds in our setting; hence we get optimal sample complexity in the regime where
e > k4,

Our results also hold for identity testing, through standard reduction techniques. In particular, we can adapt
the reduction from identity testing to uniformity testing of Goldreich (2016) to our setting with non-identical
distributions, yielding the following result on the reduction from an instance of identity testing to an instance
of uniformity testing.

Lemma 1.4 (Identity to uniformity testing, proof in Section 4). Given an arbitrary reference distribution
q supported on < k elements, there exists a pair (®q, Uq) that maps distributions and samples over [k] to
distributions and samples over [4k], and satisfies the following,

o For a sequence of distributions q, ..., qp such that avg(qy, ..., qr) = q, the map ®4 satisfies,
avg(Pq(qn), - -, Pqlgr)) = Unif(4k).

o For two sequences of distributions pi,...,ph and p}, ..., p%, the map ®, satisfies,

-drv(ave(p', ..., pr),aveg(p®, ..., p7)) -

B~ =

dTV(an((bq(p%L cees (I)q(p%“))v avg(‘l)q(p%), cees (I)q(PQT))) 2

The above result combined with the result for uniformity testing, immediately yields the following result for
identity testing. Our bounds for identity testing are optimal in the worst case for large values of & > k=1/4.
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Corollary 1.5 (Identity testing). There is an absolute constant, a, such that given a reference distribution g
supported on < k elements and ¢ = 2 samples from each of T distributions, py, ..., pr, there exists a testing
algorithm that succeeds with probability 2/3 and distinguishes whether,

Pavg = q  versus  dry(Paye, @) > €,
provided T > a(Vk/e? +1/e%).

We note that our sublinear sample testing algorithms leverage the knowledge of which distribution each
sample was drawn from. As the following theorem asserts, this is necessary — there is a constant p > 0 such
that even in the linear regime with pk samples, there is no testing algorithm that simply returns a function
of the multiset of samples, throwing away the information about which samples were drawn from the same
distributions.

Theorem 1.6 (Lower bound for “pooled” estimators, proof in Section 5). There is an absolute constant,
p > 0, such that given access to distributions py,...,p,, supported on a domain of size k, given ¢ = 2
samples from each of py, ..., Pk, no tester that returns a function of the multiset of samples (i.e., ignoring
the information about which samples were drawn from the same distributions) can distinguish the case

Pavg = Unif(k)  wversus  drv(Payg, Unif(k)) > 0.01
with success probability at least 2/3.

Our positive results, and the intuition behind the uniformity testing algorithm also naturally extend to testing
properties of pairs of distributions. In particular, we consider the “closeness” testing problem in this non-i.i.d.
setting: given two sequences of distributions supported on a set of size k, py,...,ppr and qi,...,qp and cii.d.
draws from each of the distributions, how many total samples are required to distinguish between p,,, = Quys
versus dTV(pan, qavg) > 7 In this setting, we show that, given ¢ = 3 samples from each distribution, we
recover the optimal sample complexity of O(k?/3) from the i.i.d. setting, up to the ¢ dependence (Batu et al.,
2013; Chan et al., 2014). While our proof leverages ¢ = 3 samples to simplify some of the analysis, we strongly
believe that an identical result holds for ¢ = 2 examples from each distribution.

Theorem 1.7 (Closeness testing, proof in Appendix G). There is an absolute constant, «, such that for two
sequences of distributions, supported on a common domain of size k, py,...,pp, and qq, ..., qr, given c =3
samples from each of the distributions, there exists a testing algorithm that succeeds with probability 2/3 and
distinguishes whether

pavg = qavg versus dTV(pavga qavg) Z &,

provided T > a(k?/3 /e8/3).

Finally, we note that the interesting phase shift between ¢ = 1 and ¢ > 1 holds only in the non-Poisson
setting. Results in the Poisson setting remain the same as that of the i.i.d. setting. In particular, if instead of
¢ samples, we are given Poi(c) samples from each distribution, then even in the case of ¢ = 1, we recover
all testing results known in the i.i.d. setting. This follows from the following basic fact: receiving Poi(c)
samples from every distribution is equivalent in distribution to receiving Poi(cT") samples from the average
distribution. A more formal version of this result is stated in Appendix C for identity testing, but such a
result also holds for testing other properties. To see how this bypasses the obstruction discussed in Claim 1.2,
note that with Poi(1) samples per distribution, in the point-mass case, each distribution yields repeated draws
of its single element, whereas when the distributions have support on two distinct elements, within-group
collisions start to occur.

Proving our upper bounds mostly involves adapting the techniques from the i.i.d. case to our setting.
Establishing the lower bound for pooled samples is more complex, involving a new construction that might
be of independent interest. Nonetheless, more than the techniques, our main contribution is the problem
definition and conceptual takeaways. Commonly, when collecting samples, heterogeneity invariably arises,
particularly when these samples are gathered over various time points, geographical locations, or from different
users, as highlighted in the examples above. Thus, it is natural to ask whether sublinear sample testers
are robust to such departures from the i.i.d. setting. We demonstrate that while existing testers are not
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directly applicable (as evidenced by our lower bound for pooled samples), they can be effectively adapted,
provided one collects multiple samples per distribution and leverages the source information of samples. For
example, for identity testing, a standard estimator involves counting collisions, treating all collisions similarly.
In contrast, our modified estimator uses a weighted collision count, with weights varying based on whether
collisions occur within samples from the same distribution or not.

1.2 Future Directions

There are many possible directions for future work. From a technical standpoint, a concrete goal is to match
the i.i.d. e-dependence for uniformity and closeness. For uniformity, the gap comes from variance-reducing
terms in the i.i.d. analysis that are not available when distributions differ (see Remark 5). For closeness, the
current ¢~8/3 dependence comes from the classical collision analysis (Batu et al., 2013); matching the i.i.d.
£=4/3 will likely require a new analysis beyond collisions (e.g., adapting the counts-based statistic of Chan
et al. (2014) to the non-i.i.d. setting). It is not clear to us whether that optimal e-dependence is achievable
here.

Another direction is improving the number of samples per distribution. For closeness, we currently use ¢ = 3
to keep the collision-based ¢ estimate independent of the heavy/light estimation; with a more careful reuse
of the same samples and explicit dependency tracking, ¢ = 2 may suffice. For uniformity, we show that ¢ =1
is impossible in the worst case; it is natural to ask for structural conditions under which ¢ = 1 becomes
feasible. If all p; equal paye, the i.i.d. guarantees apply; more generally, if each p; is sufficiently close to pave,
we expect i.i.d. rates to persist with a small additional failure probability. As a simple check, suppose each p;
is within §/T TV distance of paye. Then the joint distribution of the 7" samples is within TV distance < ¢
of T'i.i.d. samples from p,ys. Hence any optimal i.i.d. tester applies with an extra failure probability 4. It
would be interesting to study whether larger deviations beyond this naive bound can be tolerated.

Finally, beyond the specific problems addressed in this work, there are many obvious directions, including
mapping the sample complexities for other natural property testing and estimation problems within the
framework of non-identically distributed samples. Studying properties of the average distribution is a natural
starting point, though other summary statistics of a collection of distributions are also worth considering.
For example, in chronological settings, one might be interested in how certain properties vary over time,
or predicting properties of future distributions. More broadly, probing the robustness of sublinear sample
testing from other perspectives may yield further surprises with practical implications.

2 Related Work

Interest from the theoretical computer science community on distribution testing, given i.i.d. sample access,
was sparked by the problem of distinguishing whether an unknown probability distribution was the uniform
distribution over support k, versus has total variation distance at least € from this uniform distribution.
The early work of Goldreich & Ron (2000) proposed a collision-based estimator, demonstrating that testing
this property could be accomplished given significantly fewer samples than would be required to learn the
distribution in question. Since then, a line of work eventually pinned down the exact sample complexity
of ©(Vk/e?) — optimal to constant factors including the dependence on the probability of the tester
failing (Paninski, 2008; Valiant & Valiant, 2017; Diakonikolas et al., 2014; 2016; 2017). For a comprehensive
exposition of this line of work, we refer the reader to Chapters 2 and 3 in Canonne (2022).

A closely related problem to uniformity testing is testing identity, where the task is to determine if an
unknown probability distribution, p, is equal to versus far from a fixed reference distribution, q, given i.i.d
sample access (Batu et al., 2001). While “instance-optimal” estimators — estimators that are optimal for
every q — are known (Valiant & Valiant, 2017), among reference distributions supported on < k elements,
the uniform distribution is the most difficult to test. Beyond this, building off Diakonikolas & Kane (2016),
Goldreich (2016) gave a reduction from identity testing to uniformity testing, showing that any uniformity
testing algorithm can be leveraged in a black-box fashion for identity testing. We leverage both the high-level
design of the optimal uniformity testing algorithms, and this reduction.
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For the problem of “closeness” testing, the goal is still to distinguish p = q from the case that these two
distributions have distance at least ¢, though now q is not a fixed reference distribution, and instead we
are given samples from both distributions. In the i.i.d. sample setting, for distributions of support size k, a
sample complexity of O(k?/31ogk/e®/?) was established in Batu et al. (2001; 2013), with the optimal sample
complexity of ©(max(k%/3/e*/3 k1/2 /e?)) later pinned down in Chan et al. (2014).

Beyond uniformity, identity, and closeness testing, there is an enormous body of work on testing or estimating
other distribution properties or properties of pairs of distributions. Broadly speaking, the optimal sample
complexities for these tasks are now pinned down to constant factors, at least in the setting where one obtains
i.i.d. samples

Beyond i.i.d. samples: The questions of learning, property testing and estimation have also been considered
in various settings that deviate from the idealized setting of samples drawn i.i.d. from a fixed distribution.
These include works from the perspective of robust statistics, where some portion of the samples may be
adversarially corrupted (see e.g., Diakonikolas et al. (2019); Diakonikolas & Kane (2019); Charikar et al.
(2017), as well as the broad area of time-series analysis where observations are drawn from time-varying
distributions (e.g., Chernoff & Zacks (1964); Kolar et al. (2010); Lampert (2015)).

Most similar to the present paper are works that explore learning and testing questions in various settings
where there are a number of data sources, each providing a batch of samples. In Qiao & Valiant (2018)
and the followup papers Jain & Orlitsky (2020); Chen et al. (2020), it is assumed that an unknown 1 — ¢
fraction of data sources correspond to identical distributions, each providing a batch of ¢ i.i.d. samples, and
no assumptions are made about the samples in the remaining batches. The main results here are that as
¢ increases, the batches can be leveraged for learning: specifically, the distribution of the 1 — ¢ fraction
can be learned to accuracy O(g/y/c). The papers Tian et al. (2017); Vinayak et al. (2019) explore the
setting where batches of size ¢ are drawn i.i.d. from a collection of heterogeneous distributions, and the
goal is to learn the multiset of distributions. The punchline here is that the multiset of distributions can be
learned given asymptotically fewer draws from each distribution than would be necessary to learn them in
isolation. While the focus in these works is on the setting where the distributions have support size 2 (i.e.
the setting corresponds to flipping coins with heterogeneous probabilities), the results apply more broadly.
The paper of Levi et al. (2013) considered the setting of a collection of T' distributions over large support
size, and explored the question of testing whether all distributions in the collection are the same, versus have
significant variation. They considered two sampling models — a “query” model where one can adaptively
choose which distribution to draw a sample from, and a weaker model where each sample is drawn from a
distribution selected uniformly at random from the 7" distributions. We note that in this latter model, testing
properties of the average distribution trivially reduces to the i.i.d. setting. Later works by Diakonikolas &
Kane (2016); Aliakbarpour et al. (2016) improve the results obtained by Levi et al. (2013). Finally, the paper
by Aliakbarpour & Silwal (2019) considers the setting with a collection of distributions, and given one sample
(in expectation) from each distribution, the task is to distinguish whether all the distributions are equal to a
reference distribution, or all distributions are far from it. In contrast, our focus is on distinguishing whether
the average distribution is equal to or far from a reference distribution. They also consider the case where we
only have sample access to the reference distribution. General non-vacuous results are not possible in their
setting given a single sample from each distribution. To bypass this, they impose a structural condition on
the collection of distributions. We also face a similar issue and show that it can be bypassed in our setting by
drawing multiple samples from each distribution.

3 Uniformity testing from non-identical samples

In this section, we prove our sample complexity results for uniformity testing in the setting of non-identical
samples. Our tester for uniformity in the setting of non-identical samples is based on collisions and constructs
an unbiased estimator for [|p,g 3. As [|Payll3 equals + when Payg is uniform and is larger than (1+&?)+ when
Payg is &-far from uniform, we use this separation to solve the testing problem. The main part of the proof
constitutes bounding the variance of the estimator that we construct in order to show that it concentrates
around its mean. We adapt the proof from Diakonikolas et al. (2016) to the setting of non-identical samples
to bound the variance of our estimator.
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To test uniformity, we build an unbiased estimator for Hpang%. In the following, we provide a description of
this estimator. For each t € [T, let (X¢(1), X:(2)) denote the 2 i.i.d. samples drawn from the distribution p,.
For each t € [T, we define,

Y = 1[X,(1) = X,(2)] and Yy = 1[X,(1) = X,(1)] .

Note that E[Y;] = ||p,||3 and E[Ys] = (p,, ps) for all s,t € [T]. Using these random variables, we define an
estimator Z as follows,

(ZYt+22th) (1)

te(T] s<t
Z is an unbiased estimator of [|p,g 3. In the following we formally state this result and bound the variance
of the estimator.

Lemma 4. The estimator Z defined in Equation (1) satisfies the following:

3
Pavg||,

2 48

E[Z] = ”panH% and Var[Z] < + -

4
< 7]

Pavg ||,

Proof of Lemma 4. The expectation of the random variable Z is given by

2= 2 (3 Ipil 423 perp)) = w3

te[T) s<t

Therefore Z is an unbiased estimator for ||p,,|3. In the remainder of the proof, we bound the variance of
this estimator Z.

varlz) = B[ (2 - B(2]) | = E[( X (v B + 23 (va ~Elv)) ]

te[T) s<t
Define

V, =Y, — E[Y;] and ffst =Y — E[Y],

and note that E[Y;] = 0 and E[Ys;] = 0. Rewriting the variance of Z in terms of these new random variables
we get the following,

Varz) = L5 3 w2 )] < 2 0) e a( D8]

te(T] s<t te(T] s<t

w(E[(tEme’t) F*E[(;f’st) ) @)

In the second inequality, we used (a + b)? < 2(a? + b?). In the final inequality, we used the linearity of
expectation. To bound the variance of Z, we bound the terms in the final expression separately. We start
with the first term.

E[( 37 )}: [ 22 Nh] = Y B+ 2 ) EIEN] = Y B

te[T] te[T] s<t te[T] s<t te([T]
= > (BN -EM) < Y EN?= ) EM]= ) |plls (3)
te(T] te(T] te(T] te[T]

In the first equality, we expanded the expression. In the second equality, we used the fact that the random
variables Y;, Y; are independent for all s,¢ € [T] and s # ¢. In the third equality, we used E[Y;] = 0 for all
t € [T]. The fourth and fifth inequalities are immediate. The sixth equality follows because Y; is an indicator
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random variable. In the seventh inequality, we substituted the value of E[Y;] = ||p,||3. Similar to the above,
we now bound the second term of Equation (2).

(5] -5l - (s[5

s<t s<t s<t
2
= Z E [th] + Z E[Ys:Yas] + Z E[Ys:Yas] — (E[Z l/st:|> (4)
s<t s<t s<t s<t
N———— a<b a<b
(:g) terms [{s,t,a,b}|=3 [{s,t,a,b}|=4 (2)2 terms
6(5) terms 6(2;) terms

The first term above is equal to ) _,(p;,Ps) — we can club this together with the summands in the
summation in the last term that are of the form E[Y;;]?. For the third term, observe that if the indices s,t, a,b
are all distinct, the random variables Yy; and Yy, are independent, and hence E[Ys;Yop] = E[Vs:]E[Yap]. But
all these summands are also included in the summation in the last term, and hence will get canceled out.
Finally, we are left with the second term. Observe that for any 3 fixed distinct values, there are 6 possible
orderings of the indices s < t and a < b such that the multiset {s,¢,a,b} has exactly these distinct values.
Further, for each of these orderings, the random variable Yy, Y,; is non-zero if and only if the first sample at
the three distinct indices is the same. Thus, we have that,

k
Z E[)/styab] =6 Z Zpa(g)pb(g)pr(g) =6 Z <paapb7pc>' (5)

s<i a<b<cl=1 a<b<lc
a<
[{s,t,a,b}|=3

Putting the above together with the remaining terms corresponding to |{s,t,a,b}| = 3 in the last summation,
we get

E[(Zﬁtﬂ = (PP (1= (PrP.) +6 Y (P Py D)

s<t s<t a<b<c
—2 ) [(PasPy)(Pus Pe) + (Pas PPy Pe) + (Pus P) Py, Pe)] (6)
a<b<lc
S Z<pt7ps> +6 Z <pa’pb7pc> (7)
s<t a<b<c
3
<> (pipy) +6‘ dop

s<t te[T)

Substituting the above inequality, along with Equation (3) into Equation (2), we get the following bound for
the variance of Z,

3

)

2+48
2 T

IN

Var[Z]

te[T] s<t ot

4 2 48 3 4 3
i 2w, ] 2 |
te[T] te(T]

: (8)

3

IN

pavg pavg

s T2
O

We can now use the variance bound from the above lemma along with Chebyshev’s inequality to prove
Theorem 1.3,

Proof of Theorem 1.3. We divide the proof into two cases.
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Uniform case: In this case, we are promised that the p,,, = uj. Therefore, it is immediate that
E[Z] = |Pavell3 = 7 and [|pay,ll3 = 7=, which further gives us that,
g2\ 1 g2 9 9k2
Pr[z>(1+ g) ﬂ =Pr|z>(1+ 3)1E[Z]} < cagpzp VelZl= S VailZ],
U4 Ay ok a2
= et \T2k  Tk2) T2  Tet'

In the first inequality, we used that E[Z] = 1/k. In the second inequality, we used the Chebyshev’s inequality.
In the third and fourth inequality, we substituted the values of E[Z] and Var[Z] respectively; to upper bound
the variance we used bounds from Equation (8). In the final inequality, we simplified the expression. Note

that when T > 2290, the second term above is smaller than 1/6, and for T' > 2157;/%, the first term is smaller

than 1/6. Therefore, we have that, for T' = max (M M) = O(max (g, 5%)),

et ¢
2

Pr[7> (1+%)%} <1/3.

Therefore, Z is smaller than (1 + £%/3); with probability at least 2/3 in the uniform case, that is, when

Far from uniform case: In this case, we are promised that, ||p,,, — uxll1 > &, which further implies

E[Z] = [|Paygll3 = H}fz > 1(14¢€?), where o? &f k||Pavg — ukll3 > €. In the following, we upper bound the
probability that Z takes a value smaller than (1 +£2/3)+.

rlzs (14 5)i] - er = (18) ()] -2 ()]
- & _a
—pr[z< (1- ST )Ez] <Pz < (1- T )Biz]
- 2 2\2
=Pr|2< (1 - ﬁ)ﬁﬂ[zﬂ < m Var|Z]
3
( 2)2 ( 2)2 ( 2)2 ’ Pay
- fainlign; Varldl = Tzo;ﬁpivgllg e Hpavzug

3

: (9)

3

~ 9k(1+a?)  108k2 ’
 T2a4 Tot

pavg

In the first equality, we multiplied and divided by the term (1 + a?2). In the second equality, we used the
2 2

definition of o. In the third equality, we used % =1- a;;;? In the fourth inequality, we used a? > &2
and in the fifth equality, we simplified the expression. In the sixth inequality, we used Chebyshev’s inequality.
In the seventh and eighth inequality, we used E[Z] = ||p,,,|3 and substituted the bound on the variance of Z
from Equation (8). In the final expression, we used the definition of c. To upper bound the above probability

term, we next bound each of the terms in the final expression separately. The first term above is bounded by,

9(1+a?)  9k(1+¢e%) 18k
T204 = T2e4 = T2e4

(10)
In the first inequality, we used the fact that for > 0, the function 1;'29” is decreasing in = and also a? > 2.

The final inequality follows because € < 1. To upper bound the second term in Equation (9), we first note
that,

k

Hpangg = ||pavg —up + uk”% = Z((pavg(i) - uk(z)) + uk(i))?)
i=1
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k
= 3 [Paai) = 0 (D)* + 0k(1)* + (Do (1) — 0 (1)) k()P ()]

i=1

1 3
= [P — well§ + (Zpavg 2 ) = [P — el + 75+ 2 [P — el

3 o 1 o? 3a?2 1
< |Pavg — Ukllz + %”pavg — w3 + R ETE] + el + jER

The first five equalities follow from simple algebraic manipulation. The sixth inequality holds because

13 <l |l2- In the final equality, we used the definition of cv. Thus, the second term is bounded as,
108%2 ‘ 8 _ 108k (a3 +@+i)_108\/ﬁ+324+ 108
Tat ' |[Pavalls = g1 k3/2 2 k)T Ta ' Toa? ' Tal
108 108
< vk —I— + e (11)
Te Te?2  Te

In the final inequality, we used a > e. Substituting Equation (10) and Equation (11) in Equation (9), we get
the following bound on the probability,

e2\ 1 18k 108vk 324 108 _ 18k  432Vk
P [Z < (1 —) 7] < P < — .
res\tg)elsmat s Tt asmat e tra T54

Note that for T > %, the sum of the first two terms is smaller than 1/6, and for 7" > 6;#, the last term
is smaller than 1/6. Thus, we have that for T = O(max (ﬂ i)),

g2 9 g4

1} <1/3.

refo= (14 5)}

Therefore, Z is larger than (1 +¢2/3)4 with probability at least 2/3 in the far from uniform case, that is
when [|p,,, — uklls > €. In conclusion, for T' = O( ) we can test uniformity, that is we can separate

Pavg = U from [[p,,, — Ukll1 > ¢, for any ¢ > 0. We conclude the proof.
O

Remark 5 (Optimal sample complexity). We can compare the bound on the variance in Equation (8) to the
similar bound in the tight analysis (e.g., Equation (2.9), Theorem 2.1 in Canonne (2022)) of the standard
i.1.d setting. It would appear that we are missing a term of the form ff||pavg||2 which helps reduce the
variance. In fact, if we had a term of this form, we would be able to shed the O(1/e*) factor to obtain the
optimal sample complexity of O(\f/s ) even in the non-i.i.d setting. The main hurdle in the analysis above
for getting this crucial variance-reducing term can be seen in Equation (6). In the i.i.d setting with one
distribution p, the terms of the form (p,, py)(P,, P.) are all the same and equal ||p||3 (which is at least Fg)
But in our setting, these terms can even be 0 (if p,, Py, P. have disjoint supports), and hence, we cannot
conveniently lower bound the contribution of these terms in reducing the variance. That is why, for lack of

a better bound, we had to drop all these (6(5) many/) terms in going from Equation (6) to Equation (7),

which ultimately results in the stated sample complexity.

4 Identity testing from non-identical samples

We now prove our result which reduces the problem of identity testing to uniformity testing. Such a reduction
for the i.i.d. setting is already known (Goldreich, 2016) (see also (Canonne, 2022, Section 2.2.3)), and we
adapt the same reduction for the setting of non-identical samples. In particular, we use the same reduction
functions from that of the i.i.d case and show that they work even in the case of a sequence of changing
distributions. A more formal statement of this reduction, along with its proof for a sequence of distributions
is provided below.

10
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Lemma 1.4. Given an arbitrary reference distribution q supported on < k elements, there exists a pair
(Dg, Uy) that maps distributions and samples over [k] to distributions and samples over [4k], and satisfies the
following,

o For a sequence of distributions q, ..., gp such that avg(qy, ..., qp) = g, the map @, satisfies,

avg(Pq(qy), .- -, Polgr)) = Unif (4k).

o For two sequences of distributions pi,...,pk and p?,..., p%, the map ®, satisfies,

dTv(avg(pl, . ,plT)7 avg(p27 ... ,pQT)) .

»Jk\’—‘

dTV(an((bq(p%L cees (I)q(p%“))v avg(‘l)q(p%), cees (I)q(PQT))) 2

Proof. We divide the definition of our maps (®q, ¥p) into three parts:

def

Dy = Dy o0 D

def 1 2 3
Vo S ul 0w out
We first define the map ®4, which we divide into three parts ®3,®Z and ®}. The map ®J : Ap — Ay is

defined as follows,
1 1
3 _ + .
oy(p) = 2p—|— 2Un1f(k) .

Let k' = 4k and r = ®2(q) = 3q + 3 Unif (k). The map ®Z : Ay — Ay is defined as follows,

(12)

K@) s _
H2 (p)(z) _ { E7r () p(ZL)k/T( N . for all 1 E [k]
1= Zje[k] k’r(;) -p(j) fori=k+1.

Let s = ®2(r) = ®2(®2(q)) and define k; = k" - 5(i) for i € [k + 1]. Let Si,..., Spq1 be any partition of [K]
such that |S;| = k; for all i € [k + 1]. Then the map @}l : Agtr1 — Ay is defined as follows,

(I>1 Z p 1(i e 5;) .

]6 [k+1]
Using these definitions, we now prove the two claims stated in the theorem.

Claim 1: For any ¢ € [T], let,
Xy = Q)g(qt), yr = @Z(xt) and z; = @é(yt) .
In the following, we show that,
avg(Pq(a'), ..., Pqlar))(i) = ave(zr, ..., z) = Wk -

We prove the above statement entry-wise, and we consider ith entry of the average distribution. We divide
the proof into two cases. Let i be such that ¢ € S; for some j € [k], then note that,

. 1 y
avg(q)q(ql),...,(I)q(CIT))(Z) =7 Z 2 (i =7 Z ! ) (1€ Sj),
te([T] te[T] 3 e[k+1]
k() )
) _ 15~ Sy #)
/ / 3 9
Tk j Tk o s(4)
LE"r(5)] . .
_ | ZM: L)
Tk e ] Tk r(j)
te[T] 1% te[T]

11
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1 29:(j) + 5 Unif (k) (5)
Tk tez[;} r(J)

1 dal) + AURER)G)
Tk r(J)

_ 1

K

In the second equality, we substituted the value z; = @a(yt). In the third equality, we used the assumption
that ¢ € S;. In the fourth and fifth inequality, we substituted the values of y, and s respectively. We simplified
the expression in the sixth equality and substituted the value of x; in the seventh equality. In the eighth
equality, we used the definition of q = avg(qy,...,qr). In the final equality, we used the definition of r.

Let @ € Sk4+1, then note that,

avg(Bq(a)). - alar))() = = 3 ali) = = 3 = ;((.,))l(z € 5,),
te(T] te[T] j'E€lk+1] J
k'r(j .
_ wplk+1) 1 3 1_Zj€[k]%'$t(3)
TK fz sk+1) T S s(k+1)
1 1 Lk'r(5)]
/ Z - Z Tl 5 t( ) s
Tk s(k+1) ol ( b E'r(5)
L LK'r(j)] z4(j)
= -~  _.T.|l1= Z Z2 Z 7
/ /
Tk s(k+1) ( bt k' (5) e T
L1 \kr()) 1 . 1 .. .
P LT X ) Ga0) + g UniERG) |
JE[K]
1 1 LK'r(5)] 11
S Wty 1T =———— s(k+1)
/ ; S
k' s(k+1) n k K s(k+1)
_1
=

In the second equality, we substituted the value z; = @}l(yt). In the third equality, we used the assumption
that i € Siy1. In the fourth equality, we substituted the values of y; and simplified the expression in the
fifth and sixth equality. In the seventh equality, substituted the value of x; and used the definition of
q =avg(dy,-.-,qr). In the eighth and ninth equality, we used the definition of r and s respectively.

Combining the above two derivations, we have that, for all i € [k + 1],

1 1

avg(Pq(ql), ..., Pq(ar))(@) = ==

Therefore,
avg(Pq(q'), ..., Pq(ar)) = ua -

Claim 2: For any ¢ € [T], let,

af = 3(p]), yi = 4(af) and 2 = @q(yf) for a € {1,2} .
In the remainder of the proof, we show that

drv(avg(zy, ..., 27),avg(21, . .., 27) = dov(avg(®(p1), ..., ®(py)), avg(®(P1), ..., ®(PT))

12
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1
Z szV(an(pL sy p’;)7 an(p?, e 7p?l“> .
It is immediate that,
dTV(an(z%a IR 271“)’ an(z%v LR Z%) = dTv(an(yi, ) y%“)a an(y%a s 7y%)) :
Furthermore, note that for i € [k],
o aviy o Lo K@) K@) 1 L
an(yl L) yT)(Z) = T Z ]{'T’(’L) Ty (7’) = k/’l"(’é) ' (ipavg(l) + §Un1f(k;)(z))
t

and,

avg(yy, ..., y7r)(k+1) Z -y Lk/r(g:” -xf (J)

' jem K@)
-3 k- (3Rl + FUnit()()

In the following we bound dry(avg(yi,...,yr),avg(y?,...,y%)), which in turn bounds the quantity
drv(avg(zi, ..., z5),avg(27, ..., 2%).

dov(avg(yt, .-, yr) avg(yi, - .-, y7))

=Y. kr; ;pivg( )+ %Unif(k)(i)) - L::S;J ( ;pivg( )+ %Unif(k)(i)) ,
i€ [k]
LK'r(7)] 1
+|1- = ( aVg( i) + Umf( )(4))—
=t k'r(4) oP
()] 1 N S
T k() ) (ipENg(]) + iUmf(k)(J)) ;
Ziﬁﬁﬁw)%MHZ%%%MU)%ML
i€ k] FEk]
k'r(e , 1 .
= 2 Lk/TErL;J |p;vg(l) - pavg 5 Z;] |Pavg pavg( )| .

In the first equality, we substituted the values of avg(y{,...,y%) for a € {1,2} that were computed earlier.
In the second and third equality, we simplified the expression. The last inequality follows because (i) > i,
k'r(i) > 2 and |k'r(i)] > k'r(i) — 1. Putting it all together, we have that,

dry(avg(®(py), ..., ®(pr)), avg(®(p1), - . ., ®(PT))
> idfrv(avg(pi, ..., Pr),avg(pi,....P7)

and we conclude the proof for this case.

Sampling: In the remainder of the proof, we state the maps U3, 2 ¥! which help us generate the samples
from the mapped distributions. The definitions of these sampling maps are pretty straightforward and we
state them below to conclude the proof.

W3 : Given i € [k], return ¢ with probability 1/2 and a uniformly random element of [k] otherwise.

W2 : Given i € [k], return i with probability L& TElgj and k + 1 otherwise.

Wy : Given i € [k + 1], return a uniformly random element from ;. O

13
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5 Lower bound for pooling-based estimators

In this section, we prove the indistinguishability result for pooling-based estimators given in Theorem 1.6.
First, we observe that uniformity of the average distribution is a symmetric property, and thus, labels of
the samples do not matter for a testing algorithm. Thus, without loss of generality, we can assume that
the testing algorithm takes as input the pooled multiset of samples and operates only on the fingerprint
of the pooled multiset (refer to Appendix E for a formal discussion on this). Here, the fingerprint is the
count of elements that occur exactly zero times, once, twice etc. In what follows, we will construct two
sequences of distributions: one whose average is the uniform distribution and another whose average is
far from uniform. However, we show that the total variation distance between the distributions of their
corresponding fingerprints is small, implying impossibility of uniformity testing with pooled samples. Below,
we describe the key proof steps:

Step 1: We construct two sequences of distributions a and b (Definition 8) such that avg(a) is uniform
and avg(b) is far from uniform (Claim 5.1). Moreover, these sequences are chosen in such a way that when
we draw 2 samples from each distribution in the sequence, no element can be observed more than 4 times in
the pooled multiset. The building blocks needed for defining these sequences of distributions are introduced
in Lemma 6.

Step 2: Next, we show that when we draw 2 samples from each distribution in the sequences, the fingerprints
of the pooled multisets have the same mean (Claim 5.2), and similar covariances (Claim 5.3). A minor detail
here is that we show this for the collision counts instead of fingerprints, but this is not an issue, as one can
use an invertible linear transform to relate the two (Appendix D).

Step 3: We want to eventually show that the distributions of fingerprints are close, and hence cannot be
distinguished. For this, we will first show that the distributions of these fingerprints are close, in total variation
distance, to the multivariate Gaussian distributions G5 and Gy, of corresponding mean and covariance, that
have been discretized by rounding all probability mass to the nearest point in the integer lattice (Lemma 11).
We show this via a CLT (Lemma 10). One slight complication in proving this CLT is that in our setting, the
fingerprints no longer correspond to a generalized multinomial distribution, and hence we cannot directly
leverage multivariate CLTs for such distributions (e.g., Valiant & Valiant (2011)). Instead, we will show that
the distribution of fingerprints is represented as a sum of independent samples, supported on the all-zero
vector, the basis vectors, and the vector [2,0,0,...]. Our proof essentially “splits” each distribution into the
component supported on the zero vector and the basis vectors, and a component supported on the zero vector
and the [2,0,0,...] vector. The portion supported on the basis vectors is a generalized multinomial, and
hence is close to the corresponding discretized Gaussian by the CLT in Valiant & Valiant (2011), and the
remaining portion is simply a binomial, scaled by a factor of 2. We then argue that the convolution of these
distributions is close to a discretized Gaussian.

Step 4: Having shown that the distributions of fingerprints are close to corresponding discretized multivariate
Gaussian distributions, we are left with the tractable task of showing that the TV distance between these two
(discretized) Gaussians is small. This is shown in Lemma 12 and relies on certain technical results proved in
Lemma 16 and Lemma 17. Here, we use the fact that the two collision-count distributions have the same
mean and similar covariances as discussed in Step 2 above. Finally, a triangle inequality yields the desired
result (Lemma 13).

We now proceed towards the proof details of the above steps. We start by defining some distributions which
are the building blocks for our hard instance. We will tile up these distributions over disjoint supports to
form the overall hard instance

Lemma 6 (Building block). There exist distributions py, Py, 4y, G5, T1, T2, 81, S2, each supported on m elements,
satisfying the following:

(1) avg(py, py) = avg(ry, r2) = Unif(m).

14
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(2) drv(avg(py, P2),ave(qr, @) = 5
drv (avg(r, r2), avg(s1, 82)) = ¢

e

(3) Let FP(p) = [FP(p)2, FP(p)s, FP(p)4] be the random variable representing the tuple of counts of
elements observed exactly 2 times, 3 times and 4 times respectively, when we draw ¢ = 2 samples
i.i.d each from p; and p, (i.e. we obtain a total 4 samples). Note that FP(p) is supported on
[0,0,0],[1,0,0],[0,1,0],[0,0,1],[2,0,0]. Similarly, define FP(q),FP(r), FP(s). Furthermore, let

Cp = [h,ch, ] be the 3-dimensional vector of 2-way, 3-way and 4-way collisions observed when we
draw ¢ = 2 samples i.i.d each from p, and py*. Similarly define Cy, Cy, Cs. There exists an o € (0,1)
such that,

ElaCp+ (1 — a)Cy] = E[laCy+ (1 — a)Cs).
ElaFP(p) + (1 - a) FP(r)
=E[aFP(q)+ (1 —a)FP(s)] .

Proof. First, we describe the distributions p, py,r1,r2. Let p; = py € A, be the uniform distribution on m

elements. Let r; € A,, be such that it assigns mass 2 each on the first %2 elements of [m]. Let ra € A, be

such that it assigns mass % each on the last % elements of [m]. This is illustrated more clearly in Figure la.
It is clear that avg(p;, py) = avg(ry,r2) = Unif(m), and hence part (1) of the lemma holds.
1lte

m

Next, we describe the distributions q;, qy,s1,82. Set € = % Let q; € A,, be such that q; has a mass
1m;5 each on the remaining 3 elements. Next, consider q; € A

defined as follows: Of the first 3 elements, q, has mass % each on the first Zth fraction, and a mass 1t&

JF

each on the first 4 elements, and a mass

3

3

. h : o
each on the remaining %t fraction. Similarly, of the latter % elements, g, has a mass

1—¢

each on the first

. h
s each on the remaining %t fractlon. Further, we set s; = q; and S2 = qy. This
is illustrated more clearly in Figure 1b.

zth fraction, and a mass
We can readily see that |[avg(py, pa) — avg(qy, ao)ll1 = [lavg(ry,r2) — avg(si,s2)|li = §. Recalling that
€= %, part (2) of the lemma holds.

Now, we prove the last part. Fix 8 = L. Let ¢3, ¢§, ¢f denote the number of 2-way, 3-way and 4-way collisions
respectively when we draw 2 samples from q; and 2 samples from qs.

=2 |3 (229) 4 (1;;)2]
()05 () ()]
e () (5

S EA )]

4
4

+
B[] =

1—B)m |14\ [1-e\* 1+e\?[(1-¢\? 3
E[ed) = | =2
[es] 2 ( m > + ( m > +pm m m 4m3
Since q; = s1 and q, = s9, for any a € (0, 1),
cg s a02 (1-a)d 11/2m
E 03 =E || =E a03 1—a)s| =|3/m?|. (13)
cg o act+ (1 —a)d 3/4m?

Im-way collisions also formally defined in Appendix D.
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P1=P2 q; = S1
1 11 11
T — i1 Lie .
l | “m m
1 | H J
m
................................................ 1 n m
2
S
22 ... 2 q2 - 52
™ ™
L . J 1-¢ 1+¢ 1+e 1-¢
1 m m m m m m
2 L 1 |
_______________________________________________ 1 m m
ro 2
- [}
7m 7m
22 .. 2 32 3 2
™ =
1 : | P e
1 m
2 m avg(ay, z) = avg(s1, s2)
""""""""""""""""""""""""""" 1 1+e 1 1-¢
m m m m
avg(py, Py) = avg(r1,T2) L ? J
1 m m
111 11 2
e -
[} [}
' : 7m 7m
1 m s 2 8 2
(a) Average is uniform (b) Average far from uniform

Figure 1: Building block for the hard instance defined in Definition 8.

Now, set a = %. Say we toss a coin with bias «. If we observe heads, we will draw two samples each from p,

and p,. If we observe tails, we will draw two samples each from r; and ry. We can calculate the expected
number of 2/3/4-way collisions in the 4 samples obtained via this process.

E[ac5+(1—a)cg]=a(3>;+(1_a). (2+2) _2a+4 11

m m m  2m’
4
Eloct + (1-a)ef] = 22 = 2
. o 3

These are precisely the expressions for the expectations in Equation (13). Finally, the collision counts are
related linearly to the fingerprint (Lemma 14), and this completes the proof of the part (3). O

Remark 7. Note that as we draw only 4 samples from the building block given above, the number of elements
that occur exactly zero times and exactly once are a deterministic function of the number of elements that
occur exactly 2,3 and 4 times. Furthermore, since we will tile up the above instance over disjoint supports
of m elements, no element will ever occur more than 4 times. Thus, we restrict our attention only to the
fingerprint of elements appearing 2,3 and 4 times.

Now, we propose two sequences of distributions a = (a;, -+ ,ar) and b = (by, -+, by) such that avg(a) is
uniform and avg(b) is far from uniform.

Definition 8. Divide the support [k] into n disjoint blocks, each of size m, so that k = mn. Fach block
corresponds to the support of 2 distributions in a sequence, so that the total number of distributions T = 2n.
Assume that k is large enough and m is a large constant independent of k. k being large enough and m being
a constant ensures that T = ©(k) is also large enough.
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First, we specify each block in the first an many blocks (where a= Z and n will be some multiple of 4) —
fiz the it" such block of size m, where 1 <i < an. Let p,ph, g, g, correspond to distributions p;, Py, q;, s
respectively (as defined in Lemma G6), supported on this block. For the first distribution supported on this
block, that is for t = 2i — 1, we will set ag;— 1= = pi, bgZ 1 = .. For the second distribution supported on this
block, that is for t = 2i, we will set az; = p2, by = @

Now, we specify each block in the remaining (1 — a)n many blocks — fix the i" such block of size m, where
an+1<i<n. Let ¥i,rh s\, s correspond to distributions 71, T2, 81, 82 respectively (as defined in Lemma 6),
supported on this block. For the first distribution supported on this block, that is for t = 2i — 1, we will set
azi_1 =1, by 1= = 8¢. For the second distribution supported on this block, that is for t = 2i, we will set
az; = TQ; b21 - 32

These sequences a and b are the entry-point to Step 1 in the proof steps described above.

Claim 5.1. Let a and b be the sequences constructed in Definition 8. avg(a) is uniform on [k] = [mn] and
avg(b) is far from uniform with dry(Unif(k), avg(b)) = ﬁﬁ

Proof. Observe that from Lemma 6, in every block 1 <4 < n, avg(ag;_1,as;) = Unif(m). Furthermore, since
all blocks have disjoint supports of size m, we conclude that avg(a) = avg(ai,...,a,) = W, = Unif (k).

Also, from Lemma 6, in every block 1 < i < n, ||avg(agi—1,a9;) — avg(ba;—1,bo;)|1 = ﬁ. This immediately

gives us ||avg(ay, agy,) — avg(by, bay)||1 = ﬁ. Thus, drv(avg(a),avg(b)) = dpy(Unif(k), avg(b)) = ﬁ.

O

Next, we proceed to Step 2 in the outline above, which shows that the first two moments of the collision
vectors are close.

Claim 5.2 (Means match). Let C, and Cy be the 3-dimensional vectors of 2-way, 3-way and 4-way collisions
observed for the sequences a and b respectively over all the n blocks. Then,

E [Ca] =E [Cb] .

Proof. Let Ca, be the 3-dimensional vector of 2-way, 3-way and 4-way collisions observed for a in the i‘t
block (i.e. 2 samples each from ag;_; and ap;). Similarly, define Cp,. Then, the total number of 2-way, 3-way
and 4-way collision across all n blocks will be Zie[n] Ch, and Zie[n] Cp,;. Now, recall that exactly an many
blocks are of one kind, where each Ca, = Cp (respectively, Ch, = Cq) independently, and the remaining
(1 — @)n many blocks are of the second kind, where each C,, = C; (respectively, Cy,, = Cs) independently.
Thus we have that

=n(E[aCp + (1 — )Cy))

i=an+1

> Ca | =E angr Z Ca,
i€[n]

= n(E[aC'q + (1 —a)Cy)) (from Lemma 6)

=K ZCbJF Z Cb =E ZC’b

i=an+1 1€[n]

O

Claim 5.3 (Covariances match approximately). Let C, and Cy be the 3-dimensional vectors of 2-way, 3-way
and 4-way collisions observed for the sequences a and b respectively over all the n blocks. Then the covariance
matrices are as follows:

711/771 ’Y12/m2 ’Y13/m3 Oéu/m2 0412/7713 0413/7714
Y[Col =n 712/771(2 722/771(2 Vgg/m? +n |ajp/m®  aoa/m3  asz/mt|,
Y13/m?  ya3/m?  33/m? aiz/m* agg/mt  asg/mt
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Y11/m ”Y12/m2 713/7713 0/11/7712 0/12/7”3 0/13/7”4
S[Chl =n |m2/m? qa2/m* vas/m3| +n|aly/m3 by /mP by /mt]
Yis/m?  Yas/mP  y3z/m3 oz/mt abs/mt oy /mt

with [aj|, |a;], |vi;| bounded by constants independent of m (for m large enough).

Proof. As in Claim 5.2, we have that C, = Zie[n] Ca, and Cp = Zie[n] Cy,, where Cy, is either Cp or Cy,
and Cp, is either Cq or Cs. Further, since the samples in each block are independent, the covariances add up.
Thus, we only need to compute the covariance in one block, which we recall supports two distributions and
contributes 4 samples. Suppressing subscripts for now, we have that

E[c3] — E[ca]? Elcacs] — E[c2]Eles]  E[ecaca] — E[ea]E[cq]
Y[C] = |E[eacs] — E[ez]Eles] E[c3] — Eles)? Elescs] — Eles]Ele)
Elcacs] — E[ea]E[cs]  Elescs] — Eles]E[ed] E[c3] — E[c4)?

Let Y, be the indicator that the elements at indices a and b collide. Note that 1 < a,b < 4, since we have 4
samples in each block. Then,

E[c;] =E (ZEI;) ZYz‘j

a<b i<j

=E[> Y346 Y Yuet+6 > YauVu

La<b a<b<c a<b<c<d
=E > Yu +6-E[Z Yabe | +6 - E[Yi2] - E[Yaq]
La<b a<b<c

= E[ca] + 6 - E[cs] + 6 - Pr[first two samples collide] - Prlsecond two samples collide].

In a similar manner, we can obtain the following expressions for the remaining terms:

E[c3] = E[cs] + 12 - E[c4]
Elcj] = Elcd]

E[CQCg] =3- E[Cg] +12- E[C4]
E[CQC4] =6- E[C4]

E[0304] =4- E[C4]

Thus, we have expressed all the entries in the covariance matrices in terms of just the expected number of
2-way, 3-way and 4-way collisions. We have already computed explicit expressions for these for each of p, q,
r and s in the proof of Lemma 6. Plugging these in, we obtain

T
e A
| 73 3 3 ma mo o
(40 0 500
X[Ce]=10 0 0|+|0 0 O
[0 0 0 0 0 0
_ B I " m 5
E[Cq] = X[C{] = woowe ngs]‘F _2§§3 m%__gnﬂ Ty
L2m3 3 4m3 8m4 4mb 16ms5
Finally, recall that
Y[Cal =% ZC"‘% +3 Z Ca, | = anXZ[Cp] + (1 — a)nX[Cy]
i=1 i=an-+1
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Y0 =% +X

an
S,
=1

z": Cbl.] = anX[Cq] + (1 — a)nX[Cy]

i=an-+1

for a = %, and hence, substituting the values above, we get

ril 9 9 7 r__5 _9  _ .9
2 2 2m3 2m2 3 2m4
L2m3 m3  4m3 ] L 2m? T mb 4mS
r11 9 9 T r 5 15 _ 33
2 2 2m3 47?2 2m3 8m 4
BCul=n | g g | tn|ap wme ag
I T s I R i
L2m3 m3 4m3 | L 8m? 4mb 16mS

For the terms 9/m?3 — 12/m* and 9/m? —9/m*, we can write them as (97717123/ ™) and gfiém respectively. Thus
for m large enough, we can write all the terms in the matrices in the form specified in the claim, completing

the proof. O

We now prove a CLT (Step 3) which helps us approximate the distributions of the fingerprints by multivariate
Gaussians having the same mean and covariance.

Lemma 9. Consider a c-dimensional distribution (for ¢ < 10) supported on [0,0,...,0], the c-dimensional
basis vectors, and [2,0,...,0], such that the masses on the non-origin support points are fized positive constants,
and the mass on origin [0,0,...,0] is at least 1 — 10716, Then for ¢ large enough, the distribution of the sum

of £ i.i.d samples from this distribution has total variation distance at most 0.002 from the Gaussian with
corresponding mean and covariance, whose mass has been discretized to the mearest point in the integer lattice.

Proof. Let ug = Pr([0,0,...,0]), and u; = Pr([1,0,...,0]),us = Pr([0,1,...,0]),...,u. = Pr([0,0,...,1])

and v = Pr([2,0,...,0]). We draw a sample from this distribution as follows: first flip a fair coin, and if the
coin lands heads, sample from the distribution over [0,0,...,0] and the basis vectors, given by respective
probabilities 1 — 2 25:1 ui, 2u1, 2Us, . . ., 2u.. If the coin lands tails, we sample from the distribution over

[0,0,...,0],[2,0,...,0] with respective probability 1 — 2v,2v. Note that this sampling procedure yields a
sample from the original distribution. Here, we are using that v, ;_; u; are both at most 10716 for the
probabilities to be well-defined.

Given ¢ independent samples sampled from the distribution in this way, let us consider the distribution of
the sum of the samples, conditioned on exactly ¢ of the ¢ fair coins having landed heads. Note that for large
¢, with probability at least 0.999, t € [£/2 — 4V/4,£/2 4 4/1].

Thus for all ¢ in this range, if we can show that the sum of ¢ i.i.d. samples has TV distance at most €
from the desired discretized Gaussian, this would imply a total variation distance of at most 0.001 + €
without conditioning on ¢. Thus we would focus on the distribution conditioned on ¢ taking a value in

[0/2 — 40, £/2 + 4V/1).

Conditioned on a value of ¢, the distribution corresponds to the convolution of ¢ independent draws from
the multinomial distribution given by the distribution corresponding to the coin landing heads, and the
distribution corresponding to the £ —t samples from the distribution supported on [0,0,...,0] and [2,0,...,0],
which is a binomial random variable in the first coordinate, scaled by a factor of 2.

Let us first reason about the ¢ independent draws from the multinomial distribution. Leveraging a multivariate

CLT, the distribution of the sum of the ¢t draws from the multinomial will have total variation distance at
2/3

most O (%) from the multivariate Gaussian of corresponding mean and covariance, discretized to the

nearest point in the integer lattice ( (Valiant & Valiant, 2011, Theorem 4); see Section F.2 for a restatement).

Here, 02 denotes the smallest eigenvalue of the covariance of the sum vector of the ¢ draws which will be Q(t).
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To see this, observe that this sum vector has mean ¢ - [2u1, ..., 2u.], and covariance
2u (1 — 2uy) —4uqus —4ujus ... —4uqu,
—4uius 2ug(1 — 2uz) —duguz ... —4dusu,
t- .
—4uqu, —4ugu, —dugu. ... 2u(1 = 2u.)

The determinant of the matrix above, without the ¢ scaling, is exactly

2y - Qg - 2 - (1—22%).
=1

For constant ¢, and by the assumption that u; > 0 for all ¢ and Y ;_, u; < 107!®, this determinant is a
positive constant independent of . This implies that the smallest eigenvalue of this (positive semidefinite)
matrix is at least (and at most) a positive constant. Together with the scaling of ¢, we get that o2 = Q(t),
meaning that o = Q(v/£). Thus, the total variation distance goes to 0 as t gets large. Consequently, we take
¢ to be large enough so that for each ¢ under consideration, this distance is at most 107°.

Similarly instantiating the CLT on the sum vector of the £ —t samples corresponding to the coin landing tails,
which, recall is simply a scaled binomial random variable in the first coordinate (and zero elsewhere) yields
that for large enough ¢, this vector has TV distance at most 107> close to a Gaussian having the corresponding
mean and covariance (discretized to the closest integer) in the first coordinate, and zero elsewhere. Also, note
that the variance of first coordinate is O(¢) (for ¢ in the assumed range) which is large for ¢ large enough.

Thus, the sum of ¢ vectors corresponding to coin landing heads and ¢ — ¢ vectors corresponding to coin landing
tails has distance at most 2 - 10~ from the convolution of the corresponding discretized Gaussians. Now we
can apply Lemma 21 which gives us that the convolution of the discretized Gaussians here has distance at
most 107° to the discretization of the convolution of two Gaussians (here we use the fact that the variance
of the first coordinate of the vector corresponding to coin landing tails is large enough and all its other
coordinates are zero). By a triangle inequality, we get that the sum of ¢ vectors corresponding to coin landing
heads and ¢ — t vectors corresponding to coin landing tails has distance at most 3 - 107 from the discretized
Gaussian of corresponding mean and covariance.

So far, we have shown that for any ¢ € [(/2 — 4v/7, /2 4 4+/f], sum of t vectors corresponding to coin landing
heads and £ — t vectors corresponding to coin landing tails has distance at most 3 - 1075 from the discretized
Gaussian of corresponding mean and covariance. In Lemma 23, we show that all these Gaussians have TV
distance at most 1075 from the desired Gaussian (the Gaussian having mean and covariance same as mean
and covariance of sum of ¢ i.i.d. samples from our original distribution). Lemma 23 uses the fact that ug is
close to 1 and c is a small constant. This Lemma, essentially involves showing that the difference between 3"
coordinate of the means of the Gaussians is roughly u;v/¢ whereas the standard deviation is roughly m\/i
Thus for ug large enough, u; will be small, and the standard deviation will be much larger than the difference
between the means.

Combining the above arguments, we get that sum of ¢ i.i.d. samples from our distribution has TV distance at
most 0.001 4+ 3-107° 4+ 107> < 0.002 from the discretized Gaussian with corresponding mean and covariance.

O

Lemma 10. Consider two distributions supported on [0,0,0], the basis vectors, and [2,0,0] such that the
proability of [0,0,0] is at least 1 — 1071, Let for the first distribution, mass on all these vectors is guaranteed
to be non-zero, and for the second distribution, mass on [0,0,0], [1,0,0] and [2,0,0] is guaranteed to be
non-zero. Then for constant o € (0,1), and n large enough, the distribution of the sum of an i.i.d samples
from the first distribution and (1 — a)n i.i.d samples from the second distribution has total variation distance
at most 0.01 from a Gaussian with corresponding mean and covariance, where the mass has been discretized
to the nearest point in the integer lattice.

Proof. Using Lemma 9, we know that the sum of an i.i.d. samples from the first distribution and sum of
(1 — a)n ii.d. samples from the second distribution has TV distance at most 0.002 from the corresponding

20



Published in Transactions on Machine Learning Research (11/2025)

discretized Gaussians. Here, for the first distribution we apply Lemma 9 with ¢ = 3 and for second distribution,
we use ¢ < 3 depending on whether it has non-zero mass on [0,1,0] and [0,0, 1]. All that remains, is to prove
that the convolution of two discretized Gaussians is close, in total variation distance, to the discretization
of the convolution of the two Gaussians. This is true for any Gaussians in constant dimension such that
the minimum eigenvalue of covariance of at least one of the Gaussians is super-constant (Lemma 18). In
our case, the Gaussian corresponding to the sum of an samples from the first distribution has minimum
eigenvalue O(n). This is because the per-sample covariance for the first distribution ¥; has det(3;) > 0 and
[[£1]] = O(1) (both independent of n), so with X, = an %1 we get Anin(Zan) = an det(X1)/||X1]|? = O(n)
(see Lemma 22 for detailed proof). Taking n to be large enough, we get that convolution of the two discretized
Gaussians has distance at most 107°, to the discretization of the convolution of the two Gaussians. Applying
a triangle inequality, we get that the sum of n i.i.d. samples produced as above has TV distance at most
0.004 + 10~° < 0.01 from the corresponding discretized Gaussian.

O

Let FP(a) and F'P(b) be 3 dimensional random variables containing the number of elements observed exactly
2, 3 and 4 times, for samples drawn from a and b respectively. Let G, be a random variable corresponding
to picking a sample from gaussian with same mean and covariance as F'P(a) and rounding each coordinate
to the nearest integer. Similarly, Gy, corresponds to FP(b).

Lemma 11 (Fingerprints close to discretized Gaussians). drvy(FP(a),G,) < 0.01 and dry(FP(b),Gp) <
0.01.

Proof. Recall that F'P(a) and F'P(b) are 3—dimensional random variables containing number of elements
appearing exactly 2, 3 and 4 times in samples drawn according to a and b respectively. Due to the structure
of a and b (see Definition 8), we can decompose FP(a) and FP(b) as

n

FP(a):ZFP(piH > FP(r),

i1=an+1

FP(b) =Y FP(q')+ Y  FP(s).
=1

1=an-+1

Here, FP(p?) denotes the fingerprint vector when we obtain 2 samples from p} and 2 samples from p5. Note
that as we vary i, F'P(p?) corresponds to independent samples from the same distribution. FP(q?), FP(r?)
and FP(s') are defined analogously. Note that each of FP(p'), FP(q'), FP(r') and FP(s') are supported
on [0,0,0], the basis vectors and [2,0,0]. Here, FP(p%), FP(q'), FP(s’) has non-zero mass on all of these
vectors, and F'P(r?) has non-zero mass on [0,0,0], [1,0,0],[2,0,0].

Also, note that FP(p*) = [0,0, 0] corresponds to the event that when we draw 2 samples each from p} and p,
the 4 samples so obtained are distinct. The probability of this event is equal to (1 —1/m)(1 —2/m)(1 —3/m)
which is at least 1 — 10716 if we choose m to be large enough. Similarly, one can verify that for m large
enough constant, for each of FP(q'), FP(r") and FP(s’), the probability of these random variables being
[0,0,0] is at least 1 — 10716,

By applying Lemma 10, we get dry(FP(a),Ga) < 0.01 and dpy(FP(b),Gp) < 0.01, which completes the
proof. O

Finally, we conclude with the calculations required in Step 4 of the outline.
Lemma 12 (Discretized Gaussians are close). drv(Ga, Gp) < 0.02.

Proof. Let G% be a random variable corresponding to picking a sample from gaussian with same mean and co-
variance as F'P(a) (without any rounding). Similarly, G}, corresponds to F'P(b). By data processing inequality,
rounding each coordinate can only decrease the total variation distance, drv(Ga, Gb) < drv(Ga, Gy)-

By Lemma 14, given 4 samples from a finite support, there exists an invertible linear map, say A, such that
we can go from a vector of fingerprints to vector of collisions by applying A to the vector of fingerprints.
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Since we can decompose a and b into disjoint supports from each of which we are getting 4 samples, applying
A also lets us go from vector of fingerprints to vector of collisions for samples obtained from a and b.

We apply A to random variables G, and G},. Since A is invertible, dpv(AG,, AGL) = drv(Gh, Gy,). Here
AGY), is a 3 dimensional Gaussian random variable with mean and covariance same as the mean and covariance
of the vector containing number of 2-way, 3-way and 4-way collisions in the samples produced by a. AG}, is
related to b in the same fashion.

From Claim 5.2, we know that expectations of AG, and AG}, match. Let us denote the expectation by p.
From Claim 5.3, we know that covariances of AG, and AG}, are as follows:

an/m? alg/mf” a13/m* o /m? oy /m3 0/13/m4
Y(AGL) =31 +n |aa/m?  a/m3 agz/mt|, X(AG}) =31 +n |aly/mP aby/m3 by /mt|
aiz/m*  aoz/m* azz/m? als/mt by /mt ol /m?

where
y/m mz/m?* yis/m?
S1=n|vi2/m? yaa/m?  ye3/m?
713/m3 723/m3 733/m3

Let G1 be a random variable distributed as a Gaussian with mean g and covariance ;. From Lemma
17, which is a technical lemma that bounds the TV distance between Gaussians having the same mean
and similar covariances, and whose proof is given in Appendix F, we have that drv(G1, AG,) < 0.01 and
drv(G1, AG}) < 0.01 (compared to the lemma statement there, covariances here have an additional factor
of n but that does not change the TV distance). Using triangle inequality, we get dpv(AG,, AGY) < 0.02.
Since dry(Ga, Gpb) < drv(Gh, Gy,) = drv(AG,, AGY), this completes the proof. O

Lemma 13 (Fingerprints are close). drv(FP(a), FP(b)) < 0.04.

Proof. drv(FP(a), FP(b)) < drv(FP(a),Ga) + dry(FP(b),Gp) + dryv(Ga, Gb) by triangle inequality
which is at most 0.04 due to Lemma 11 and Lemma 12. O

With this, we have shown that the TV distance between the distribution of fingerprints of the two sequences
is small, even when the total variation distance between the corresponding average distributions is at least
some constant. We can then invoke the Neyman-Pearson lemma (Neyman & Pearson, 1933), (Canonne, 2022,
Lemma 1.4) to say that no testing algorithm can distinguish between these two cases with high probability.
This concludes the proof of Theorem 1.6.

6 Conclusion

We show that sublinear sample complexity property testing extends to the non-i.i.d. setting where the samples
are drawn from different distributions, and we are interested about the average distribution. In particular,
natural collision-based testers with just a constant number of samples from each distribution suffice to solve
the identity and closeness testing problems. While our analysis is optimal with respect to the support size, it
is still sub-optimal with respect to the distance parameter e—resolving this is an interesting future direction.
Another direction could be to chart the landscape of the problem when T (number of distributions) is fixed,
and ¢ (number of samples from each distribution) varies.
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A Learning the average distribution

In this section, we show that the sample complexity of learning the average distribution in the setting of
non-identical samples is asymptotically equal to that of the i.i.d. setting.

Claim 1.1. Given access to T distributions, pq, ..., pp, each supported on a common domain of size < k,
for any € > 0, given ¢ = 1 samples drawn from each p;, one can output a distribution p,,, such that with
probability at least 2/3, drv(Payg, Pavg) < &, provided T = O(k/e?). Furthermore, Q(k/e?) samples are
necessary, even if p; = ... = pp = Py, for such a guarantee.

Proof. The lower bound for the setting of non-identical samples follows directly from the lower bound of

the standard i.i.d setting, that is if we let p, = p,Vt € [T]. For the upper bound, we follow the proof in
(Canonne, 2020, Theorem 1). Consider the empirical estimator given by,

Puvgli) = 7 31X =]
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We have that

]EHf)avg_pangz T2 Z Z pt l_pt( ))

i te[T]

= zzzpt

i te[T]
Al Z pavg T

Thus, by Markov’s inequality, the squared f2 distance of this estimator from p,,, is smaller than % with

probability at least % By Cauchy-Schwartz, the ¢; distance of this estimator from p,,, is at most % with
probability at least 2 and thus, this distance is smaller than e if T = O(k/<?).

O

B Impossibility Result with ¢ =1

Claim 1.2. Given access toT < k/2 distributions, py,..., Py, and ¢ = 1 sample drawn from each distribution,
no tester can distinguish the case that the average distribution, p,.,, is the uniform distribution of support k,
versus has total variation distance at least 1/4 from Unif(k), with probability of success greater than 2/3.

We prove the following equivalent claim.

Claim B.1. For all ¢; > 0, there is a k > ¢1 such that for any T < k/2, given ¢ = 1 sample drawn from
each of py,..., Dy, there exists no testing algorithm that succeeds with probability greater than 1/2 and tests
whether

Pavg = Unif(k)  wversus  dry(P,y,, Unif(k)) > 1/4 .

Proof. All the logarithms in the proof below are base 2. Let k be the smallest power of 2 greater than or
equal to cq,

fo = 2flegerl,
For T < k/2,let r = k/T, so that r > 2. We set 1’ to be the smallest power of 2 greater than or equal to r,

7"/ _ Qflog 7] )

Let T = k/r’. By construction 7" < T < k/2, T’ is integral, and T7'/T > 1/2.

We now consider two distributions Dy and Dj over sequences of distributions (p; ... py) such that for all
sequences (p; ...Ppyp) in the support of Dy, avg(p; ... py) = Unif(k) and for all sequences in the support of
Dy, dyy(avg(py ... prp), Unif(k)) > 1/4. Further, we will show that the samples drawn from distribution
sequences drawn from D; are indistinguishable from samples drawn from distribution sequences drawn from
D5 (that is, corresponding distributions have total variation distance 0). This implies that there exists no
testing algorithm that succeeds with probability greater than 1/2 and tests whether average distribution is
the uniform distribution versus average distribution has total variation distance at least 1/4 from the uniform
distribution.

Here is the procedure to draw a sequence of distribution (p; ...py) from Dy:

1. Draw a permutation 7 : [k] — [k] uniformly at random.

2. Use the permutation 7 to partition the domain into 7" sets of size r’ each where for ¢ < T”, each p;
corresponds to a uniform distribution over a distinet set. That is, for 1 < i < T, p, corresponds to a
uniform distribution over {m ((i — 1) ' + 1), 7w (= 1) *r' +2),--- ,w(ixr")}.

3. For T"+1 < i < T, p, corresponds to a uniform distribution over the whole support [k], that is
= Unif (k).
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Here is the procedure to draw a sequence of distributions (p; ...pp) from Ds:

1. Draw a permutation 7 : [k] — [k] uniformly at random.

2. Use the permutation 7 to partition the domain into 7" sets of size ' each where for i < T", each p;
corresponds to a point-mass distribution supported over an element of a distinct set: For 1 <1 <T”,
p; corresponds to a point-mass distribution with probability mass 1 on element 7 ((¢ — 1) * ' + 1).

3. For T"+1 < i < T, p, corresponds to a uniform distribution over the whole support [k], that is
p; = Unif (k).

Note that all the distributions sequences in the support of Dy satisfy avg(p; ... pr) = ur. Next, we show
that all the distribution sequences in the support of D satisfy dry(avg(p; -..pr), Unif(k)) > 1/4. For such
distribution sequences, avg(p; ... p7) has mass % — 1% + 4 on 7" domain elements and mass % — ;k on

T
k — T’ domain elements. From this, we get

(k — T\’

drv(avg(p; - .. pr), Unif(k)) = Tk

>

| =

where for the last inequality, we used 7" < T < k/2 and T"/T > 1/2.

Now, we will show that the samples drawn from distribution sequences drawn from D; are indistinguishable
from samples drawn from distribution sequences drawn from Dy which will complete the proof. Let D be
the distribution corresponding to ¢ = 1 sample drawn from each of py, ..., pp, where (p; ...pp) is drawn
from D; (with ¢ = 1). We define D2 analogously. We want to show that dry(DsX, D2*) = 0. Note that in
both D{ and D5°, each of last (T' — T") samples {X¢};eir—7 are drawn from Unif (k) independent of the
first 7" samples {X;},c[7+). And the first T samples {X; };¢[7v) correspond to choosing T” distinct domain
elements uniformly at random. Thus Dy¥ and D2 are the same distributions.

O

C Poissonized setting

In this section, we state and prove some results for the non-i.i.d. setting, where we are also allowed to use
Poissonization. We will use the following standard facts about Poisson distributions.

Let Poi()A) denote a Poisson random variable with mean parameter A > 0.
Fact C.1. For any A1,A2 > 0, if X; and Xo are independent random wvariables distributed as X1 ~ Poi(\1)
and X2 ~ POi()\Q), then X1 + XQ ~ POl()\l + )\2) .

Fact C.2. Given Poi(c) samples from a distribution p € Ay, the frequency of any element j € [k] follows the
distribution Poi(c - p(j)).

We are now ready to prove the following theorem.

Claim C.3 (Poisson identity testing). For any ¢ > 0 and reference distribution q € Ay, with Poi(c) samples
from each of py,...,pr and T = O(\/E/ez), there exists a testing algorithm that succeeds with probability at
least 2/3 and tests whether,

Pavg =4 versus Aoy (P @) > €,

for any ¢ > 1.

Proof. Note that we are given Poi(c) samples from each distribution p, for all ¢ € [T]. For each ¢ € [T, let
N, denote the number of samples drawn from p,. Note that N; ~ Poi(c). For i € [k], let Ni(¢) be the random
variable that denotes the frequency of element ¢ in samples Xy, that is, N¢(i) = |{j € [N¢] : X:(j) =i}|. By
Fact C.2, we know that

N (i) ~ Poi(c - py(i)) -
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Furthermore, if we let N (i) = >,y Ne(i), then by Fact C.1, we get that,

N(i) ~ Poi(c- 3 pt(i)> = Poi(cT - Poyyi)) -
te(T]

Therefore, N(i) has the same distribution as the frequency of element ¢ when we are given Poi(cT) i.i.d
samples from distribution p,,,. As cT" € O(\/E/ £2), and since we just argued that we are under the setting
of having drawn Poi(cT') samples from Pavg: We can invoke existing identity testing algorithms that use
Poissonization for the i.i.d setting to solve the problem with success probability 2/3, even with ¢ = 1. O

D Collisions and Fingerprints

We relate the collision statistics and the fingerprint of a sample by an invertible linear map. To recall, the
number of m-way collisions in a sample S = {X1,..., X, } is equal to 37" _ ., 1[X;, =--- = X; j]. The
fingerprint of the sample is a count array, where for each i, we list the count of the number of support
elements that appeared exactly ¢ times in S.

Lemma 14 (Collisions to fingerprint). Let x1,xa, 73,24 € [m]* for m > 4. Let ca,c3,c4 denote the number
of 2-way, 3-way and 4-way collisions amongst x1,x2,x3, 4. Further, let ny,ng, ny denote the number of
elements in [m] occurring exactly 2 times, 3 times and J times respectively in x1, xo,x3, 4. Then, the vectors
C2 no
c3| and |ns| are related by an invertible linear map. In particular,

Cq Ty
ng 1 -3 6 C2
ng| = 0 1 —4 C3
Ny 0 0 1 Cy

Proof. Observe that
4
Ny = C4, M3 = C3 — (3)77,4 = C3 — 404
3 4
Ng = Cy — 9 ng — 9 n4202—3(03—404)—604202—303+GC4.

The matrix associated with the linear map has determinant 1, therefore the map is invertible. O

E Sufficiency of fingerprint for pooling-based testing algorithms

We first formally state the definition of a pooling-based testing algorithm.

Definition E.1 (Pooling-based testing algorithm). Fix ¢ and let 7 ~ Perm(cT') denote drawing a uniformly
random permutation 7w over ¢TI elements. A pooling-based testing algorithm A for property P C Ay with
sample complexity ¢TI is a (possibly randomized) algorithm which, when given a randomly shuffled pooled

multiset S of ¢ samples drawn independently from each of py,...,pp, i.e., S = UZ;&XP, . ,Xét) ~ P},
m ~ Perm(cT), S + m(S), produces output A(S) € {0,1} satisfying the following

o If p,y, € P, then Prg . 4[A[S] =1] > 2/3.

o If dry(Davg, P) > ¢, then Prg . a[A[S] = 0] > 2/3.

The following lemma states that the fingerprint of the combined sample captures all the information required
for a pooling-based testing algorithm to test a symmetric property of the average distribution.
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Lemma 15. Let A be a pooling-based testing algorithm having sample complexity cT' that tests a symmetric
property P C Ay, of the average distribution p,,, = avg(py,...,pr). Then, there exists a pooling-based
algorithm A’ for the same task having the same sample complexity which takes as input only the fingerprint
of the combined sample.

Proof. Let the fingerprint of the combined sample S be denoted by f = [fo, f1,-.., fer]. Here, f; is the
number of elements in [k] that occur exactly ¢ times in the combined sample. Given as input f, the algorithm
A’ constructs a sequence S in the following way:

1. Initially, S = ¢, e = 1.
2. Fori=0,...,cT:

While f; > 0:
Append i copies of e to S.
e+e+1, fz<_fz_1
3. Draw 7, ~ Perm(k).

4. For every s € S:

Set s < 7y (s).

5. Draw mg ~ Perm(cT).

6. Set S + ms(S).

The algorithm A’ then feeds S constructed as above to A, and returns A’s output.
Observe that the distribution of S constructed as above is identical to the distribution of S obtained in the

following way:

1. Draw 7, ~ Perm(k).
2. Draw S = U {x, ..., X" ~ m(py)}-
3. Draw mg ~ Perm(cT).

4. Set S « ms(S).

Here, m(p) denotes permuting the probability distribution p according to 7 i.e. 7(p)i; = Pr(;). Now, for
a fixed permutation m, observe that avg(mi(py), ..., mk(Pr)) = Tk (avg(Py, .- -, Pr)) = Tk(Payg)- Further,
recall that the property P we are thinking about is symmetric. Thus, if p,,, € P, then m4(p,,,) € P for any
7 € Perm(k). Similarly, if p,,, & P, then 7 (p,y,) & P for any m € Perm(k). Thus, for any fixed 7, A
correctly tests if avg(mi(py),-.., 7k (pr)) has the property P ( <= avg(py,...,Ppr) has the property P).
Consequently, A (and hence A’) correctly tests for a randomly chosen 7 as well.

O

F Technical Results for Section 5

We prove a technical lemma that bounds the TV distance between Gaussians having the same mean and
similar covariances.
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Lemma 16. Let A and D be defined as follows:

ai /m?  app/m3  agz/m? 1/m? 0 0
A= |a/m® ag/m?® agz/m*| and matriz D = 0 1/m3 0 ,
arz/m*  agz/m*  ass/m? 0 0 1/m*

where oy are bounded by constants independent of m. For large enough m, there exists a positive constant o
such that,
—aD <X A=< aD.

Proof. Let v1 = [1,1,0], vo = [1,0,1] and vs = [0, 1, 1]. Note that,
« « a
A= ﬁmvf + ﬁvgvg + ﬁvgvg + D,

where D' is a diagonal matrix, whose entries are as follows:

Q11 Q12 Qi3 0 0
! m? ms m? a a [
D' = 0 s - o - o 0 (14)
@33 _ 213 _ Q23
0 0 mt m? m*

Note that, it is immediate that, vlvf < 2Dy, vgvg < 2Dy and v3v3T = 2Dj3, where matrices Dy, Dy and Dsg
are defined as follows,

This is because for any = € R3, zTvjv{ 2 = (21 + 22)? < 2(2? + 23) = 22" D12, and similarly (z1 + 23)% <
2(x? + 22) and (22 + 23)? < 2(23 + 23).

Furthermore, as all a;;s are bounded independent of m, we have that the matrix D’ satisfies, D’ < ¢- D for
some positive constant c.

Combining all the above inequalities we get that,

«a «a 2o 2o 2]
A= 2o + Sup] 4+ Zug] + D' < szl sty (20wl
m m
The matrix in the final expression simplifies to,
m2 + 2|0/12| + 2|o¢13| 0 0
O <4 2|a12| + 2|a23| 0
0 "0 L Aogel  Zoml

As all a5 are bounded by constants, we have that the above matrix is upper bounded by « - D for some
large constant « > 0. Therefore A < - D.

The proof for the other side, that is —a - D < A follows exactly the same argument when applied to —A and
we conclude the proof. O

Lemma 17. Let Gy be distributed as N(u,X1) and Go be distributed as N (g, Xo) where

’Yu/m ’)’12/m2 ’)’13/m3 all/m2 0l12/m3 Oélg/m4
S = [m2/m? ye/m? yes/m3| and o =1 + |aia/mP aga/mP ags/mt|
Y13/m>  yaz/m®  vy3z/m? aiz/m* agg/m*  assz/m?

for vij and o such that |7y;;| and ;| are bounded by constants independent of m. Then drv(Gi,Ge) < 0.01,
for m large enough.

29



Published in Transactions on Machine Learning Research (11/2025)

Proof. In our proof, we show that, for a sufficiently large m, the covariance matrices ¥ and X, satisfy:
(1-—a/m)¥; XX < (1+ a/m)%; for some constant o > 0. Equivalently, all the eigenvalues of the matrix
L7135 (LT)~! lie in the range [1 — a/m, 1+ a/m], where ¥ = LL” is the Cholesky decomposition of matrix
33;. Note that, by the TV distance bound in Fact F.3 this result immediately implies the following upper
bound on drv(G1, G2) between the two Gaussian distributions ,

max(\i, \;) —1 <= O(1/m)
drv(G1,G2) < L < <O(1/m) .
TV( 1 2) Zzzl \/% Zzzl \/ﬁ ( / )
Here, while applying Fact F.3, we used that G; and G5 have the same mean. Now note that, for a sufficiently
large m, we get the desired upper bound on the dry(Gi, Gs).

Therefore to prove our lemma, all that remains is to show that, (1 — a/m)¥; < ¥Xs < (1 4+ a/m)X; for some
constant a > 0. In the remainder of the proof, we prove this claim. First we show invertibility of 3;. Since ¥;
is a covariance matrix in our construction, the diagonal coefficients 11, 22, y33 are fixed positive constants
(independent of m). Thus the diagonal permutation contributes v11v22v33/m% to det(2;), while any other
permutation includes at least one off-diagonal of order 1/m? or 1/m? and hence has magnitude O(1/m7).

Therefore, for m large enough,
V11722733

2mb > 0,

det(El) Z

so X is invertible.

Now let
au/mQ a12/m3 a13/m4
E = (112/7713 Oégg/ms Oégg/m4 (15)

Oélg/m4 a23/m4 a33/m4
To prove the claim, we in turn show that, —%21 <FE= %21.

By Lemma 16, we know that there exist constants a; and ag such that, —a;D <= E < a;D and 0 <X ¥; <
asmD, where

1/m? 0 0
D=| 0 1/m3 0
0 0 1/m*

Here the bound 0 < ¥; =< aymD follows by applying Lemma 16 to m~'%;, which has the same
(1/m?,1/m3,1/m*) structure with coefficients a;; = ;.

In the following, we prove E < 2%, for some constant o > 0. We first show that D < -3 for some constant
v, as B = a1 D, we conclude that E' < 23, Towards this end, we now prove that D =< 13}; for some

constant . Equivalently, we wish to show that the smallest eigenvalue of the matrix F = D~/ 2%21D_1/ 2
is lower bounded by some constant. Note that F' is PSD and is equal to,

711 712/m1/2 713/771
F= ’}’12/77”01/2 Y22 W’23/ml/2
713/771 723/m1/2 733

Its trace is Tr(F) = 411 + Y22 + v33 = ©(1). Moreover, the determinant satisfies

det(F) > % = ¢y >0

for all sufficiently large m (the diagonal term dominates, while all off-diagonal permutations are o(1)). By
Gershgorin circle theorem (Fact F.1), the spectral norm is bounded:

Amax(F) S m?X (’Yu"'%: J,;Yij/lz) S COa
Ve
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for some constant Cy and all large m. Therefore, with eigenvalues Ay > Ay > A3 > 0,

det(F) o
>\minl'j =A > > =5 = 0.
( ) 3 )\1 )\2 Cg cr >

Equivalently, D = i %y, ie. D 2. LY; with v = 1/¢;. Hence E X ay D X 2113, ie. E X =% for
a = ar7y.

The proof for the other side, that is — - ¥; X F follows exactly the same argument when applied to —F
and we conclude the proof. O

Lemma 18 (Discretization—convolution almost commute for Gaussians). Let X ~ N (ux,Xx) and Y ~
N(uy,Xy) be independent in R (with d constant), and assume at least one of Lx, Yy is positive definite.?
Let Disc(+) be coordinate-wise rounding to the nearest integer (ties are immaterial since Gaussians put zero
mass on boundaries). Then

dpy(Dise(X) + Dise(Y), Dise(X +Y)) < % mm{\/Tr \/Ty }

In particular, if Apmin(Xx) = 00 or Amin(Zy ) — 00, the left-hand side is O(1/+/Amin) and tends to 0.

Proof. Without loss of genemlz’ty assume Xy > 0; otherwise swap X and Y. Let f and g be the densities of
X and Y. For m € Z¢, write C, := m + [—1, 2)9. Define

P(m) := Pr(Disc(X) + Disc(Y Z / f(x dac / 9(y) dy)a

aEZd 7n, a
Q(m) := Pr(Disc(X +Y) / f@) g(z — x)dzdz.
Rd

For € C,, set §(z) :=a — x € [~3, 3]?. Changing variables z = y 4+ a in Q(m) yields
-y / / 9(y +6(x)) dy) f(x) da,
a€zZd

and hence

P(m = [ (] ot oy o) dy) ) e (16)

P =yA Cm—a

Bounding )"  |P(m) — Q(m)| by an expectation times a norm. Summing equation 16 in absolute
value over m and using that the cubes {C,,_,}., are disjoint and partition R?,

> [P(m) — Q(m)| SZ/C / lg(y) — g(y + 6(x ))ydy) dx

mezd

= | J@1g0) =g+ @) d (17)

(We used 3, | [ - || = [gal - |, since {Cpo—a}m partition R%.)

Apply Lemma 19 with A = g and u = §(z) pointwise in = to get

m—a

l9() = g(-+ 8@ < 16@)ll2 [Vgllz:- (18)

2If one covariance is singular, the bound below with that matrix should be read as 4oo; the inequality is then applied with
the other (positive definite) covariance.
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Plugging equation 18 into equation 17 and factoring out the constant ||Vg| 1 yields

S 1Pem) - Qem)l < (E[16C0l] ) - 99l (19)

meZd

Since X € Chyjse(x) almost surely, §(X) = Disc(X) — X € [—3, 1]9, and thus

Vd
E[60l] < swp ol = % 20)
16]le<1/2
Computing [|Vgl|p:. For Y ~ N(uy,Ey),
Vo(y) = =S5y — my) 9(v), Vgl = / IS5y — iv)ll2 9(y) dy = E[|I=y/2Z]J2),

where Z ~ N (0, I4). By Cauchy—Schwarz,

Vgl < E[ZTEF'Z] = /Te(SP). (21)

Combining equation 19, equation 20, and equation 21,

S 1P(m) - @uml < Y4 \/1v(z)

meZd
hence va
d
dpv(Disc(X) + Disc(Y), Dise(X +Y)) = 1 " |P(m) — Q(m)| < vE Tr(2yh).
By symmetry, the same bound holds with ¥ x; taking the minimum proves the claim. O

Lemma 19. Let h: RY — R be locally absolutely continuous with Vh € L*(R?). Then for every u € R,

[P(- +u) =h()llzr < [lullz [VA]lL:

Proof. Fix y € R% and consider the path ¢ — y 4 tu. By the fundamental theorem of calculus,

By + ) — h(y) :/0 (Vh(y +tu),u) dt,

so [h(y +u) — h(y)| < |lul2 fol IVh(y + tu)||2 dt by Cauchy—Schwarz. Integrating in y and using Fubini with
the change of variables y — y + ¢t u (unit Jacobian) gives

1
b+ =h@ldy <l [ [ 198+ tlladyd =l [V
0

O

Lemma 20. Let X1 and X» be independent with distributions N (u1,03) and N (ua,03), respectively. Let
t := max(0?,03). Then, fort large enough,

drpy(Disc(X;) + Disc(X2), Disc(X; + X5)) < 0.00001.
Proof. Apply Lemma 18 with d = 1:
1
. . . < . O
dTv(Dlsc(Xl) + Disc(X3), Disc(X; + Xg)) < mm{a1 o } NG

Thus the bound is < 1072 as soon as /£ > 25,000, i.e. t > 6.25 x 108. O

W] =
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Lemma 21. Let X andY be n-dimensional independent random variables, where X is multivariate Gaussian
and Y has first coordinate distributed as N'(0,t) and all other coordinates identically 0. Then, for t large
enough,

dpv(Disc(X) + Disc(Y), Disc(X +Y)) < 0.00001,

where Disc(-) denotes coordinate-wise discretization to the nearest integer.

Proof. The idea is that Y perturbs only the first coordinate. Let X _; denote the last n—1 coordinates of
X. After discretization, the last (n—1) coordinates of Disc(X) + Disc(Y') equal Disc(X_1), and those of
Disc(X +Y) equal Disc(X_1) as well. Thus, conditioned on X_1, the event {Disc(X)+Disc(Y) € A} depends
only on the first coordinate, and likewise for {Disc(X +Y) € A}. We therefore reduce to the one-dimensional
case of Lemma 18 on the first coordinate and then average over X_;. We formalize this below.

Write X = (X31,X_1) and Y = (¥1,0,...,0) with Y3 ~ N(0,¢) independent of X. For any A C Z"™ and
u € R"1, define
Ay i={my1 €Z: (mq,Disc(u)) € A}.

Condition on X_; and apply Lemma 18 in dimension 1 (to the pair (X1,Y7)) to get

’Pr(Disc(Xl) +Dise(Y:) € Ax_, | X_;) — Pr(Disc(X; + ) € Ax_, | X_l)‘ < 4%/%.

In the above, we conditioned on X_; = wu, which freezes the last n—1 coordinates; thus (X1,Y7) is
one-dimensional with Y7 ~ A/(0,¢) independent of X;. We then applied Lemma 18 in d = 1, yielding a bound
< 1/(4v/t) uniformly in u since the right-hand side depends only on ¢.

Averaging over X_; and taking the supremum over A therefore gives

1
dry(Disc(X) + Disc(Y), Disc(X +Y)) < WG < 107" for t > 6.25 x 10°.
O

Lemma 22. Let X be a sample from a distribution supported on {[0,0,0], e, e, e3, 2e1} with probabilities
Ug, U1, Uz, Uz, v such that uy,ug,uz,v > 0 and ug > 1 — 1071¢ (all parameters independent of n). Let
¥ = Cov(X) and let Xy, be the covariance of the sum of an i.i.d. copies of X. Then there exist constants
¢, Cy > 0 depending only on (u1,us,us,v) (hence independent of n) such that

Cx N S )\min(zan) S )\max(zom) S C’*om.

In particular, Apin(Zan) = O(n).

Proof. Write i = E[X] = (u; + 2v, ug, uz) and D = E[X X "] = diag(u; + 4v, ua, u3), so ¥1 = D — upu'. By
the matrix determinant lemma,

(ug + 2v)2

det(X1) = det(D)(1—p" D™ ) = (ug+4v)usus (1 T ui i 4o

— Uy — u3> > (up+4v)usuz (ug—v) =: cges > 0,

usin (u1+20)* <wup+2vand ug =1— (ug +us +us +v). Also X1 < D, hence Apax(X1) < Amax(D) =
g wy+4v ’

max{u; + 4v,ug,uz} =: cp < co. If the eigenvalues of ¥; are Ay > Ay > A3 > 0, then

det(21) o, Cdet
)\1)\2 - 6127

Amin(Z1) = A3 > =:¢o > 0.

For the sum of an ii.d. draws, Y., = anXi, 0 Amin(Zan) = anAnin(X1) > acon and Apax(Zan)
an Amax(X1) < acpn. Take ¢, := ¢y and Cy := ¢p to complete the proof.

CIA
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Lemma 23. Let X1 ~ N (1, 21), X2 ~ N (Jiy, X2) and X3 ~ N (fi5, X3) be c-dimensional Gaussians, for
c < 10, where

2uy 2u (1 — 2uy) —4uqus .. —4uqu,
2us o —4uqus 2ua(1 — 2ug) ... —4usu,
ﬁl — ) Z1 - .
| 2u, —4uqu, —4usu, coo 2ue(l = 2u,)
[4v 8u(l—2v) 0 ... O
0 _ 0 0O ... 0
fo = - o = .
0 0 0 ... 0
[uy + 20 up +4v — (ug +20)2 —(up +20)ug ... —(ug + 20)u,
_ Us o —(u1 + 2v)ugy ua (1 — ug) .. —UgUe
M3 = . ) E3 = . )
| U —(u1 + 2v)u, —UgUy e Ue(l — ue)

and furthermore, 1) v+ Y, u; < 1071, and 2) u;,v are positive constants. Now, let Z; be the sum of |
independent draws of X3. Let Zy be the sum of% + n independent draws of X1 and % — n independent draws

of Xo. As 1 gets large, for any n € [—4V/1,4V/1],

drv(Z1,Z9) <1074

Proof. First, note that both Z; and Zs are also Gaussians, because a linear combination of independent
Gaussians is a Gaussian. Let p1, 31 and po, 3o respectively be the mean and covariance of Z; and Zs. Then,

p =1 ps,
Y =13
p2 = (1/2+n)iy + (1/2 = n)i,
Yo =(1/2+ 1)1 + (1/2 —n)%s

Let Z; be the Gaussian with mean y; and covariance diag(X;), Wher(iiiag(El) is simply the matrix X1 with
all non-diagonal entries zeroed out. We will first show that dry(Z1,21) < 1013,

Consider the matrix diag(¥;)~1/2 - - diag(X;)~ /2. Let us denote this matrix by M; and it is equal to

1 —(u1+2v)us —(u142v)u,
/U1 U2 e VU1V
—(u142v)ug 1 —uau,
/U102 e VU2Vc
. 9
—(u1+2v)u, —Ug U, 1
VU1V NOTOR tee

where v; = u; + 4v — (u; + 2v)? and v; = u;(1 — u;) for i > 2. Note that because each u; < 10716 and
v < 10_16,

up+2v uy + 2v u 2v

N Vur(1—wup) +4o(1 —v) — dugv = Vaur (1 —uq) * Vav(l —v)

< 2(Vur + V)

and also, fori =2,...,c,
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Thus, the sum of absolute values of off-diagonal elements in any row 4 of M; is at most
4> Jugy +4Y iy <8¢ 10710 <107,
J#i J
Then, by the Gershgorin circle theorem (Fact F.1), all the eigenvalues of this matrix are contained in

[1 — 1071 + 10714]. Using corollary 24 that bounds the TV distance between multivariate Gaussian
distributions, we get

— 10 1
drv(Zy,7Z1) < : — 14107 ™)—1) <107,
TV( 1, 1) = \/% (max <1 — 107147 + > > >~

Now, let Z5 be the Gaussian with mean p5 and covariance diag(¥;). We will next show that drv(Zs, Z2) <
10~12,

Again, consider the matrix diag(X;)~'/2 -3, - diag(X1)~'/2. Let us denote this matrix by My and this is
equal to

(1+22)-2u1 (1—2u1)+(1— 22 ) -8v(1—2v)

2n) 2 2n\ 2uiu.
2u7 +8v—2(u1+2v)2 o (1 + Tn> \/u% T (1 + Tn) \/%
2n) 2 2 1-2 21\ 2usu.
—(1+ %) 2un (1+2) (F22) . —(1+%) 2w
21\ 2uiue 2n\ 2usu. 2 1—2u,
—(1+2p) 2une —(1+2) 2w (1+7”)(ch)
where v1,...,v. are the same as above. Again, using a similar calculation as above, the sum of absolute

values of off-diagonal entries in any row ¢ is at most

9
2‘1+l"

2n _ _
42,/uiuj+4zx/wj §2‘1+l‘-10 <1073,

J#i J
where the last inequality holds for large enough I.

Diagonals of Ms: For ¢ = 1, write

=—73 A = 2uy (1-2uy ) +8v(1—2v), B = 2u; (1—2u;)—8v(1-2v), D = 2u;+8v—2(u;+2v)>.

When n = 0, a direct expansion gives A = D — 2(u; — 2v)?, hence

2(uy — 20)? 2(ug + 20)? ~16 -13
M. -1 = < <12-10 10
(M) 1] D = 2up +8v —2(uy +2v)2 — < ’
using uq,v < 10716, For the n—dependent term,
2n B 2|n| 2uy + 8v 16
il e i < =,
¢ D]~ £ 2up+8 —2u+2v)2 T VI

since |n| < 4v/¢ and the ratio is < 2 for these parameters; thus (My);; € [1 — 10713, 1+ 10~13] for £ large
enough. For ¢ > 2

1— 2u1'
(M2)i = (1 + 27”)

1—’U,i’

8 U; 8
Moy — 1] < — L < — 4+92.10716.
SO |( 2)” }_\/z+1_uz_\/z+

Hence, for sufficiently large ¢, all diagonal entries of M; lie in [1 — 10713, 1+ 10713].

Thus by the Gershgorin circle theorem (Fact F.1), all the eigenvalues of this matrix My are contained in
[1—-2-107*,1+2-10713]. Again using corollary 24 that bounds the TV distance between multivariate
Gaussian distributions, we get

— 10 1 _ -
dTV(ZQ,ZQ) S \/% . (max (12.101371 +2 - 10 13) _ 1) S 10 12.
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Finally, we bound dTv(Zl,ZQ). Note that both Z; and Z, are Gaussians with the same diagonal covariance
diag(X1), but their means are p; and ps respectively. Since the covariance is diagonal, we can upper-bound
the total variation distance between the product distributions by the sum of the total variation distances
between the coordinate-wise one-dimensional Gaussians. Namely, denoting by o%,...,02 the ¢ diagonal
entries in diag(X;),

drv(Z1, Zs) < dpv(N(p1, %), N (po1,07)) + -+ - + dov (N (pae, 02), N (p2e, 02))

o ) () )
o1 o1 Oc Oc

where in the last equality, we used the property that total variation distance is invariant to affine trans-
formations. For each of these, we can use the formula for bounding the total variation distance between
one-dimensional Gaussians given in Fact F.2 to get

drv(Z1,Z2) <

1
_|_ .
V2T ( o1 Oc

~n| |2uy — 4o R 2u,
Vir \ Vur (1 =2uy) + dv(1 — v) — dugv Vue(l —ue)

4

\/|7> (Vo+Vur + -+ Vue) (using u; and v at most 107%)
™

16
28 (Vo Vi e Vi)

<16
S /7

<107°.

lp1 — pan| oy |M1c—M2c|>

IA

IN

-11-1078

Putting everything together, we get using the triangle inequality that

drv(Z1, Ze) < drv(Z1, Z1) + drv(Za, Zo) + drv(Z4, Z5)
<107 4+10712 41075
<1074

F.1 Other useful facts

Fact F.1 (Gershgorin circle theorem). (Horn € Johnson, 2012, Theorem 6.1.1) Let A = (a;;) € C™*¢ and
set Ri :=3 ., lai;|. Then all eigenvalues of A lie in

O{ze(c : |z—aii|§Ri}.

=1

In particular, if A € R¥? is symmetric, all its eigenvalues are real and lie in
d
U lai — Ri, ai + Ri).
i=1

Fact F.2 ((Valiant & Valiant, 2011, Fact 29)). Letting N'(u,0?) denote the univariate Gaussian distribution,

o

dTV(N(Ma 1), N(p+a, 1)) < Vor
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Fact F.3 ((Valiant & Valiant, 2011, Fact 31)). Let G1 = N(p1,%1) and Gy = N(u2,32) in R™, and let
Y1 =TT7 be the Cholesky decomposition of 1. Let \; denote the it the eigenvalue of T~ ST~ T, then

i (mas{r, A7} - 1) + 1776 — )|

drv(G1,G2) <
v(G1,Ga) < Jon

V2me “
We use the following corollary of this fact:

Corollary 24. Let G1 = N(u,%1) and Go = N(u,X2) in R™, and suppose X1 is diagonal with positive
entries. Then, with T = 21/2 (so T, T = 2_1/222 1/2), we get

i (max{)\i,)\f} - 1),

1/22 2—1/2

drv(G1,Ga) <
27re

where A1, ..., \p, are the eigenvalues of ¥

F.2 Restating CLT from Valiant & Valiant (2011)

Definition 25 (Generalized Multinomial). Let n > 1 and k > 1. For eachr € {1,...,n} let pr1,...,prk €
[0, 1] with Zle pri < 1. Let X") € {0,e1,...,e,} C R* be independent with

Pr [X(T) = ei] = Pri, Pr [X(T) = O] =1- me-.

The sum S :=>"_, X ¢ Z’%O is said to be distributed as a generalized multinomial.

Definition 26 (Discretized Gaussian). For u € R¥ and positive semidefinite > € R¥** et N'(u,X) denote
the k-dimensional Gaussian. Nyisc(i,Y.) denotes the distribution corresponding to obtaining a draw from
N(u, ) and rounding each coordinate to the nearest integer.

Theorem 27 (Valiant & Valiant (2011, Thm. 4)). Let S be a k-dimensional Generalized Multinomial with
parameters as above, mean p, covariance 3, and 0% = A\pin(X). Then,

]{;4/3 2/3
drv(S, Nase(n: %)) < —5752.2+ (314 0.831ogn) .

Corollary 28. For constant k,

o1/3

ogn)?/
drv(S, Naise(1, %)) = O <W>

G Closeness Testing

Our tester for testing closeness follows the proof of Batu et al. (2001). Specifically, we divide the analysis
into two parts: heavy elements B and light elements S. We show that we can estimate the distance
> ieB |Pavg(?) = dayg(i)| up to accuracy e using the provided samples. On light elements, since the norms
corresponding to these elements is bounded, we can apply the ¢ tester to get the desired closeness tester. We
divide the analysis into four sections. In the first section, we provide the /5 tester, whose sample complexity
depends on the norm of the underlying distributions. Therefore invoking /5 tester only on light elements
reduces our sample complexity as their corresponding norm is low. Further, in the second and third section
we show several properties of light and heavy elements. In particular, for the heavy elements we show that
the we can estimate the ¢; distance for these elements quite well. Furthermore, in the same section, we also
show that the norm of the light elements is low, setting ourselves to use £y tester on these elements. Finally
in the last section, we provide the final theorem, which invokes the results from sections one and two to get
the desired bounds on the closeness testing.
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G.1 /, tester

To test closeness in £2, we build an unbiased estimator for the terms ||p,,gl3, [|Qaygll3 and (Payg; Qayg)- In the
following, we provide a description of these estimator. For each t € [T, let (X¢(2), X+(3)) and (X[(2), X{(3))
denote the 2nd and 3rd i.i.d samples drawn from the distribution p, and q, respectively. For each t € [T, we
define,

Yy = 1[X4(2) = Xi(3)] and Yy = 1[X4(2) = X,(3)] .

¥/ = 1[X/(2) = X{(3)] and Y/, = 1[X/(2) = X.(3)] .

S

Note that E[Yi] = [|p,/I3, E¥{] = lla,/I3 and E[Y,.] = (py. p.)s B[] = {ar, ) for all 5,t € [7]. Using these
random variables, we define an estimator Z and Z’ as follows,

(Z Yt+2ZYSt)

te[T] s<t
w(Z v yv).
te[T] s<t

Lemma 29. The estimator Z and Z' defined in Equation (1) satisfy the following,

4 48
_ 2
E(Z] = [[Pacgll3 and Var(Z] < = [puvs, + 7 |Pave
4 248 3
E(Z'] = ||quisll3 and Var(Z'] < = | due]|, + | dues

The proof of the above lemma follows immediately from Lemma 4.

Next, define

Q=7 X )

s,te[T]

Lemma 30. The estimator @ defined above satisfies the following,

E[Q] = (Pavgs Gave)-

1 1
Var[Q] = ﬁ<pavg> qavg> + T(<pavg’ qavg7 qavg> + <pavg7 pavg’ qavg>)'

Proof. The expectation of the estimator () is as follows,

]E[Q] = % Z] pqut = Z ps7 m Z > = <pavg7qavg>'

s,te[T 9€[T ee[T]

In the following we bound the variance, define Cy; = Cyy — E[Cly].
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s,t s,t
2
= Z E [Cgt] + Z E[Cstcab] + Z [Cstcab] ( |:Z Csti|>
s,t 272 S,Z s,t
T? terms [{s,t,a,b}|=3 {s,t.a,b}[=4 (72")2 terms
O((?;)) terms O((Z)) terms
= Z (E[C2] -ElCal®) + (E[CutCat] ~ EICAE[Ca)) + Y (E[CuCat] — E[C|E[Cut])
ab b
[{s,t,a,b}[=3 [{s,t,a,b}|=4
<> (E[CZ]) > (BlCuCu] —E[C4E[Cw]))+ Y,  (E[CuCap) — E[Cu]E[Cus))
™ ob ab
[{s,t,a,b}|=3 |{s,t,a,b}|=4
= Z (E [Cft + Z Csccac - sc ac + Z atCab [Cat]E[Cab])-
s,t a c >
s;éa t;él;)

In the last step, we used the fact that E[Cs;Cyp] — E[Cst]E[Cup] = 0 when s # a and t # b. Further, since
E[Cst] > 0 for all s,t, we get

E[( Y )] <X ®[ez) )+ 3 BCuCuc) + 3 (BICnCur (22)

s,te[T] st a, lt7
a’)
s;éa
t#£b

Now, we look at individual terms in the above expression. The last two terms can be bounded as follows:

D E[CecCacl =D Z P,(OP.()a.(0) ==Y (P, Pur A, (23)

oe s#a ¢ (=1 s#a ¢
\s;:éa
< T3'<pavg7 pavg? qavg> (24)

> E[CutCut] = Zzzpa )4 (O)a,(0) =Y > (Par U W), (25)

0 t#b a (=1 t£b a
oz
< T3'<pavg’ qavg7 qavg> (26)
The first term can be bounded as follows:
3 (E[C2]) = T2 (Pavg: Gavg) (27)
s,t

2
Substituting these in Equation 22, and using Var[Q] = %E[( Zsth[T] Cst) }, we get the desired variance
bound. 0

Lemma 31. Let F = Z + Z' — 2Q, then note that,
E[F] = ”pavg - qavg”% .

(1) o)
T2 (anvgng + pang% + <pavg7 qavg>) + T(<pavg’ Dovg> qavg> + <pavg7pavg’ qavg)) .

Var[F)] <
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Proof. The expression for E[F] follows immediately by combining bias terms in Lemma 29 and Lemma 30.

The variance bound follows by using the fact that Var[F] < 8(Var(Z) + Var(Z’) 4+ Var(Q)) and further using
variance bounds on Z, Z’, ) from Lemma 29 and Lemma 30. O

Lemma 32. We can test if ||Pavg — Quvelle < €/3 08 |Payg — Quglle > € using T =

(\/Ilqavgll2+pavg|\ +<pavg,qwg>)+ ({PaverTave Tave) T {Pave Pave: Tave) samples

€2 et
Proof. Tt is sufficient to bound the probability of P(|F — E[F]| > ¢/3). By Chebyshev’s inequality, we get
that P(|F — E[F]| > ¢/3) < 9Var(F)/e?. Substituting the upper bound on the variance of F, we get that,

(1)

T2€4 (anvg||2 + pavg”Q <pavga qavg>)

O(1)
+ W«pavg? qavg? qavg> + <pavg7 pavg? qavg>)

Q

P(|F —E[F]| > ¢/3) <

The above inequality is further upper bounded by a small constant for the value of T' specified in the conditions
of the lemma. O

G.2 Heavy elements

Let X;(1) and X/(1) be the 1st i.i.d. sample from distribution p, and q, respectively. Let p(i) =
+ e HXe(1) = ] and q(z) = T > oierr 1[X7(1) = 4. We further define big elements and small ele-
ments as follows,

B, ={ie[k] | p(i) > b} and S, = {i € [k] | p(i) < b} ,

By ={ic[k] [ q(i) > b} and S, = {i € [K] | q(7) < b} ,
where b = (¢/k)%/3.
Lemma 33. Let B, and B, be random sets as defined above and let B = B, U B,. If n = O(ﬁ), then the
following conditions holds,

P(> " [B(i) = Payg(i)] > €/12) < 1/100.
i€B

and

P> 1G(1) = Gavg(i)] > €/12) < 1/100.
i€B

Proof. Note that B is a random set that includes at most 2/b elements. Given any fixed subset A C [n], note
that,

P(Y " [B(i) — Payg(i)| > €/12) < P(3 A’ C A such that §(A’) — p,4(A) > €/12)
i€EA

< 2 exp(—O(ne?)) .

Recall in the above expression p(A") = >, 1, P(i) and P,y (A") = > ic 4 Pavg (7)-

In the last inequality, we used the fact that, P(p(A") — p,yg(A’) > €/12) < exp(—ne?/144) and did a union
bound over all subsets of A. Therefore for any fixed A such that, |A| < 2/b, we have that,

P(P(A) — Pasy(A)] > ¢/12) < - |

100
P(IP(B) = Paye(B)| > ¢/12) = Y~ P(IP(B) ~ Pag(B)| > ¢/12|B = A)P(B = A) (28)
AC[n]||A[<2/b
< Y P(B(A) = Pag(A)| > €/12)P(B = A) (29)

AC[n]||Al<2/b
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1
< —P(B=A) <1/100.
< 3 PB=A)<1/100 (30)
AC[n]||A|<2/b

The analogous proof also holds for q,,, and we conclude the proof. O

Lemma 34. Let B, and B, be random sets as defined above and let B = B, U B,. If n = O(3), then the
following conditions holds,

P(I Y 19(5) = 40| = Y 1Pavg (1) = davy (i)l = €/6) < 1/50 .

i€B 1€EB

PT’OOf. Let E = ZzEB |ﬁ() ( )‘7 F = ZiEB |pavg() qavg( )| G - ZieB ‘ﬁ(l) - pavg(i)| and H =
> ien [4(7) = ayg (7). Note that, B < F'+ G+ H and F' < £+ G + H. Combining these two inequalities we

get that,

|[E-—F|<G+H. (31)

Using the above inequality we get that,
P(IE — F| > ¢/6) < P(G + H > ¢/6) < P(G > ¢/12) + P(H > ¢/12) < 1/50. (32)
The last expression follows from Lemma 33. O

G.3 Light elements

Lemma 35 (Light elements). Let S denote the complement of B, corresponding to the random set containing
elements with empirical probability less than b in both p and 4. The following norm bounds hold:

P(>  Payg(i)® > 4b/6) <6 and P(D_ p,yg(i)® > 86°/6) <

€S €S

P> ug(i)* > 4b/8) < 6 and P()  g,.,(i)* > 86°/8) <

€S €S
Zpavg qavg > 4b/5) < 6 P Zpavg qavg( ) > 8b2/5) S 0 and P(Z pavg(i)quwg(i) > 8b2/5) S 4
i€s = =

Proof. This argument is essentially identical to the proof of Theorem 20 in Chan et al. (2014).

Let H = {i € [k]|Payg(i) > 2b} and recall that S = {i € [k]|p(i) < b and §(i) < b}. Here we provide the proof
for P(3 ;¢ g Pavg (i)' > 2'0/0) < 6 for t € {2,3} and the proof for all the other probability statements follow
the same argument.

To prove P(} ;e Payg (i)' > 200" /6) < 6 for t € {2,3} we first show that,
E[Y Pavg ()] < 207,
€S

and the lemma statements follow immediately by applying Markov Inequality. Therefore, in the remainder of
the proof, we focus on proving the upper bound on the expectation.

NOte that’ E[Zies’ pavg(i)t} = E[ZieSﬂH pavg(i)t + ZieSmHC pavg(i)t] S 2t_1bt_1 + ZieSmH pavg(i)t' In
the last inequality, we used pavg(i) < 2b for all ¢ € H®. Therefore all that remains is to show that,

E[ZiESﬂH pavg(i)t] < 2t71bt71
Forie SNH, let Pavg(i) = x;b and note that x; > 2. Then we have that,

E[ Z pavg Zpavg ZES)

i€SNH i€H
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=) Pavg ()02 P(Payy (i) = b and p(i) < b).
i€H

In the last inequality, we used p,,(i) = ;b and P(i € §) < P(Pyy, (i) = x:b and p(i) < b).

Note that, by Chernoff bound it is immediate that, P(i € S) < exp(—Cbn) < exp(—Cuz;/€?), for some
constant C' just dependent on ¢. Substituting this probability upper bound back in the expectation we get

that,
E[ ) Pag()] < b,
i€SNH

for some constant ¢ dependent on t and we conclude the proof.

G.4 /; tester

Here we finally present our ¢; tester.

Theorem 36. For any € > k~'/3, there exists an algorithm {1 -Distance-Test that, for O(’zj—g) samples from
D1y Pr and qy, ..., qp has the following behavior: it rejects with probability 2/3 when ||Paye — Gavgll1 = €
and accepts with probability 2/3 when p = q.

Proof. Let b= (¢/k)?/3. Note that n = O(1/(be?)). Our £; tester works as follows. 1) It uses the first set of
samples from p, ...pr and q; ...qp to estimate the heavy elements, which are defined as follows.

By ={i €[k [ p(i) = b} and By = {i € [k] | 4(i) > b} .

Define B = B, U B,. By Lemma 34, we know that with a good probability, | > .. 5 [p(i) — G(i)| estimates
the quantity |);cp [Pavg(i) — Qavg(7)| upto €/6 accuracy. Therefore, if [|p,,; — Qaygllt > €/3, then this
implies that | .cp [H(i) — §(i)| > €/6. In this particular case, we know that we are in the case of ||p,y, —
Qavgll1 > € and we reject the instance. Therefore in the remainder of the proof we focus on the case, where

| EiGB |pavg(i) - qavg(i)‘ < 6/3'

Here we define new distributions p} ...p/ and qj ... q’ focused on light elements as follows: Sample an
element from p,. If this sample is in S output it; otherwise, output uniformly random element from [k].
Define q} similarly. We generate two samples from pj ...p% and qj ...q% using this procedure. Let
and qj,, be respective averages.

/
pavg

Note that, for i € S, Plye(7) = Payg(?) + Payg(B)/k and qp, (1) = Quyg (i) + daye(B)/k. For i € B, we have
that, Plye (i) = Quyg(B)/k and Qg (i) = Qayg(B)/k.

Note that, when p,,, = Q,y,, We have that, p,,, = q,,,. Furthermore in the other case, when ||p,,, —Qaygll1 >
¢ and 3, g [Pavg (1) = davg ()] < €/3, we get that, [Py, — davgll1 > /3.

Note that by Lemma 35, we get that, the 2nd and 3rd order norms for p;,, and qj,, are bounded by O(b)
and O(b?) respectively with very tiny constant probability. Therefore we get that, [|p).gll3 < >icg Pave(1)? +

(1/k) < O(b + l/k‘), ”qang2 < ZzeS qavg( ) + O(l/k) < O(b + 1/k) and <pavg’qavg> S O(b + l/k)
SOlzrg;ljl_"l}bl,/ltChi tlh/lrk(;l)o;(ile; I|Torms||are< ale:O bounde(d) ||f>~_a\:§:|3|7 ki%e $ Pavg (( )) + —E/Ok(ﬂi %fl)e s pOaV(%) g i)? —lﬁ)-/(]z(i/ f/zlz/:??
<paVg7 Qaves qavg> <o +qgﬁ<; j— 1/k? iezfn(cliazgi)dvg, Paves qavg> 565(%%\,—%0— b/k + 1/k?). We then invoke the 62,
tester with ¢ = ¢/ 10vk. Further using the sample complexity bounds from Lemma 32, we get the following

upper bound,
O(b+ 1/k/e? + (* + b/k + 1/k?) /") € O(E*/38/3) |

which is the required sample complexity. O
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